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Abstract
The human voltage-gated proton channel, hHV1, appears to exist mainly as a dimer.
Teleologically, this is puzzling because each protomer retains the main properties that
characterize this protein: proton conduction that is regulated by conformational (chan-
nel opening and closing) changes that occur in response to both voltage and pH. The
HV1 dimer is mainly linked by C-terminal coiled-coil interactions. Several types of muta-
tions produce monomeric constructs that open approximately five times faster than the
wild-type dimeric channel but with weaker voltage dependence. Intriguingly, the quin-
tessential function of the HV1 dimer, opening to allow Hþ conduction, occurs cooper-
atively. Both protomers undergo a conformational change, but both must undergo this
335
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transition before either can conduct. The teleological purpose of dimerizationmay be to
steepen the voltage dependence of channel opening, at least in phagocytes. In other
cells, the purpose is not understood. Finally, several single-celled species have HV that
are likely monomeric.
1. INTRODUCTION

Ion channels comprise a large family of membrane proteins that reg-
ulate the passage of ions, usually one particular species of ion, across cell or

organelle membranes. Most ion channels are multimeric, but dimeric chan-

nels do occur, albeit infrequently. The voltage-gated proton channel (HV1)

gene (HVCN1) was identified in 2006,1,2 and its dimeric nature was discov-

ered shortly thereafter.3–5 The main focus of this review is to survey the

consequences of dimerization for the molecular and biological functions of

these channels. On the molecular scale, proton channels open and close,

conduct only protons when they are open, and characteristically are regulated

closely by the pHgradient.6 Voltage-gated proton channels in humans (hHV1)

have diverse functions in a variety of cells. They participate in pathogen killing

by phagocytes,7–11 histamine secretion by basophils,12 surface pH regulation

by airway epithelia,13 capacitation and motility of sperm prior to fertiliza-

tion,14,15 B lymphocyte signaling,16 and may exacerbate breast cancer

metastasis17 and brain damage in ischemic stroke.18

2. DIMERIZATION OF MEMBRANE PROTEINS

A number of ion channels function only when assembled into the
multimer that forms the ion-conducting structure. For example, voltage-

gated Kþ channels are tetramers that use two transmembrane (TM) helices

(S5–S6) from each of the four subunits to produce a single, central Kþ selec-

tive pore (Fig. 12.1). In a few ion channels, including HV1, individual

monomeric units appear to be fully functional, yet the native channel assem-

bles as a dimer or oligomer with properties distinct from the monomer. The

high frequency of membrane protein homodimers (and higher order homo-

oligomers) argues that there is a strong evolutionary advantage for this kind

of quaternary structure. Commonly accepted “reasons” for dimerization of

membrane (and soluble) proteins include increased stability, increased spec-

ificity of interaction with regulatory proteins, regulation or modulation of

activity, and acquisition of cooperativity. HV1 activity is modulated by at
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Figure 12.1 Architecture of three classes of VSD containing molecules. The top row
shows the monomeric protein; the lower row shows the final assembled protein. The
Kþ channel assembles as a tetramer,19,20 with four separate VSD elements connecting
to a single central pore (the pathway taken by Kþ as it permeates). The voltage-gated Hþ

channel in many species, including mammals, assembles as a dimer,3–5 although when
constrained to exist in monomeric form, it retains its key properties of proton-specific
conduction, voltage gating (opening upon depolarization of the membrane potential),
andDpH dependence that strongly regulates the opening of the channel on the basis of
pH. The VSP, a voltage sensitive phosphatase, is thought to exist and function as a
monomer.21 Reprinted from Ref. 9, copyright 2010.
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least one protein kinase, although no evidence exists one way or the other

for differential specificity of the kinase for monomeric or dimeric HV1. HV1

dimers do act cooperatively, which has implications for physiological inter-

play with NADPH oxidase function in human neutrophils. Although not

definitely established, dimer assembly does not appear to be involved in

enhanced gating, the best characterized functional modulation of HV1.

3. EVIDENCE THAT PROTON CHANNELS EXIST
AS DIMERS
A variety of data supports the dimeric nature of the native HV1 in

humans, mice, andCiona intestinalis.3–5,22–26 The clearest and themost direct

evidence that hHV1 are dimers was provided by Tombola et al.,5 who

attached green fluorescent protein (GFP) to the channel molecule, and then

observed photobleaching of individual channel molecules. As illustrated in

Fig. 12.2, the fluorescence intensity of most channels decayed in two
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Figure 12.2 Evidence that the human proton channel, hHV1, is a dimer. (A) shows GFP
(green fluorescent protein)-tagged hHV1 channels visualized under fluorescence
microscopy. Circled spots were followed over time, as illustrated in (B), where the fluo-
rescence intensity of one spot can be seen to decay in two distinct steps. The pie chart in
(C) shows the frequency that tagged channels decayed with the indicated number of
steps. Reprinted from Ref. 5, copyright 2008, with permission from Elsevier.
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discrete steps. Additional evidence that hHV1 is a dimer, and that each

