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PREFACE

Molecular liquids are complicated because the defining characteristics
that enliven the interesting cases are precisely molecular-scale details.
We argue here that practical molecular theory can be simpler than this
first observation suggests. Our argument is based upon the view that
an effective tool for developing theoretical models is the Potential Dis-
tribution Theorem, a local partition function to be used with generally
available ideas for evaluating partition functions. An approach based
upon the Potential Distribution Theorem also allows functional theory
to ride atop simulation calculations, clearly a prudent attitude in the
present age of simulation.

This work is about molecular theory, and emphatically not about how
to perform simulations. Molecular simulation is an essential component
of modern research on solutions. There are a number of presentations
of simulation techniques, but not of the molecular theory that we take
up here. We offer this book as complementary theory with simulators
in mind.

A goal of this book is, thus, to encourage those doing detailed cal-
culations for molecular solutions to learn some of the theory and some
of the sources. The physical insights permitted by those calculations
are more likely to become apparent with an understanding of the the-
ory that goes beyond the difficulties of executing molecular simulations.
Confronting the enormity and lack of specificity of statistical mechanics
usually would not be the practical strategy to achieve that goal.

This book also frequently attempts to persuade the reader that these
problems can be simple. Extended discussions are directly physical,
i.e., non-technical. This is consistent with our view that many of these
problems are simple when viewed from the right perspective. Part of
our view is, however, associated with a high-altitude style: in many
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6 PREFACE

instances, we are comfortable in presenting things simply and referring
to comprehensive sources for background details (Münster, 1969, 1974).

Thus, an introductory course in statistical thermodynamics, typically
offered in graduate programs in chemistry and chemical engineering,
is a prerequisite to this material. A few sections are at a level more
advanced than that. But the references and access to a technical li-
brary, or to a knowledgeable teacher, would provide the natural supple-
ment. We hope that this book will be accessible then to students with
a strong background in a physical science, and specifically to graduate
students embarking on research activities in molecular modeling of so-
lutions in chemistry, chemical engineering, biophysics, pharmaceutical
sciences, and in molecular biotechnology and nanotechnology.

We have made a conscious decision to emphasize aspects of the theory
of molecular liquids different from the mature and familiar theory of
atomic liquids. This decision is partly due to the fact that the theory
of simple liquids is well described elsewhere, and partly due to the view
that the specifically molecular aspects of solutions are essential to topics
of current interest.

It is helpful to contrast the view we adopt in this book with the per-
spective of (Hill, 1986). In that case, the normative example is some
separable system such as the polyatomic ideal gas. Evaluation of a par-
tition function for a small system is then the essential task of application
of the model theory. Series expansions, such as a virial expansion, are
exploited to evaluate corrections when necessary. Examples of that type
fill out the concepts. In the present book, we establish and then exploit
the Potential Distribution Theorem. Evaluation of the same partition
functions will still be required. But we won’t stop with an assumption
of separability. On the basis of the Potential Distribution Theorem,
we then formulate additional simplified low-dimensional partition func-
tion models to describe many-body effects. Quasi-chemical treatments
are prototypes for those subsequent approximate models. Though the
design of the subsequent calculation is often heuristic, the more basic
development here focuses on theories for discovery of those model parti-
tion functions. These deeper theoretical tools are known in more esoteric
settings, but haven’t been used to fill out the picture we present here.

Exercises are included all along, but not in the style of a textbook
for a conventional academic discipline. Instead we intend the exercises
to permit a more natural dialogue, e.g. by reserving technical issues for
secondary consideration, or by framing consideration of an example that
might be off the course of the main discussion.
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The Platonic debate known as ‘The Learner’s Paradox’ suggests if you
don’t know it, you can’t learn it. A judgment on the truth content of
this assertion is tangential to the observation that learning is difficult in
ways that are forgotten afterwards. A typical response to the Learner’s
Paradox is a discussion of example, organization of observations, and
analogy. Learning does often result in ‘new concept B is like old concept
A.’ Our efforts that follow do introduce serious examples at an early
stage, and do return to them later as the concepts develop further. With
Mauldin1 and Ulam, we thus accept Shakespeare’s advice:

All things done without example
in their issue

Are to be feared.

Several important results are demonstrated more than once but from
different perspectives.
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whole manuscript. TLB acknowledges the National Science Foundation,
the MURI program of US Department of Defense, and David Stepp
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Doll for their many statistical mechanical insights, and Elizabeth Glazier
for her support during the writing of this book. MEP thanks Themis
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cational experiences in statistical thermodynamics, and Sam, Erin, and
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with a life of the mind.
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INTRODUCTION

We consider a molecular description of solutions of one or more molec-
ular components. An essential feature will be the complication of treat-
ing molecular species of practical interest since those chemical features
are typically a dominating limitation of current work. Thus, liquids of
atomic species only, and the conventional simple liquids, will be only
relevant to the extent that they teach about molecular solutions. In this
chapter, we will introduce examples of current theoretical, simulation,
and experimental interest in order to give a feeling for the scope of the
activity to be taken up.

The Potential Distribution Theorem (PDT) (Widom, 1963), some-
times called Widom’s particle insertion formula (Valleau and Torrie,
1977), is emerging as a central organizing principle in the theory and
realistic modeling of molecular solutions. This point is not broadly rec-
ognized, and there are a couple of reasons for that lack of recognition.
One reason is that results have accumulated over several decades, and
haven’t been brought together in a unified presentation that makes that
central position clear. Another reason is that the PDT has been primar-
ily considered from the point of view of simulation rather than molecular
theory. An initial view was that the PDT does not change simulation
problems (Valleau and Torrie, 1977). In a later view, the PDT does as-
sist simulations (Frenkel and Smit, 2002). More importantly though, it
does give vital theoretical insight into molecular modeling tackled either
with simulation or other computational tools, or for theory generally.
This theorem has recently lead to a new stage of molecular modeling of
solutions, quasi-chemical theories that promise accurate molecular and
chemical detail on the basis of available electronic structure computa-
tional methods of molecular science.

Our perspective is that the PDT should be recognized as directly anal-
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INTRODUCTION 9

ogous to the partition functions which express the Gibbsian ensemble
formulation of statistical mechanics. From this perspective, the PDT is
a formula for a thermodynamic potential in terms of a partition function.
Merely the identification of a partition function does not solve statisti-
cal thermodynamics. But common ideas for approximate evaluation of
partition functions can be carried over to the PDT. In contrast to Gibb-
sian partition functions, however, the PDT is built upon a local view of
the thermodynamics and depends on local information. Therefore, the
tricks from the common tool-kit work out simply and more convincingly
for liquids from the perspective of the PDT. In addition, the PDT gives
a simpler perspective into some of the more esoteric (“. . . both difficult
and strongly established . . . ” (Friedman and Dale, 1977)) results of sta-
tistical thermodynamics of molecular solutions. Thus, we present a point
of view on the subject of molecular solutions that is simple, effective,
and not developed elsewhere.

What follows is not a review. Nevertheless, there are old views un-
derneath, and we do want to give the reader a valid sense of the scope,
even historical scope, of the field.

Historical sketch. A genuine history is not offered here, but some
historical perspective is required to appreciate what has been achieved.
We suggest a natural division of that history into three periods: (a) a
pioneering era prior to 1957 (the year that molecular simulation meth-
ods changed the field (Wood, 1986; Ciccotti et al., 1987; Wood, 1996)),
(b) the decade or so after 1957 when the theory of serious prototype
liquid models achieved an impressive maturity, and (c) the present era
including the past three decades, approximately.

Pioneering. The era before molecular simulation methods were invented
and widely disseminated was a period of foundational scholarly activ-
ity. The work of that period serves as a basic source of concepts in the
research of the present. Nevertheless, subsequent simulation work re-
vealed again advantages of molecular resolution for developing detailed
theories of these complex systems.

Students of this subject will remember being struck by the opinion
expressed in the first English edition of the influential textbook STA-
TISTICAL PHYSICS (Landau and Lifshitz, 1969), associated with this
pioneering period:

“We have not included in this book the various theories of ordinary liquids
and of strong solutions, which to us appear neither convincing nor useful.”
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A sensitive evaluation of the truth content of this view — it would not
be a general view (Kipnis et al., 1996) — is less important than the
historical fact that it should be flatly asserted in that setting.

1957. The story of the initial steps in the development of molecular sim-
ulation methods for the study of liquids at the molecular scale has been
charmingly recounted by (Wood, 1986, 1996). By 1957, these simula-
tion techniques had been firmly established; the successful cross-checking
of molecular dynamics calculations against Monte Carlo results was a
crucial step in validating simulation methods for the broader scientific
community.

Lots of ideas, many suboptimal, coexisted prior to the availability of
the clear data that simulations provided. It was less that the simu-
lations suggested new ideas than that the new simulation data served
to alleviate the confusion of unclear ideas and to focus effort on the
fruitful approaches. The theory of simple liquids treated by those sim-
ulations promptly made progress that we recognize, from our historical
vantage point, as permanent. For example, the Percus-Yevick theory,
proposed in 1957, was solved analytically for the hard-sphere case in
1963 (Wertheim, 1963; Thiele, 1963).

The PDT that is a central feature of this book dates from this pe-
riod (Widom, 1963; Jackson and Klein, 1964), as does the related but
separately developed scaled-particle theory (Reiss et al., 1959).1 Both
the PDT and scaled-particle approaches have been somewhat bypassed
as features of molecular theory, in contrast to their evident utility in
simulation and engineering applications. Scaled-particle theories have
been helpful in the development of sophisticated solution models (Ash-
baugh and Pratt, 2004). Yet the scaled-particle results have been almost
orthogonal to pedagogical presentations of the theory of liquids. This
may be due to the specialization of the presentations of scaled-particle
theory (Barrat and Hansen, 2003).

The theory of simple liquids wasn’t simple. The theory of simple liq-
uids achieved a mature state in the era 1970±5 (Barker and Henderson,
1976; Hansen and McDonald, 1976). As this mature theory was ex-
tended towards molecular liquids, simple molecular cases such as liquid
N2 or liquid CCl4 were treated first. But the molecular liquids that were

1 (Kirkwood and Poirier, 1954) used a result equivalent to the PDT in a special-
ized context earlier, and (Stell, 1985) discusses Boltzmann’s use of an equivalent
approach for the hard-sphere gas.
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brought within the perimeter of the successful theory were the remote
extremities compared to the liquids synthesized, poured from bottles
or pipes, and used. In addition, the results traditionally sought from
molecular theories (Rowlinson and Swinton, 1982) often appear to have
shifted to accommodate the limitations of the available theories. Over-
looking molecular simulation techniques for the moment, it is difficult
to avoid the conclusion that methods at the core of the theory of sim-
ple liquids stalled in treating molecular liquids of interest. A corollary
of this argument is that molecular simulations overwhelmingly dominate
theoretical activity in the theory of molecular liquids. The RISM theory,
then (Chandler and Andersen, 1972) and now (Hirata, 2003) an exten-
sion of successful theories of simple liquids, is an important exception.
The luxuriant development of RISM theories highlights aspects of the
theory of simple liquids that were left unsolved, particularly the lack
of a ‘. . . theory of theories . . . ’ in the memorable words of (Andersen,
1975). Similarly, the introduction of the central force models for liquid
water (Lemberg and Stillinger, 1975) broached the practical compromise
of treating molecular liquids explicitly as complicated atomic liquids. A
primary reason for those new models was that the theory of molecu-
lar liquids seemed stuck at places where the theory of atomic liquids
was soundly developed. Despite the novelty of the central force models,
the eventual definitive theoretical study (Thuraisingham and Friedman,
1983) of the central force model for water using the classic hypernetted
chain approximation of the theory of simple liquids was disappointing,
and highlighted again the lack of a theory of those theories of atomic
liquids as they might be relevant to theories of molecular liquids.

The category of simple liquids is sometimes used to establish the com-
plementary category of complex liquids (Barrat and Hansen, 2003). An-
other and a broad view of complex liquids is that they are colloid, poly-
mer, and liquid crystalline solutions featuring a wide range of spatial
length scales — sometimes called soft matter (de Gennes, 1992). Plant-
ing ourselves at an atomic spatial resolution, the models analyzed for
those complex liquids are typically less detailed and less realistic on an
atomic scale than models of atomic liquids.

In this book, simple liquids are contrasted with molecular liquids.
Our goal is to treat molecular liquids on an atomic spatial scale. That
doesn’t mean approximations, perhaps even crude ones, won’t sometimes
be considered. But theories of molecular liquids, even with appropriate
approximations, require molecule-specific features which the theory of
simple liquids doesn’t supply. As an example, the molecular liquid water
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is acknowledged here as a non-simple liquid, and a particularly complex
molecular liquid.

1.1 Molecules in Solution

Here we give a series of examples that illustrate our interest in molecules
in solutions, and exemplify the problems that motivate the theory and
modeling that is the subject of the remainder of this book. Many of
the issues that are discussed physically here will be studied in detail in
subsequent chapters.

Reversed-Phase Liquid Chromatography. Reversed-phase liquid
chromatography (RPLC) is a workhorse technique for the separation of
water-soluble chemical species. The method is used for chemical sepa-
rations of molecular mixtures with sizes ranging from small molecules
to bio-molecules. Small differences in free energies, on the order of 0.1
kcal/mol for transfer between the aqueous mobile phase and the station-
ary phase of tethered alkanes, can lead to well-isolated chromatographic
peaks following passage through the column. Understanding the driving
forces for retention is thus a severe challenge to the theory of molecular
liquids.

A typical RPLC column is packed with porous silica beads. The pore
sizes have a length scale in the range 50-100 Å. The silica substrate is
derivatized by a silanization reaction which attaches alkanes to hydroxyl
groups on the surface. Chains of length 8-18 carbon atoms are utilized,
with the C18 case being common. Surface densities up to about 50%
of close packing are typical. The mobile phase most often contains a
cosolvent, such as methanol or acetonitrile, in addition to water.

The flow rate is extremely slow on the time scale of molecular motions.
Therefore, a quasi-equilibrium treatment is valid. The retention factor
— the difference between the time for a peak of interest and a standard
unretained reference, divided by the time for the reference — can then
be taken as

k′ = ΦK , (1.1)

where k′ is the retention factor, Φ is the ratio of volumes of the sta-
tionary and mobile phases, and K is an equilibrium constant for solute
partitioning between the two phases. The equilibrium constant is

K = exp [−β∆µex] , (1.2)
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Fig. 1.1. Shapshot of a reversed-phase liquid chromatographic interface. Pro-
ceeding from the left to right, the configuration includes a solid surface, teth-
ered C18 chains (green), and a water/methanol mixture, 10% methanol by
volume. The waters are red and white and the methanol carbons are green.
See (Clohecy, 2005).

involving the excess chemical potential difference for the solute between
the mobile and stationary phases. Thus, equilibrium statistical mechan-
ics provides a framework to examine the free energy driving forces for
retention.

Extensive experimental, theoretical, and modeling work has been di-
rected at revealing details of the complex interface between the mobile
and stationary phases (Beck and Klatte, 2000). Current debates are cen-
tered on the issue whether retention can be correctly understood as bulk
liquid-phase partitioning or an adsorption process. The simulation work
has shown that it is really neither of these two extremes; the interface
possesses specific ordering features that present a non-bulk environment,
yet nonpolar solutes do penetrate significantly into the stationary phase.
Also, the measured excess chemical potential change is typically in line
with bulk partitioning values.

Fig. 1.1 shows a snapshot of the interface between a C18 stationary
phase (at 50% coverage) and a 90/10, by volume, water/methanol mobile
phase. Clearly the stationary phase is disordered, with little penetration
of the aqueous phase into the stationary phase.

