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Abstract. The simplest problem with boundary layers, ε2uxx − u = −f(x), is used to illustrate
(i) why the perturbation series in powers of ε is asymptotic but divergent, (ii) why the
optimally truncated expansion is “superasymptotic” in the sense that that error is pro-
portional to exp(−[constant]/ε), and (iii) how to obtain an improved “hyperasymptotic”
approximation.
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One remarkable fact of applied mathematics is the ubiquitous appearance
of divergent series, hypocritically renamed asymptotic expansions. Isn’t
it a scandal that we teach convergent series to our sophomores and do
not tell them that few, if any, of the series they meet will converge? The
challenge of explaining what an asymptotic expansion is ranks among the
outstanding taboo problems of mathematics.

—Gian-Carlo Rota, in Indiscrete Thoughts (1997), p. 222

1. Introduction. Divergent asymptotic series are one of the foundations of ap-
plied mathematics. Feynman diagrams (particle physics), Rayleigh–Schrödinger per-
turbation series (quantum chemistry), boundary layer theory and the derivation of
soliton equations (fluid mechanics), and even numerical algorithms like the “nonlin-
ear Galerkin” method [4, 22] are examples. Unfortunately, classic texts like van Dyke
[33], Nayfeh [26], and Bender and Orszag [1], which are very good on the mechanics
of divergent series, largely ignore two important questions. First, why do some series
diverge for all nonzero ε where ε is the perturbation parameter? And how can one
break the “error barrier” when the error of an optimally truncated series is too large
to be useful? In the last couple of decades, the century-old theory of asymptotics has
morphed into a triad of asymptotic/superasymptotic/hyperasymptotic theory.

This article is a case study that illuminates these questions and the new theoretical
ideas. The problem is an ordinary differential equation whose solution has boundary
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Fig. 1.1 The solution to ε2uxx − u = −f(x) has three regions when ε << 1. Over most of the
interval (dubbed the “outer region” in matched asymptotics perturbation theory), u ≈ f .
The outer region is flanked by two narrow boundary layers, each of width O(ε).

layers when the perturbation parameter ε is small:

ε2 uxx − u = −f(x),(1.1)

u(±1) = 0,(1.2)

where subscript x denotes differentiation with respect to that coordinate. This prob-
lem can be approximately solved by the method of matched asymptotic expansions
[11]. Unfortunately, matching does not provide an obvious, intuitive explanation for
the divergence of the series in powers of ε.

Although very simple, this boundary value problem contains narrow boundary
layers (of width O(ε)) as illustrated schematically in Figure 1.1. As such, it is an
exemplar for high-Reynolds number fluid flows, which usually contain similar bound-
ary layers, and more generally for other linear and nonlinear problems that contain
narrow layers of rapid variation and multiple length scales.

The general solution to a linear, second-order ordinary differential equation can
always be written as the sum of two homogeneous solutions plus a particular solution:

u(x) = A exp(−[x+ 1]/ε) +B exp([x− 1]/ε) + upart(x; ε),(1.3)

where A and B are constants determined by applying the boundary conditions and
upart(x; ε) is the (as yet unknown) particular solution.

There are multiple warning solutions that all-is-not-well in the limit ε→ 0:
1. The homogeneous solutions are not analytic in ε at ε = 0.
2. Because limε→0 ε−k exp(−x/ε) = 0 for all finite k of either sign, all the deriva-

tives of the homogeneous solutions vanish at the origin, implying that these
functions have only the trivial (and useless) power series

exp(−[x+ 1]/ε) ∼ 0 + 0 · ε+ 0 · ε2 + · · ·(1.4)

for all x > −1, and similarly for the other homogeneous solution.
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3. The second derivative disappears at ε = 0, thereby lowering the order of the
differential equation.

Fortunately, the inhomogeneous terms are known analytically for this problem—a
good thing, too, since these functions have no useful ε power series.

Instead, we shall concentrate on the subtler difficulties that arise in finding a
particular integral. As emphasized in undergraduate classes, the particular integral is
not unique; any solution of the form of the general solution is a “particular integral,”
that is, a solution of the inhomogeneous differential equation. However, it is possible
to find a unique particular integral, dubbed uslow, which varies only on the slow O(1)
length scale of f(x). Because it varies slowly, it not obvious why there should be any
difficulties in expanding it as a power series in ε. Nevertheless, the perturbation series
for uslow is usually asymptotic but divergent. Why does it diverge? It is this puzzle
that we try to resolve in the rest of the article.

First, though, a brief defense of asymptotic series.

2. The Relevance of Asymptotic Series. Applied mathematics has greatly ex-
panded in the last few decades through a mixture of supercomputing and theoretical
advances. The dark side of this progress is that the new and trendy has crowded out
much of the old and unfashionable. In the words of one reviewer, “the entire subject
of asymptotic expansions is taught less frequently these days, having been supplanted
by a set of computer codes. (I am not asserting that this trend is a good idea, but
simply that it exists.)” Another reviewer noted that students ask, “Is this topic only
classical mathematics, or does it still find widespread use? Has computation replaced
the need for these methods?”

Unfortunately, asymptotics is usually taught very badly when taught at all. When
a student asks, “What does one do when x is larger than the radius of convergence
of the power series?”, the response is a scowl and a muttered, “asymptotic series!”,
followed by a hasty scribbling of the inverse power series for a Bessel function. “But
of course, that’s all built-in to MATLAB, so one never has to use it anymore.”

Humbug! First, asymptotic series are accurate precisely in those extreme pa-
rameter ranges where brute-force computation fails. In fluid mechanics, for example,
number-crunching or arithmurgy1 is easy only when the Reynolds number is low.
Boundary layer theory, which is an asymptotic expansion in inverse powers of the
Reynolds number, is most successful when the Reynolds number is large—a regime
where numerical methods succeed only by exploiting the insights of the boundary
layer through high-grid densities near the boundaries. Our chosen boundary value
problem (1.1) illustrates this: the required number of grid points on a uniform grid
is proportional to 1/ε, regardless of the algorithm, whereas the multiple scales series
becomes more accurate as ε → 0. Arithmurgy hasn’t replaced asymptotics; rather,
number-crunching and asymptotic series are complementary and mutually enriching.

Second, most physics and engineering problems are a blend of multiple length and
time scales. Indeed, SIAM has launched a new journal entitled Multiscale Modeling
and Simulation. So-called reductive perturbation theory can often encapsulate the
relevant scales in a simplified differential equation—but such reductions are merely
asymptotic series.