protomer has a separate conduction pathway, was provided by tandem

dimers including an introduced Cys at a location that enables block of

the channel by a methanethiosulfonate reagent. Wild-type (WT)–WT

dimers were not blocked, WT–Cys dimers were half blocked, and Cys–Cys

dimers were completely blocked.5 Some impairment of dimerization was

seen when the N-terminus was disrupted or replaced, but dimerization

was completely prevented by C-terminus substitution.5

Koch et al.3 demonstrated the multimeric nature of the mouse HV1,

mHV1 (which they calledmVSOP), by coimmunoprecipitation of the chan-

nel labeled with two different tags. They further used fluorescence reso-

nance energy transfer (FRET) to determine the distance between tagged

residues in an extracellular loop of C. intestinalis HV1 (CiHV1 or CiVSOP)

protomers to be 42 Å, also consistent with their being multimers. They

showed that the preferred multimeric configuration was a dimer by creating

a linked heterodimer including a single introduced Cys residue. Lack of

FRET in this construct showed that only two subunits are involved.

Gonzalez et al.22 demonstrated FRET in full-length CiHV1, which dis-

appeared in the N- and C-terminal truncated channel, showing that this

construct was monomeric.
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Another kind of evidence is provided by the cross-linker disuccinimidyl

suberate (DSS), which produced a distinct band at the dimer position on

western blots.3,4,26 In one study, there were weak bands at positions

corresponding to higher oligomers,4 in the other not.3 The higher order

oligomer bands could be nonspecific artifacts, as suggested by Lee and coau-

thors, but at least some could also represent natural, weaker interactions.

Overexpression, cross-linking, andWestern blotting all suffer from artifacts,

so results must be interpreted with caution; still, these two studies used dif-

ferent HV1 proteins, cell lines, and methods, greatly increasing the probabil-

ity that they represent normal interactions. Further increase in confidence is

provided by the demonstration of the dimeric nature of native hHV1 in situ

in human neutrophils26 using western blots. Faint bands at the dimer level,

which were greatly enhanced by DSS treatment, were seen in lysates from

human neutrophils, eosinophils, and monocytes.

3.1. Not all HV1 are likely to be dimers
Direct evidence exists for the dimeric tendencies of HV1 in humans, mice,

and C. intestinalis. However, because the most important determinant of

dimeric status is C-terminal coiled-coil interaction,3–5,22–26 HV1 lacking this

property may exist as monomers. Of confirmed or predicted HV1, those in

the dinoflagellate Karlodinium veneficum27 and in the diatoms Phaeodactylum

tricornutum28 and Thalassiosira, lack predicted coiled-coil domains and are

presumed to be monomeric. HV1 in coccolithophores, which are also

single-celled eukaryotes, contain predicted C-terminal coiled-coil domains,

which precludes any generalization regarding distinctions between oligo-

merization in multicellular and unicellular organisms. At present, there is

no evidence that any accessory proteins are involved in or required for

dimerization. The proton conduction that is the biological function of

hHV1 can be demonstrated when the purified protein is incorporated into

membrane vesicles.29 Further characterization of the physiological roles of

HV1 in various organisms will be needed to understand any distinction in

the roles of dimeric versus monomeric channels.

4. COMPARISON OF THE PROPERTIES OF MONOMERIC
AND DIMERIC CONSTRUCTS OF HV1
Exploring the differences in behavior between monomeric and

dimeric constructs of HV1 is of intrinsic interest but may also provide clues

to the evolutionary “purpose” of dimerization. A word of caution must be
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proffered before accepting the following comparison. Because (most) HV1

normally exist as dimers, unnatural, and invariably extreme measures must

be adopted to force it into monomeric status. For example, truncation of the

N- and C-termini must be considered drastic measures. These manipula-

tions themselves may have consequences other than simply producing

monomeric channels.
4.1. What does “cooperative gating” mean for ion channels?
Cooperative gating of HV1 has been discussed with the idea that the two

protomers do not function independently. In order to understand the evi-

dence that exists for cooperative gating inHV1, wewill first consider the idea

of cooperativity as it relates to ion channels. Cooperative binding of sub-

strates to proteins that have multiple-binding sites is a straightforward con-

cept. A well-known example of (positive) cooperativity is that the first O2 to

bind the tetrameric hemoglobin molecule increases the O2 affinity of the

three remaining binding sites. A classic description of cooperativity in ion

channels was provided by Hodgkin and Huxley.

Hodgkin and Huxley observed that both Naþ and Kþ currents in squid

axons activated (turned on) with a delay,30 which they could explain by pos-

tulating multiple identical voltage-sensing elements, all of which must move

before the conductance appears. Amathematical representation of this idea is

to assume identical conformational changes in each element, each a simple

first-order transition between a resting state (R) and an activated state (A)

(Scheme 12.1):
A

a

b

R

Scheme 12.1 Two state model.
where the forward and backward rate constants are a and b. On average, the

movement of one element (protomer) after a step change of voltage follows

anexponential timecourse,with timeconstant,tact¼1/(aþb).Both rate con-
stants are typically voltage-dependent, and the steady state probability ofA, the

activated state, at a given voltage is a/(aþb). If we assume that the channel can

conduct only after both voltage-sensor domains (VSDs) in a dimeric channel

reach state A, then the opening process can be shown as in Scheme 12.2.
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Scheme 12.2 describes the Hodgkin–Huxley (HH) model for a two compo-

nent channel. In this scheme, the current will turn on with a sigmoid time

course, and upon repolarization, will turn off with an exponential time course,

because once either protomer moves to its R state, conductance ends.