The density profiles for the 90/10 mobile-phase case of Fig. 1.1 are
shown in Fig. 1.2. Notice the layering of the alkane chain segments near
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Fig. 1.2. Number density profiles for the C18 carbon atoms, water oxygen
atoms, and methanol carbon atoms for the 10% methanol case. The alkane
carbon density is on the left, and the high-density profile is for water-oxygen
on the right. Distances along z perpendicular to the interfacial plane are given
in Å. Densities are given in arbitrary units.

the solid surface. The chains topple over and pack into a disordered
layer on the surface in order to fill the available volume. The chain
segments never attain a flat density profile, so this region cannot be
considered a bulk alkane fluid. In addition, the first 10 Å of the sta-
tionary phase near the silica support is glassy, while the tails exhibit
liquid-like diffusive motion. The width of the stationary phase is about
18 Å, smaller than the fully extended length of 24 Å. The aqueous mobile
phase does not penetrate significantly into the stationary phase, which
is expected for aqueous/hydrophobic interfaces. Notice also the buildup
of methanol at the interface, consistent with the observed reduction in
surface tension in water/methanol mixtures. Previous simulations (Beck
and Klatte, 2000) have shown that, beyond the segregation to the sur-
face, methanol molecules in the interfacial region preferentially point
their nonpolar ends toward the stationary phase. The waters are not
appreciably orientationally ordered at the interface.



1.1 Molecules in Solution 15

-1

0

1

2

3

0 10 20 30 40 50 60 70 80

z

μexCH
4
 (z)

Fig. 1.3. Excess chemical potential profile for methane for the 90/10 wa-
ter/methanol mobile phase. Energies are given in kcal/mol. Distances along
z perpendicular to the interfacial plane are given in Å.

The excess chemical potential profile for methane gives a first indi-
cation of the driving force for retention (Fig. 1.3). This profile was
computed using the PDT discussed in this book. A methane molecule
experiences a 2.5 kcal/mol free energy drop on passing into the station-
ary phase, consistent with a bulk partitioning value; the drop on the
right is at the liquid/vapor interface.

The free energy contributions to the transfer energy can be separated
into repulsive and attractive components by examining the excess chemi-
cal potential profile for hard-sphere solutes (Fig. 1.4). For the pure aque-
ous mobile phase case in Fig. 1.4, there is a clear free energy minimum at
the interface, indicating an increase in available volume due to the weak
interpenetration of the hydrophobic and aqueous components. Thus the
purely repulsive contribution to the free energy drives the solute into the
interfacial region, while the attractive component leads to an additional
drop entering the interface and further penetration into the stationary
phase due to interactions with the tethered alkanes. With increase of
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Fig. 1.4. Excess chemical potential profiles (kcal/mol) for a 2.0 Å hard-sphere
solute along the z axis. The C18 tethered chains are on the left. The three
curves correspond to pure water (top), a 50/50 mixture (middle), and 90%
methanol (bottom) by volume. Energies are in kcal/mol. Distances along z
perpendicular to the interfacial plane are given in Å.

methanol content, the excess free volume for the hard-sphere solute dis-
appears, suggesting better penetration of methanol into the stationary
phase. A lesson from these simulation studies is that molecular-level
realism is required to tackle these complicated interfacial problems.

Exercises

1.1 Compare expected free energy driving forces for retention of
nonpolar vs. polar solutes in relation to the specific interfacial
ordering effects in the RPLC system discussed above.

Variation of the Dissociation Constant of Triflic Acid with Hy-
dration. Nafion r© is an archetypal proton conducting material used in
fuel cell membranes. It is a Teflon r© based polymeric material with side
chains ending with a hydrophilic sulfonic acid group. Because of these
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Fig. 1.5. A trifluoromethane sulfonic (triflic) acid molecule, CF3SO3H, with
one water molecule. The picture on the left shows the approximate minimum
energy configuration of these molecules. The view is down the SC bond, the
SO3 group closest to the viewer and the CF3 is behind. The picture on the
right shows a configuration proposed as a transition state for scrambling of
the acid hydrogen. See (Paddison et al., 1998).

super-acidic head groups, Nafion r© can be hydrated and can serve as a
proton conductor separating electrochemical compartments. The con-
sequences of variable hydration on proton conduction is expected to be
significant for the performance of these materials. Experimental work
has not yet fully resolved these issues, and a molecular understanding is
still sought.

The important acid activity in Nafion r© is appropriately represented
by trifluoromethane sulfonic (triflic) acid, CF3SO3H; see Fig. 1.5. Di-
electric spectroscopy has suggested that a significant amount of triflic
acid is not dissociated in the ionic melt at 50% mole fraction of wa-
ter (Barthel et al., 1998). But the deprotonation chemistry of hydrated
triflic acid hasn’t been experimentally studied over the wide range of
hydration and temperature that would be relevant to the function of
sulfonate based polyelectrolyte membrane materials.

Here we discuss a simple theoretical molecular model of triflic acid
dissociation in dilute aqueous solution along the gas-liquid saturation
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curve to elevated temperatures. The water liquid-vapor saturation curve
serves as a simple reproducible path for reduction of the hydration of
the triflic acid. These results are preparatory to molecular modeling at
higher resolution (Eikerling et al., 2003). Since data that would make
this effort more conclusive are not yet available, these theoretical con-
siderations also might serve to encourage further experimental work in
this direction.

The approach here will be to take a specific triflic acid molecule, a
distinguished solute, as the basis for detailed molecular calculations, but
to idealize the solution external to that solute as a dielectric continuum.
‘External’ will be defined as outside a molecular cavity established with
spheres on each atom, characterized by radii treated as parameters. We
will follow standard procedures in applying this dielectric model (Tawa
and Pratt, 1994, 1995; Corcelli et al., 1995). The specific goal below will
be to treat the equilibrium

HA + H2O 
 A− + H3O+ , (1.3)

with A− = CF3SO3
−, over an extended range of conditions. The equi-

librium ratio

Ka =
ρA−ρH3O+

ρHAρH2O
(1.4)

can be expressed as

Ka = K(0)
a exp [−β∆µex] , (1.5)

with

∆µex ≡ µA−
ex + µH3O+

ex − µHA
ex − µH2O

ex , (1.6)

and µα
ex is the interaction contribution to the chemical potential of

species α. The modeling of these µα
ex’s is the principal topic of this

book. ρα = nα/V is the number density or concentration of species α.
The factor K(0)

a is the equilibrium ratio found from the molecular com-
putational (Frisch, 1998) results for the reactions without consideration
of a solution medium; each of the interaction contributions of Eq. (1.6)
may be estimated with the dielectric model. We will be interested here
in conditions of infinite dilution of the solute but a wide range of con-
ditions for the solvent; thus ρH2O will vary widely. This warrants the
appearance of the water density in Eq. (1.4), which is typically omitted
when the water density has a standard value only.

Consideration of the isodesmic (Hehre et al., 1970; McNaught and
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Wilkinson, 1997) Eq. (1.3) carries assumptions about the chemical state
of the dissociated proton. Here our primary interest is the triflic acid,
however, so we assume that this treatment is satisfactory for estimating
hydration free energies without consideration of the involved issues of
H+(aq). If those assumptions were uncomfortable, and if the OH−(aq)
were viewed as chemically simpler, then we could study the isodesmic
equilibrium

HA + OH− 
 A− + H2O , (1.7)

with equilibrium ratio

K ′ =
ρA−ρH2O

ρHAρOH−
. (1.8)

Then

Ka =
K ′KW

ρ2
H2O

(1.9)

with the water ion product KW = ρH3O+ρOH− taken to have its empir-
ically known value (Tawa and Pratt, 1994).

Dielectric hydration models serve as primitive theories against which
more detailed molecular descriptions can be considered. A particular
interest of more detailed theories is temperature and pressure varia-
tions of the hydration free energies, and this is specifically true also of
hydrated polymer electrolyte membranes. The temperature and pres-
sure variations of the free energies implied by dielectric models have
been less well tested than the free energies close to standard conditions.
Those temperature and pressure derivatives would give critical tests of
this model (Pratt and Rempe, 1999; Tawa and Pratt, 1994). But we
don’t pursue those tests here because the straightforward evaluation of
temperature and pressure derivatives should involve temperature and
pressure variation of the assumed cavity radii about which we have little
direct information (Pratt and Rempe, 1999; Tawa and Pratt, 1994).

To frame this point, we give simple estimates of temperature and pres-
sure derivatives assuming that the thermodynamic state dependence of
the radii may be neglected. We will consider a simple ion and the Born
formula (Pettitt, 2000); the interaction contribution to the chemical po-
tential of such a solute is µex ≈ − q2

2R
(ε−1)

ε . Here q is the charge on the
ion and R is its Born radius; see Sec. 4.2. We assume that these radius
parameters are independent of the thermodynamic state. Considering
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the partial molar volume first, we have

vex ≡
(
∂µex

∂p

)
T,n
≈ − q2

2Rε

(
∂ ln ε
∂p

)
T

= − q2

2Rε

(
∂ ln ε
∂ ln ρ

)
T

κT . (1.10)

The superscript ex indicates that this is the contribution due to solute-
solvent interactions; it is the contribution in excess of the ideal gas at
the same density and temperature. Our later developments will make
it clear how this contributes to the full chemical potential, and the
related standard state issues (Friedman and Krishnan, 1973). κT =
(−1/V) (∂V/∂p)T is the isothermal coefficient of bulk compressibility of
the pure solvent. The required density derivative of the dielectric con-
stant is evaluated with the fit of (Uematsu and Franck, 1980), yielding
(∂ ln ε/∂ ln ρ)T ≈ 1.15 at the standard point T=298.15K and ρ=997.02kg/m3.
We further estimate κT ≈ 46 × 10−6atm−1(Eisenberg and Kauzmann,
1969, see Figs. 4.14 and 4.15). Finally the leading factor q2/2Rε is
of the order of 1 kcal/mol or about 40 cm3-atm/ mol. The combina-
tion Eq. (1.10) thus gives as an order of magnitude of 2×10−3cm3/mol.
Experimental results are typically a thousand-fold larger.

For the temperature dependence we estimate

sex ≡ −
(
∂µex

∂T

)
p,n
≈ q2

2Rε

[(
∂ ln ε
∂T

)
ρ

−
(
∂ ln ε
∂ ln ρ

)
T

αp

]
. (1.11)

αp =−(1/V)(∂V/∂T )p is the coefficient of thermal expansion for the pure
solvent. The additional temperature derivative is (∂ ln ε/∂T )ρ ≈ −4.3×
10−3K−1(Uematsu and Franck, 1980), at the standard point indicated
above, and αp ≈ 3 × 10−4K−1(Eisenberg and Kauzmann, 1969). This
entropy contribution is negative and has a magnitude of a small multiple
of 1 cal/K/mol. This magnitude is about a power of ten smaller than
typical experimental results. Again, notice that this doesn’t make a
comparison that would warrant detailed discussion of a standard state
for a particular experiment (Friedman and Krishnan, 1973).

Despite the neglect here of the variation of the radius parameter R
with thermodynamic state, this model does address the availability of
water at a primitive level through Eq. (1.3). In addition, it is a physical
model — in language to be adopted later this is a realizable model —
and it is sufficiently simple to be helpful.

The variation of the defined dissociation constant, obtained on the
basis of this dielectric model, is plotted in Fig. 1.6. The reaction Eq. (1.3)
in liquid water becomes unfavorable from the perspective of the free
energy upon exceeding 500 K on the saturation curve, where the liquid
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Fig. 1.6. Variation of the dissociation coefficient Eq. (1.5) of reaction Eq. (1.3)
with temperature along the water saturation curve, as described by a dielectric
continuum model. R ≈ 1.987 cal/ (mol K) here is the gas constant. See
(Paddison et al., 2001).

density falls below about 85% of the triple-point density. Nevertheless,
this sulfonic acid head group would still be considered a strong acid in
bulk aqueous solution at these elevated temperature and reduced-density
conditions. These results give perspective for the view that insufficient
hydration can result in incomplete dissociation of sulfonic acid species
in membranes.

The static dielectric constant of liquid water is roughly 30 in this in-
teresting region around 500 K on the liquid-vapor coexistence curve. If
a static dielectric constant were assigned to a hydrated Nafion r© mem-
brane matrix, the value is unlikely to be significantly larger than 30.
In this respect, the present model is not extreme. But heterogeneity of
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the local environment of a sulfonic acid head group is probably a signif-
icant factor in both of the physical systems, liquid water and hydrated
Nafion r© membranes, considered. The physical picture of a dielectric
continuum model is more uniform than either of those systems. In this
respect, this model calculation probably gives a limiting possibility of
the effect of hydration on the degree of dissociation of Nafion r© head
groups. The model employed here is reasonable but not compelling. To
test and refine the present conclusions, further experiment is necessary.
But better developed molecular theory would also be useful. That is the
topic of this book.

Exercises

1.2 Show that Eq. (1.5) is an exact expression for the acid disso-
ciation constant. Developments in Chapter 3 will make this
problem transparent.

1.3 Work out Eqs. (1.10) and (1.11).

Ion Channels. As a final example, we discuss biological ion channels
(Hille, 2001). Ion channels are protein structures embedded in biolog-
ical membranes. They control the flux of ions into and out of the cell
under various stimuli, including voltage, pH, and/or ligand binding. Ion
channels allow for the passive diffusion of the ions under concentration
or electrostatic potential gradients. They also are implicated in a wide
range of genetic disorders (Ashcroft, 2000). Two key features of ion
channels are their selectivity and gating, opening or closing of the chan-
nel due to a stimulus. Selectivity is based on details of intermolecular
interactions, including ion size, electrostatic interactions with the pro-
tein, and hydration. And gating the pore can involve either large-scale
motions of the protein, or movement of local groups. The challenge to
theory and modeling is to establish a valid molecular-level understanding
of these important functions.

In the last several years, X-ray structures of several ion channels have
appeared. These structures include bacterial K+ and Cl− channel homo-
logues. (MacKinnon, 2003; Dutzler et al., 2002, 2003). The structures
themselves give insights into how the channels operate. The X-ray struc-
ture is only a snapshot, however, and molecular theory and simulation
can add to a more detailed picture of the channel function. Fig. 1.7 shows
a ribbon diagram of a bacterial Cl− channel homologue. This structure
consists of two identical monomer units. And since each unit contains
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a pore for Cl− conduction, Fig. 1.7 constitutes a double-barrelled pore.
The ion conduction path is not a straight tunnel through the protein
(Yin et al., 2004), as for the K+ channel.2 Conductivities in eukaryotic
chloride channels have been studied for an array of ions, including Br−,
NO3

−, SCN−, and ClO4
− in addition to Cl− (Maduke and Miller, 2000).

Work is currently in progress on several aspects of the ion channels and
transporters: 1) where is the conduction path? 2) what is the origin of
selectivity? 3) how does the channel gate? 4) what are key ligand/drug
binding sites on the intracellular and extracellular sides? 5) how does
pH affect channel properties?

One topic in the study of channels which raises questions highly rel-
evant to the subject of this book is the nature of the binding of chan-
nel blockers to the pore. In the case of potassium channels, a common
blocking agent is the tetraethylammonium (TEA) molecular ion (Crouzy
et al., 2001; Thompson and Begenisich, 2003). Alkylammonium ions ex-
hibit complex phase behavior in aqueous solution including indications
of hydrophobic effects (Weingartner et al., 1999). The nature of the
binding to the pore is an interplay between ionic interactions and hy-
dration phenomena (Crouzy et al., 2001).

Studying the fundamental issues in ion channels is a stimulating field
connecting molecular theory to biophysics and biomedical research. The
PDT can contribute in several ways to understanding basic aspects of
channels. Membrane permeability can be described by

P = DK/L , (1.12)

where P is the permeability, D is the ion diffusion constant in the mem-
brane channel, K is a partition coefficient analogous to Eq. (1.2), and L
is the width of the membrane (Aidley and Stanfield, 1996). Generally
the predominant contribution to selectivity is the ion partition coeffi-
cient, and thus the excess chemical potential profile figures prominently
in determining ion selectivity. Accurate treatment of electrostatic effects
is required. Effects of ion size and protonation states of key residues
also must be addressed with detailed molecular-level theory. These are
daunting problems, since a simulation of the protein, membrane, and
surrounding solvent typically involves 100,000 atoms or more, and the

2 To illustrate the complexities of ion channels, there is recent evidence that the bac-
terial ClC ‘channel’ is actually an H+/Cl− transporter (Accardi and Miller, 2004).
The bacterial and eukaryotic structures do possess strong similarity, however, and
the eukaryotic case is indeed a true channel (Chen and Chen, 2001).
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Fig. 1.7. Bacterial Cl− channel homologue structure. The dimeric protein is
viewed from the side (the plane of the image is perpendicular to the membrane
plane). The two monomers are separated by a line down the middle of the
figure. The membrane is omitted. Each monomer contains a separate pore
for Cl− ion permeation. Each pore contains a selectivity filter and a gating
domain which is believed to involve a pH-sensitive glutamate residue.

time scale for a single ion passage through the channel is on the order
of 10-100 ns.

