
Modeling and simulating complex ionic systems in the presence of
dielectric inhomogeneities

�
�

�
�Dezső Boda
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Molecular models - two particle system 2

Molecular models - two particle system
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Intermolecular pair potential

• depends on the mutual po-

sition (rij)

• and the mutual orientati-

ons (ωi, ωj) of the mole-

cules

• It can be calculated from

quantum mechanics or we

can use model potentials.

It is usual to divide the model potential into

• repulsive core (hard sphere, exponential, or 1/r12

repulsion)

• attractive dispersion force (1/r6 or exponential

Yukawa attraction)

• elecrostatic forces (Coulomb, dipole, quadrupole,

etc.)

Example: SPC/E water

• a Lennard-Jones potential
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�
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on the oxygen

• and partial charges on the atoms

• 6 parameters: 2 LJ parameters, 2 partial charges,

distance and angle of hydrogens
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Molecular models - many particle systems 3

Molecular models - many particle systems

Intermolecular potentials

acting between particles

• defines the system on the

microscopic level

• determines the energy for

a given configuration of

the particles

• The energy is not equal to the sum of the pair poten-

tials:
�
�

�
�U 6=

∑

i<j uij

• The difference is due to many body forces

• the vicinity of a third particle changes the pair po-

tential

• Solution: using effective pair potentials

• fit the parameters of the potential to experimental

results

• For instance: fit vapour-liquid equilibrium curves

• How can we relate the microscopic pair potential
to mesaured physical quantities?�� ��STATISTICAL MECHANICS
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The relation of the microscopic and the macroscopic level 4

The relation of the microscopic and the macroscopic level

Reality
Choose intermolecular potential

Model making

given model

Theory

Contains 
approximation

Exact for a 

Simulation

data
with experimental
simulation results 
Comparison of

Test of theoryTest of model

Experiment

and theory for a given model
Comparison of simulation 

Computer simulations serve as a bridge between real

systems and their models

• What is simulation?
Theory? Experiment?

• Answer: a statistical

mechanical tool that gives

exact results

• apart from statistical

uncertainty and system size

problems.

• A theory has to be verified by

comparison to simulation.

• A model has to be verified by

comparing the simulation

results to macroscopic

experimental data.
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Statistical mechanics 5

Statistical mechanics

• The thermodynamic state has to be specified. For example: canonical ensemble
- number of particles (N ), volume (V ), and temperature (T ) are fixed.

• The macroscopic quantities of the system are known if the partition function is

known:
�
�

�
�Q =

∑

i exp(−Ui/kT ) , where we sum over the possible states of the

system and Ui is the energy in state i. In the classical theory the sum becomes an
integral over phase space (position and velocity).

• For example: Helmholtz free energy: F = −kT lnQ, etc.

• Ensemble average of physical quantity B is

�




�

	
〈B〉 =

1

Q

∑

iBi exp(−Ui/kT ) ,

where Bi is the value of B in state i - calculated by Monte Carlo (MC) simulation

• Time average of the physical quantity B is

�




�

	
B̄ =

1

τ

∫

B(t)dt -

calculated by molecular dynamics (MD) simulation

• Postulate: the two averages are equal -
�
�

�
�〈B〉 = B̄ .
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Molecular dynamics simulation 6

Molecular dynamics simulation

• We move the particles according to the equations of motions of Newton - a
deterministic approach.

• The force acting on each particles is known if the intermolecular potentials are
specified.

• Choosing a small ∆t time interval, we can calculate the velocities and positions of
the particles at time t+ ∆t if we know the velocities and positions at time t.

• In the simulation, we calculate and store the various physical quantities and we
calculate the time average at the end.

• Appropriate to simulate non-equilibrium systems and dynamical properties (e.
g. diffusion).

• Problems: native ensemble is NV E (microcanonical).

• Application to other ensembles: sort of mixing of MD and MC.

• Problems with thermostating.
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Monte Carlo simulations 7

Monte Carlo simulations

A simplified picture

• We randomly sample the phase space - hence the name

• First idea: generate random possible states uniformly and estimate

Q =
∑

i exp(−Ui/kT )

• The ensemble average of B would be 〈B〉 =
∑

iBipi.

• where pi =
1

Q
exp(−Ui/kT ) is the probability of state i.

• Problem: the number of possible states is huge.

• We sample states that are far from equilibrium: Ui is large; exp(−Ui/kT ) is small.

• Their contribution to Q is small - they are not important.

• Solution: importance sampling - we sample states that are important
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Monte Carlo simulations 8

Monte Carlo simulations

Importance sampling

• Let us generate states with pi probability (Boltzmann sampling).