Turning to HV1, we have discussed evidence for dimers consisting of

two identical protomers, each with a distinct conduction pathway and some

means of responding to membrane potential changes. In the simplest case,

movement of charged groups within the TM helices of the protein would

produce a conformational change that directly results in conductance

(“channel opening”). In this case, as soon as the first protomer “opened”

there would be current. Nonindependence in this scenario could reflect

interactions between protomers, such that opening of one facilitates (or

inhibits) the opening of the other, exhibiting positive (or negative) cooper-

ativity, in a sense similar to O2 binding in hemoglobin.

A different class of nonindependence would arise if interactions within

the HV1 dimer resulted in conductance occurring only after both protomers

“open.” In the sense that conductance requires both members of the dimer

to perform, this can be considered cooperative, but this phenomenon can

also occur if each protomer moves independently of the other in response

to voltage changes. The cooperativity in this example results not from inter-

actions during the initial response to voltage but during a subsequent step

during which the conductance appears.31 This is the kind of cooperativity

modeled by Hodgkin and Huxley.32

A slightly more complicated model was proposed by Gonzalez et al.22

They postulated an “allosteric” mechanism, in which the R!A transition

does not immediately result in conductance, even in a monomer, but instead

an additional transition must occur: R!A!O, whereO is the open (con-

ducting) state.Here, theR!A transition (horizontal steps) reflects themove-

ment of the fourth TM helix (S4) in response to voltage into an activated

configuration, and the A!O transition (vertical steps) reflects a conforma-

tional change that results in conductance (channel opening). For the HV1

dimer, a simplified version of the allosteric model is shown in Scheme 12.3.

Here, the Cn states are closed (nonconducting), and the On states are

open (conducting). The allosteric factor L (which also appears in the vertical
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transitions, but is not shown here) determines how much interaction exists

between protomers. Aside from additional complexity, the allosteric model

differs in one significant respect from the HH model. This point requires a

preliminary discussion of gating charge.

4.2. What is gating charge and how is it measured?
A voltage-dependent ion channel opens in response to a change in mem-

brane potential. This occurs because there are net charges within the mem-

brane spanning regions of the protein that move in response to voltage

changes. For example, the S4 region of most voltage-gated ion channels

contains several positively charged Arg (or Lys) residues, and when the

membrane is depolarized (by making the inside of the cell more positive),

these positive charges are pushed outward. “Gating charge” refers to the

number of elementary charges (e0) in each channel molecule that must be

transferred from one side of the membrane to the other during the opening

process. If one charge travels across only half the membrane potential field,

this would count as 0.5 e0. One additional complication is that the mem-

brane potential does not change uniformly, as was assumed by Goldman

in his “constant field theory,”33 but is focused at the narrowest part of

the pore.34–37 A standard method for estimating the effective gating charge

is called the “limiting slope”method. The steady state conductance (which is

assumed to reflect approximately the open probability of the channel, Popen)

is plotted semilogarithmically against voltage. Almers showed that the slope

at the most negative voltage range that can be detected is a good estimate of

the effective gating charge for any gating model in which the channel tra-

verses an arbitrary number of closed states to arrive at a single open state.38

More detailed analysis of which kinds of models follow or deviate from this

guideline is provided by Sigg and Bezanilla.39 For Naþ40 and Shaker Kþ

channels, the total effective gating charge estimated by this method is

12–14 e0.
41–44 To a rough approximation, this estimate corresponds well
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with the physical manifestation expected if four Arg residues from each of

the four VSDs of the tetrameric channel, crossed most of the membrane

electrical field. Returning to the models described earlier, the limiting slope

method applies to the HHmodel (Scheme 12.2), but not strictly to the allo-

steric model (Scheme 12.3). The reason for this is that the allosteric model

permits (a) channel opening before all the VSDs have moved and (b) tran-

sitions between open states. If these transitions involve movement of gating

charge, then the limiting slope will underestimate the true gating charge.39

An excellent example of this phenomenon is the BK channel, whose g–V

relationship at moderately negative voltages first becomes steeper, but at

larger negative voltages becomes much shallower.45 An allosteric model

described the gating of this channel well, and explained the anomalous lim-

iting slope data, because channels can open before all the voltage sensors

have moved and also because charge movement can occur during transitions

between open states.46 The error introduced by using the limiting slope

approach depends on the degree of allosteric interaction; at one extreme,

the allosteric model degenerates into a linear model (in which all channels

follow theC0!C1!C2!O2 pathway in Scheme 12.3), in which case the

limiting slope gives the correct value.

If we consider the Kþ channel in Fig. 12.1, the physical embodiment of

the HH model (with movement of all four VSDs required before opening

occurs) is clear. There are four identical VSDs, each of which must undergo

a conformational change before the central pore is opened.30,47,48 For HV1,

the physical interpretation is less obvious, because there are two separate pores.