Exercises

1.4 The potassium channel can successfully discriminate between
K+ and Na+ ions. It is interesting to note that the partial mo-
lar volume of Na+(aq) is negative, whereas the partial molar
volume of K+ is positive (Friedman and Krishnan, 1973, see
Table VIII). Examine the structure of the potassium channel
presented in (MacKinnon, 2003), and assume that the major
effect is due to the partition coefficient from bulk solution into
the channel. What are possibilities for the origin of the excess
chemical potential differences that might lead to this discrimi-
nation?
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1.2 Looking forward

Which real liquids present important research issues, and why? Here we
sketch an idiosyncratic response to such questions (Pratt, 2003). This
serves to clarify the emphases that this book will make. A rough estimate
of rank, from more to less important, is:

a. Water and aqueous solutions. This ranking is due to the ubiq-
uity of water in our physical world and our culture. Water has a
high curiosity value because it is peculiar among liquids and often
participates in chemical reactions. Molecular biophysics and nan-
otechnology are closely related because molecular biophysics of-
fers numerous examples of sophisticated, molecular-scale mechan-
ical, electrical, and optical machines. Water participates directly
in the structure and function of these machines. Aqueous inter-
faces, particularly involving the structure and thermodynamics of
surfactant layers, are intrinsic to molecular biology and modern
technology.

b. Petroleum derived liquids. This includes the vast majority of sol-
vents used in chemical processes, most nonbiological polymeric so-
lutions, and most nonbiological liquid crystal systems. Polymers,
liquid crystals, surfactants, and nanotechnology overlap items a
and b here. One view is that the chemical engineering profession,
historically dominated by the science of petroleum fluids, will in
the future significantly include bio- and nanotechnology problems
(Lenhoff, 2003). This view reveals the perspective that chemical
engineers are a sophisticated audience for good theories of liquids.

c. Plasmas, Earth’s interior, the Sun, high density reacting fluids.
In these cases ‘fluid’ typically seems a more relevant appellation
than ‘liquid.’ Fluid metals are typically legitimate liquids, and
chemically complex room temperature ionic liquids, organic salts
that melt at low temperatures, are of high current interest.

d. Liquid helium, the gaseous giant planets, and quantum liquids.
Both items c and d have high curiosity values, but, with the noted
exception of room temperature ionic liquids, do not present the
complexities that distinguish molecular liquids.

e. Simple liquids. First and foremost, this has meant liquid argon.
But other liquefied simple gases, such as Ne, N2, O2, and CH4,
occupy this category too. Work on this category is foundational:
to establish that the simplest cases can, in fact, be well solved.
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1.3 Notation and the Theory of Molecular Liquids

Our principle interest in this book will be the molecular basis of the
theory of molecular solutions. Because the molecular components may
themselves be complicated, the notation can be complicated. This can
be a huge, non-physical problem for this field.3 We address this issue in a
couple of ways that are noted here. First, we express important results in
coordinate independent ways. This mostly means expressing important
results in terms of averages that might be obtained from a simulation
record. Molecular simulation does require coordinate choices. But our
strategy in this is consistent with the view that simulation calculations
are the most available source of primitive data for those interested in
the theoretical basis of these problems.

The Potential Distribution Theorem which is central to this book
lends itself to this goal of coordinate independence. But literal coordi-
nate independence is not possible where we really want to know how
molecules achieve interesting results. Thus we do need some notation
for coordinates, and we use Rn generically to denote the configuration
of a molecule of n atoms, including translational, orientational, and con-
formational positioning; see Fig. 1.8. This notation suggests that carte-
sian coordinates for each atom would be satisfactory, in principle, but
doesn’t require any specific choice. The notation Rn would be too cum-
bersome for indicating the configurations of several specific molecules
together; we typically write (i, j) to indicate the configuration of the
specific molecules i and j, and N for the full configuration of the N
specific molecules. A simple consistent extension is that N + 1 is the
configuration of the N -plus-first specific molecule and (N , N + 1) is the
full configuration of an N+1 molecule system. This notation, which has
some precedent, will conflict somewhat with a standard thermodynamic
notation where n ={n1, n2, . . .} is a collection of particle numbers. The
context should distinguish the meaning in those cases.

We expect that the typical initial response to the fundamental sta-
tistical mechanical formulae presented as in Eq. (2.15), p. 36, will be
that this notation is deficiently schematic. We respond that for molecu-
lar liquids any communicative notation will be schematic. For example,
cartesian positions of molecular centers is schematic, and for our pur-

3 One perspective is that graph theory methods of the equilibrium theory of classical
liquids are merely simple, common, intuitive notations. It is then ironic that
these notations are typically a denouement of an extended theoretical development
(Uhlenbeck and Ford, 1963; Stell, 1964).
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Fig. 1.8. Illustration of the notational definition of conformational coordi-
nates Rn={r1, r2, . . . , rn}. The conformational distribution sα

(0)(Rn) — see
Eq. (1.13), p. 28 — is sampled for the single molecule in the absence of in-
teractions with solvent by suitable simulation procedures using coordinates
appropriate for those procedures. The normalization adopted in this develop-
ment is

R
sα

(0)(Rn)d (Rn)=V, the volume of the system. Further details for
a common example can be found in Chap. 2.1, p. 39.

poses misses the important point of molecular liquids. We hope that the
schematic notation that is employed will communicate satisfactorily.

Finally, we adopt a notation involving conditional averages to express
several of the important results. This notation is standard in other
fields (Resnick, 2001), not without precedent in statistical mechanics
(Lebowitz et al., 1967), and particularly useful here. The joint prob-
ability P (A,B) of events A and B may be expressed as P (A,B) =
P (A|B)P (B) where P (B) is the marginal distribution, and P (A|B) is
the distribution of A conditional on B, provided that P (B) 6=0. The ex-
pectation of A conditional on B is 〈A|B〉, the expectation of A evaluated
with the distribution P (A|B) for specified B. In many texts (Resnick,
2001), that object is denoted as E(A|B) but the bracket notation for
‘average’ is firmly establish in the present subject so we follow that
precedent despite the widespread recognition of a notation 〈A|B〉 for a
different object in quantum mechanics texts.

The initial introduction of conditional probabilities is typically associ-
ated with the description of independent events, P (A,B) = P (A)P (B)
when A and B are independent. Our description of the Potential Dis-
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tribution Theorem will hinge on consideration of independent systems:
first, a specific distinguished molecule of the type of interest and, sec-
ond, the solution of interest. We will use the notation 〈〈. . .〉〉0 to indicate
the evaluation of a mean, average, or expectation of ‘. . . ’ for this case
of these two independent systems. The doubling of the brackets is a
reminder that two systems are considered, and the subscript zero is a
reminder that these two systems are independent. Then a simple ex-
ample of a conditional expectation can be given that uses the notation
explained above and in Fig. 1.8:

〈〈. . .〉〉0 = V−1

∫
〈. . . |Rn〉0 sα

(0)(Rn)d (Rn) . (1.13)

The second set of brackets aren’t written on the right here because the
second averaging is explicitly written out. This is understood by recog-
nizing that the V−1sα

(0)(Rn) is the normalized thermal distribution of
configurations of the distinguished molecule, and that the bracket nota-
tions indicate independence for the molecule and solution configurations.

We conclude this section by giving a topical example of the utility of
conditional averages in considering molecularly complex systems (Ash-
baugh et al., 2004). We considered the RPLC system discussed above
(p. 12), but without methanol: n-C18 alkyl chains, tethered to a planar
support, with water as the mobile phase. The backside of the liquid
water phase contacts a dilute water vapor truncated by a repulsive wall;
see Fig. 1.2, p. 14. Thus, it is appropriate to characterize the system
as consistent with aqueous liquid-vapor coexistence at low pressure. A
standard CHARMM force-field model (MacKerell Jr. et al., 1998) was
used, as are standard molecular dynamics procedures — including peri-
odic boundary conditions — to acquire the data considered here. Our
interest is in the interface between the stationary alkyl and the mobile
liquid water phases at this 300K.

This system displays (Fig. 1.9) a traditional interfacial oxygen density
profile that has been the object of measurement (Pratt and Pohorille,
2002), monotonic with a width of 2-3 times the molecular diameter of a
water molecule. This width is somewhat larger than that of water-alkane
liquid-liquid interfaces, though it is still not a broad interface. The
enhanced width is probably associated with roughness of the stationary
alkyl layer; the carbon density profile is shown in Fig. 1.9 as well.

Consider now the mean oxygen density conditional on a specific alkyl
configuration. Since that conditional mean oxygen density is less tradi-
tionally analyzed than the density profile shown in Fig. 1.9, we exploit
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Fig. 1.9. Carbon and water oxygen interfacial densities as a function of z.
The gray and red lines indicate the carbon and oxygen densities, respectively,
at 300K determined from molecular simulation. The blue points indicate the
water oxygen densities reconstructed from the proximal radial distribution
function for carbon-oxygen (see Fig. 2), averaged over alkyl chain conforma-
tions sampled by the molecular simulation. The interfacial mid-point (z=0) is
set at the point where the alkyl carbon and (water)oxygen densities are equal.
See Figs. 1.1, p. 13, and 1.2, p. 14.

another characterization tool, the proximal radial distribution (Ash-
baugh and Paulaitis, 2001). Consider the volume that is the union of
the volumes of spheres of radius r centered on each carbon atom; see
Fig. 1.10. The surface of that volume that is closer to atom i than to
any other carbon atom has area Ωi (r) r2 with 0 ≤ Ωi (r) ≤ 4π. The
proximal radial distribution function gprox (r) is defined as

〈nW (r;∆r)〉 =

(∑
i

Ωi (r)

)
r2ρWgprox (r) ∆r . (1.14)

Here 〈nW (r;∆r)〉 is the average number of atoms (oxygen or hydro-
gen) in the shell volume element, of width ∆r, that tracks the surface
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Ai(r) = Wi (r) r 2

Fig. 1.10. Geometrical quantities in defining the proximal radial distribution
function gprox (r) of Eq. (1.14). The dashed circular arc indicates the surface
proximal to carbon i, with area Ωi (r) r2. gprox (r) provides the mean oxygen
density in this surface volume element, conditional on the chain configuration.

of the volume described above, and ρW is the bulk water density. If
the alkyl configuration were actually several identical atoms widely sep-
arated from one another, the gprox (r) for oxygen atoms defined in this
way would be just the conventional radial distribution of oxygen condi-
tional on one such atom. More generally, by treating the actual solid
angles Ωi (r) this formula attempts to clarify structural obfuscation due
to blocking by other carbon units. The Ωi (r) were calculated here by
a Monte Carlo sampling; these properties of water densities conditional
on chain conformations were then averaged over alkyl configurations ob-
served.

The proximal radial distribution functions for carbon-oxygen and carbon-
(water)hydrogen in the example are shown in Fig. 1.11. The proximal
radial distribution function for carbon-oxygen is significantly more struc-
tured than the interfacial profile (Fig. 1.9), showing a maximum value
of 2. This proximal radial distribution function agrees closely with the
carbon-oxygen radial distribution function for methane in water, deter-
mined from simulation of a solitary methane molecule in water. While



1.3 Notation and the Theory of Molecular Liquids 31

0

0.5

1

1.5

2

1 2 3 4 5 6 7 8 9

g(
r)

r (Å)

Fig. 1.11. Carbon-water proximal and radial distribution functions at 300K.
The solid and dashed lines, indicate the alkyl chain carbon-(water)oxygen and
(water)hydrogen proximal correlation functions, respectively, evaluated from
simulations of grafted alkyl chains in contact with water. The dots indicate
the methane-(water)oxygen and (water)hydrogen radial distribution functions,
respectively, evaluated from simulations of a single methane in water.

more structured than expected from the interfacial density profile, the
proximal radial distribution function for carbon-(water)hydrogen dif-
fers from that for a solitary methane molecule in water (Ashbaugh and
Paulaitis, 2001). The methane carbon-(water)hydrogen radial distri-
bution function shows a primary peak at 3.5Å with a weak shoulder
at larger distances, which corresponds to water configurations in which
the water hydrogen-bonding vector either straddles or points away from
methane. The primary peak and shoulder in the proximal radial dis-
tribution function for carbon-(water)hydrogen, however, have merged
into a single peak, shifted out to greater separations. These differences
have been interpreted previously as changes in the 3-dimensional water
hydrogen-bonding network as a result of the inability of water to main-
tain the full network near a planar interface (Ashbaugh and Paulaitis,
2001).

The relationship between gprox (r) for (water)oxygen atoms (Fig. 1.11)
and the oxygen atom interfacial density profile (Fig. 1.9) can be estab-
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lished by superposing these proximal radial distribution functions to
model the conditional densities as

ρW (r| {ri}) ≈ ρwgprox (Mini {|r − ri|}) . (1.15)

These model conditional densities can then be averaged over the alkyl
configurations sampled from simulation. The results of Fig. 1.9 show this
exercise to be surprisingly successful; the proximal radial distribution
function of Fig. 1.11 is sufficient to reconstruct accurately the density
profile of Fig. 1.9.

We conclude that the proximal radial distribution function (Fig. 1.11)
provides an effective deblurring of this interfacial profile (Fig. 1.9), and
the deblurred structure is similar to that structure known from small
molecule hydration results. The subtle differences of the gprox (r) for
carbon-(water)hydrogen exhibited in Fig. 1.11 suggest how the ther-
modynamic properties of this interface, fully-addressed, can differ from
those obtained by simple analogy from a small molecular solute like
methane; such distinctions should be kept in mind together to form a
correct physical understanding of these systems.

Aside from conclusions specific to this physical system, we note that
analysis of conditional properties achieves a strikingly simplified view of
this statistical problem.
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THERMODYNAMIC AND STATISTICAL
NECESSITIES

Our foremost goal here is to establish enough notation and a few piv-
otal relations that the following portions of the book can be understood
straightforwardly. The following sections identify some basic thermody-
namics and statistical thermodynamics concepts that will be used later.
Many textbooks on thermodynamics and statistical mechanics are avail-
able to treat the basic results of this Chapter in more detail; students
particularly interested in solutions might consult (Rowlinson and Swin-
ton, 1982).

Since this chapter is mostly notational, you might skip this chapter,
but check back when you encounter notation that isn’t immediately
recognized. A glossary follows on p. 41.

2.1 The Free Energy and Chemical Potentials

The major goal of the theoretical developments will be a clear and prac-
tical access, on the basis of molecular information, to the chemical po-
tential µα for a species of type α. The combination∑

α

µαnα = G(n1, n2, . . . , p, T ) (2.1)

is the Gibbs free energy, G = H-TS, with H the enthalpy, T the ab-
solute temperature, and S the entropy of the system. The property of
extensivity, or first-order homogeneity discussed in standard textbooks
(Callen, 1985), leads to the Gibbs-Duhem relation:∑

α

nαdµα = Vdp− SdT . (2.2)

33
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The differential of the Gibbs free energy is

dG = Vdp− SdT +
∑
α

µαdnα . (2.3)

Ideal Results: Chemical and Conformational Equilibrium. The
simplest examples of the chemical potentials occur when interactions
between molecules are negligible. The chemical potentials are then eval-
uated as

βµα = βµideal
α = ln

[
ρα

Q(nα = 1)/V

]
≡ ln

[
ραΛα

3

qint
α

]
. (2.4)

These relations will be established specifically in Chapter 3. β−1 =
kT , where k is Boltzmann’s constant, and Λα is the thermal deBroglie
wavelength. Q(nα = 1) ≡ Vqint

α /Λα
3 is the canonical ensemble partition

function of a system comprising exactly one molecule of type α in a
volume V at temperature T . The combination V/Λα

3 is the contribution
of translational motion to the partition function for the case of spatial
homogeneity. qint

α , dependent only on T , accounts for any degrees of
freedom internal for a molecule of type α. Further details for a common
example are discussed on p. 39. For the case that the system does, in
fact, behave ideally we might alternatively write

βµα = ln
[
xjβpΛα

3

qint
α

]
. (2.5)

with xj the mole fraction of species j for this ideal case, xjp the partial
pressure of species j, and p the total pressure. This form emphasizes the
dependence of the chemical potentials on temperature, pressure, and
composition.