The Korteweg–de Vries equation of water wave theory, for example, is a one-space-
dimensional model derived by multiple scales perturbation theory from the three-

1“Arithmurgy” is a descriptive term for scientific computation; it means literally “number-
working” from the Greek αριθµoσ, “number,” and εργoσ, “working.”
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space-dimensional hydrodynamic equations when the wave amplitude is small and
the waves are long relative to the water depth. The nonlinear Schrödinger (NLS)
equation, and coupled systems of NLS equations, are powerful tools for understanding
pulses of light down a fiber optics cable: space again reduced in dimension from 3
to 1 through the black art of perturbation theory. Indeed, all of classical physics is
a multiple scales lowest order approximation to the quantum realm. And quantum
mechanics in turn is a multiple scales approximation to a more complete theory—
string theory? M-brane theory?—as yet dimly grasped.

Indeed, the need to resolve vast ranges in amplitude and scale is built into our
senses of sight, sound, and touch. Two 19th century physiologists observed what
is now known as the Weber–Fechner law: the magnitude of a subjective sensation
increases proportional to the logarithm of the stimulus intensity. For example, our
eyes function in both dim starlight and the glare of the noonday sun, a million times
brighter, but we don’t perceive a difference of a factor of a million because our brain
scales intensity logarithmically. Similarly, our eyes (at least in youth) are able to vary
their focus to perceive a grain of sand at one extreme and a mountain range at the
other.

Scientific computation obeys its own kind of Weber–Fechner law: for most classes
of phenomena, the billionfold increase in speed from ENIAC (a speed of several kilo-
flops, used for the first numerical weather forecast in 1950) to the multiteraflop su-
percomputers of today has not, alas, produced a billionfold increase in our knowledge
of the atmosphere, or of any other complex phenomena with multiple scales. Instead,
the following is self-evident.

Proposition 2.1 (logarithmic law of arithmurgy). Computational insight into
nature increases logarithmically with flop-rates and memory.

The logarithmic law of arithmurgy implies that brute-force computation will never
solve all of science’s interesting problems. Direct numerical simulation (DNS) of three-
dimensional turbulence at very high Reynolds numbers requires supercomputers with
a billion processors, atom-sized memory cells, and interconnects faster than the speed
of light! But the renormalization group theory [36]—a multiple scales theory with
ideas borrowed from quantum field theory—is not so constrained. There are many
competitive strategies for turbulence, some flaunting their connections with asymp-
totics, some disguising these connections, but all at least implicitly using asymptotic
thinking to bridge the gap between computation and the power of multiscaled nature.

To understand, for a complex phenomenon like turbulence, what is hidden be-
neath divergent series is obviously very difficult, full of thorns for our grandchildren.
However, the hyperasymptotics revolution has given new insights into the strengths
and limits of multiple scales phenomena, and in the rest of this article, we shall look
at an elementary but illuminating example.

3. Asymptotic, Superasymptotic, and Hyperasymptotic. The perturbation
series derived in the next section is typical of so-called singular perturbation methods
such as the method of multiple scales, the method of matched asymptotic expansions,
and the method of steepest descent: it is asymptotic but diverges for all values of the
perturbation parameter ε.

A divergent series can still be useful if it satisfies Poincaré’s definition of “asymp-
totic.”

Definition 3.1 (asymptoticity; see [1]). A power series is asymptotic to a
function f(ε) if, for fixed N and sufficiently small ε, the error E(ε;N) falls as fast as
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Fig. 3.1 A plot of errors versus perturbation order for a typical function. The chosen function is
ρ(ε) ≡ (12/ε)

{
log(Γ(1/ε)) + (1/ε− 1/2) log(ε) + 1/ε− (1/2)

√
2π
}
. This has the asymp-

totic series ρ(ε) ∼ 1 − (1/30)ε2 + (1/105)ε4 − (1/140)ε6 + · · · . The plot shows the errors
for various truncations of the asymptotic series N for ε = 1/2. The optimal truncation
Nopt is about halfway between fifth and sixth order for this particular function and this
particular value of ε.

εN+1, that is,

E(ε;N) ≡ |f(ε)−
N∑
j=0

aj ε
j | ∼ O

(
εN+1) as ε→ 0.(3.1)

O( ) is the usual “Landau gauge” symbol that denotes that the quantity to the
left of the asymptotic equality is bounded in absolute value by a constant times the
function inside the parentheses on the right.

Asymptotic series are useful because the definition guarantees that the Nth order
approximation is always accurate if ε is sufficiently small. If the series is divergent,
then it is generic that, for sufficiently small ε, the error for fixed ε falls to a minimum
as the truncation N increases before inexorably rising and rising without limit as
N →∞ [1]. A typical example is Figure 3.1. The good news for this example is that
the minimum error is smaller than 10−5—quite acceptable for almost all engineering
and scientific applications. The fall-and-then-rise of error motivates the following
definitions.

Definition 3.2 (optimal truncation and optimal error). For the asymptotic
series of a given function, the “optimal truncation” Nopt(ε) is that value of N where
the error E(ε;N) has a minimum for fixed ε. The error at the minimum is the
“optimally truncated error” or “optimal error” for short, Eopt(ε) ≡ minN E(ε;N).

The neologism “superasymptotic” describes how Eopt varies with ε. The left
panel of Figure 3.2 plots the error-versus-order curves for many ε and then connects
the minima of each curve by the heavy solid line, which is therefore a plot of Eopt(ε).
The right panel is a plot of Nopt against 1/ε. It is in fact typical, and not merely an
accident of this particular example, that the optimal error falls as the exponential of
the optimal truncation order or, equivalently, of the reciprocal of the small parameter
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Fig. 3.2 Left: errors versus perturbation order N for ρ(z = 1/ε) for ε = j/16, j = 1, 2, . . . , 32. The
dots, connected by a heavy solid curve, mark the optimal truncation (minimal error) for
each value of ε. The dashed curve is a crude fit: Eopt ≈ 0.3 exp(−2Nopt(ε)). Right panel:
Nopt plotted versus 1/ε. The dashed line is the crude linear fit, Nopt ≈ 2.75/ε.

ε; the (fitted-by-eye) dashed curves for the illustrated example are

Eopt ≈ 0.3 exp(−2Nopt) ≈ 0.3 exp(−5.5/ε).(3.2)

Poincaré’s definition is all about powers of ε, but the minimum error is in fact an
exponential, something obviously quite different. Sir Michael Berry and his collabo-
rator Christopher Howls therefore defined the following.

Definition 3.3 (superasymptotic). An optimally truncated asymptotic series is
a “superasymptotic” approximation. The error is typically an exponential function
of the reciprocal of the perturbation parameter ε [3, 2].