4.3. Evidence that gating of the two protomers in HV1
is “cooperative” (not independent)

Evidence already discussed shows that each protomer in HV1 contains a sep-

arate conduction pathway. It has become clear, however, that the gating

(opening and closing in response to voltage changes) of the two protomers

does not occur independently. One line of evidence comes from

coexpressing roughly equal amounts of WT hHV1 and a mutant, E153C,

that has the property that its proton conductance–voltage (gH–V) relation-

ship is shifted—50 mV compared with WT. Independent gating of the

protomers should result in a component of negatively shifted channels.

On the other hand, if both protomers must undergo a conformational

change that precedes conduction of either, channels should open at the more

restrictive (more positive) regime. When the experiment was performed,

the resulting gH–V relationship practically superimposed on that of the
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WT channel, which has the more positive voltage requirement. Linked

heterodimers shared the nearly WT gH–V relationship seen in the

coexpression studies. A puzzling feature of these results was the lack of a

shoulder on the gH–V relationship in the coexpression studies, which would

be expected from the fraction of double mutant dimers.

Gonzalez et al.22 also produced elegant evidence for cooperative gating

(Fig. 12.3C). They labeled the outer end of the S4 domain with a fluo-

rophore and used voltage-clamp fluorometry to observe S4 movement

simultaneously with proton currents during voltage pulses. The fluorescence

signal reflecting S4 movement (red) increased exponentially, whereas the

proton current (black) increased with a sigmoid time course. In the tradi-

tional Hodgkin–Huxley32 formalism of Scheme 12.2, the time course of

the fluorescence signal raised to the second power (green) will predict the

time course of the current if the two protomers gate independently and if

both must undergo a conformational change before either conducts. It is

a happy event when data cooperate so nicely with theoretical expectations!

Further evidence supporting this form of cooperative gating emerged

when the Larsson group determined the effective gating charge of hHV1.

WT HV1 channels have an effective gating charge of �6 e0 in rat49,50 and

human.51 InCiHV1, theWTchannelhad5.9 e0but themonomeric construct

had 2.7 e0.
22 This result strongly supports the idea that both protomers must

move before either can conduct. A recent study of the mouse Hv1, mHV1,

produced identical phenomenology: the dimeric channel had twice the effec-

tive gating charge as seen in monomeric constructs.25 In this species, the gat-

ing charge inWT channels was 4 e0, with 2 e0 seen inmonomeric constructs.
4.4. Activation kinetics differs between monomer and dimer
Koch et al.3 produced monomeric mHV1 (mouse) channels by truncating

the C-terminus and also by truncating both C- and N-termini. The

C-truncated channel (DC) opened 2.5 times faster, and the doubly truncated

channel (DNDC) opened five times faster. If we interpret the double trun-

cation as more efficiently producing monomeric channels (i.e., that some

dimers remain even with C-truncation), then the monomer opens five times

faster. In a later study, C-truncation of mHV1 accelerated channel activation,

tact, by �sixfold (Fujiwara et al.).25

Tombola et al.5 produced monomeric chimerae by attaching the

C-terminus alone or both theN- andC-termini from theCiVSP, a phospha-

tase fromC. intestinalis thought to exist as amonomer,21 onto hHV1.Aminor
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effect of swapping theN-terminus alonewas also observed.The chimerawith

bothN-andC-termini fromCiVSPgraftedonto thehHV1TMdomains acti-

vated substantially more rapidly, although no quantitative results were pro-

vided. The gH–V relationship for this monomeric construct was 30% less

steep and its midpoint voltage about 10 mV more positive.

Musset et al.24 produced presumed monomeric hHV1 by C-truncation

(hHV1DC). Although independent confirmation that C-truncation pro-

duces mainly monomers was not obtained, the activation kinetics was well

fitted by a single exponential function (Fig. 12.3B). Activation of the
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C-truncated channel was 6.6 times faster than the WT dimer, measured in

inside–out membrane patches at pHo 7.5, pHi 7.5. The difference was less

pronounced in whole-cell data at pHo 7.0, pHi 6.5, with the hHV1DC about

three times faster than WT.52 Consistent with the report of Tombola et al.,5

the gH–V relationship was somewhat less steep in the monomeric construct,

with the midpoint shifted 10–15 mVmore positive thanWT. The hHV1DC
construct not only opened more rapidly but also the time course of turn-on

of current was exponential (Fig. 12.3B), in contrast with the distinctly sig-

moidal time course of WT currents (Fig. 12.3A).24 This behavior is con-

sistent with the HH-type model discussed earlier (Scheme 12.2) in which

each protomer must activate before either can conduct. In summary, gating

kinetics supports the idea of cooperative gating.

A mechanism for cooperative gating of mHV1 was proposed recently by

Fujiwara et al.25 A number of mutations were carried out in the C-terminal

domain. The short region between the C-terminal (intracellular) end of S4

and the start of the coiled-coil region was deleted, extended, or replaced

with different amino acids. The resulting mutants fell into two groups:

one group (including the monomeric DC) opened several times more rap-

idly and had an effective gating charge of 2 e0 based on limiting slope mea-

surements, half that of 4 e0 in the other group (including WT channels).