On this basis we then consider conformational and chemical equilib-
rium in turn (Widom, 2002, see chapter 3):

conformational. Consider A 
 A′, and the equilibrium ratio for the
ideal case. Then µA = µA′ leads to

K(0)(T ) =
ρA′

ρA
=
qint
A′

qint
A

(2.6)

where qint
A and qint

A′ are the single-molecule internal partition
functions for molecule in conformations A and A′, respectively.
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chemical. Consideration of a chemical transformation, such as

nAA + nBB 
 nCC + nDD (2.7)

Here nCµC + nDµD = nAµA + nBµB leads to

K(0)(T ) ≡ ρC
nCρD

nD

ρA
nAρB

nB

=

(
qint
C /ΛC

3
)

nC
(
qint
D /ΛD

3
)

nD(
qint
A /ΛA

3
)

nA
(
qint
B /ΛB

3
)

nB
. (2.8)

We emphasize that these results are for the ideal case and we will seek
a natural generalization later.

Mixing Free Energies. When considering mixtures of two or more
components, the thermodynamics of the mixtures is often cast in the
form of changes in quantities on mixing. The change in Gibbs free
energy on mixing at constant temperature and pressure is defined as

∆Gmix = G −
∑
α

nαµ̄α , (2.9)

with µ̄α the chemical potential of pure component α. Using Eqs. (2.1)
and (2.5) this free energy change on mixing for the ideal case is found
to be

∆Gideal
mix = kT

∑
α

nα lnxα . (2.10)

An important consequence is

∆S ideal
mix = −k

∑
nα lnxα , (2.11)

which is obtained from(
∂∆Gmix

∂T

)
p,n

= −∆Smix . (2.12)

For an ideal solution, the enthalpy and volume changes of mixing are
zero.

Partial Molar Quantities. The chemical potential is the partial molar
Gibbs free energy. Partial molar quantities figure importantly in the
theory of solutions and are defined at constant temperature and pressure;
thus, the Gibbs free energy is a natural state function for their derivation.
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As an example, the partial molar volume is found from the Maxwell
relation (

∂µα

∂p

)
T,n

=
(
∂V
∂nα

)
T,nγ 6=α

= vα(T, p,n). (2.13)

Then, the total volume is

V =
∑
α

nαvα (2.14)

which is analogous to Eq. (2.1), p. 33. This is another illustration of the
first-order homogeneity property, of V in this case.

Statistical Thermodynamics. A foundational quantity is the canon-
ical partition function

e−βA = Tr
[
e−βH] . (2.15)

H=K+V is the Hamiltonian, the sum of kinetic (K) and potential (V)
energies — operators in the case of quantum mechanics. A(n,V,T) =
E-TS is the Helmholtz free energy, and Tr [B] =

∑
j Bjj indicates a

trace operation as explained in the standard textbooks, e.g. (Münster,
1969, §2.16, “The High Temperature Expansion. The Semi-Classical
Approximation”) or (Feynman, 1972, §2.3, “Density Matrix in Statistical
Mechanics”).

One view of this trace operation is that the usual phase space integral
may be obtained by representing the thermal density matrix e−βH in
plane-wave momentum states, and performing the trace in that state
space (Landau et al., 1980, §33. “Expansion in powers of ~”). Particle
distinguishability restrictions are essential physical requirements for that
calculation. In this book we will confine ourselves to the Boltzmann-
Gibbs case so that e−βA = Q(n,V, T )/n! since the

n! ≡
∏
α

nα! (2.16)

that obtains with Boltzmann statistics is a crucial feature of subsequent
maneuvers. We will typically omit the explicit display of the V, T de-
pendence Q(n) = Q(n,V, T ).

We will use the absolute activities zα ≡ eβµα . Then the grand canon-
ical partition function will be expressed as∑

n≥0

Q(n)
zn

n!
= eβpV , (2.17)
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a function of (z,V, T ) with z = {z1, z2, . . .} the set of absolute activities;
this uses the notation

zn ≡
∏
α

zα
nα . (2.18)

The sum in Eq. (2.17) is over all terms with integer nα ≥0.
Another element in this whirlwind notational tour of statistical me-

chanics is a more explicit notation for averages. A canonical ensemble
average of a phase function On will be denoted by

〈On〉C = eβATr
(
e−βHOn

)
. (2.19)

Then a grand canonical ensemble average of the same property is

〈O〉GC = e−βpV
∑
n≥0

〈On〉CQ(n)
zn

n!
. (2.20)

Here eβpV is the grand canonical partition function and serves as a nor-
malizing factor in Eq. (2.20). Many useful statistical results don’t de-
pend on the ensemble used in evaluating an average, typically including
averages of quantities not constrained by specification of the ensemble.
In those cases, we will typically not use the subscripts that explicitly
indicate the ensemble used.

Taking the derivatives of this grand canonical partition function with
respect to the zi with T and V fixed produces

βdp =
∑
α

〈ρα〉d ln zα , (2.21)

the statistical thermodynamic result that corresponds to Eq. (2.2) with
dT = 0.

Fluctuations. An important element in the discussions that follow,
and in physical understanding, is the classic connection between fluctu-
ations and susceptibilities with thermodynamic second derivatives. First
derivatives of these thermodynamic potentials yield the composition of
a system

z

(
∂βpV
∂z

)
β,V

= 〈n〉GC . (2.22)

A second derivative produces

z

(
∂ 〈n〉GC

∂z

)
β,V

=
〈
n2
〉
GC
− 〈n〉2GC =

〈
δn2
〉
GC

. (2.23)
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Using ρ = n/V, and remembering that d ln z = βdµ = βdp/ 〈ρ〉GC for a
one component system, this can be expressed as(

∂ 〈ρ〉GC

∂βpV

)
β,V

=

〈
δρ2
〉
GC

〈ρ〉GC

. (2.24)

A thermodynamic interpretation of this relation is that the left side is
inversely proportional to the system volume V. This relation then says
that the fluctuations of the density of the material in a volume V are
small for large V. This can be true for large V if densities in different
subvolumes become uncorrelated for sufficiently distant subvolumes.

Details of Q(n) for a Typical Case. Since A =
∑

α µαnα − pV, we
can use Eq. (2.4), and supply the ideal gas equation of state to display
Q(n) for that case of an ideal gas:

βAideal =
∑
α

nα

(
ln
[
ραΛα

3

qint
α

]
− 1
)
≡ − ln

[
Q(n)ideal/n!

]
. (2.25)

The physical point is this result is additive over molecules, and therefore
we conclude that Q(n)ideal/n! is multiplicative over molecules.

Such a form can arise when H is additive over molecules. Indeed,
this ideal gas result obtains when the interactions between molecules,
described in the potential energy V, are negligible. This will be valid
if the density of the system is sufficiently low; then the classical-limit
Boltzmann-Gibbs n! will also be satisfactory.

We now consider a case more typical than that of an ideal gas, though
still special. We write

Q(n)
n!

=
Q(n)ideal

n!

(
Q(n)
Q(n)ideal

)
, (2.26)

and assume that a classically structured model

Q(n)
Q(n)ideal

=
〈
e−βU(N )

〉
ideal

(2.27)

is satisfactory. Here U (N ) is the classical potential energy function de-
scribing intermolecular interactions at configuration N , and the brackets
〈. . .〉ideal indicate an average over configurations N sampled for the ideal
gas case. This result assumes, as is the case for classical mechanics, that
the kinetic energy (K) and intramolecular potential energy contribu-
tions are separable from the intermolecular potential energy contribu-
tions; those kinetic energy and intramolecular contributions do consti-
tute Q(n)ideal.
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Eq. (2.27) is proposed as a formal specification of a partition function,
useful for a typical case encountered in the molecular theory of solutions.
It is not suggested to be a practical method of calculation. We have here
obviously taken pains not to commit to any specific molecular coordi-
nates, but such a typical formulation as Eq. (2.27) will be helpful in our
subsequent formal development.

A specific consequence of such details, a result that will be used re-
peatedly, follows from consideration of the change in a partition function
due to a change in the interactions treated. From Eq. (2.27) we see that

− δ lnQ(n) =

〈
δ (βU (N )) e−βU(N )

〉
ideal〈

e−βU(N )
〉
ideal

= β 〈δU (N )〉U . (2.28)

The average indicated by 〈. . .〉U is the thermal average with all the
interactions implied by U (N ) fully involved.

Details of qint
α and sα

(0)(Rn) for a Typical Case. The internal par-
tition function of a molecule, qint

α , and the conformational distribution
function, sα

(0)(Rn), discussed above on p. 34 and p. 27, respectively,
were left unspecified initially. This is because different choices would be
made for treating these objects in different physical situations. Never-
theless, it is helpful to give further definite details for a typical case, and
to indicate some of the further possibilities.

The typical case we consider is the most natural initial treatment of
molecules of non-trivial spatial extent, and with some conformational
flexibility treated by molecular-mechanics forcefields. We will here de-
note that mechanical potential energy surface by Uα(Rn); the molecular
type is denoted by the subscript α here. The present description will
utilize cartesian coordinates Rn = {r1, r2, . . . , rn} where the rj locates
the jth atom taken as distinguishable but with definite, assigned atom-
type. We assume that Uα(Rn) is unchanged when atoms of the same
type exchange locations.

One preliminary issue is to establish the configurational domain cor-
responding to recognition of a molecule of type α (Lewis et al., 1961,
see discussion “What do we mean by degree of dissociation?”, pp. 307–
308). To accomplish this we use an indicator function bα(Rn) which is
one (1) for configurations Rn recognized as forming a molecule of type
α, and is zero (0) otherwise. Specification of bα(Rn), typically guided by
physical considerations, involves some arbitrariness. But the definiteness
of bα(Rn) means that physical predictions of a theory or computation
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can be examined for sensitivity to physically reasonable but arbitrary
choices.

With this setup, a natural, semi-classical (Münster, 1969) specification
is

Q(nα = 1) ≡ Vqint
α /Λα

3

=
1
n!

j=n∏
j=1

∫
V

drj

Λj
3

 e−βUα(Rn)bα(Rn) . (2.29)

Here n! is the order of the group of permutations of atoms of the same
atom-type; this is the usual classical limit treatment of the physical fact
of indistinguishability of atoms of the same type. The Λj are defined by

1
Λj

=
∫ ∞

−∞
exp

[
−β p2

2mj

]
dp
h
, (2.30)

where mj is the mass of atom j. Λα has the same definition but with mα

=
∑j=n

j=1 mj , the total mass of a molecule of type α. The same physical
description of sα

(0)(Rn) would be

sα
(0)(Rn)
V

=
e−βUα(Rn)bα(Rn)(∏j=n

j=1

∫
V drj

)
e−βUα(Rn)bα(Rn)

. (2.31)

In terms of qint
α this is

sα
(0)(Rn) =

e−βUα(Rn)bα(Rn)

n!
(

qint
α

Λα
3

)∏j=n
j=1 Λj

3
. (2.32)

The spatial integrations of Eq. (2.29), involving the coordinates of
each atom, cover the volume V of the container. A reasonable definition
of bα(Rn) would require bound atoms to be within a molecular length
of each other, and should not depend on the location of a center, such as
the center of mass, of the molecule within the volume. Then qint

α will be
independent of V asymptotically for large V. Similarly sα

(0)(Rn) will be
independent of V for large V. The factor of Λα

3 in Eq. (2.29) is purely
for notational convenience, and disappears in formulae such as Eq. (3.4),
p. 46. qint

α =1 for an atomic case.
This bare-bones treatment can be elaborated in considerable variety.

Coordinate changes are the most primitive possibility; dynamical con-
straints that are popular in molecular dynamics simulation packages
can be addressed from this point of view. Slightly trickier are cases for
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which Uα(Rn) treats some atoms of the same type differently for numer-
ical convenience; in that case the n! should be thought through again,
and might appear differently in a final formula. Though this expression
is a limiting classical formulation, quantum statistical mechanical treat-
ments based upon path integration (Feynman and Hibbs, 1965) can be
pursued from this starting point. The traditional separate treatment of
vibrations and rotations for small molecules is a hybrid case of coordi-
nate changes, then treatment of some coordinates essentially classically,
but others in a convenient quantum mechanical approximation. This
discussion does not exhaust the possibilities.

Exercises

2.1 Derive an expression for the partial molar entropy analogous to
Eq. (2.13).

2.2 Use the ideal result Eq. (2.4) to derive the ideal gas equation of
state on the basis of the Gibbs-Duhem Eq. (2.21).

2.3 Work-out the statistical thermodynamic derivation of the Gibbs-
Duhem Eq. (2.2), as for Eq. (2.21) but with dT 6=0, and discuss
the identification of the coefficient of dT .

2.2 Glossary

This glossary is intended to assist with thermodynamic notation without
reproducing a thermodynamic textbook; that is why it is located here.
We include notation from throughout the book in this glossary.

αp Coefficient of thermal expansion at constant pressure,
αp= - 1

V
(

∂V
∂T

)
p
.

β Inverse temperature in energy units, β = 1
kT

χγν Flory-Huggins interaction parameter for mixing of
pure liquids of species γ and ν.

Xγν Interaction parameter in Flory-Huggins treatment of
polymer mixtures; after normalization on a per
monomer basis this becomes χγν .

∆Uα Binding energy of a molecule of type α to the
solution.

∆Ũα Reference system contribution, indicated by the tilde,
to the binding energy of a distinguished molecule
of type α to the solution.



42 THERMODYNAMIC AND STATISTICAL NECESSITIES

ε Dielectric constant.
φγ Volume fraction of species γ in Flory-Huggins

treatment of polymer mixtures.
γα Activity coefficient for species α.
ϕα(Rn) Applied (uniform) external field acting on species α.
ϕα(r) Applied external field as a function of position acting on species α.

κT The isothermal compressibility κT = - 1
V

(
∂V
∂p

)
T
.

κ̄T ν The isothermal compressibility for pure liquid ν.

Λα Thermal deBroglie wavelength, Λα =
√

h2β
2πmα

, with
mα the mass of a molecule of type α.

µα Chemical potential for molecular component α.
µex

α Interaction contribution to the chemical potential for molecular
component α.

µ̃ex
α Interaction contribution to the chemical potential of species

α due to repulsive interactions between a distinguished
molecule and the solution.

ργ Number density of species γ.
ρ̄γ Number density of species γ in pure liquid γ.
ρ (N ,N ′) Thermal density matrix.
ξγ Available volume fraction for species γ.

a
(2)
γν Contribution of attractive interactions to the second virial

coefficient for species pair γν; also van der Waals coefficient.
A Helmholtz free energy, A = E - TS.
bα (j) Indicator function equal to one (1) when solvent molecule j occupies

the inner shell of a distinguished molecule of type α, and zero (0)
when this solvent molecule is outside that region.

bα(Rn) Indicator function equal to one (1) for configurations Rn recognized
as forming a molecule of type α, and zero (0) otherwise.

b
(2)
γν (T ) Second virial coefficient for species pair γν as a function of

temperature T , e.g. b(2)γν (T ) = b̃
(2)
γν − a(2)

γν /kT .
b̃
(2)
γν Second virial coefficient for species pair γν, for the case of

reference interactions only.
Bk Binomial moments, Bk ≡

〈(
n
k

)〉
0
.

cn Concentration of a complex consisting of a specific solute of interest
and n water molecules.