In recent years, as explained in the books [30, 5, 12, 13, 17, 19, 23, 32, 15, 35,
21, 27] and the reviews [6, 28], a rather large variety of tools for improving upon the
superasymptotic approximation have been developed.

Definition 3.4. A hyperasymptotic approximation in the broad sense is one that
achieves higher accuracy than a superasymptotic approximation. A hyperasymptotic
approximation in the narrow sense achieves this improvement by adding one or more
terms of a second asymptotic series, with different scaling assumptions, to the opti-
mal truncation of the original asymptotic expansion [2]. (With another rescaling, this
process can be iterated by adding terms of a third asymptotic series, and so on.) Hy-
perasymptotic methods are also called “exponential asymptotics” and “asymptotics-
beyond-all-orders.”

Sequence acceleration and sum acceleration methods are powerful tools for im-
proving upon a superasymptotic approximation, but some authors do not like to label
them as “hyperasymptotic” because these methods (i) are very useful for convergent
series, too, and (ii) have a history that is much older than the modern surge of interest
in hyperasymptotic methods that directly attack the cause of the divergence.
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The alternative label “exponential asymptotics” is used as a synonym for “hy-
perasymptotic” because to improve upon the superasymptotic approximation, one
must calculate terms which are proportional to an exponential of 1/ε. The “beyond-
all-orders” term arises because exp(−[constant]/ε) decreases to zero faster than any
finite power of ε, and therefore effects proportional to such an exponential are com-
pletely missed by an ε-power series and lie “beyond all orders” in powers of ε.

4. Perturbation Series for the Particular Integral. If ε 
 1, it is plausible
that the second derivative in the differential equation, which is multiplied by ε2,
will be small compared to the undifferentiated term. This gives the lowest order
approximation

u(0) = f(x).(4.1)

This implicitly assumes that upart(x; ε) varies on roughly the same independent-of-ε
length scale as the forcing f(x); the lowest order approximation shows that this is a
self-consistent approximation.

The homogeneous solutions, exp(±x/ε), vary on a “fast” O(1/ε) length scale. The
particular integral is not unique because of the freedom to add arbitrary multiples of
the homogeneous solutions to any particular integral to generate a new solution of
the inhomogeneous differential equation. However, the assumption that the partic-
ular integral is slowly varying picks out a unique particular integral. If we call this
uslow(x; ε), then the general particular integral is

upart(x; ε) = uslow(x; ε) +A exp(x/ε) +B exp(−x/ε),(4.2)

where A and B are arbitrary constants. However, only when A = B = 0 do we
obtain a particular integral which varies only on the slow length scale and therefore
is consistent with the neglect of the second derivative in the differential equation.

Because the perturbation scheme exploits the “slow” O(1) length scale in a prob-
lem that has a second, much faster length scale, this technique is called the “method of
multiple scales.” Higher approximations can be found by substituting the expansion

uslow(x) ∼
∞∑
j=0

ε2j u(2j)(x)(4.3)

into the differential equation and matching powers, yielding

uslow =
∞∑
j=0

ε2j d2jf

dx2j .(4.4)

This derivation implicitly ignores the boundary layers of u(x). This does not
cause problems because the particular integral uslow(x) does not necessarily have
boundary layers. It is only the homogeneous solutions which vary rapidly within an
O(ε) distance of the endpoints and impart similar behavior to u(x).

5. Why the Perturbation Series Diverges, I. It is possible to give an intuitive
if nonrigorous explanation for divergence directly from the perturbation series. (A
more precise argument using a Fourier integral representation will be given later.)

Define

E(ε;N) ≡ uslow(x; ε)−
N∑
j=0

ε2j u(2j).(5.1)
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Fig. 5.1 The fourth, eighth, and twelfth derivatives of f = 1/(1 + x2), scaled by dividing by the
maximum of each function. The theme of the graph is that the derivative of a function
almost always varies more rapidly as the order of the derivative increases. Because the
function and all its even derivatives are symmetric with respect to the origin, only positive
x is illustrated.

Without approximation, this solves

ε2 d2E

dx2 − E = ε2N+2 d2N+2f

dx2N+2 (x).(5.2)

The usual multiple scales procedure, as done earlier, is to neglect the ε2Exx term on
the grounds that E varies only on the slow O(1) length scale of f(x).

Heuristically, multiple scales theory breaks down because, for fixed ε and suffi-
ciently high order N , the inhomogeneous term is not varying slowly and there are
no longer two disparate length scales. It is inconsistent to neglect the second deriva-
tive compared to E itself when the inhomogeneous term in (5.2) and therefore E are
varying on an O(1/ε) length scale.

The reason that the right-hand side of (5.2) is varying rapidly is that differentia-
tion is an antismoothing operation: for almost all f(x), the 2Nth derivative oscillates
faster and faster as N →∞.

We shall not offer a rigorous proof of this assertion, but instead show Figure 5.1.
The function f = 1/(1+x2) falls monotonically from its peak at the origin. Neverthe-
less, its derivatives oscillate faster and faster as the order of the derivative increases:
the fourth derivative has one root for positive x, the eighth derivative two, the twelfth
derivative three, and so on. The trend is obvious: as the derivative order increases,
it is possible, for any ε, to find a sufficiently high-order derivative that falls from its
maximum at the origin to its first root in a distance as small as ε, implying an O(1/ε)
length scale.

As we shall see more precisely using the Fourier integral representation later, the
statement that f(x) is a slowly varying function is never entirely true except for special
cases, such as when f(x) is a polynomial. Instead, all functions with singularities at
finite complex x have within them some arbitrarily fast variation which is explicit
in the Fourier transform of the function, or a windowed version of the function, and
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which is developed, like a photograph emerging from the developer fluid in a darkroom,
by the repeated differentiations that generate the right-hand side of the perturbative
equation (5.2). The few exceptions to this principle will be discussed in later sections.

6. Fourier Integral Solution.

The shortest path between two truths in the real domain passes through
the complex domain.

—Jacques Hadamard (1865–1963)

Deeper insight comes by doing something that at first blush is a little goofy:
expanding the problem from its physical domain, x ∈ [−1, 1], to the entire real line.
To an engineer especially, this seems bizarre: if the boundary layer problem is from
fluid mechanics, then the fluid is only on x ∈ [−1, 1], and we are extending a fluid
problem to regions where there is no fluid!

However, an analytic function f(x) is not merely defined on the interval where it
solves a physical problem, but throughout the entire complex plane. Often, as noted
by Hadamard, one must leave the physical domain to understand the mathematics.