Cooperative gating is consistent with the observation that the slower open-

ing phenotype had twice the gating charge. Several conclusions can be

drawn. In general, coiled-coil dimer assembly inhibits activation of HV1,

in the sense that the dimer opens more slowly. Second, the mere fact that

the channel was dimeric did not ensure cooperative gating, because a flexible

linker (GGG) inserted between S4 and the C-terminus prevented cooper-

ativity. Similarly, a dimer comprising two C-truncated protomers failed to

exhibit cooperativity. A related conclusion is that interactions occurring

within the TM regions evidently are not sufficient to ensure cooperativity,

because these constructs were shown to be dimeric, yet exhibited no signs of

cooperativity.

TheOkamura group25 proposed that the C-termini that are known to be

linked in the dimer by coiled-coil interactions4,23 directly modulate S4

movement that results in channel opening. The C-termini are considered

to be part of a rigid rod extending through the S4 helix, so that movement

of S4 in one protomer would be linked mechanically via the C-termini to

the second S4 domain. It is not precisely clear what degree of independence

is allowed in this model. Thus, if both entire C-terminus S4 domain assem-

blies were completely rigid, both protomers would be expected to move
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simultaneously. If the result of this concerted movement were direct activa-

tion of the conductance (opening of the channels), then the time course of

current turn-on would be exponential, not sigmoid. Given that the move-

ment of S4 observed directly by Gonzalez et al.22 had an exponential time

course, but the current has a sigmoid turn-on (Fig. 12.3C), one possibility is

that a certain degree of flexibility in the structure allows a delay between the

movement of the two S4 domains. Alternatively, there must be one or more

additional steps that couple S4 movement to opening of the conduction

pathway that would account for the delayed turn-on of the current. The

Larsson group22 could model their results either with the assumption (a) that

the two protomers move independently and both must move before con-

duction occurs in either or (b) that there is a strong allosteric interaction that

favors coordinated movement of both S4 domains over the movement of a

single protomer. The latter model was also proposed by Tombola et al.53

Distinguishing these two classes of models may be difficult, especially

when there is a sufficiently high degree of allosteric coupling, because the

allosteric mechanism becomes indistinguishable from the HH model. Indi-

rect evidence that seems to support the allosteric model comes from attempts

to measure single channel current amplitude in HV1. Unitary Hþ currents

are �103 smaller than those of most ion channels and consequently are very

difficult to resolve directly. However, under favorable conditions (absence

of other conductances, extremely high-resistance seals (up to 5 TO) which
minimize noise,54 maximized conductance induced by using low pHi),

Cherny et al.55 were just able to resolve what appeared to be unitary currents,

of �10 fA amplitude. An alternative method of measuring unitary currents

involves analyzing current fluctuations resulting from stochastic opening and

closing of channels.56 Current variance was well resolved in excised mem-

brane patches from human eosinophils and provided reproducible estimates

of single channel conductance.55 However, the values derived from current

fluctuations were consistently about twofold smaller than those from direct

observation. Concerted opening of both protomers would result in channel

openings with a conductance double that of each monomer, while allosteric

interaction would allow two separate steps. The current fluctuation results

can be reconciled with the apparent double-sized unitary current events if

allosteric interaction results in both protomers opening in rapid succession,

so that the current appears to comprise a single step, rather than two steps.

Because the unitary current amplitude was just on the borderline of detect-

ability, caution should be exercised before putting too much weight on this

kind of interpretation.
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5. PROPOSALS FOR THE HV1 DIMER INTERFACE

The first proposal4 for the orientation of the hH 1 dimer is shown in
V

Fig. 12.4A. Cys residues were introduced at numerous locations, and cross-

bridge formation was evaluated. Several cross bridges were detected at the

extracellular end of S1 (red cylinders, extracellular is toward the top of

Fig. 12.4) and in the S1–S2 linker; this was proposed to be the main interface

region, in addition to the predicted coiled-coil interaction of theC-termini.4

This dimer orientation is supported by FRETdata obtained fromCionaHv13

that indicated a distance of 42 Å between Cys243 on each protomer. Cys243

of CiHv1 is on the S2/S3 linker (connecting green and blue helices in

Fig. 12.4), predicted to be far apart in a dimer connected at the S1 helices.

On the other hand, data consistent with more than one dimer interface

also exist. In the Lee et al.4 study, distinct crosslinks at hHV1 position 194,

also in the S2/S3 linker, were observed, indicating that this position attains

close proximity a measurable fraction of the time, which would be unex-

pected if the only possible interface were through the S1 helices.