ε Binding energy for a distinguished molecule to the solution.
E Internal energy.
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G Gibbs free energy, G = H - TS.
~ Planck’s constant divided by 2π, ~ = h

2π .
H Enthalpy, H = E + pV.
H Hamiltonian, H = K + V.
k Boltzmann’s constant.
kα Henry’s Law coefficient for species α.
K Kinetic energy.
Kn Chemical equilibrium constant for the formation of a cluster

of n water molecules with a specific solute of interest.
m(x) For packing problems, the excess chemical potential as a

function of available volume x, e.g. m(x) = -ln (1− x)
is the primordial available volume theory.

Mγ Empirical polymerization index for species γ.
n! Boltzmann-Gibbs total number of permutations of

identical molecules, n! ≡
∏
α
nα!.

p Pressure.
P0(ε) Probability distribution function for the binding

energy of a distinguished molecule to the solution
in the case that these two subsystems are decoupled,
as indicated by the subscript zero.

Pα(ε) Probability distribution function for the binding
energy for a distinguished molecule to the solution
in the case that these two subsystems are fully coupled.

P̃α(ε) Distribution of the perturbative contribution to the
binding energy of a distinguished molecule of type
α to the solution in the case, indicated by the tilde,
that the binding energy is solely derived from the
reference system ∆Ũα.

qint
α Internal partition function of a molecule of species α.
Q(n) Canonical partition function with volume V and temperature

T not specifically indicated, Q(n) = Q(n,V, T ).
Q(nα = 1) Canonical partition function for the case of exactly one

molecule of type α, with volume V and temperature

T (not specifically indicated), Q(nα = 1) = Vqint
α

Λα
3 .

Rn Conformational coordinates for a molecule of n atoms.
sα

(0)(Rn) Distribution of conformational coordinates Rn for a
molecule of type α with n atoms; in isolation as
indicated by the superscript zero.

S Entropy.
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T Thermodynamic temperature.
Ū(N ) Model potential energy function for incorporation of

quantum mechanical effects in classical-limit
configurational integral expressions for the canonical
partition function.

v̄γ Partial molar volume of pure liquid γ, v̄γ = 1/ρ̄γ .
V Volume.
V Potential energy.
xγ Mole fraction of species γ.
zα Absolute activity of species α, zα = eβµα .
zn Product of absolute activities, zn ≡

∏
α
zα

nα .

〈A|B〉 Conditional expectation, the mean of A conditional on B.
〈〈. . .〉〉0 Expectation of ‘. . . ’ under the circumstances of no

coupling, indicated by the subscript ‘0’, between
solution and distinguished molecule.

〈. . . |Rn〉0 Expectation of ‘. . . ’ conditional on the conformation
Rn of the distinguished molecule.



3

POTENTIAL DISTRIBUTION THEOREM

The quantity of primary interest in our thermodynamic construction is
the partial molar Gibbs free energy or chemical potential of the solute
in solution. This chemical potential depends on the solution conditions:
the temperature, pressure, and solution composition. A standard ther-
modynamic analysis of equilibrium concludes that the chemical potential
in a local region of a system is independent of spatial position. The ideal
and excess contributions to the chemical potential determine the driving
forces for chemical equilibrium, solute partitioning, and conformational
equilibrium. This section introduces results that will be the object of
the following portions of the chapter, and gives an initial discussion of
those expected results.

For a simple solute with no internal structure, i.e. no intramolecular
degrees of freedom and therefore qint

α = 1, this chemical potential can be
expressed as

βµα = ln ραΛα
3 + βµex

α . (3.1)

Since the density ρα appears in a dimensionless combination here, the
concentration dependence of the chemical potential comes with a choice
of concentration units. The term on the left side of Eq. (3.1) expresses
the colligative property of dilute solutions that the thermodynamic ac-
tivity of the solute, zα ≡ eβµα , is proportional to its concentration, ρα.
The excess chemical potential accounts for intermolecular interactions
between the solution molecules, and is given by the potential distribution
theorem (Widom, 1963, 1982):

βµex
α = − ln

〈
e−β∆Uα

〉
0
, (3.2)

where ∆Uα is the potential energy of the interactions between the solu-
tion and a distinguished solute molecule of type α, and the brackets in-

45
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dicate thermal averaging over all solution configurations of the enclosed
Boltzmann factor. The subscript zero emphasizes that this average is
performed in the absence of interactions between the distinguished so-
lute molecule and the solution. Note that the solution can be a complex
mixture of species. For a dilute protein solution, the solution would
typically include buffer, added salt, counter-ions, water, and perhaps
cosolvents.

For a solute with internal degrees of freedom, the chemical potential
is given by (Pratt, 1998)

βµα = ln
[

ρα

Q(nα = 1)/V

]
− ln

〈〈
e−β∆Uα

〉〉
0
, (3.3)

whereQ(nα = 1) ≡ Vqint
α /Λα

3 is the partition function for a single solute
molecule — see Eq. (2.4), p. 34, and discussion on p. 39). The double
brackets indicate averaging over the thermal motion of the solute and the
solvent molecules under the condition of no solute-solvent interactions
— see Fig. 1.8, p. 27.

The probability that a solute will adopt a specific conformation in
solution is related to the chemical potential. This probability density
function could be addressed in terms of the number density of solute
molecules in conformation Rn, ρα(Rn) — see Fig. 1.8:

ρα(Rn) = sα
(0)(Rn)

(
zαq

int
α

Λα
3

)〈
e−β∆Uα |Rn

〉
0
, (3.4)

where sα
(0)(Rn) is the normalized probability density for solute confor-

mationRn in the absence of interactions with the solvent, and the brack-
ets indicate the thermodynamic average over solvent configurations with
the solute fixed in conformation Rn. Eq. (3.3) is obtained from Eq. (3.4)
by averaging over solute conformations, recognizing that ρα(Rn) is nor-
malized by the total number of solute molecules, and remembering the
adopted normalization discussed with Eq. (1.13), p. 28.

Partition Function Perspective. Eqs. (3.2) and (3.3) relate inter-
molecular interactions to measurable solution thermodynamic proper-
ties. The excess chemical potential is obtained from

e−βµex
α =

〈〈
e−β∆Uα

〉〉
0

=
∫
P(0)

α (ε)e−βεdε , (3.5)

which introduces the probability density

P(0)
α (ε) = 〈〈δ(ε−∆Uα)〉〉0 . (3.6)
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Fig. 3.1. Functions in the integrand of the partition function formula Eq. (3.7).

The lower solid curve labeled P(0)
α (ε) is the probability distribution of solute-

solvent interaction energies sampled from the uncoupled ensemble of solvent
configurations. The dashed curve is the product of this distribution and the
exponential Boltzmann factor, e−βε, the upper solid curve. See Eqs. (3.5) and
(3.7)

The Boltzmann factor, e−β∆Uα , preferentially weights the low-energy
tail of the distribution. This amounts to reweighting P(0)

α (ε), giving
higher probabilities to those solvent configurations that are most favor-
able for solute insertion. We will later develop the point that e−β(ε−µex

α )P(0)
α (ε)

is the properly normalized distribution of ε with all interactions fully
assessed; this relation reduces Eq. (3.5) to a normalization condition.
Eq. (3.5) suggests the evaluation of, for example, a canonical partition
function, ∫

P(0)
α (ε)e−βεdε↔

∑
E

Ω(E)e−βE . (3.7)

The summation is over all energy levels and Ω(E) is the number of
thermodynamic states with energy E. See Fig. 3.1.

The chemical potentials sought are intensive properties of the system,
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in the usual thermodynamic language (Callen, 1985). Furthermore, the
magnitude of ∆Uα is of molecular order, and the calculation of ∆Uα

will depend on information about solution conditions in the neighbor-
hood of the distinguished molecule. Thus, we expect the probability
distribution functions of Eq. (3.6) to be independent of system size for
thermodynamically large systems. This facilitates development of phys-
ical models for these distribution functions. For a case of long-ranged
interactions, the neighborhood would be more extended than for a case
of short-ranged interactions. But the point remains that an accurate
determination of this partition function should be possible based upon
the molecular details of the solution in the vicinity of the solute.

The usual view of the PDT Eq. (3.3) is that it is a particle insertion
formula (Valleau and Torrie, 1977; Frenkel and Smit, 2002). This is
a view for how to carry out the indicated averaging: solution configu-
rations are sampled without the distinguished molecule, and then the
distinguished molecule is imposed upon the solution. The natural sta-
tistical estimate of the Boltzmann factor then provides the approximate
evaluation of this partition function. This procedure has been exten-
sively used, and naturally it will fail as a practical matter if the variance
of the estimator is too large.

We’ve written Eq. (3.3) generally to suggest an alternative view. The
solution could be imposed upon the distinguished molecule rather than
the other way round. This may seem a trivial distinction, but it suggests
a theoretical procedure in which the solution is built up around the dis-
tinguished molecule. This view is at the heart of quasi-chemical theories
taken up later, and is analogous to the view of many-electron atoms
based upon an aufbau principle (Pauli, 1925; Karplus and Porter, 1970).
The examples that we encounter argue that this build-up procedure
has broader utility than the particle insertion idea. General derivations
of the PDT needn’t involve particle insertion concepts, and those gen-
eral derivations are probably the most useful ones (Widom, 1978, 1982;
Paulaitis and Pratt, 2002).

Exercises

3.1 Use the expression for the solute excess chemical potential in
Eq. (3.3),

βµex
α = − ln

〈〈
e−β∆Uα

〉〉
0
, (3.8)
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to derive an expression for the excess entropy. Compare your
result term by term with the standard thermodynamic relation

µex
α = hex

i − Tsexi . (3.9)

A formula for averages utilizing the PDT in Section 3.3 helps to
simplify the results — you may want to return to this problem
after reading that Section.

3.2 The Ostwald partition coefficient, L, is a widely used and physi-
cally intuitive measure of gas solubilities and oil-water partition
coefficients. It is defined as the ratio of concentrations of a so-
lute between two phases at equilibrium. These two phases can
be the ideal gas and a liquid phase, in which case the Ostwald
partition coefficient gives the gas solubility, or two immiscible
liquids – e.g., oil and water – in which case L is an oil-water
partition coefficient. For the gas solubility of component 2 in
liquid 1,

L ≡ ρliq
2

ρvap
2

. (3.10)

Derive a general expression for the Ostwald partition coefficient
in terms of the excess chemical potential of the solute (compo-
nent 2) in each of the two phases of interest. Table 3.1 gives
free energies of hydration or excess chemical potentials for sev-
eral n-alkanes in liquid water relative to the ideal gas at 25◦C.
These free energies were computed from molecular simulations
in which the alkanes were modeled using Lennard-Jones poten-
tial parameters for the -CH3 and -CH2- groups. Hydration free
energies of cavity analogs of the n-alkanes at 25◦C, computed
in a second set of simulations, are also given in the table. The
cavity analogs were designed to characterize just the excluded
volume interactions of the alkanes with water. Using Eq. (3.2),
devise a two-step process for n-alkane dissolution in water that
is based on using these two hydration free energies as input.
The averaging formula derived in Section 3.3 below may prove
helpful. Pay particular attention to the sign and the magnitude
of the free energy change for each step, and explain how the
free energy in each step would change, if instead, the alkane was
transferred from another liquid n-alkane – e.g., n-octane – to
water. Estimate the Ostwald partition coefficient for n-hexane
in water relative to liquid n-octane at 25◦C.
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Table 3.1. Hydration free energies (kcal/mol) of n-alkanes and cavity
analogs of the n-alkanes at 25◦C calculated from molecular simulation

[Ashbaugh and Paulaitis, 1999] .

solute n-alkane cavity analog

methane 2.63(0.11) 6.65(0.15)
ethane 2.57(0.12) 9.07(0.16)
propane 3.30(0.13) 11.60(0.17)
n-butane 3.51(0.13) 13.84(0.18)
n-pentane 3.69(0.14) 15.99(0.19)
n-hexane 3.92(0.15) 18.24(0.20)

3.3 Aqueous solutions of poly(ethylene oxide), (-CH2OCH2-)m, (PEO)
exhibit unique phase behavior in the sense that the polymer
is soluble in water at room temperature, but phase separates
at higher temperatures. Molecular interpretations of this un-
usual behavior implicate the effect of hydration on the con-
formational equilibria of the polymer chains based on studies
of conformational equilibria of small-molecule analogs of PEO;
e.g., 1,2 dimethoxyethane (DME), CH3OCH2CH2OCH3. Note
that DME conformations are characterized by three consecu-
tive dihedral angles centered on the O-C, C-C, and C-O bonds
along the chain backbone, which can be found in the trans (t,
∼180◦), gauche (g, ∼ +60◦), and gauche′ (g′, ∼ -60◦) states.
Table 3.2 gives hydration free energies and ideal gas intramolec-
ular energies for the five most abundant chain conformations of
DME. Show that tgg′ is the most populated while tgg and ttg

are the least populated conformations in the ideal gas based on
energetics and the number of identical chain conformations cor-
responding to the given sequence of dihedral angles. Using ttt
as the reference, compare the population densities of the other
four conformations of DME in water relative to the ideal gas.
What is the average dipole moment of DME in water compared
to the ideal gas?

3.4 Consider the following expression for the canonical partition
function of a pure fluid,

QN (V, β) =
1
N !

(
qint
α

Λα
3

)N ∫
V
. . .

∫
V

e−βU(rN )drN , (3.11)
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Table 3.2. Ab initio optimized geometries, dipole moments, and
intramolecular energies, ∆E∗, of 1,2 dimethoxyethane [Jaffe et al.,
1993] and free energies of hydration, µex

α , at 25◦C predicted from a
continuum solvent model supported by molecular simulations [Ashbaugh

and Paulaitis, 2003].

conformation conformational dipole moment ∆E∗ µex
α

degeneracya (Debye) (kcal/mol) (kcal/mol)

ttt 1 0 0.0 0.0
tgt 2 1.52 0.14 -1.08
tgg 4 2.67 1.51 -1.71
tgg′ 4 1.65 0.23 -0.26
ttg 4 1.93 1.43 -0.41

a The conformational degeneracy is the number of identical chain conformations
corresponding to the given sequence of dihedral angles.

where U(rN ) is the total potential energy of interactions among
the N molecules in solution. Derive an expression for the chem-
ical potential of this fluid using the standard thermodynamic
relation,

µ ≡
(
∂A

∂N

)
V,β

. (3.12)

In evaluating this derivative, it is helpful to consider adding a
distinguished molecule to the N molecules in solution. The total
potential energy then becomes

U(rN ) + ∆U(rN+1|rN ) , (3.13)

where ∆U(rN+1|rN ) is the potential energy of interactions be-
tween the added solute molecule or test particle and the other
N molecules in the fluid. Compare your result with Eq. (3.3)
to obtain an expression for

〈〈
e−β∆Uα

〉〉
0

in terms of the config-
urational integrals in the canonical partition function.

3.5 The van der Waals equation of state for a pure fluid is derived
from the following canonical partition function:

QN (V, β) =
1
N !

(
qint
α

Λα
3

)N

(V −Nb)N eβN2a/V . (3.14)

In the context of van der Waals theory, a and b are positive
parameters characterizing, respectively, the magnitude of the
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attractive and repulsive (excluded volume) intermolecular in-
teractions. Use this partition function to derive an expression
for µex

α , the excess chemical potential of a distinguished molecule
(the solute) in its pure fluid. Note that specific terms in this
expression can be related to contributions from either the attrac-
tive or excluded volume interactions. Use the Tpρ data given in
Table 3.3 for liquid n-heptane along its saturation curve to evalu-
ate the influence of these separate contributions on test-particle
insertions of a single n-heptane molecule in liquid n-heptane
as a function of density. In light of your results, comment on
the statement made in the discussion above that the use of the
potential distribution theorem to evaluate µex

α depends on pri-
marily local interactions between the solute and the solvent.

Table 3.3. Tpρ data for liquid n-heptane along the saturation curve
from the normal boiling point to the critical point

[http://webbook.nist.gov/chemistry] .

