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Continuum models 2

Continuum models

Molecular simulations of systems modelled in full atomic detail might be
problematic:

• time consuming - many particles (macroscopic sampling is not possible)

• unknown 3D structures (proteins)

• uncertainties in estimation of potential parameters

"Coarse-graining"

• important particles are treated explicitely (e. g. ions)

• the rest is smoothed into a continuum (e. g. solvent, proteins, membrane,
electrode)

• the various components with different polarizabilities are modelled as
continuums with different dielectric coefficients

• it can be described by an inhomogeneous dielectric coefficient: ε(r)

Basic task: solving the Poisson equation
�

�

�

�−ε0∇ · [ε (r)∇ψ (r)] = ρ (r)
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Macroscopic electrostatics 3

Macroscopic electrostatics

The total charge is split into two parts:

• source (free or explicitely treated) charges:
�

�

�

�g(r) = ρ(r)/ε0 and

• polarization charges
�

�

�

�
h(r) = ρpol(r)/ε0 (to be determined)

• constitutive relation: ρpol(r) = −∇ ·P(r), where

• polarization: P(r) = −ε0χ(r)∇ψ(r)

• dielectric susceptibility: χ(r) = ε(r) − 1

The corresponding Poisson equation: ∇2ψ(r) = − 1
ε0

[ρ(r) + ρpol(r)]

The potential is also split into two parts:

•
�

�

�

�
ψ(r) = ψe(r) + ψi(r) =

∫

D
G(r− r

′)g(r′)dr′ +
∫

D
G(r− r

′)h(r′)dr′

• the Green-function satisfies ∇2G(r − r
′) = −δ(r− r

′)

• G(r− r
′) = 1/(4π|r− r

′|) for the boundary condition ψ(r) → 0 if r → ∞
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Variational formalism 4

Variational formalism

Solution of the Poisson equation minimizes the functional

• I [ψ] = 1
2

∫

D
∇ψ · ∇ψdr−

∫

D
ψ

[

g + 1
2∇ · (χ∇ψ)

]

dr

• In minimum the value −ε0I[ψ] is the electrostatic energy

• Substituting the Green function form of ψ(r), the functional can be expressed

in terms of the charges: I[g, h]

• At a fixed g(r), we have to find h(r) that minimizes I[g, h].

• This is equivalent to minimizing the h-dependent part of the functional I2 [h]

for a fixed g.

So, the task is to solve the extremum condition δI2[h]
δh(r)

= 0

• R. Allen, J.-P. Hansen, and S. Melchionna, Phys. Chem. Chem. Phys. 3, 4177 (2001).

• Allen et al. solved it with the steepest descent method.
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Solution of the extremum condition 5

Solution of the extremum condition

δI2[h]
δh(r)

= 0

We present a different solution resulting in a matrix equation. The following integral
equation can be obtained from the extremum condition:

h(r)ε(r) −
∫

D
h(r′)∇rε(r) · ∇rG(r − r

′)dr′

= ∇rε(r) · ∇rψe(r) −
1
ε0

[ε(r) − 1] ρ(r)

• This equation should be discretized and solved for h.

• It is general and valid for arbitrary ε(r) and ρ(r).

• We can make our life easier by making some assumptions for ε(r) and ρ(r).

D. Boda, D. Gillespie, W. Nonner, D. Henderson, B. Eisenberg, Phys. Rev. E in press (2004).
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Point charges as source charges 6

Point charges as source charges

• Suppose that the source charges are point charges:
�




�

	

�

�

�

�
ρ(r) =

∑

k zkeδ(r− rk)

• Polarization charges of magnitude
�

�

�

�
−zke

ε(rk)−1
ε(rk) δ(r− rk) are induced around

the point charges (localized on them).

• The electric potential produced by the point charges and the polarization charges

induced on them:
�




�

	
ψe(r) = e

4πε0

∑

k
zk

ε(rk)|r− rk|

where ε(rk) is the dielectric coefficient at the position of the kth source charge.

• From now on, h(r) denotes only the polarization charges induced on the dielectric
interfaces. In this case, the basic equation reduces to :

h(r)ε(r) −
∫

D
h(r′)∇rε(r) · ∇rG(r− r

′)dr′ = ∇rε(r) · ∇rψe(r)

• This is valid for arbitrary ε(r).
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Sharp dielectric interfaces 7

Sharp dielectric interfaces

• When the dielectric is piecewise uniform, ε(r) jumps from one value to another

along a boundary.

• In this case, the volume integrals over D become surface integrals over the

dielectric boundary surfaces B.