• We have to bias in the ensemble average with the Boltzmann factor:�

�

�



〈B〉 =

∑

iBi exp(−Ui/kT )/pi
∑

i exp(−Ui/kT )/pi

=

∑

iBi

M

where M is the number of generated states.

• This is a simple mean average.

• Realization of this sampling: Metropolis sampling
N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, E. Teller, Chem. Phys.

1953, 21, 1087. (simulation of hard disks - Los Alamos)

• There are a lot of other possibilities.

December 13, 2004 Linz, Austria



Monte Carlo simulations 9

Monte Carlo simulations

Metropolis sampling

• Probability of transition i→ i+ 1 is�
�

�
�pi→i+1 = pi+1/pi = exp[−(Ui+1 − Ui)/kT ] = exp(−∆U/kT )

• State i+ 1 is accepted by relating to the previous state i - a Markov chain.

• The new state is accepted with the probability
�
�

�
�min[1, exp(−∆U/kT )] .

• The MC step is always accepted if ∆U < 0.

• When ∆U > 0, it is accepted with probability exp(−∆U/kT )

• This is a Boltzmann sampling.
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Monte Carlo simulations 10

Monte Carlo simulations

Other ensembles

• NpT : fixed pressure - volume change

• µV T grand canonical: fixed chemical potential - particle insertion/deletion

• Gibbs ensemble - two simulation boxes with particle and volume exchange -

simulation of phase equilibria

• Biased moves: to improve the efficiency of sampling and accelerate simulations

• Example: particle exchange between a small volume subsystem (ion channel) and

a large volume subsystem (bath).

• Normally, such moves are rare and sampling of occupancy of the channel is

inefficient.
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Periodic boundary condition 11

Periodic boundary condition

• imitation of macroscopic

(infinite) sample

• the Universe is filled with the

periodic images of the

central simulation cell

• if a particle moved out of the

central simulation cell, its

periodic image is coming

back in from the other side

• surface effects are eliminated

• other problems: enforced

periodicity, system size

dependence prevails
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Mixed boundary conditions 12

Mixed boundary conditions

PBC

PBC

PBC

PBC

wall wall

double layer (DL) geometry: PBC in x and y

dimensions, confined by walls in z dimension

• PBC is applied in dimensions

where the system is

homogeneous

• in the dimension of

inhomogeneity the system can

be confined by walls

• Inhomogeneous systems: the

fluid at interfaces is in

equilibrium with a bulk

system.

• The bulk is a part of the

simulation cell (far from

walls) or specified by a

chemical potential (grand

canonical scheme).
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Problems with large scale MD simulations 13

Problems with large scale MD simulations

D. Doyle et al., Science 1998, 280, 69.

• If we know detailed 3D structure of

the system (e. g. the KcsA

potassium channel on the left), we

can perform all atom MD

simulation.

• LJ potentials and partial charges on

atoms and ions, SPC/E for water.

• For example:
T. W. Allen, S. Kuyucak, S. H. Chung:

Molecular dynamics study of the KcsA

potassium channel, Biophysical

Journal, 1999, 77, 2502.

• Problems. At least, in my view.

December 13, 2004 Linz, Austria



Problems with large scale MD simulations 14

Problems with large scale MD simulations

D. Doyle et al., Science 1998, 280, 69.

• Uncertainties of models and
molecular parameters - models

and parameters that are good in a

given situation might not be good in

other situation.

• Example: water - some models are

good for thermodynamics, others

good for dielectric, interfacial, etc.

properties.

• results should be verified by

comparison to experimental data

(current-voltage).

• long enough simulations cannot be

run to get a macroscopic sample
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Continuum models 15

Continuum models

Summarized : molecular simulations of systems modelled in full atomic detail might
be problematic:

• time consuming - many particles (macroscopic sampling is not possible)

• unknown 3D structures (proteins)

• uncertainties in estimation of potential parameters

"Coarse-graining"

• important particles are treated explicitely (e. g. ions)

• the rest is smoothed into a continuum (e. g. solvent, proteins, membrane,
electrode)

• the various components with different polarizabilities are modelled as
continuums with different dielectric coefficients

• it can be described by an inhomogeneous dielectric coefficient: ε(r)

Basic task: solving the Poisson equation
�
�

�
�−ε0∇ · [ε (r)∇ψ (r)] = ρ (r)
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Macroscopic electrostatics 16

Macroscopic electrostatics

The total charge is split into two parts:

• source (free or explicitely treated) charges:
�
�

�
�g(r) = ρ(r)/ε0 and

• polarization charges
�
�

�
�h(r) = ρpol(r)/ε0 (to be determined)

• constitutive relation: ρpol(r) = −∇ ·P(r), where

• polarization: P(r) = −ε0χ(r)∇ψ(r)

• dielectric susceptibility: χ(r) = ε(r) − 1

The corresponding Poisson equation: ∇2ψ(r) = −
1

ε0
[ρ(r) + ρpol(r)]

The potential is also split into two parts:

•
�
�

�
�ψ(r) = ψe(r) + ψi(r) =

∫

D
G(r− r

′)g(r′)dr′ +
∫

D
G(r− r

′)h(r′)dr′

• the Green-function satisfies ∇2G(r − r
′) = −δ(r− r

′)

• G(r− r
′) = 1/(4π|r− r

′|) for the boundary condition ψ(r) → 0 if r → ∞
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Variational formalism 17

Variational formalism

Solution of the Poisson equation minimizes the functional

• I [ψ] =
1

2

∫

D
∇ψ · ∇ψdr −

∫

D
ψ

[

g +
1

2
∇ · (χ∇ψ)

]

dr

• In minimum the value −ε0I[ψ] is the electrostatic energy

• Substituting the Green function form of ψ(r), the functional can be expressed
in terms of the charges: I[g, h]

• At a fixed g(r), we have to find h(r) that minimizes I[g, h].

• This is equivalent to minimizing the h-dependent part of the functional I2 [h]

for a fixed g.

So, the task is to solve the extremum condition
δI2[h]

δh(r)
= 0

• R. Allen, J.-P. Hansen, and S. Melchionna, Phys. Chem. Chem. Phys. 3, 4177 (2001).

• Allen et al. solved it with the steepest descent method.
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Solution of the extremum condition 18

Solution of the extremum condition

δI2[h]

δh(r)
= 0

We present a different solution resulting in a matrix equation. The following integral
equation can be obtained from the extremum condition:

h(r)ε(r) −
∫

D
h(r′)∇rε(r) · ∇rG(r − r

′)dr′

= ∇rε(r) · ∇rψe(r) −
1

ε0
[ε(r) − 1] ρ(r)

• This equation should be discretized and solved for h.

• It is general and valid for arbitrary ε(r) and ρ(r).

• We can make our life easier by making some assumptions for ε(r) and ρ(r).

D. Boda, D. Gillespie, W. Nonner, D. Henderson, B. Eisenberg, Phys. Rev. E 2004, 69, 046702.
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Point charges as source charges 19

Point charges as source charges

• Suppose that the source charges are point charges:
�




�

	
�
�

�
�ρ(r) =

∑

k zkeδ(r− rk)

• Polarization charges of magnitude

�

�

�



−zke

ε(rk) − 1

ε(rk)
δ(r− rk) are induced around

the point charges (localized on them).

• The electric potential produced by the point charges and the polarization charges

induced on them:

�




�

	
ψe(r) =

e

4πε0

∑

k

zk

ε(rk)|r− rk|

where ε(rk) is the dielectric coefficient at the position of the kth source charge.

• From now on, h(r) denotes only the polarization charges induced on the dielectric
interfaces. In this case, the basic equation reduces to :

h(r)ε(r) −
∫

D
h(r′)∇rε(r) · ∇rG(r− r

′)dr′ = ∇rε(r) · ∇rψe(r)

• This is valid for arbitrary ε(r).
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Sharp dielectric interfaces 20

Sharp dielectric interfaces

• When the dielectric is piecewise uniform, ε(r) jumps from one value to another

along a boundary.

• In this case, the volume integrals over D become surface integrals over the

dielectric boundary surfaces B.

• The basic equation then reduces to:

h(s)ε(s) − ∆ε(s)
∫

B
h(s′)∇sG(s − s

′) · n(s)ds′ = ∆ε(s)∇ψe(s) · n(s)

where

• h(s) is now surface charge distribution

• ε(s) is the mean average of the dielectric constants on the two sides of the surface

• ∆ε(s) is their difference, and

• n(s) is a normal vector of the surface
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The matrix equation 21

The matrix equation

The previous equation is valid for any discrete value of sα. Use the notations

• normal vector: nα = n(sα)

• mean dielectric constant: εα = ε(sα)

• jump in the dielectric constant: ∆εα = ∆ε(sα)

The surface B is discretized into surface elements. Let us suppose that the induced

surface charge is constant on surface element β denoted by hβ . Then our equation

becomes

∑

β hβ

[

εβδαβ − ∆εα

∫

aβ
∇sα

G(sα − sβ) · nαdsβ

]