Temperature (K) Pressure (MPa) ρ (g/ml)

370.00 0.096840 0.61567
380.00 0.12910 0.60606
390.00 0.16918 0.59620
400.00 0.21825 0.58603
410.00 0.27758 0.57551
420.00 0.34850 0.56460
430.00 0.43240 0.55322
440.00 0.53074 0.54129
450.00 0.64507 0.52870
460.00 0.77704 0.51531
470.00 0.92841 0.50092
480.00 1.1011 0.48526
490.00 1.2972 0.46791
500.00 1.5191 0.44822
510.00 1.7697 0.42501
520.00 2.0524 0.39581
530.00 2.3710 0.35395
540.00 2.7277 0.26570

3.6 Once you have the chemical potential for the van der Waals
model of the previous exercise, find the equation of state by
integrating the Gibbs-Duhem relation. Compare your result to
the equation of state obtained from the approximate partition
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function using (
∂A

∂V

)
T,N

= −p. (3.15)

3.1 Derivation of the Potential Distribution Theorem

Consider a macroscopic solution consisting of the solute molecules of
interest and other species. Focus attention on a macroscopic subsystem
of this solution. We will describe this subsystem on the basis of the grand
canonical ensemble of statistical thermodynamics, accordingly specified
by a temperature, volume, and the chemical potentials or, equivalently,
absolute activities for all solution species. The species of interest will
be identified with a subscript index α, so the average number of solute
molecules in this subsystem is

〈nα〉 = e−βpV
∑
n≥0

nαQ(n)
zn

n!
. (3.16)

The average displayed in Eq. (3.16) is particularly relevant to our ar-
gument here. The summand factor nα annuls terms with nα=0 and
permits the sum to start with nα ≥1. The latter feature means that
the overall result will involve an explicit leading factor of zα. We are
then motivated to examine the coefficient multiplying zα. Of course, a
determination of zα establishes the thermodynamic property µα that we
seek. To that end, we bring forward the explicit extra factor of zα and
write

〈nα〉 = zαe−βpVQ(nα = 1)
∑
n≥0

(
Q (n1 . . . [nα + 1] . . .)

Q(nα = 1)

)
zn

n!
. (3.17)

Notice that we haven’t written the nα of Eq. (3.16) explicitly in the
summand of Eq. (3.17). It has been absorbed in the n!, but its presence
is reflected in the fact that the population is enhanced by one in the
numerator that appears in the summand. “n1 . . . [nα + 1] . . .” indicates
the population after one molecule of species α is added to n . Q(nα =
1) is the canonical partition function with exactly nα=1 and no other
molecules; in our notation above

Q(nα = 1) ≡ qint
α V
Λα

3
. (3.18)
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We’ve positioned this factor out front in writing Eq. (3.17) so that the
leading n=0 term in the sum will be one (1) as suggested by the usual
partition function sums. Notice also that the summand of Eq. (3.17)
would adopt precisely the form of a grand canonical average, e.g., Eq. (2.20),
p. 37, if we were to discover a factor of Q(n) for the population weight.
Thus

ρα =
zαq

int
α

Λα
3

〈
Q (n1 . . . [nα + 1] . . .)
Q (nα = 1)Q (n)

〉
GC

. (3.19)

Finally, we observe that the numerator and denominator of the popula-
tion averaged ratio of Eq. (3.19) are configurational integrals involving
the same coordinates. The numerator integrand is the Boltzmann factor
for the system with the single extra solute molecule; see, for example,
Eq (2.27), p. 38. In contrast the denominator integrand is the product
of the Boltzmann factors for that distinguished extra solute molecule
and the rest of the solution, but uncoupled. Thus,

ραΛα
3

zαqint
α

=
〈〈

e−β∆Uα
〉〉

0
≡ e−βµex

α , (3.20)

which combines both the population averaging with the canonical en-
semble partition function. In emphasizing again that the interactions
can be any physical ones, we note specifically that this derivation covers
the case with a physical external field also.

3.2 Weak Field Limit

The case of a weak external potential energy field is generally important,
and the simple results are also suggestive. We augment the potential
energy to include an external field, ϕα(Rn), and work out that result
for the chemical potential, βµex

α . The notations

βµα [ϕ] = ln
(
ραΛα

3

qint
α [ϕ]

)
− ln

〈〈
e−β∆Uα

〉〉
0
[ϕ] (3.21)

emphasize that the statistical quantities such as βµex
α [ϕ] depend on the

function ϕα(Rn). This is true also for the internal partition function
qint
α [ϕ], and evaluating that quantity will be our first step:

− ln qint
α [ϕ] ≈ − ln qint

α [0] + β 〈ϕ〉0 . (3.22)

This approximation uses the fundamental but elementary point that
ln 〈eε〉 ≈ 〈ε〉 if ε hardly varies. This specific calculation will arise again
several times in our further study. Thus Eq. (3.22) neglects non-linear
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contributions due to substantial variations in ϕ, and the average on the
right is for the distinguished molecule without other interactions. The
leading term is the result without the field present. See Eq. (2.29),
p. 40, for a typical detailed qint

α [ϕ], and Eq (2.27), p. 38 for a similar
calculation.

Now consider the contributions of Eq. (3.21) due to intermolecular
interactions. Comparing Eq. (3.19) and Eq. (3.20), p. 54, this is seen to
be the logarithm of a ratio of integrals. Simple proportionality factors
cancel in forming the ratio. Then the denominator of that ratio is a
partition function for the uncoupled (N+1)-molecule system, i.e., with-
out interactions between the N -molecule solution and the distinguished
molecule. The numerator is similarly proportional to the partition func-
tion for the physical (N + 1)-molecule system. We thus write

− ln
〈〈

e−β∆Uα
〉〉

0
[ϕ] ≈ − ln

〈〈
e−β∆Uα

〉〉
0
[0]

+ β

〈
N+1∑
j=1

ϕ(j)

〉
− β

〈〈
N+1∑
j=1

ϕ(j)

〉〉
0

. (3.23)

Again, the doubled brackets with subscript zero in the last term imply
no interactions between the N molecule solution and the distinguished
molecule. Thus, one term in that sum will precisely cancel the field
contribution of Eq. (3.22). In composing Eq. (3.21), we then write

µα [ϕ] ≈ µα [0] +


〈

N+1∑
j=1

ϕ(j)|N + 1

〉
−

〈
N∑

j=1

ϕ(j)|N

〉 . (3.24)

Finally, we note that the last combination is the change in the physical
field potential energy upon incrementing the molecular number by one,
so

µα [ϕ] ≈ µα [0] +
∂

∂ρα
(〈ϕ〉 ρα) . (3.25)

In contrast to the averaging appearing in the form Eq. (3.22), the aver-
aging here is for the fully coupled system.

Exercises

3.7 For the case considered by Eq. (3.25), explain why the external
field makes a contribution 〈ϕ〉 ρα to the Helmholtz free energy
per unit volume, A/V. On this basis, give a thermodynamic
derivation of Eq. (3.25).
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3.3 Potential Distribution Theorem View of Averages

Note how averages associated with the system including the solute of
interest look from the perspective of the potential distribution theorem.
The averaging 〈〈. . .〉〉0 does not involve the solute-solution interactions,
of course. Those are averages over the thermal motion of the molecule
and solution when the energetic coupling between those subsystems is
eliminated. Consider then the average of a configurational function
F (N , N + 1) in the physical case when the interactions between the
distinguished molecule of type α and the solution are fully involved. We
obtain this average by supplying the Boltzmann factor for the molecule-
solution interactions and supplying the proper normalization:

〈F 〉 =

〈〈
e−β∆UαF

〉〉
0

〈〈e−β∆Uα〉〉0
. (3.26)

This establishes that(
s
(0)
α (Rn)
V

)
P(0)

B (N )e−β(∆Uα−µex
α ) (3.27)

is the properly normalized canonical configurational probability for the
fully coupled system. Here P(0)

B (N ) is the canonical distribution for
the bath uncoupled to the distinguished molecule, and s

(0)
α (Rn) is the

configurational distribution function discussed on p. 27. Notice that
the normalization for the distribution of the (N , N + 1) system, here
completed by the quantity βµex

α , depends on the distribution of N and
Rn, and isn’t calculated for specific configurations of N and Rn.

Exercises

3.8 Derive Eq. (3.26) using the expression for a grand canonical
average:

〈F 〉 = e−βpV
∑
n≥0

FQ(n)
zn

n!
. (3.28)

3.9 Use Eqs. (3.20) and (3.26) with the choice F = eβ∆Uα to produce
the important inverse formula〈

eβ∆Uα
〉

= eβµex
α . (3.29)

This and Eq. (3.20) provide different routes to calculating the
solute excess chemical potential. Explain what those differences
are.



3.4 Ensemble Dependence 57

3.10 Consider the result Eq. (3.27) and relate the distribution func-
tion of the binding energy for the distinguished solute in the
actual, fully-coupled system Pα(ε) = 〈δ(ε−∆Uα)〉 to the dis-
tribution function P(0)

α (ε) of Eq. (3.5).

3.11 Consider a specific configuration N and determine the condi-
tional distribution of the distinguished molecule N + 1.

3.4 Ensemble Dependence

Occasionally results alternative to the potential distribution theorem,
expressed as Eq. (3.20), have been proposed (Frenkel, 1986; Shing and
Chung, 1987; Smith, 1999). These alternatives typically consider sta-
tistical thermodynamic manipulations associated with a particular en-
semble, and the distinguishing features of those alternative formulae
are relics of the particular ensemble under consideration. On the other
hand, the derivation above considered a macroscopic subsystem of a
larger system avoiding specification of constraints on that larger sys-
tem. The macroscopic subsystem is then appropriately analyzed on
the basis of a grand canonical treatment of statistical thermodynamics,
and the modifications specific to an ensemble aren’t evident in the final
formula. Here we discuss those distinctions, conclude that all these for-
mulae should give the same result in the thermodynamic limit, and that
the result Eq. (3.20) is to be preferred on the basis of its locality and
relic-free appearance.

A specific example will be sufficient to fix these ideas. Consider cal-
culations in an isothermal-isobaric ensemble (Shing and Chung, 1987;
Smith, 1999)

e−βµex
α ←

〈〈
Ve−β∆Uα

〉〉
0

〈〈V〉〉0
(3.30)

for which the volume V fluctuates. In this formula V is a remnant of the
ensemble considered.

To analyze this formula, we use Eq. (3.26) to write〈
Ve−β∆Uα

〉
0

〈V〉0
= e−βµex

α
〈V〉
〈V〉0

≈ e−βµex
α

(
1 +

1
〈V〉0

[
∂ 〈V〉
∂nα

]
T,p,nγ 6=α

)
(3.31)
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so that 〈
Ve−β∆Uα

〉
0

〈V〉0
− e−βµex

α ≈ 1
〈V〉0

[
∂µα

∂p

]
T,n

. (3.32)

The quantity e−βµex
α here is the result of the PDT, Eq. (3.20), p. 54.

The difference displayed by Eq. (3.32) is negligible in the macroscopic
limit.

Statistical thermodynamic simulation calculations on finite systems
will entail some error associated with the submacroscopic size considered
(Lebowitz and Percus, 1961a,b, 1963). For example, periodic boundary
conditions will influence molecular correlations to some extent (Pratt
and Haan, 1981a,b). Support of a claim of accuracy typically would in-
volve some practical investigation of the thermodynamic limit. A claim
of preference for calculations in one ensemble over another typically is
made first on the basis of convenience rather than on the basis of accu-
racy defined in some absolute way. Thus, advantages of practical accu-
racy for ensemble-specialized alternatives to Eq. (3.20) are not proven
typically, and they are not necessary fundamentally.

But notice that V, in this example, introduces a global variable into
a formula otherwise involving the more local quantity e−β∆Uα ; thus,
introduction of V is a nuisance for subsequent molecular theory. Since
such alternatives are not fundamentally required, we don’t consider them
further.

3.5 Inhomogeneous Systems

Let’s consider inhomogeneous molecular systems and discuss the atomic
densities that are now not spatially constant. We might consider a
crystal clamped in a diffraction apparatus and ask about the average
positions of molecules. Or we might consider a liquid-vapor two-phase
system in a bottle with gravity positioning the liquid on the bottom. We
will also later use the results here to investigate densities conditional on
location of specific other atoms within our systems. The average density
pattern we seek is

ρα(r) =

〈∑
j∈α

δ(rj − r)

〉
. (3.33)

For convenience, we first discuss this problem for the case that an atomic
description of the liquid is satisfactory. The sum is over all atoms of type
α. This is zero for the case that there are no atoms of type α (nα=0), so
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for the cases making a non-zero contribution, we distinguish a specific
one from those atoms of type α present, say the 1st with location r1,
and use Eq. (3.26). Thus we can write

ρα(r) = 〈nα〉 〈δ(r1 − r)〉 = 〈nα〉
〈〈

e−β∆Uαδ(r1 − r)
〉〉

0

〈〈e−β∆Uα〉〉0
. (3.34)

As far as the averaging on the right end of Eq. (3.34) is concerned,
interactions between the solute and the rest of the system aren’t present.
The spatial averaging of the quantity δ(r1 − r) is then straightforward:
it locates the solute at r and evaluates the probability density

〈〈δ(r1 − r)〉〉0 =
e−βϕα(r)

Vqint
α [ϕα]

, (3.35)

where now the normalizing qint
α [ϕα] includes effects of the applied field,

but the factor V supplied here insures that qint
α [ϕα = 0] = 1. Introducing

the conditional expectation (see Sec. 1.3. p. 26), we have

ρα(r) =
ραe−βϕα(r)

qint
α [ϕα]

(〈
e−β∆Uα |r1 = r

〉
0

〈〈e−β∆Uα〉〉0

)
. (3.36)

For the average in the numerator, the solute is now definitely located at
the point r, and the notation here is intended to convey that restriction.
The indicated conditional expectation denotes that the spatial averaging
involves only the thermal motion of the solution. Finally the elimination
of the denominator produces the notable form

βµα = ln ρα(r)Λα
3 + βϕα(r)− ln

〈
e−β∆Uα |r

〉
0

(3.37)

which is analogous to Eqs. (3.20), and (3.21), p. 54. The notation of
a conditional expectation indicates that a distinguished particle is lo-
cated at r. A consequence is that qint

α [ϕα] with its dependence on the
external field ϕα does not appear. In contrast, qint

α [ϕα] does appear in
Eqs. (3.20), and (3.21) because the double brackets there specify that
the distinguished solute should sample all available positions. That dis-
tinction brings in qint

α [ϕα], with any field dependence, as an additional
normalizing factor.

If the system is uniform, then this relation reduces to

βµα = ln ραΛα
3 − ln

〈
e−β∆Uα |r

〉
0
. (3.38)

This indicates that the conditional mean
〈
e−β∆Uα |r

〉
0

is independent of
placement of the distinguished atom, as expected.

The same derivation can be directed towards the important previewed
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result Eq. (3.4), p. 46, the general case for a molecule with internal
flexibility. The analogous development would involve

ρα(Rn)
〈nα〉

= 〈〈δ(R1
n −Rn)〉〉0

(〈
e−β∆Uα |R1

n = Rn
〉
0

〈〈e−β∆Uα〉〉0

)
. (3.39)

In this case 〈〈δ(R1
n −Rn)〉〉0 = s

(0)
α (Rn)/V where the definition of

s
(0)
α (Rn) was given earlier as the normalized probability density for so-

lute of type α in conformation Rn in the absence of interactions with
the solution. Using then Eq. (3.3), p. 46, this is

ρα(Rn) = s(0)α (Rn)
(
zαq

int
α

Λα
3

)〈
e−β∆Uα |Rn

〉
0
, (3.40)

and

βµα = ln

[
ρα(Rn)Λα

3

s
(0)
α (Rn)qint

α

]
− ln

〈
e−β∆Uα |Rn

〉
0
, (3.41)

If molecular densities were determined on the basis of Eq. (3.40), atomic
densities might be evaluated by contraction of those results. Eq. (3.40)
provides a derivation of the previously mentioned conditional density of
Eq. (3.4).

This last point hints at a physical issue that we discuss now. As
we have emphasized, the potential distribution theorem doesn’t require
simplified models of the potential energy surface. A model that im-
plies chemical formation of molecular structures can be a satisfactory
description of such molecular systems. Then, an atomic formula such as
Eq. (3.37) is fundamentally satisfactory. On the other hand, if it is clear
that atoms combine to form molecules, then a molecular description with
Eq. (3.40) may be more convenient. These issues will be relevant again
in the discussion of quasi-chemical theories in Chapter 7 of this book.
This issue comes up in just the same way in the next section.