For example, power series in x are rarely applied to solve boundary problems.
The reason is that off-interval singularities often restrict the radius of convergence of
the power series to only a part of the physical domain. The functions f = 1/(x2+1/4)
and f = 1/(x + 3/2) are both analytic everywhere on the interval x ∈ [−1, 1], but
neither has a power series which converges over the whole interval.

In a similar spirit, we shall examine our boundary layer problem on the whole
real line so as to exploit the power of Fourier integral methods. As explained in the
appendix and more fully in [7, 8, 9], it always possible to extend an arbitrary f(x)
from an interval to the entire real line in such a way that the extended function f̃(x)
has a well-behaved Fourier transform and also equals f(x) on the physical interval,
x ∈ [−1, 1].

Leaving the details to those references, we shall henceforth assume that such an
extension has been performed, if necessary, and therefore that the function f(x) in
our boundary value problem has the Fourier transform F (k) defined by

F (k) ≡ 1
2 π

∫ ∞
−∞

f(x) exp(−i k x) dx.(6.1)

It can then be verified by direct substitution that the all-important particular integral
is given exactly by the inverse Fourier transform

uslow(x) =
∫ ∞
−∞

F (k)
1 + ε2 k2 exp(i k x) dk.(6.2)

The perturbative approximation (4.3), derived earlier by simple substitution and
matching of powers, can also be derived from the Fourier integral. The trick is to ex-
pand the denominator in the integrand of the integral representation of the particular
integral, (6.2), and then exploit the identity

d2jf

dx2j =
∫ ∞
−∞

(−k2)j F (k) exp(i k x) dk.(6.3)
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6.1. Integral Representation of the Error. By substituting the familiar identity
for the partial sums of a geometric series

1
1 + ε2 k2 =

N∑
j=0

(−1)jk2jε2j + (−1)N+1 k
2N+2ε2N+2

1 + ε2 k2(6.4)

into the Fourier transform integral, one obtains the exact integral representation of
the error

E(ε;N) = (−1)N+1 ε2N+2
∫ ∞
−∞

k2N+2F (k)
1 + ε2 k2 exp(i k x) dk.(6.5)

We now have the tools to explain the divergence of the perturbation series and also
to prove superasymptoticity, as done in turn in the next two sections.

7. Why the Perturbation Series Diverges, II. The perturbation series in powers
of ε can be derived from the Fourier integral representation of the particular integral,

uslow(x) =
∫ ∞
−∞

F (k)
1 + ε2 k2 exp(i k x) dk,(7.1)

merely by expanding the denominator as a geometric series:

1
1 + ε2 k2 =

∞∑
n=0

(−1)nε2n k2n.(7.2)

Because 1/(1+ε2k2) has simple poles at k = ±i/ε, the geometric series converges only
for |k| < 1/ε. The reason that the resulting series for uslow(x; ε) (usually) diverges
is that the inside-the-integral geometric series has only a finite radius of convergence
but the integral has an infinite range of integration. It follows that we are committing
the mathematical crime of applying a series outside of its disk of convergence. No
wonder the series for uslow diverges!

The real surprise is that this mathematical felony has any usefulness at all! The
reason that the asymptotic series is useful is indicated schematically in Figure 7.1.

Texts on Fourier integrals explain that if f(x) is a well-behaved function that (i)
decays as fast as O(1/|x|2) as |x| → ∞ along the real line and (ii) is analytic in the
strip �(x) ∈ [−µ, µ] for some positive constant µ, then its transform F (k) will decay as
exp(−µ|k|) or faster as |k| → ∞. Thus, the schematic integrand in Figure 7.1 decays
exponentially for large |k| and must be plotted on a logarithmic scale. The crucial
point is that when ε << 1, the integrand of the Fourier representation of uslow(x; ε)
is exponentially small in 1/ε everywhere outside the region of convergence of the
geometric series. Our mathematical crime must be reclassified as a misdemeanor: the
denominator series diverges only where the integrand is very, very small.

In the limit N → ∞ for fixed ε, even this smallness cannot save it: the error
in the geometric series becomes larger and larger without bound as N → ∞ and so
the series for uslow(x; ε) must diverge, too. However, if we truncate the series at the
Nth order where N is finite, the error due to the geometric series will be finite, too,
and is multiplied by the exponential smallness of the integrand in the regions in the
integration variable k where the truncated geometric series is inaccurate.

The optimal truncation of the series, Nopt(ε), is determined by the tug-of-war
between two opposing tendencies. As N increases, the error in approximating the
integrand for |k| < 1/ε decreases, while the error for larger |k| (where the geometric
series diverges) increases. The optimal truncation (and minimum error) represents the
best compromise, for a given ε, between these two simultaneous effects of increasingN .
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Fig. 7.1 Schematic of a typical integrand for the Fourier integral representation of the error in
the multiple scales perturbation theory. The geometric series for 1/(1 + ε2k2) converges
only within the range bounded by the two vertical dotted lines. Fortunately, the Fourier
transform F (k) of the inhomogeneous term in the differential equation, f(x), usually falls
exponentially fast, so the integrand is very tiny everywhere that the geometric series is
divergent. This makes it possible to extract a “superasymptotic” approximation whose
error is an exponential function of 1/ε.

8. Proof of Superasymptoticity. These notions of “exponential smallness” and
growing-and-decreasing errors can be quantified by using the error integral defined by
(6.5). For fixed ε, the optimal truncation Nopt is that value of N which minimizes
this error.

Unfortunately, the error integral usually cannot be evaluated in closed form: if we
could, we would have no need of perturbation theory! However, it is fairly straight-
forward to bound the error, giving the following.