= ∆εα∇ψe(sα) · nα.

where the integral expresses the polarization of the surface element β by the induced

charge at sα, and vice versa. The integral is taken for the βth surface element.
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The matrix equation 22

The matrix equation

If sα is the center of the αth surface element, the previous equation can be written in

the matrix form:
�
�

�
�Ah = c , where

• the
�
�

�
�

Aαβ = εβδαβ − ∆εα

∫

aβ
∇sα

G(sα − sβ) · nαdsβ matrix depends only on

the geometry of the dielectric

• h is the vector of induced charges

•
�
�

�
�cα = ∆εα∇ψe(sα) · nα depends on the source charges

• If the geometry does not change in a simulation, the matrix need be inverted only

once at the beginning of the simulation.

• Moving the source charges (the ions) changes the vector c, from which the

induced charges are calculated by the matrix-vector multiplication h = A−1
c.
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Calculation of the integral 23

Calculation of the integral

Regarding the calculation of the integral Iαβ =
∫

aβ
∇sα

G(sα − sβ) · nαdsβ there are

two approaches

1. Treating the surface charge hβ as a point charge of magnitude hβaβ at the center

of the βth surface element of area aβ�
�

�
�Iαβ = ∇sα

G(sα − sβ) · nαaβ

for β 6= α and 0 otherwise [Boda et al., Phys. Rev. E, 2004, 69, 046702.]. This

matrix has been developed before from the boundary condition D1n = D2n,

E1t = E2t. [Hoshi et al. JCP, 1987; Lu and Green, PCPS, 1997]

2. Treating hβ as a constant surface charge over the βth surface element, and

calculating Iαβ numerically after an appropriate parametrization of the surface

[Nonner and Gillespie, Biophys. J. in preparation]. This approach is especially

important if the surface is curved, therefore, we use the name curvature correction.
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Calculation of the energy 24

Calculation of the energy

• The source charge - source charge interaction energy:

�




�

	
We =

1

2

∑

j ezjψe(rj)

• The source charge - induced charge interaction energy:�




�

	
Wi =

e

8π

∑

j zj

∑

β hβ

∫

aβ

ds

|s− rj |

Similarly to the calculation of the integral Iαβ , this energy can also be calculated

on two levels of approximation:

1. Treating the induced charge as a point charge of magnitude hβaβ , the integral

in the above equation becomes
aβ

|sβ − rj |
.

2. Treating the induced charge as a surface charge with the constant value hβ

over the βth surface element, the integral should be calculated numerically.

This is a time consuming step in a simulation because the |s− rj | distances

have to be evaluated once the jth ion is displaced.
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Ion is modelled as a hard sphere with a point charge in the center 25

Ion is modelled as a hard sphere with a point charge in the center

• The dielectric constant inside the hard spheres is the same as outside.

• The ions cannot overlap with the dielectric boundaries and cannot leave their host dielectric.

• Otherwise, new dielectric boundaries would appear - matrix A should be inverted again.

ε
ε

ε

εε

ε 2

2

2

2

2

1
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One flat interface: ε1|ε2 geometry - ions on the right side 26

One flat interface: ε1|ε2 geometry - ions on the right side

Comparison of density profiles obtained from the ICC and the image charge method

for various resolutions of the grid. [Boda et al. PRE, 2004, 69, 046702.]
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Two flat interfaces: ε1|ε2|ε3 geometry - electrical double layer 27

Two flat interfaces: ε1|ε2|ε3 geometry - electrical double layer

It is usual to assume that the inner layer has a dielectric constant different from that of

the diffuse layer or the elecrode because of the need for empirical adjustments to

obtain agreement with experiments. The elecrostatic consistency of the approach

should be studied.

x=0 x=δ

electrode diffuse layer

in
ne

r 
la

ye
r

ε εε1 2 3
+

+

−

−

1 2 3 4 5
z / d
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c(
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1:1, c
0
=0.5M
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A dielectric sphere ε1 = 80 embedded in a dielectric ε2 = 2 28

A dielectric sphere ε1 = 80 embedded in a dielectric ε2 = 2

• Radius of the sphere: R = 5 Å.

• Distance of a source charge e from the center of the sphere: d = 4 Å

• Grid: spherical coordinates ϑ and φ evenly divided into intervals ∆θ = ∆φ, N is
the number of surface elements.