Exercises

3.12 The internal partition function qint
α [ϕα] does not appear in Eq. (3.37),

though it does appear explicitly in Eqs. (3.20), and (3.21), p. 54.
Start with Eq. (3.37), and show that this implies, e.g., Eq. (3.21).
Give a physical statement and interpretation of this distinction.

3.13 Using Eq. (3.37), derive an expression for the density of an ideal
gas as a function of height, z, in a gravitational field. Verify that
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the same expression is obtained from Eq. (3.25), the chemical
potential in the presence of a weak external field.

3.14 Consider the excess chemical potential obtained for a definite
configuration, µex

α (Rn), and let sα(Rn) be the conformational
distribution for the fully coupled case so that ρα(Rn) = ραsα(Rn).
Show that (Imai and Hirata, 2003)

βµex
α = 〈βµex

α (Rn)〉+

〈
ln

[
sα(Rn)

s
(0)
α (Rn)

]〉
. (3.42)

Although a similiar relation — but pointwise — follows from
Eq. (3.41), Eq. (3.42) is analogous the standard relations estab-
lishing, e.g., the Helmholtz free energy in terms of full canon-
ical probability distribution, such as P(0)

B (N ) of p. 56. For an
example see (Reiss, 1972, see Eq. (9)), and for follow-on work
(Schlijper and Kikuchi, 1990; Singer, 2004). Again here the con-
clusion is that Eq. (3.41) should be seen as a partition function
formula.

3.15 Show how Eq. (3.41) reduces to Eq. (3.37) for the case of a
mono-atomic ‘molecule.’ Hint: what is qint

α in that case?

3.16 Fig. 3.2 shows the excess chemical potential of CH3F along the
z-direction perpendicular to the water-hexane interface at 310K
obtained from molecular dynamics simulation using the particle
insertion method. Water is on the left (z < 0) and hexane is
on the right (z > 0). Calculate the Ostwald partition coefficient
of CH3F in the interfacial region relative to bulk water as a
function of z. Give a physical interpretation of your result.

3.6 Reduced Distribution Functions

We next describe spatial distributions of pairs, triples, . . . , m-tuples of
atoms in our solution. The pair distribution is the usual quantity of
interest, but we will find a general formula that will be more broadly
useful.

In working towards a general formula we first make the observation
that the derivation of Sec. 3.1 focuses on 〈n1〉 in a way that is simply
generalized for the moment 〈n1(n1 − 1)〉. For example, direct analogy
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Fig. 3.2. Variation of excess chemical potential of CH3F as a function of dis-
tance of the carbon atom from the liquid water-hexane interface at 310K
(Pohorille and Wilson, 1996; Pratt and Pohorille, 2002). The hydrophobic
contribution, obtained by eliminating electrostatic interactions, is the dot-
dash curve and the electrostatic contribution is the dashed curve, lowest on
the right. The water equi-molar surface is at z=0. The combination of these
two contributions leads to interfacial activity for this simple solute.

with Eq. (3.17) suggests

〈n1(n1 − 1)〉 = e−βpV z1
2Q({2, 0, . . .})

∑
n≥0

(
Q(n+ {2, 0, . . .})
Q({2, 0, . . .})

)
zn

n!
.

(3.43)

The reason this is correct is that the combination n1(n1− 1) annuls the
zeroth and first terms in n1 that would arise. We emphasize this point
by adopting the ‘n-to-the-k-falling’ notation

nk ≡ n(n− 1) . . . (n− k + 1) . (3.44)

The results following here will consider distinguishing p-tuples of atoms
from the bath, and we will need some further notation for the coupling
energies that arise. We write

∆U (p) ≡ U(N , 1, . . . , p)− U(N )− U(1, . . . , p) (3.45)
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for the change in energy when an N molecule system and a p-tuple
are coupled. None of these energies need be pair decomposable. The
coupling energy in the formulae above would then be denoted here as
∆U = ∆U (1) = U(N , N + 1)− U(N )− U(N + 1). Using this notation,
Eq. (3.43) can be re-written as〈

n1
2
〉

= z1
2Q2

〈〈
e−β∆U(2)

〉〉
0

(3.46)

where the indicated average is over the thermal motion of the bath plus
a distinguished pair of identical atoms with no coupling between these
two subsystems, and Q2/2 is the canonical partition function for the
pair, i.e. Q2 = Q({2, 0, . . .}) of Eq. (3.43). The more general relation is

〈n1
p〉

〈n1〉p
=
Qp

〈〈
e−β∆U(p)

〉〉
0(

Q1

〈〈
e−β∆U(1)

〉〉
0

)p . (3.47)

We now consider spatial correlations between this distinguished pair
of atoms by defining the pair correlation function, g(2) (r, r′), as follows:(

〈n〉
V

)2

g(2) (r, r′) =
〈
n2
〉
〈δ(r1 − r)δ(r2 − r′)〉 , (3.48)

or, in view of Eq. (3.47)

g(2)(r, r′) = V2
Q2

〈〈
e−β∆U(2)

〉〉
0(

Q1

〈〈
e−β∆U(1)

〉〉
0

)2 〈δ(r1 − r)δ(r2 − r′)〉 . (3.49)

The joint probability density for the positions of two specific atoms
can be evaluated using the potential distribution theorem formula for
averages, Eq. (3.26), p. 56:

〈δ(r1 − r)δ(r2 − r′)〉 =

〈〈
e−β∆U(2)

δ(r1 − r)δ(r2 − r′)
〉〉

0〈〈
e−β∆U(2)

〉〉
0

. (3.50)

We now restrict attention to a uniform system, insist that this pair will
be treated according to classical statistical mechanics, and evaluate the
average for the distinguished pair:

〈〈δ(r1 − r)δ(r2 − r′)〉〉0 =
(Q1/V) 2

Q2
e−βu(2)(r,r′) . (3.51)

Collecting these results permits us to express g(2) (r, r′) in terms of
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evocative conditional means:

g(2)(r, r′) = e−βu(2)(r,r′)

×


〈
e−β∆U(2) |r1 = r, r2 = r′

〉
0〈

e−β∆U(1) |r1 = r
〉
0

〈
e−β∆U(1) |r2 = r′

〉
0

 . (3.52)

Here u(2)(r, r′) is the interaction potential energy for the distinguished
pair at the indicated positions. If the potential energy model is not pair
decomposable, u(2)(r, r′) is the potential energy for the distinguished
pair without the rest of the system, because it derives from the relation
Eq. (3.51).

We note that the potential of mean force between the distinguished
pair of atoms, given by βW (r, r′) ≡ − ln g(2)(r, r′), is obtained directly
from Eq. (3.52):

βW (r, r′) = βu(2)(r, r′)

− ln


〈
e−β∆U(2) |r1 = r, r2 = r′

〉
0〈

e−β∆U(1) |r1 = r
〉
0

〈
e−β∆U(1) |r2 = r′

〉
0

 . (3.53)

The first term on the right-hand side of this equation is the contribution
from direct intermolecular interactions between the distinguished pair of
atoms, and the second term is the contribution corresponding to indirect
interactions through the solvent. The solvent-mediated interactions are
computed as an average over the thermal motion of the solvent with the
two distinguished atoms placed at (r, r′), relative to a second average
over the uncoupled thermal motions of the solvent and each individual
molecule of this distinguished pair, in each case with no coupling between
the solute-solvent subsystems. This second average, which appears in the
denominator or Eq. (3.53), accounts for the loss of spatial correlations
as |r − r′| → ∞; i.e.,

lim
|r−r′|→∞

g(2)(r, r′) = 1 . (3.54)

The p-particle joint density and associated correlation function for a
one-component simple fluid follows directly from a generalization of the
preceding development leading to Eq. (3.52). Thus,

ρ(p)(r1, . . . , rp) = ρpg(p)(r1, . . . , rp) . (3.55)
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where

g(p)(r1, . . . , rp) = e−βu(p)(r1,...,rp)


〈
e−β∆U(p) |r1 . . . rp

〉
0∏p

j=1

〈
e−β∆U(1) |rj

〉
0

 . (3.56)

Exercises

3.17 Derive Eq. (3.47).
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Fig. 3.3. Potential of mean force between two methane-sized cavities as a func-
tion of their separation generated from molecular simulations. See (Hummer
et al., 1996a).

3.18 Fig. 3.3 shows the potential of mean force (PMF) as a func-
tion of separation between two methane-sized cavities in water
at 298K. The PMF is normalized to a value of zero at infi-
nite separation. The negative values that are obtained as the
two cavities approach one another reflect hydrophobic driving
forces that show a tendency to aggregate in water, even in the
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absence of interactions between the cavities. Since the cavities
do not interact, they can overlap to form a single methane-
sized cavity, thereby minimizing their contact with water. If,
instead, two methane molecules aggregated to form a dimer in
water, the methane-methane separation would on average corre-
spond to a minimum in the methane-methane PMF. Calculate
this separation assuming the pair potential energy of interac-
tion between two methane molecules can be described by the
Lennard-Jones potential function with σ=3.730Å and ε=0.294
kcal/mol. Sketch this PMF as a function of methane-methane
separation.

3.7 Activity Coefficients and Solution Standard States

In this section, we derive PDT expressions for activity coefficients and
standard state chemical potentials that are conventional in physical
chemistry and chemical engineering thermodynamics. We assume here a
single homogeneous solution phase composed of several components, and
write the following, conventional expression for the chemical potential
of component α in this multicomponent solution:

βµα = βµ◦α + ln γαxα , (3.57)

where µ◦α is a reference chemical potential, xα is the mole fraction of
component α, and γα is the activity coefficient which characterizes devi-
ations from the reference chemical potential, µ◦α. We seek the connection
between this expression and the PDT formula for this chemical potential,

βµα = ln
[
ραΛ3

α/q
int
α

]
− ln

〈〈
e−β∆Uα

〉〉
0
. (3.58)

Recognizing that ρα ≡ xαρ where ρ is the total number density of all
molecules in the volume V, we can re-write Eq. (3.58) as

βµα = ln
[

ρΛ3
α

qint
α 〈〈e−β∆Uα〉〉0

]
+ lnxα . (3.59)

The first term on the right-hand side of this equation must be equal to
βµ◦α + ln γα from Eq. (3.57). Since µ◦α and γα are defined with respect
to one another, we can multiply and divide the term in brackets by a
factor that defines the standard state, and then separate the numerator
and denominator into factors βµ◦α and ln γα.

Our first choice for a standard state is the pure fluid, and therefore,
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the factor of interest is the average Boltzmann factor for coupling a
distinguished molecule to its pure fluid:[〈〈

e−β∆Uα
〉〉

0

]
xα=1

. (3.60)

Multiplying and dividing by this factor appropriately in Eq. (3.59) gives

βµα = ln

[
ρΛ3

α

qint
α [〈〈e−β∆Uα〉〉0]xα=1

]
+ ln γαxα , (3.61)

with the activity coefficient given by

γα =

[〈〈
e−β∆Uα

〉〉
0

]
xα=1

〈〈e−β∆Uα〉〉0
. (3.62)

The Boltzmann factor in the denominator of this equation corresponds
to coupling a distinguished molecule of component α to the solution.
This result is reminiscent of local composition free energy models that
are widely used to calculate fluid-phase equilibria for multicomponent
mixtures of non-electrolytes. We note that γα > 1 corresponds to less
favorable interactions in the mixtures, and γα → 1 as xα → 1.

Our second choice for a standard state is a component at infinite
dilution in solution. In this case, we multiply and divide Eq. (3.59) by
the PDT factor corresponding to the xα=0 circumstance:[〈〈

e−β∆Uα
〉〉

0

]
xα=0

, (3.63)

and write the chemical potential as

βµα = ln

[
ρΛ3

α

qint
α [〈〈e−β∆Uα〉〉0]xα=0

]
+ ln γαxα . (3.64)

The first term on the right-hand side of this equation is βµ∞α correspond-
ing to the infinite-dilution chemical potential of component α, and the
activity coefficient is defined as

γα =

[〈〈
e−β∆Uα

〉〉
0

]
xα=0

〈〈e−β∆Uα〉〉0
= γα({x1, . . . , xn}). (3.65)

We note that the standard state, infinite-dilution chemical potential,
µ∞α , involves only solute-solvent interactions, since the coupling energy
in the Boltzmann factor in Eq 3.63 is computed with no other solute
molecules present. If finite solute concentrations lead to more favor-
able Boltzmann factors, then γ < 1, and vice versa for less favorable
interactions. Also, as xα → 0, γα → 1 as expected.
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Exercises

3.19 Use the expression derived above for µ∞α to obtain the following
microscopic expression for the Henry’s Law coefficient:

kα =
ρkT

[〈〈e−β∆Uα〉〉0]xα=0

. (3.66)

Describe the behavior of this coefficient in the limits of high and
low solubility.

3.8 Quantum Mechanical Ingredients and Generalizations

Classical statistical mechanical theory is, for the most part, adequate for
the solutions treated in this book (Benmore et al., 2001; Tomberli et al.,
2001), as has been discussed more specifically elsewhere (Feynman and
Hibbs, 1965). It is important to distinguish that issue of statistical me-
chanical theory from the theory, computation, and modeling involved in
the interaction potential energy U(N ). The potential distribution the-
orem doesn’t require specifically simplified forms for U(N ) on grounds
of statistical mechanical principal; simplifications can make calculations
more practical, of course, but those are issues to be addressed for specific
cases.

Vibrational motions of molecules are typically significantly quantized;
these motions affect the qint

α of Eq. (3.20), p. 54. Some problems sug-
gest a broader quantum description than the treatment of the internal
vibrations only, even though quantum mechanical effects might be sec-
ondary to the classical description. For aqueous solutions, the study of
H/D isotope effects are legion. Most of the equilibrium properties of
liquid water exhibit minor quantum effects, with H2O being a slightly
more disordered liquid than D2O (Buono et al., 1991; Tomberli et al.,
2000). That additional disorder is often described by analogy with an
increase in temperature (Landau et al., 1980, §33. Expansion in pow-
ers of ~). For liquid thermodynamic states near the triple point, the
increase can be characterized by saying that the magnitude is compa-
rable to a 5-6 K temperature rise (Buono et al., 1991; Tomberli et al.,
2000; Badyal et al., 2002). Not coincidentally, the temperature of max-
imum density of liquid H2O at normal pressure (4◦C) is 7◦C below the
corresponding temperature of maximum density of liquid D2O, and the
triple temperature of H2O is about 4 K lower than that of D2O. But
the critical temperature of H2O is about 3 K higher than the critical
temperature of D2O (Eisenberg and Kauzmann, 1969). The solubilities
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of nonpolar gases in H2O at room temperature and low pressure are
measurably different from D2O, and those differences can be correlated
with the differences in the compressibilities of the two solvents (Hummer
et al., 2000). Also, the static dielectric constant of H2O is slightly higher
than that of D2O for temperatures not too high (Stillinger, 1982). So,
despite being small, these effects are not perfectly understood. Other
equilibrium properties might have higher sensitivity to these quantum
effects than do the chemical potentials (Guillot and Guissani, 1998a,b).

The most basic point here is that the only specifically classical feature
of Eq. (3.19), p. 54, is the n! assumed in Eq. (3.16), p. 53. This feature
derives from the indistinguishability of particles other than the electrons,
and a more correct account of the indistinguishability of those heavy par-
ticles would involve exchanging identities with the proper phases (Feyn-
man and Hibbs, 1965). But, as is well known, those exchange contri-
butions are the least significant of quantum mechanical effects for the
solutions of interest here (Feynman and Hibbs, 1965). Other quantum
mechanical effects can be described by Eq. (3.19), even if that requires
a somewhat specialized treatment.