Theorem 8.1 (superasymptoticity). If the Fourier transform of the forcing f(x)
satisfies the bound

|F (k)| ≤ p exp (−qr kr) ∀ k,(8.1)

where p, q, r are positive constants, then the error in the asymptotic approximation to
the particular integral uslow of ε2 uxx − u = f(x),

E(N ; ε) ≡

∣∣∣∣∣∣up −
N∑
j=0

ε2j u(2j)

∣∣∣∣∣∣ ,(8.2)

satisfies, for sufficiently small ε, the bound

|E(N, ε)| ≤ 2
√
2π

p

r

1
qr/2

εr/2−1 exp
(
−qr

εr

)
(8.3)

when

N(ε) ≈ Nopt(ε) ∼
rqr

2 εr
+
(
r

4
− 3

2

)
+O(εr).(8.4)
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Proof. To obtain a bound on the error for general N , not necessarily optimal,
note that the error integral can be bounded by the new integral Λ obtained by (i)
replacing the denominator of the error integral by 1 and (ii) replacing the Fourier
transform in the error integral by its bound (8.1):

|E(N, ε)| ≤ 2 pΛ(N, ε),(8.5)

where, using identity 3.478.1 on p. 342 of the fourth edition of [14],

Λ(N, ε) ≡
∫ ∞

0
ε2N+2k2N+2 exp(−qrkr) dk =

ε2N+2

r q(2N+3) Γ
(
2N + 3

r

)
.(8.6)

The optimal truncation can be estimated by differentiating the bound Λ with
respect to N for fixed ε and finding the zero of dΛ/dN , which defines the value of
N = Nopt(ε) that minimizes Λ. The derivative vanishes when

Ψ
(
2N + 3

r

)
= log(qr/εr),(8.7)

where Ψ(z) ≡ d log(Γ)/dz is the so-called digamma function. The equation log(α) =
Ψ(z) can be approximately solved by z ∼ α + (1/2) − (1/(24α)) + O(α−2), giving
(8.4) for Nopt(ε).

Substituting this into Λ, applying the large-argument asymptotics for the gamma
function, and doubling the result to bound the errors in the gamma series bounds the
error by the right-hand side of (8.3) when N is equal to the estimate of Nopt(ε). Since
the true error can only be smaller, this proves the theorem.

The generic case is r = 1; that is, if f(x) is analytic within the strip |�(x)| ≤
µ for some constant µ, then the Fourier transform F (k) will asymptotically decay
proportional to exp(−µ|k|). With optimal truncation, the error in the perturbation
series is then bounded by a constant times exp(−µ/ε).

9. Examples.

9.1. AGoodWord for Cases and Examples. The trouble with general theorems
is that they are, well, general. Useful as the proof of superasymptoticity is, it does
not fully explore the full diversity of the solutions to our one-dimensional boundary
value problem like the set of examples cataloged in Table 9.1.

9.2. f (x) Is a Polynomial: Termination. If f(x) is a polynomial of degree M ,
then there is always a particular solution uslow(x; ε) which is a polynomial of the same
degree. Let

f =
M∑
j=0

fjx
j , uslow =

M∑
j=0

ajx
j .(9.1)

Matching powers of x gives the backward recurrence

aM = fM , aM−1 = fM−1, aj = fj+ε2(j+2)(j+1) aj+2, j = M−2,M−3, . . . , 0.
(9.2)

An alternative derivation is to observe that for a polynomial of Mth degree, all
derivatives of order higher than M are zero. This implies that the multiple scales
perturbation theory must terminate with the εM term (if M is even) or the εM−1

term (if M is odd).
This is a dramatic counterexample to the folk wisdom that multiple scales per-

turbation series are always divergent!
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Table 9.1 Exemplary solutions. S(x) is the Stieltjes function and F (k) is the Fourier transform of
f(x).

f(x) uslow(x; ε)

f0 + f1x+ f2x2
(
f0 + ε2 f2

)
+ f1x+ f2x2

cos(κx) cos(kx)
1+ε2κ2

exp(ax) u = 1
1−ε2a2 exp(ax)

sinc(x) = sin(πx)
πx

1
π

∫ π
0

cos(kx)
1+ε2k2 dk

exp(−[1/2]x2)
√
π

2 ε
√

2
exp([1/2]/ε2){

exp(−x/ε)
[
1 + erf

(
{x− 1/ε} /21/2

)]
+ exp(x/ε)

[
1− erf

(
{x+ 1/ε} /21/2

)]}
4

1 + x2
1

1+ix

{
S
(
− iε

1+ix

)
+ S
(

iε
1+ix

)}
+ 1

1−ix
{
S
(
− iε

1−ix
)

+ S
(

iε
1−ix

)}
exp(−|x|) exp(−|x|)−ε exp(−|x|/ε)

1− ε2

General f
∫∞
−∞

F (k)
1+ε2k2 exp(ikx)dk

9.3. f Is a Cosine or Trigonometric Polynomial: Convergence. If f(x) is a
trigonometric function, then the explicit solution is

f(x) = cos(κx) → uslow(x; ε) =
cos(κx)
1 + ε2κ2 .(9.3)

If this particular solution is expanded in ε, the fact that the only singularities are at
ε = ±i/κ implies that the ε-power series will converge for all |ε| < 1/κ.

It is trivial to extend this reasoning to a trigonometric polynomial, whose series
will also have a finite radius of convergence.

However, the ε-series for an infinite Fourier series diverges. For example, with p
a positive constant less than 1,

f = 1 + 2
∞∑
j=1

pj cos(jx) → uslow = 1 +
∞∑
j=1

pj
1

1 + ε2j2 cos(jx).(9.4)

If we expand uslow in ε, the expansions for all Fourier components with j > 1/ε
will diverge. Because j increases without bound, there is no finite ε for which the
expansions of all denominators will converge. It is only when the Fourier series is
truncated at j = M for some finite M that the ε-series has the finite convergence
radius 1/M .

9.4. Bandlimited Forcing Functions: Convergence. Bandlimited functions are
those whose Fourier transform F (k) is identically zero for all |k| > W for constant
W , the bandwidth. A trigonometric polynomial is a bandlimited function; another is
the so-called sinc function:

f(x) = sinc(x) =
sin(πx)

πx
→ uslow(x; ε) =

1
π

∫ π

0

cos(kx)
1 + ε2k2 dk.(9.5)

The integral can be evaluated analytically as a messy sum of four cosine and sine
integrals, but what is significant is that the integral for uslow has a finite range of
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integration. The series uslow for all bandlimited f(x) of bandwidth W will converge
for |ε| < 1/W .

9.5. f = 4/(1 + x2): Factorial Divergence. If f(x) has a pole, branch point,
or other singularity at a finite distance from the real axis, then the series for our
choice of particular integral will diverge at a factorial rate, by which we mean that
the coefficient of εj grows as j!. A simple example is

f(x) =
4

1 + x2 → uslow(x; ε) = 4
∫ ∞

0

exp(−k)
1 + ε2k2 cos(kx) dk.(9.6)

This can be written as a sum of four Stieltjes functions of complex argument as given
in Table 9.1. At x = 0, the odd powers of ε cancel, but the even powers reinforce to
give

u(0) ∼ 4
∞∑
j=0

(2j)! (−1)j ε2j .(9.7)

Thus, at x = 0, the factorial divergence can be explicitly displayed; there is a similar
divergence for all x.

This is the generic situation: f(x) will have a singularity somewhere in the finite
complex plane, and the coefficient of ε2j grows as (2j)! for all x.