• Analytic solution: series in terms of Legendre polynomials.

ro e

R
ε

ε

1

2

d

∆φ

∆θ
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A dielectric sphere ε1 = 80 embedded in a dielectric ε2 = 2 29

-5 0 5

r / Å

30

40
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W
i/k

T

SPHERE

source charge

Source charge - induced charge
energy as a function of the 
distance from the center of the 
sphere along the line on
the charge and the sphere center

Analytic
Red: N=512
Blue: N=128
Solid: approach 2 for Iαβ

but approach 1 for W
i 

Dashed: approach 2 for both Iαβ
and W

i

approach 1 for both Iαβ
and W

i
, N=2048 (!!!)

The curvature correction is important!!!
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The effective force acting between two charged dielectric spheres 30

The effective force acting between two charged dielectric spheres

The effective pair potential is defined as
�
�

�
�ϕ(r) = W (r) −W (r → ∞) . The energy

W (r → ∞) corresponds to the interaction energy between the charge and the induced

charge on its own sphere. The effective force is
�
�

�
�F (r) = −dϕ(r)/dr .
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MC simulation for a model calcium channel 31

MC simulation for a model calcium channel

The selectivity filter of the calcium channel is known to be lined by 4 glutamate groups

(EEEE locus). They are represented by 8 half charged oxygen ions that are confined to

the filter but can move freely inside. A 0.1M NaCl solution used and a few Ca++ ions.

Question: whether the Na+ or the Ca++ enters the filter with a higher probability?

membrane
3ε

vestibulefiltervestibule

protein

membrane

protein

bath

ε

ε

ε
ε1

2

2

3

bath

ε
1

1
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MC simulation for a model calcium channel 32

MC simulation for a model calcium channel

-4 -3 -2 -1
lg[c(Ca

++
)/c(Na

+
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 a

bs
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d 

ca
ti

on
s

Calcium ions
Sodium ions

Results for uniform dielectric constant -

ε = 78.5 everywhere, no vestibule.

D. Boda et al., Molec. Phys., 2002 100, 2361.

• The concentration of sodium ions is

kept constant in the bath at 0.1 M.

CaCl2 is added to the system.

• The calcium ions replace sodium

ions even when their bath

concentration is 0.01 times smaller

than that of the sodium ions.

• Explanation: charge-space

competition (CSC) mechanism

• The calcium ions provide two times

the charge to neutralize the

glutamate groups than sodium ions

using about the same volume.
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Preliminary results for inhomogeneous dielectric
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Problem of absence of charge neutral bulk 36

Problem of absence of charge neutral bulk

0 20 40 60 80
z

0

0.05

0.1

0.15

0.2

n(
z)

Na
+

Cl
-

Ca
2+

The previous figure with a different scale

showing the bulk. There is no an

electroneutral bulk.

Explanation:

• “Fixed charge ensemble”

• Normal procedure in homogeneous
ε simulations: the number of ions is

chosen so that the system is

electroneutral.

• The electroneutral bulk is

automatically formed far from the

walls (inhomogeneities).

• Here, polarization charges are

induced on the dielectric

boundaries and prevent the

formation of charge neutral bulk.
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Simulation by imposing Dirichlet or Neumann boundary conditions 37

Simulation by imposing Dirichlet or Neumann boundary conditions

(s)
electrode charge

polarization charge
h(s)

bathbath
m

em
br

an
e

m
em

br
an

e
channel

protein

protein

σ

Idea of Nonner and Gillespie (still in

preparation): Define confining surface of the

system (they call it electrode). Apply an

appropriate surface charge σ(r) on the

electrode to fulfill BC.

• Dirichlet BC: prescribed

potential on the surface: V (s)

• Neumann BC: prescribed

normal electric field on the

surface: En(s)

• As the ions move, both the

polarization charge h(s) and the

electrode charge σ(s) are

changing.

• Electrode charge induces

polarization charge and vice

versa, so their calculation has to

be coupled.
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Coupling induced and electrode charge calculations 38

Coupling induced and electrode charge calculations

Equation for the dielectric boundaries B:�

�

�

�

4π
ε(s)

∆ε(s)
h(s) +

∫

B
h(s′)

(s − s′) · n(s)
|s − s′|3

ds′ +
∫

S
σ(s′)

(s − s′) · n(s)
|s − s′|3

ds′

= −
∑

k qk
(s − rk) · n(s)
ε(rk)|s − rk|3

Equation for the electrode S:�
�

�



∫

B

h(s′)
|s − s′|

ds′ +
∫

S

σ(s′)
|s − s′|

ds′ = 4πε0V (s) −
∑

k

qk
ε(rk)|s − rk|

To solve the problem, both surfaces B and S have to be discretized resulting in a

matrix equation. Work is in progress...
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