• The basic equation then reduces to:

h(s)ε(s) − ∆ε(s)
∫

B
h(s′)∇sG(s − s

′) · n(s)ds′ = ∆ε(s)∇ψe(s) · n(s)

where

• h(s) is now surface charge distribution

• ε(s) is the mean average of the dielectric constants on the two sides of the surface

• ∆ε(s) is their difference, and

• n(s) is a normal vector of the surface
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The matrix equation 8

The matrix equation

The previous equation is valid for any discrete value of sα. Use the notations

• normal vector: nα = n(sα)

• mean dielectric constant: εα = ε(sα)

• jump in the dielectric constant: ∆εα = ∆ε(sα)

The surface B is discretized into surface elements. Let us suppose that the induced

surface charge is constant on surface element β denoted by hβ . Then our equation

becomes

∑

β hβ

[

εβδαβ − ∆εα

∫

aβ
∇sα

G(sα − sβ) · nαdsβ

]

= ∆εα∇ψe(sα) · nα.

where the integral expresses the polarization of the surface element β by the induced

charge at sα, and vice versa. The integral is taken for the βth surface element.
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The matrix equation 9

The matrix equation

If sα is the center of the αth surface element, the previous equation can be written in

the matrix form:
�
�

�
�Ah = c , where

• the
�

�

�

�
Aαβ = εβδαβ − ∆εα

∫

aβ
∇sα

G(sα − sβ) · nαdsβ matrix depends only on

the geometry of the dielectric

• h is the vector of induced charges

•
�

�

�

�cα = ∆εα∇ψe(sα) · nα depends on the source charges

• If the geometry does not change in a simulation, the matrix need be inverted only

once at the beginning of the simulation.

• Moving the source charges (the ions) changes the vector c, from which the

induced charges are calculated by the matrix-vector multiplication h = A−1
c.
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Calculation of the integral 10

Calculation of the integral

Regarding the calculation of the integral Iαβ =
∫

aβ
∇sα

G(sα − sβ) · nαdsβ there are

two approaches

1. Treating the surface charge hβ as a point charge of magnitude hβaβ at the center

of the βth surface element of area aβ
�

�

�

�
Iαβ = ∇sα

G(sα − sβ) · nαaβ

for β 6= α and 0 otherwise [Boda et al., Phys. Rev. E, in press]. This matrix has

been developed before from the boundary condition D1n = D2n, E1t = E2t.

[Hoshi et al. JCP, 1987; Lu and Green, PCPS, 1997]

2. Treating hβ as a constant surface charge over the βth surface element, and

calculating Iαβ numerically after an appropriate parametrization of the surface

[Nonner and Gillespie, Biophys. J. in preparation]. This approach is especially

important if the surface is curved, therefore, we use the name curvature correction.
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Calculation of the energy 11

Calculation of the energy

• The source charge - source charge interaction energy:
�

�

�

�
We = 1

2

∑

j ezjψe(rj)

• The source charge - induced charge interaction energy:
�

�

�

�
Wi = e

8π

∑

j zj

∑

β hβ

∫

aβ

ds
|s−rj |

Similarly to the calculation of the integral Iαβ , this energy can also be calculated

on two levels of approximation:

1. Treating the induced charge as a point charge of magnitude hβaβ , the integral

in the above equation becomes aβ

|sβ−rj |
.

2. Treating the induced charge as a surface charge with the constant value hβ

over the βth surface element, the integral should be calculated numerically.

This is a time consuming step in a simulation because the |s− rj | distances

have to be evaluated once the jth ion is displaced.
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Ion is modelled as a hard sphere with a point charge in the center 12

Ion is modelled as a hard sphere with a point charge in the center

• The dielectric constant inside the hard spheres is the same as outside.

• The ions cannot overlap with the dielectric boundaries and cannot leave their host dielectric.

• Otherwise, new dielectric boundaries would appear - matrix A should be inverted again.

ε
ε

ε

εε

ε 2

2

2

2

2

1
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One flat interface: ε1|ε2 geometry - ions on the right side 13

One flat interface: ε1|ε2 geometry - ions on the right side

Comparison of density profiles obtained from the ICC and the image charge method

for various resolutions of the grid. [Boda et al. PRE in press]
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Two flat interfaces: ε1|ε2|ε3 geometry - electrical double layer 14

Two flat interfaces: ε1|ε2|ε3 geometry - electrical double layer

It is usual to assume that the inner layer has a dielectric constant different from that of

the diffuse layer or the elecrode because of the need for empirical adjustments to

obtain agreement with experiments. The elecrostatic consistency of the approach

should be studied. [Boda, Gillespie, Nagy, and Henderson, JCP, submitted]
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A dielectric sphere ε1 = 80 embedded in a dielectric ε2 = 2 15

A dielectric sphere ε1 = 80 embedded in a dielectric ε2 = 2

• Radius of the sphere: R = 5 Å.

• Distance of a source charge e from the center of the sphere: d = 4 Å

• Grid: spherical coordinates ϑ and φ evenly divided into intervals ∆θ = ∆φ, N is
the number of surface elements.

• Analytic solution: series in terms of Legendre polynomials.
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A dielectric sphere ε1 = 80 embedded in a dielectric ε2 = 2 16
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The effective force acting between two charged dielectric spheres 17

The effective force acting between two charged dielectric spheres

The effective pair potential is defined as
�

�

�

�ϕ(r) = W (r) −W (r → ∞) . The energy

W (r → ∞) corresponds to the interaction energy between the charge and the induced

charge on its own sphere. The effective force is
�

�

�

�F (r) = −dϕ(r)/dr .
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MC simulation for a model calcium channel 18

MC simulation for a model calcium channel

The selectivity filter of the calcium channel is known to be lined by 4 glutamate groups

(EEEE locus). They are represented by 8 half charged oxygen ions that are confined to

the filter but can move freely inside. A 0.1M NaCl solution used and a few Ca++ ions.

Question: whether the Na+ or the Ca++ enters the filter with a higher probability?
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MC simulation for a model calcium channel 19
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MC simulation for a model calcium channel 20
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MC simulation for a model calcium channel 21
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