9.6. f = exp(–x2/2): Factorial-of-Half-Order Divergence. The rate of diver-
gence depends not only on the fact that the power series of the denominator of the
Fourier transform integral has a finite radius of convergence; it also depends on how
much or how little amplitude the integrand has outside the radius of convergence.

f = exp
(
−1
2
x2
)
→ uslow(x; ε) =

1√
2π

∫ ∞
−∞

exp(−k2/2)
1 + ε2 k2 cos(kx) dk.(9.8)

The crucial point is that the Fourier transform of f(x) decays as a Gaussian function
of k, i.e., very fast, rather than as exp(−q|k|) for some q > 0. The crime of using
the geometric series of 1/(1 + ε2k2) beyond its radius of convergence 1/ε is therefore
greatly reduced because exp(−[1/2]k2) is so tiny beyond the radius of convergence.

The integral for uslow is given by 3.954.2 on p. 497 of [14] and the explicit form is
shown in Table 9.1. Unfortunately, this is a little messy, but the special case of x = 0
is simple. At x = 0, the identity

∫∞
0 exp(−[1/2]k2)k2jdk = 2j−1/2Γ(j + 1/2) gives

uslow(0; ε) =

√
π/2
ε

exp
(

1
2 ε2

){
1− erf

(
1

ε
√
2

)}
∼ 1

2
√
π

∞∑
j=0

(−1)jε2j 2j Γ
(
j +

1
2

)
.

(9.9)

This shows that even though f(x) is an entire function with no singularities except
at x =∞, the perturbation series still diverges. However, the coefficient of ε2j grows
as roughly as the factorial of j instead of as (2j)!.

The superasymptoticity theorem, Theorem 8.1 (with p = (2π)−1/2, q = 2−1/2,
and r = 2), implies that

Nopt(ε) =
1
2 ε2 , E(N ; ε) ≤ 2

√
2π exp(−ε2/2).(9.10)
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9.7. f (x) = exp(–|x|): Breakdown at Finite Order. At the other extreme, when
the forcing function is singular for real x, the infinite series may not even exist! An
illustration is

f(x) = exp(−|x|) → up(x; ε) =
exp(−|x|)− ε exp(−|x|/ε)

1− ε2 .(9.11)

The lowest order in the multiple scales series,

uslow ∼ u(0) = exp(−|x|) +O(ε),(9.12)

is indeed a consistent approximation. However, the perturbation theory breaks down
at higher order; note that exp(−|x|/ε) is small beyond all powers of ε for all nonzero x.

In general, whenever the forcing function f has only a finite number of bounded
derivatives on the interval x ∈ [−1, 1], sufficiently high-order terms in the multiple
scales series will not exist, as described by the following theorem. Singularities of
f(x) for real x, but outside the interval [−1, 1], can and should be removed by the
windowing procedure described in the appendix. Thus, only singularities on x ∈
[−1, 1] can slow the decay of the Fourier transform F (k) if f̃(x) in the theorem is
interpreted as an intelligently extended-and-windowed version of f(x).

Theorem 9.1. If the Fourier transform F (k) of the forcing function f̃(x) in

ε2 uxx − u = − f̃(x)(9.13)

has an algebraic rate of decay, i.e.,

F (k) ∼ constant/|k|m, k → ±∞,(9.14)

for some m, which is the case if f̃(x) is singular for some real x ∈ [−1, 1] such that
only a finite number of bounded derivatives exists at the singular point [20], then the
multiple scales perturbation theory for the particular solution uslow(x; ε) must break
down. Term-by-term expansion of the Fourier integral solution yields convergent in-
tegrals only for the coefficients of ε2j when 2j < m.

The proof follows from expanding the denominator of the Fourier integral repre-
sentation, (6.2), and observing that the integrals arising term-by-term are divergent
for sufficiently large degree.

9.8. Categories. Table 9.2 summarizes the behavior for different categories of
functions. The assertion that multiple scales series are always factorially divergent is
a myth. True, the series diverges for the generic case of an f(x) which has singularities
at some finite point in the complex x-plane. However, including other classes of f(x),
a broad spectrum of behavior is possible, ranging from termination to a finite radius
of convergence to factorial-of-half-order divergence to factorial divergence to complete
breakdown.

Table 9.2 Solution classes and the properties of the asymptotic series.

Type of f(x) Perturbation series
Polynomial Terminates

Trigonometric polynomial Convergent
Bandlimited Convergent

Gaussian Factorial-of-half-order-divergent
Off-interval singularities Factorially-divergent asymptotic
On-interval singularities Breakdown at finite order
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10. Hyperasymptotics: Breaking the Error Barrier for Divergent Series. The
variety of hyperasymptotic techniques is very large, which is why [6] was rejected by
SIAM Review without review because of excessive length. Some are very subtle, which
is why [5] was rejected by a publisher on the grounds of insufficient subtlety.

In the broad sense, hyperasymptotic strategies include [6]
1. (second) asymptotic approximation of the error integral for the superasymp-

totic approximation;
2. resurgence schemes or resummation of late terms [12, 13, 3];
3. complex-plane matching of asymptotic expansions [29];
4. isolation strategies, or rewriting the problem so the exponentially small thing

is the only thing [6];
5. special numerical algorithms, especially spectral methods [6];
6. hybrid numerical/analytical perturbative schemes [6, 18, 16];
7. sequence acceleration including Padé and Hermite–Padé approximants [1, 34,

31].
There is some overlap between these categories, but each is a whole family of methods
and it would obviously take a book [5] to describe them all. Nevertheless, it is possible
to give at least the flavor of this vast subject.

10.1. Necessity.

Divergent series converge faster than convergent series.

—George F. Carrier (1919–2002, National Medal of Science, 1998)

This seemingly self-contradictory statement was the product of 30 years of ex-
perience: ordinary power series usually require several terms to be useful. In con-
trast, often the leading term of an asymptotic expansion is rather accurate, even for
not-so-small ε, and captures the qualitative character of the phenomenon even for ε
sufficiently large that the quantitative accuracy deteriorates. Hyperasymptotics or
even a superasymptotic approximation may then be useless.

Furthermore, a better tactic to obtain an answer for moderate ε is not to push
the ε-power series to higher order, hyperasymptotically or otherwise, but instead to
use a different perturbative expansion, such as one in powers of 1/ε as illustrated in
the next subsection.