Additional evidence for another dimer interface comes from the use of

Zn2þ, the most potent inhibitor of HV channels,57–60 which acts by

preventing channel opening. Although sensitivity to Zn2þ has been exam-

ined almost religiously as a pathognomonic feature that must be confirmed

in any newly discovered proton conductance in cells or species not
A B

Figure 12.4 Two proposed dimer interfaces. Cross-linking studies indicate several
points of attachment at the top (outer) end of S1 (red).4 The binding of Zn2þ to various
hHV1 mutants with His140 or His193 (aqua) replaced by Ala suggested that high-affinity
bidentate Zn2þ binding occurs at the dimer interface.24 Reprinted with permission from
Ref. 24, copyright 2010.
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previously studied, Zn2þ sensitivity is extremely sensitive to pH.57 The sen-

sitivity of the channel to externally applied Zn2þ becomes quite weak at low

pHo, strongly suggestive of competition between Hþ and Zn2þ for the

binding site where Zn2þ exerts its inhibitory effects. By mathematically

modeling the competition between Hþ and Zn2þ at different pHo, Cherny

and DeCoursey concluded that Zn2þ must be multiply coordinated, and

that the pKa of the coordinating groups was roughly 6–7, suggesting that

two or more His residues formed the Zn2þ-binding site.57

When the hHV1 gene was identified, and two externally accessible His

residues (His140 and His193) were shown to account for the inhibitory effects

of Zn2þ,1 the obvious conclusion was that these twoHis residues most likely

coordinated Zn2þ at its site of action. However, in a molecular model of the

open-state monomer of hHV1, His140 and His193 were too far apart to coor-

dinate Zn2þ plausibly.24 Protein:protein docking of the model structure

indicated the possibility that His pairs from different protomers could

approach close enough for Zn2þ coordination to occur in a dimer whose

interface was between the S2/S3 helices.

Several types of experiments were carried out to test the hypothesis of

interprotomer Zn2þ coordination. The first prediction of this hypothesis

is that the affinity of Zn2þ for the dimeric channel should be greater than

for the monomer, which would lack the possibility of bidentate coordina-

tion. Indeed, C-terminally truncated constructs of both human and mouse

HV1 (presumed to be monomeric—see earlier) exhibited significantly

diminished response to Zn2þ, consistent with the prediction. This result

conflicts with a report using a different HV1 monomer construct.53 Because

this report was based on measurements under one set of conditions at one

pH at a single voltage,53 a chance combination of separate Zn2þ effects

may have canceled each other out. Zn2þ has complex pharmacological

effects, including profoundly slowing activation, shifting the gH–V relation-

ship positively, and probably also decreasing gH,max.
57 It is also possible that

the different monomeric constructs responded differently to Zn2þ.
Another set of experiments involved testingmutants and tandemconstructs

in which alanine replaced the histidines in several combinations. Figure 12.5

illustrates the constructs tested and their relative Zn2þ sensitivity, using

the slowing of channel opening as the parameter of interest. A similar pattern

was observed when the shift of the gH–V relationship by Zn2þwas the param-

eter evaluated. As previously shown by Ramsey et al.,1 mutation of His140

or His193 alone attenuated but did not eliminate the Zn2þ sensitivity, demon-

strating that both residues contribute to WT Zn2þ sensitivity. The double
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shown as a circle and His193 as a square. Solid symbols indicate His at the indicated posi-
tion, open symbols indicate replacement with Ala. Reprinted with permission from Ref. 24,
copyright 2010.
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mutant lacked any slowing up to 1 mM Zn2þ, suggesting that no other

groups on the channel contribute significantly. Control tandem dimers

in which both protomers possessed both histidines showed Zn2þ sensitivity

indistinguishable from WT (Fig. 12.5, blue vs. green symbols) as well as

sigmoidal activation kinetics suggestive of cooperative gating. A tandem

dimer in which one protomer lacked His140 and the other protomer lacked

His193 (“H193A–H140A tandem”) exhibited Zn2þ sensitivity similar to

single mutants in the WT background (Fig. 12.5). A surprising result

was observed for a tandem dimer in which one protomer was WT, with

both His present, while the other protomer lacked both His. Just as for the

double His mutant (lacking both His), Zn2þ did not slow opening in the

tandem dimer in which both histidines were present in one protomer,

while the other protomer lacked His. In summary, slowing of channel

opening by Zn2þ was observed only when there was at least one His in

each protomer. Taken together, these data indicated that Zn2þ is most

likely coordinated between protomers, which implies a dimer interface

involving S2 and S3 helices (Fig. 12.4B).
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The apparent discrepancy between the two suggested dimer interfaces

could be explained in at least two ways. In one, the TM domains of the

two protomers, although tethered by coiled-coil interactions within the

C-termini, may be able to rotate around the tether and adopt different ori-

entations relative to each other. This possibility appears to be less likely in

light of the proposed rigidity of the linker between S4 and the coiled-coil

region.25 Nevertheless, a tandem WT–WT dimer, linked with a short

(6 AA) connection between the C-terminus of one monomer and the

N-terminus of the second, functioned almost identically to theWT channel,

with the exception of somewhat slower opening kinetics.24,52 This result

might indicate that the required C-terminal interaction can occur almost

normally despite the proximity of an attached N-terminus. Another expla-

nation posits the formation of a tetramer consisting of a dimer-of-dimers;

this complex maybe stabilized by Zn2þ binding at an interface at the

S2/S3 helices. Wherever Zn2þ binds, it clearly stabilizes the closed confor-

mation, because it slows channel opening, and shifts the gH–V relationship in

the positive direction.57

It might be objected that the molecular model that gave rise to the

hypothesis of Zn2þ binding between protomers is presumed to be an

open-state model, whereas the general interpretation of Zn2þ effects pre-

sumes that Zn2þ binds to the closed channel. The relative positions of

His140 and His193 were estimated in the predicted closed state, based on

the positions of the corresponding residues in molecular models of closed

KV1.2 VSDs.61 The estimated closed state positions do not differ greatly

from those in the open state—in particular, they still do not appear to

approach closely enough to coordinate Zn2þ. This is not unexpected, con-
sidering that neither His is located on the S4 helix, which is thought to be the

main “moving part” of the HV1. In any case, the results obtained do not

depend on perfect accuracy of the molecular model. When the crystal struc-

ture of the closed hHV1 molecule has been obtained, this direct evidence

should resolve many questions that at present can only be addressed

indirectly.