Often the best strategy for hyperasymptotics is abstinence.
However, as reviewed in [6, 5, 30, 28], sometimes there are qualitatively distinct

effects which are “beyond all orders” in the sense of being proportional to exp(−q/ε).
Such effects cannot be captured by an ε power series: going beyond the error barrier
of the superasymptotic approximation is the only way to capture such effects.

For example, the equatorially trapped Kelvin wave in the ocean is unstable in the
presence of mean currents. The imaginary part of the phase speed, which describes
the growth rate of the waves, is an exponential function of 1/ε where ε is the strength
of the current. Therefore, the instability can be captured only by hyperasymptotics;
it is completely missed by the asymptotic power series [10, 24, 25]. There are many
other “hyperasymptotic-necessary” phenomena reviewed in [6, 5, 30, 28].

10.2. Perturbation Series for Large ε. A simple way to overcome the limits of
a small-ε perturbation theory is to expand for large ε. Define the new perturbation
parameter

δ = 1/ε2.(10.1)
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δ-series at x=1, f=1/(1+x2)

Fig. 10.1 Corrections dn(x) for the δ series (expansion in powers of 1/ε2 for large ε) as evaluated
at x = 1 where each correction is a maximum. The inhomogeneous term f = 1/(1 + x2).

If we expand uxx − δu = − δ f(x) via

u =
∞∑
j=1

dn(x)δn,(10.2)

then at lowest order, d1,xx = −f(x), implying

d1(x) = −
∫ x

dy

∫ y

f(z)dz.(10.3)

Denote the kth iterated integral of f(x) by f (−k)(x). The general series is

u = −
∞∑
j=1

f (−2n)(x)δn.(10.4)

As an example, when f = 1/(1 + x2),

u = δ

{
1
2
log(1 + x2)− xarctan(x)

}

+ δ2
{
−1
6
x3arctan(x)− 5

12
x2 − 1

3
log(1 + x2)

+
1
2
x arctan(x) +

1
4
(1 + x2) log(1 + x2)− 1

4

}
+ · · · .(10.5)

It is obviously much easier to analytically differentiate repeatedly than to integrate
repeatedly. Still, for this example, not only can one evaluate the necessary integrals
to all orders, but the series appears to converge even for ε as small as 1/10. For ε = 1
(i.e., δ = 1) as illustrated in Figure 10.1, the maximum of each correction at high
order is about one hundred times smaller than the maximum of its predecessor!

The value of switching to a convergent series in the reciprocal of the perturbation
parameter is hardly new. Library software for evaluating Bessel functions, for exam-
ple, has always combined an asymptotic series in powers of 1/x with a convergent
power series for small x.
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10.3. Hyperasymptotics from the Fourier Integral, I. The difference between
the N -term truncation of the multiple scales series and uslow(x; ε) is given exactly by
the integral derived above as (6.5):

E(ε;N) = (−1)N+1 ε2N+2
∫ ∞
−∞

k2N+2F (k)
1 + ε2 k2 exp(i k x) dk.(10.6)

In the superasymptotic approximation, this error integral is simply ignored and there-
fore approximated by zero. It follows that any nonzero approximation of E(ε;N) is
hyperasymptotic!

The crucial observation is that the integrand of the error integral is very small
for small |k| because of the factor of k2N+2. At larger k, the Fourier transform F (k)
of f(x) will typically decay as exp(−µ|k|), where µ is the distance of the closest
singularities of the windowed function f̃ from the real x-axis. Thus, the integrand
is the product of two factors with very different behavior: k2N+2 is growing very
rapidly with |k| while F (k) is decaying exponentially fast with |k|. The integrand can
be written as exp(Φ), where

Φ ≡ 2(N + 1) log(ε) + 2(N + 1) log(k)− µ|k|+ ikx,(10.7)

multiplied by other factors that vary only slowly with k and N .
The integral can be approximated by the “steepest descent” method [1]. For

simplicity, assume that µ is real, F (k) does not contain any rapidly oscillating factors,
and specialize to x = 0; however, the steepest descent method is successful even when
these are relaxed.

We approximate Φ by a local quadratic Taylor series in k in the vicinity of the
“stationary point” ks; the stationary point is defined to be a root of dΦ/dk for fixed
ε and N :

ks = ±2(N + 1)/µ.(10.8)

There are two such stationary points; their contributions are added separately. Each
contribution is dominated by exp(Φ(ks)) plus other more slowly varying factors. One
can therefore determine the optimum truncation Nopt(ε) merely by differentiating
Φ(ks(N); ε,N) with respect to N and finding the root of the derivative: this gives

Nopt(ε) ∼
µ

2ε
− 1(10.9)

plus corrections that depend on the slowly varying, nonexponential factors neglected
at lowest order.

The steepest descent approximation with this value of N is then, to lowest order,

uslow(0; ε) ≈
[µ/(2ε)−1]∑

j=0

ε2j d2jf

dx2j (0) + 2
√
2π µ
√
ε exp(−µ/ε),(10.10)

where the square brackets in the upper limit of the sum denote rounding to the integer
nearest µ/(2ε), the optimal truncation. The steepest descent method works equally
well for nonzero x, but the stationary points become complex-valued and the path
of integration must be deformed off the real axis. Nevertheless, the steepest descent
method for all x can be extended into a second asymptotic series, also divergent, that
greatly improves the accuracy of the superasymptotic approximation.
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10.4. Hyperasymptotics from the Fourier Integral, II. There is an alternative
method that does not require complex-valued arithmetic and also shows that hyper-
asymptotics is a suite of methods rather than a single technique. The key observation
for the alternative is that given that the error integral (10.6) has a (2N + 2)th-order
zero at k = 0, it is very silly to expand the denominator 1/(1 + ε2k2) about k = 0:
the denominator series is most accurate where the integrand has no amplitude!

Equations (10.8) and (10.9) collectively show that the maximum of the error
integral, when N = Nopt(ε), occurs at

kmax =
1
ε

(10.11)

independent of the small parameter µ that describes how rapidly F (k) decays with
|k|. Although the stationary point ks is complex-valued when x �= 0, the real part of
the stationary point, and therefore the maximum of the integrand for real x, is still
given by (10.8). Thus the formula for kmax is also independent of x.

Without approximation, we can rewrite the denominator and then expand in
powers of a shifted variable that is zero when k = kmax = 1/ε:

1
1 + ε2k2 =

1
2 (1 + (1/2) {ε2k2 − 1}) =

1
2

∞∑
j=0

(
− 1

2

)j {
ε2k2 − 1

}j
.(10.12)

The transformed expansion is very simple because when the new geometric series is
truncated after, say, the Mth term, the truncated sum is a polynomial in (ε2k2 − 1)
which, by rearrangement, is also a polynomial of degree 2M in powers of εk. The
term-by-term integrals are therefore exactly the same as for the original asymptotic
series. The difference is that these integrals enter with weight functions which are
different from 1 because of the expand-in-a-different-variable-and-truncate step.

For example, with the second truncation set at M = 3 and using z ≡ ε2k2 − 1,

1
2 (1 + (1/2)z)

≈ 1
2
− 1

4
z +

1
8
z2 − 1

16
z3 =

15
16
− 11

16
ε2k2 +

5
16

ε4k4 − 1
16

ε6k6.(10.13)

Inserting this into the error integral (10.6) and using the identity that (−1)jk2jF (k)
is the Fourier transform of the 2jth derivative of f(x) gives

uslow =
N∑
j=0

ε2j d2jf

dx2j +
15
16

d2N+2f

dx2N+2 +
11
16

d2N+4f

dx2N+4 +
5
16

d2N+6f

dx2N+6 +
1
16

d2N+8f

dx2N+8 .(10.14)

This is exactly the same form as the standard multiple scales series except that the
last four terms are multiplied by weights.

As explained in much more detail in [6], the device of improving the convergence
of a series by expanding in a shifted variable is the Euler sum acceleration. Although
we have justified this method by hyperasymptotic thinking, the Euler acceleration has
been applied to convergent series for more than two centuries, long before Poincaré
formulated his definition of asymptotic series, and even longer before the modern
conceptualization of hyperasymptotics. The method is very simple in application:
for each choice of M such that (M + 1) terms are weighted, there is a fixed set of
numerical weights [6].

The Euler acceleration adds a second asymptotic-but-divergent series to the su-
perasymptotic approximation. The Euler-accelerated series is also divergent because
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Fig. 10.2 The errors for the superasymptotic approximation (dashed) and four-term hyperasymp-
totic improvement (solid) for f = 1/(1 + x2) with ε = 1/12 and, as the truncation of the
standard asymptotic series, N = 6, which is the optimal truncation for this function for
this ε.

again the interval of integration in the error integral is infinite, and the expansion in
powers of (1/2)(ε2k2 − 1) has only a finite radius of convergence in k.

Figure 10.2 illustrates the improvement for a typical case.

11. Summary. Divergent series are ubiquitous in applied mathematics. Expla-
nations of why series diverge and how the series can be improved have hitherto been
confined to specialized monographs.

Our contention is that divergent series are not “the devil’s invention,” as Abel
labeled them two centuries ago. Rather, it is possible to find examples of divergence
and hyperasymptotics that can be explained using undergraduate mathematics. Of
course, like any other rich field, there are depths and subtleties that can be probed
only at the graduate level and beyond. But that is hardly a justification for the
pedagogical crime of inflicting asymptotic series on students with definitions, rules,
and heuristics, but without explanation.

The one-dimensional boundary value problem with boundary layers is a good
introduction to the Why of divergence, and also to its cure.

Appendix. Obtaining a Nice Fourier Transform by Windowing. Even if f(x)
is an analytic function on x ∈ [−1, 1], it may not have a nice Fourier transform F (k);
a counterexample is f = x4/(1 + x2), which is unbounded as |x| → ∞.

Theorem A.1 (windowing). If f(x) is a function which is analytic on the real
interval x ∈ [−δ− 1, 1+ δ] for some positive δ, however small, then for an arbitrarily
small error tolerance α, one can always find a function f̃ that has a well-behaved
Fourier transform F (k), decaying exponentially fast as |k| → ∞, and also such that

|f(x)− f̃(x)| ≤ α ∀x ∈ [−1, 1].(A.1)
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This function is constructed as

f̃(x) ≡ f(x)W(x),(A.2)

where W is a function that is approximately or exactly equal to one on x ∈ [−1, 1]
and rapidly diminishes to zero as |x| → ∞.

Proof. The first crucial point is that if the window function is constructed such
that

|W(x)− 1| ≤ α/ max
x∈[−1,1]

(|f(x)|), x ∈ [−1, 1],(A.3)

then the difference between f and f̃ will have to be less than α everywhere on the
target interval. The second key idea is that if W is a smooth function that decays as
|x| → ∞, and if also f is sufficiently smooth for x on and near the interval x ∈ [−1, 1],
then f̃ will have the same properties. The usual Fourier integral theorems then
guarantee that f̃ will have a well-behaved Fourier transform F (k).

There are many choices for the window function such as

W ≡ 1
2
{erf(λ[x− 1− σ])− erf(λ[x+ 1 + σ])} ,(A.4)

where λ and σ are user-choosable constants. Because this is an entire function,
this “erf-window” does not introduce any additional singularities into f̃ except those
present in f . Although f̃ never exactly equals f on x ∈ [−1, 1], the difference can be
made arbitrarily small by choosing a sufficiently large λ.

Another choice is to use a C∞ window, that is, a function which is infinitely
differentiable but not analytic. An example is

W =




1, x ∈ [−1, 1],

(1/2)
{
1 + erf

(
L y(|x|)√

1−y(|x|)2

)}
, 1 < |x| < Θ,

0, |x| > Θ,

(A.5)

where L and Θ are positive user-choosable constants and where

y(x) ≡ −1 + 2
Θ− x

Θ− 1
.(A.6)

Figure A.1 shows such a window; the graph of the erf-window is very similar.
The lack of analyticity implies a slower decrease of F (k) with |k| than for the

erf-window. The advantage is that f̃ ≡ f without error everywhere on x ∈ [−1, 1].
In addition, the window is identically zero for sufficiently large real |x|. Even if f(x)
has poles or other unbounded behavior at some finite x, f̃ will be bounded and well-
behaved for all real x if the window is made sufficiently narrow.

Thus, no real generality is lost by using the Fourier transform representation
of the particular solution: through windowing, the necessary F (k) can always be
constructed if f(x) is defined for all real x. If f(x) is defined or known only on a finite
interval, then it can be extended to the whole real axis as explained in [7].

Acknowledgments. I thank William Briggs and two anonymous reviewers for
very detailed comments that greatly improved this work.
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Fig. A.1 Left: The C∞ window T (x; Θ, L) for L = 2 and Θ = 5/2; the window is identically zero
for all |x| > Θ and varies smoothly from one to zero in the regions |x| ∈ [1,Θ]. Right panel
(solid curve): a typical forcing function, f = 1/(5/2 + x) and its windowed equivalent, f̃ .
Note that although f has an off-interval pole at x = −2.5, the windowed function f̃ is
smooth for all real x and has a Fourier transform that decays exponentially fast with k.
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