6. PHYSIOLOGICAL CONSEQUENCES OF DIMERIZATION
OF HV1
The most consistent difference between monomeric and dimeric HV1

is in gating kinetics. However, this difference, while clear, is not dramatic.

In some situations, the three- to sixfold faster monomeric opening rate



352 Susan M.E. Smith and Thomas E. DeCoursey

Author's personal copy
might seem to be an important distinction, but considering that among spe-

cies, HV1 activation kinetics varies over several orders of magnitude,62 it

would appear that a species with a need for quickly opening proton channels

would be better served in making a channel that is intrinsically fast. HV in

snail neurons open within a few milliseconds,63 whereas mammalian HV1

require seconds.64 From this perspective, fundamental kinetics would most

logically be determined genetically, not by adjusting multimerization.

On the other hand, if it were possible for a cell to switch its HV1 between

monomer and dimer status, then a fivefold change in gating kinetics might

have important consequences. In fact, Koch et al.3 initially suggested that this

kind of mechanism might be responsible for the “enhanced gating mode” of

proton channels in phagocytes.

6.1. Does the enhanced gating mode in phagocytes reflect
dimer-to-monomer conversion of HV1?

The clearest function of proton channels in phagocytes (neutrophils, mac-

rophages, and eosinophils) is to facilitate and sustain NADPH oxidase (or

“Nox2”) activity. Detection of a foreign invader (e.g., a bacterium) by

the phagocyte triggers a complex series of biochemical and cellular process

culminating in phagocytosis of the detected material. A rapid biochemical

consequence of the detection mechanism is the assembly, from its several

components, of Nox2 in the phagosome membrane. Nox2 uses intracellular

NADPH as a source of electrons, which it translocates across the phagosome

membrane to produce reactive oxygen species that are released into the for-

ming or mature phagosome. Electron translocation by Nox2 depolarizes the

membrane potential,65 while NADPH catabolism, which releases NADPþ

and Hþ,8,66 decreases the intracellular pH.65,67–70 Proton efflux through

HV1 compensates for both the membrane depolarization and the pH

change.10,11,64,65,68,69,71–73

Another consequence of the detection of foreign entities by phagocytes

is a radical change in the gating kinetics of HV1, which turns out to be a

significant factor contributing to the activation of Hþ efflux. Four properties

of hHV1 change: opening occurs more quickly, closing slows, the maximum

conductance gH,max increases, and the gH–V relationship shifts negatively by

40 mV.71,74–77 This transformation of HV1 properties is termed the

“enhanced gating mode.” As a result of the four changes in HV1 behavior,

each of which promotes Hþ efflux, during enhanced gating the chan-

nel opens sooner and thereby improves the efficiency of NADPH oxidase

activity by 15–20%.78 Is it possible that enhanced gating reflects conversion
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of the normally dimeric hHV1 to monomeric status? This suggestion3 has

not yet been resolved beyond doubt, but the bulk of evidence suggests that

this is not the case.79

Monomeric HV1 and HV1 in enhanced gating mode share one property:

monomeric HV1 open several times faster than dimeric channels.3,5,24,52

Similarly, during enhanced gating, HV1 opens four to six times faster than

in resting cells.12,71,74–77,80,81 Three other properties evident in the

enhanced gating mode differ from those of monomeric constructs. (1)

The position of the gH–V relationship appears to be 10–15 mV more pos-

itive in monomeric constructs than WT dimeric channels.52,53 In enhanced

gating mode, the gH–V relationship shifts in the opposite direction, nega-

tively by �40 mV.71,74–77,80,81 (2) During enhanced gating, the Zn2þ sen-

sitivity of hHV1 is not changed,52 whereas the Zn2þ sensitivity of the

C-truncated construct was weaker than that of the dimer.24 (3) During

enhanced gating, activation of hHV1 continues to have a sigmoid time

course, in contrast to the exponential activation of the monomer.24 On bal-

ance, the differences in channel properties during enhanced gating mode

compared to monomeric constructs appear to outweigh the similarities.

In another supporting piece of evidence, Petheő et al.26 did not observe

any difference in DSS cross-linking potential when they pretreated human

neutrophils with PMA,which effectively induces the enhanced gatingmode.

An alternative explanation is that phosphorylation of hHV1,
82 specifi-

cally at Thr2983 is responsible for converting the resting channel into

enhanced gating mode. The PKC activator PMA produces enhanced

gating12,15,16,74–77,80,82–84 that is prevented or reversed by PKC inhibitors

such as staurosporine or GF109203X (GFX).12,15,76,77,82–84 Other activators

of enhanced gating including arachidonic acid and lipopolysaccharide

act at least partially through PKC.81,82,84

6.2. Might the differences in properties of monomeric
and dimeric constructs provide clues to the functional
importance of dimerization?

The main differences betweenWT dimeric HV1 and monomeric constructs

include four properties: (a) activation (channel opening) is approximately

five times slower in WT dimeric channels, (b) WT channel opening occurs

with a sigmoid rather than exponential time course, (c) the WT gH–V rela-

tionship is 10–15 mVmore negative, and (d) the WT voltage dependence is

twice steeper. We may for now discount the difference in opening time

course (b) and the relatively subtle change in the position of the gH–V
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relationship (c). Although there are certain situations in which these changes

could have functional ramifications—in excitable cells like cardiac muscle,

for example, a 10 mV shift of a g–V curve has profound physiological sig-

nificance85—in the absence of detailed knowledge about the precise situa-

tions in which HV1 operate in most of the many cells where they exist, it

seems pedantic to focus on small differences. The faster opening (a) and

steeper voltage dependence (d) do, however, seem important enough to

warrant speculation.

As discussed earlier, phagocytes, especially neutrophils and eosinophils,

use proton channels during the respiratory burst, when Nox2 is active. The

best understood role of HV1 in this situation is to compensate charge,65 to

prevent excessive depolarization that would otherwise result from the activ-

ity of the electrogenic Nox2. Nox2 activity tends to occur with a delay of

several seconds or even minutes, depending upon the stimulus, and may

continue for hours.86 Thus, it may be that the ability of HV1 to open rapidly

may not have much value to these cells. The phagocyte “cares” only that

enoughHV1 open as soon as Nox2 is active to limit the depolarization. From

the vantage point of the phagocyte, there is no rush, because Nox2 turns on

slowly and remains active for a long while. In fact, in these nonexcitable

cells, proton channel opening is quite slow, compared with the kinetics

of gating of most ion channels, and compared with the opening of HV in

other species, such as snail neurons.63,87,88

On the other hand, HV1 opening plays a major role in limiting the extent

of the depolarization that occurs when Nox2 is active; membrane depolar-

ization, especially beyond þ50 mV, directly inhibits Nox2 activity.10 To

“help” Nox2, HV1 should open within a relatively negative voltage range.

The enhanced gating mode, which shifts Hv1’s gH–V relationship negatively

by 40 mV, clearly facilitates this goal. Enhanced gating improves the effi-

ciency of Nox2 by 15–20%, because to open enough channels to compen-

sate Nox2, requires 24–30 mV less depolarization in human neutrophils and

eosinophils than would be needed if there were no enhanced gating mode.78

We have already seen that enhanced gating mode does not seem to represent

a change in the dimerization state of HV1.

The steep voltage dependence of HV1 also facilitates Nox2 activity.

Cooperative gating increases the steepness of the voltage dependence of

ion channels.89 The cooperative gating of the hHV1 dimer results in a dou-

bling of the voltage dependence compared to the monomer.22 The result is

that substantially less depolarization is required to open a given number of

proton channels. One might argue that the cell could enable sufficient
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activation of gH simply by shifting the gH–V relationship negatively, but

once enhanced gating is in effect, Vthreshold is already perilously close to

EH. The cell “wants” HV1 to turn on rapidly once there is an outward elec-

trochemical gradient for Hþ, but it definitely does not want HV1 to open

when the gradient is inward. The main function of HV1 in most cells is acid

extrusion—cells continually produce metabolic acid that they must elimi-

nate; this is the “central problem of pHi regulation.”
90 For this reason, it

would be self-destructive to have a constitutively active gH, because this

would act as a proton leak that would flood the cell with unwanted Hþ.
The most optimal possible design is to poise Vthreshold near EH and then

to have strong dependence of Popen upon depolarization above this point.

Nature has produced the most efficient possible mechanism.

It would be interesting to know why HV in some species appear to be

monomeric. However, because we know the functions and the situations

in which the channels are active only in the most general terms, it seems pre-

mature to attempt to predict why monomeric behavior would be preferable.

7. CONCLUSIONS

In most of the species where it has been identified, H 1 exists as a
V

dimer.Dimerization is driven and enforcedmainly through coiled-coil inter-

actions at the C-terminus; HV1 sequences from a few single-celled organisms

do not have a predicted coiled-coil region and so may exist as monomers.

Dimerization in HV1 provides the opportunity for a cooperative gating

mechanism that gives rise to a steeply voltage-dependent conductance. This

property appears to be important in the most intensively studied function of

HV1, which exists in human phagocytes, where steep voltage dependence

provides optimum compensation for Nox activity and phagocyte function.

A number of questions regarding HV1 dimerization remain open, including

the nature of the dimer interface, themechanism of cooperativity, the impact

of multimeric state on trans-acting factors (e.g., kinases) of HV1, possible

effects of transitions between monomeric and multimeric states, and impli-

cations of cooperative gating in cell types other than phagocytes.
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