This point can be underscored by returning again to consider the
unnormalized density matrix lurking underneath Eq. (2.15), p. 36:

∂ρ (N ,N ′)
∂β

= −Hρ (N ,N ′) . (3.67)

Eq. (2.15) is then translated to

e−βA = Tr ρ . (3.68)

The point to be underscored is that many available approximate solu-
tions for ρ (N ,N ′) of Eq. (3.67), e.g. (Gomez and Pratt, 1998), with the
Boltzmann-Gibbs treatment of heavy-particle exchange, can be applied
to evaluation of the potential distribution theorem. The most important
physical requirement is that such a model gracefully adapt to the classi-
cal limit, because that is the most important physical limit for molecular
solutions.

In this section we discuss quantum mechanical models that can be
brought to bear on evaluation of the potential distribution theorem.
These models could be tried and tested in practical calculations, but
the basics of these models should be studied elsewhere — the present
discussion is not about quantum mechanics for its own sake. The re-
mainder of this section then gives a more technical discussion of current
ideas for inclusion of non-exchange quantum mechanical effects.
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Initial Treatment of Quantum Statistical Mechanics. As a pre-
liminary point, we note that the decoupled averaging discussed here in
classical views of the potential distribution theorem derives from the
denominator of Eq. (3.19), p. 54. This is unchanged in the present
quantum mechanical discussion, and thus the sampling of the separated
subsystems could be highly quantum mechanical without changing those
formalities.

For simplicity, however, let’s adopt an atomic-level description of the
molecular solution. As with the central-force models (Lemberg and Still-
inger, 1975), the interactions treated could be sufficiently complicated
as to form complex molecules, but we will focus on the interaction con-
tributions to the chemical potentials of atoms. In that case, all qint

1

= 1, and any quantum mechanical effects on the internal structures of
molecules that may be formed will have to be described by the quantum
mechanical approximations which are the target here.

We discuss initially the model (Feynman and Hibbs, 1965, §10-3)

Ū(N ) ≈ U(N ) +
β~2

24

∑
j

1
mj
∇2

jU(N ) . (3.69)

Here U(N ) is the interaction potential energy for the complete system
at a specific configuration, uniformly the same quantity that has been
discussed above. Ū(N ) is an effective potential designed to be used in
classical-limit partition function calculations, e.g. Eq. (3.19), p. 54, in
order to include quantum mechanical effects approximately. We will call
this Ū(N ) the Wigner-Kirkwood (WK) model. In Eq. (3.69), mj is the
mass of atom j, and ∇2

j is the Laplacian of the cartesian positional co-

ordinates of atom j, ∇2
j =

(
∂

∂xj

)2

+
(

∂
∂yj

)2

+
(

∂
∂zj

)2

. The rightmost
contribution in Eq. (3.69) becomes smaller if β decreases (higher tem-
perature), or as the masses mj become larger (perhaps by substituting
D for H).

Because of the linear dependence of Ū(N ) on U(N ), we can straight-
forwardly define

∆Ū (1)
α ≡ Ū(N , N + 1)− Ū(N )− Ū(1) . (3.70)

This application of the Wigner-Kirkwood model is then

βµex
α = − ln

〈〈
e−β∆Ū(1)

α

〉〉
0
. (3.71)

The indicated averaging is the classical averaging for the decoupled
subsystems with the effective interactions Ū for each case. This is a
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remarkably simple result, and study of this model is a serious first step
in understanding quantum mechanical effects in molecular solutions.

A more ambitious model of the WK type, and one that is expected
to be more accurate, is the Feynman-Hibbs (FH) model (Feynman and
Hibbs, 1965) for which

Ū(N ) ≈∫
· · ·
∫
U(N + {x1,x2, . . .})

∏
atoms j

√
12mj

2πβ~2
e−12xj

2mj/2β~2
dxj .

(3.72)

The {x1,x2, . . .} are displacements of the atoms, and this is a gaussian
convolution of the mechanical potential energy U(N ) with the variances
depending on the masses of the atoms, on the temperature, and on ~. If
U(N ) is weakly dependent on the displacements {x1,x2, . . .}, then this
FH model reduces to the WK model, Eq. (3.69). Near minima of U(N )
this gaussian convolution means that Ū(N ) ≥ U(N ); this is an ap-
proximate description of zero point motion. Near maxima of U(N ) this
gaussian convolution means that Ū(N ) ≤ U(N ); this is an approximate
description of barrier tunneling. Simulations of liquid water have been
conducted on the basis of this Feynman-Hibbs model, with encouraging
results (Guillot and Guissani, 1998a,b). Again, Eq. (3.70) provides a
straightforward definition of ∆Ū (1), and Eq. (3.71) provides an approx-
imate evaluation of that desired thermodynamic quantity within this
model. An idea for that evaluation is discussed in Sec. 7.4; see Fig. 7.6,
p. 182.

This discussion has adopted an atomic-level description. But we can
now reconsider the typical molecular case where intramolecular vibra-
tions are strongly quantized. The natural idea is to evaluate the isolated
molecular partition functions, qint

α , by standard methods, beginning with
the harmonic approximation. The intermolecular, excess contribution to
those chemical potentials might be evaluated by one of the simple mod-
els above, either WK or FH. In that procedure, the sampling would be
with the decoupled systems obeying the simple model chosen.

The Quantum Potential Distribution Theorem. The discussion
above treated secondary quantum effects in molecular solutions. Now
we examine quantum effects more fully, though still neglecting exchange
effects. Our purpose is twofold. First, there are systems such as the
solvated electron where a full quantum treatment is required (Marchi
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et al., 1988). Second, the models above can be derived. We will see
again that the PDT gives a particularly simple means of obtaining the
approximate results.

The Feynman path integral picture of quantum mechanics is a formu-
lation alongside the Heisenberg or Schrödinger approaches (neglecting
spin) (Feynman and Hibbs, 1965; Feynman, 1972). We do not give de-
tails of the path integral method (Doll et al., 1990), but rather discuss its
basic features and present the results necessary to obtain the chemical
potential. In the path integral formulation of equilibrium statistical me-
chanics, each atom is represented by a cyclic path. The representation
is analogous to a cyclic polymer molecule. Here we employ a Fourier
representation of the paths (Doll et al., 1990) for convenience. Then the
path is given by

xτ = x0 +
∞∑

k=1

ak sin kπτ. (3.73)

x0 is the origin of the path corresponding to τ = 0, or 1, and ak is the kth

Fourier variable. τ describes the evolution along the path and progresses
from 0 to 1. Then the quantum potential distribution theorem (Beck,

Fig. 3.4. Schematic representation of a quantum particle solvated in a bath
of classical molecules. The cyclic path represents the quantum particle in the
field created by the classical solvent molecules.
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1992; Beck and Marchioro, 1993; Wang et al., 1997) for a quantum solute
with no internal structure is

βµα = ln ραΛ3
α − ln

〈〈
e−β

R 1
0 ∆Uα(xτ )dτ

〉
ak

〉
0

. (3.74)

See Fig. 3.4 for a pictorial representation of the potential distribution
theorem. The inner-averaging weight is a gaussian — corresponding
to the free-particle kinetic energy and specified by the path, with no
coupling to the solvent particles:

〈. . .〉ak
=

(. . .) e
−

P∞
k=1

a2
k

2σ2
k∏∞

k=1

∫
dake

−
a2

k
2σ2

k

, (3.75)

where

σ2
k =

2β~2

mπ2k2
. (3.76)

Notice first that the formula for the chemical potential is very close to
the molecular formula from the classical potential distribution theorem.
The inner average is over the free-particle kinetic energy of the path,
instead of over the thermal motions of the molecule in the gas phase.
In either case, the solute is decoupled from the solvent. Also, instead
of the interaction energy of the classical point particle with the solvent,
here one needs the average interaction energy along the path. The clas-
sical limit is recovered as the temperature or the mass gets large, since
the gaussian kinetic energy distributions become very narrow, and the
paths shrink down to the point x0. Then the classical potential distri-
bution theorem for an atomic solute emerges directly from Eq. (3.74).
Here we explore a re-expression of the quantum potential distribution
theorem and approximations based on it which lead to the WK and FH
approximations.

The first step we take is to multiply and divide by the classical average
Boltzmann factor in the potential distribution theorem:

βµα = ln ραΛ3
α − ln

〈
e−β∆Uα(x̄)

〉
0

− ln

〈〈
e−β

R 1
0 ∆Uα(xτ )dτ

〉
ak

〉
0〈〈

e−β∆Uα(x̄)
〉

ak

〉
0

. (3.77)

The Fourier coefficient average in the denominator of the last term is
included to make the numerator and denominator symmetrical; it has no
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effect on the classical average. Let’s assume that the classical potential
is evaluated at the centroid of the path:

x̄ =
∫ 1

0

xτdτ = x0 +
1
π

∞∑
k=1

ak

k

[
1− (−1)k

]
. (3.78)

This will prove useful in deriving the approximations. Then we can write
the quantum potential distribution theorem as

βµα = ln ραΛ3
α − ln

〈
e−β∆Uα(x̄)

〉
0

− ln
〈〈

e−β
R 1
0 [∆Uα(xτ )−∆Uα(x̄)]dτ

〉
ak

〉
r

(3.79)

where the first two terms on the right side yield the classical chemi-
cal potential, and the third term is an exact quantum correction. The
averaging process on the correction term is over all solvent degrees of
freedom with this classical solute included. In this way the quantum
effects are computed by reference to the classical solute.

Now focus on the quantum correction term. We make an approxima-
tion to the correction based on the inequality (Feynman, 1972)〈

e−f
〉
≥ e−〈f〉 . (3.80)

We make this approximation for the inner gaussian kinetic energy aver-
age. This inequality shows that our approximation will yield an upper
bound to the exact chemical potential. The exercises to follow derive the
Feynman-Hibbs and Wigner-Kirkwood models from this approximation.

Exercises

3.20 Simplify the inner multidimensional gaussian integral of the last
term in Eq. (3.79), following the approximation Eq. (3.80), by
showing that〈∫ 1

0

[∆Uα (xτ )−∆Uα (x̄)] dτ
〉

ak

≡

∫
. . .
∫ {∫ 1

0
[∆Uα (xτ )−∆Uα (x̄)] dτ

}∏∞
k=1 e

− a2
k

2σ2
k dak∏∞

k=1

∫
e
−

a2
k

2σ2
k dak

(3.81)
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can be expressed as

∫
. . .
∫

[∆Uα (x̄− y)−∆Uα (x̄)]
∏∞

k=1 e
− a2

k
2σ2

k dak∏∞
k=1

∫
e
−

a2
k

2σ2
k dak

, (3.82)

with

y =
1
π

∞∑
k=1

ak

k

[
1− (−1)k

]
. (3.83)

Hint: Notice that the u-integration of the numerator could be
performed last, and that no point along the path is special.
Since the u-integral is then irrelevant, choose the path point x0

as representative, and let y be the displacement according to
x0 = x̄− y.

Further simplify these integrals by inserting∫
δ

(
y − 1

π

∞∑
k=1

ak

k

[
1− (−1)k

])
dy = 1 (3.84)

or ∫ {∫
eiω(y− 1

π

P∞
k=1

ak
k [1−(−1)k]) dω

2π

}
dy = 1 (3.85)

into the numerator and denominator of the gaussian average,
and derive the PDT analogue of the Feynman-Hibbs potential
of Eq. (3.72). Hint: rearrange the order of integration to do the
ak integrals first, followed by the ω integral, and note the sum

1
2

∞∑
k=1

1
k4

[
1− (−1)k

]
=
π4

96
. (3.86)

3.21 Obtain the Wigner-Kirkwood correction from the Feynman-Hibbs
effective potential by Taylor expansion of the potential.

3.22 Show that the classical chemical potential is always lower than
the exact quantum chemical potential. Hint: see (Predescu,
2003). Therefore, the exact quantum chemical potential lies be-
tween the classical chemical potential and that obtained from
the Feynman-Hibbs approximation. [Note the error in (Feyn-
man, 1972, p. 77) concerning this point.]
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MODELS

In this chapter we develop simple models that treat characteristic prob-
lems that arise in describing solutions at a molecular level. These are
models that might be used in practical considerations of molecular so-
lutions. We also use these accumulating examples to support the view
that the potential distribution theorem provides a simple, effective basis
for further development of the theory of molecular liquids.

Beyond the use of the potential distribution theorem, the develop-
ments here would be described as physical. The goal is to discuss simple
models that might be useful. More sensitive refinement can come later.

In discussing these models, we will assume that simulation data are
typically available; we expect that to be the most common case. Helpful
theoretical models can then be built on top of simulation (or experimen-
tal) data.

4.1 van der Waals Model of Dense Liquids

A central theme of the modern theory of liquids is a reappreciation of
the van der Waals equation of state. The traditional presentations of
the van der Waals equation of state feature discussion of two concepts
(Uhlenbeck and Ford, 1963, see Notes on Chapter II, 2.): (i) a free
volume modification of the ideal gas equation of state based on the
fact that molecules can’t overlap much, and (ii) modification of that
free volume equation of state to reflect attractive interactions between
molecules. The result is

p =
ρkT

1− bρ
− aρ2 . (4.1)

76
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The traditional van der Waals equation of state is a formula with two
empirical parameters, a and b, one for each of the physical arguments
put forward here.

The reappreciation of the van der Waals theory refines these two ar-
guments. A decisive feature is a sharp distinction between the differing
roles of attractive and repulsive interactions; the fact that these interac-
tions of differing physical character can be treated in two steps with the
additive consequences seen in Eq. (4.1) is already the most important
point. For the present purposes, a van der Waals view of a real solution
is this sequential reasoning: first repulsive forces and subsequently the
effects of attractive interactions.

We then consider this hint from the vantage of the potential distribu-
tion theorem, Eq. (3.5). We suppose that we can separate the interaction
∆Uα into two contributions ∆Ũα+Φα. If Φα were not present, we would
have

e−βµ̃ex
α =

〈〈
e−β∆Ũα

〉〉
0
. (4.2)

The tilde over µ̃ex
α indicates that this is the interaction contribution to

the chemical potential of the solute when Φα=0. Even though we are
imagining manipulating the interactions of the solution and the distin-
guished solute, the properties of the solution alone are unchanged.

With the results Eq. (4.2) available, we next consider the remainder:

e−β(µex
α −µ̃ex

α ) =

〈〈
e−β∆Uα

〉〉
0〈〈

e−β∆Ũα

〉〉
0

. (4.3)

The ratio on the right side here is suggestively similar to the ratio on
the right side of Eq. (3.26), p. 56, because e−β∆Uα = e−β∆Ũα × e−βΦα .
Consulting that previous formula, we can make the correspondence that
F=e−βΦα and then

e−β(µex
α −µ̃ex

α ) =
〈〈

e−βΦα
〉〉

r
. (4.4)

Here the 〈〈. . .〉〉r indicates an averaging for the case that the solution
contains a distinguished molecule which interacts with the rest of the
system on the basis of the function ∆Ũα; the subscript r stands for
reference.

Eq. (4.4) will be broadly useful; it describes the effects of Φα and
the physical perspective that we follow here is that the van der Waals
approach treats the interactions Φα as a perturbation. To analyze this
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further we introduce the probability density function

P̃α(ε) ≡ 〈〈δ (ε− Φα)〉〉r . (4.5)

The van der Waals approximation is built on the idea that Φα is a
background molecular field that scarcely fluctuates during the course of
the thermal motion of the system composed of the distinguished solute
and solution. In that situation, P̃(ε) is so tightly concentrated that
the only significant parameter is its location and that suggests P̃(ε) ≈
δ (ε− 〈〈Φα〉〉r). Following this physical reasoning, Eq. (4.4) reduces to

µex
α ≈ µ̃ex

α + 〈〈Φα〉〉r . (4.6)

We will later consider the approximation that affects the transition from
Eq. (4.4) to Eq. (4.6) in detail. But this result would often be referred
to as first-order perturbation theory for the effects of Φα — see Sec. 5.5,
p. 129 — and we will sometimes refer to this result as the van der Waals
approximation. The additivity of the two contributions of Eq. (4.1) is
consistent with this form, in view of the thermodynamic relation ρdµ

= dp (constant T ). It may be worthwhile to reconsider Ex. 3, p. 51.
The nominal temperature independence of the last term of Eq. (4.6)
is also suggestive. Notice, however, that the last term of Eq. (4.6), as
an approximate correction to µ̃ex

α , will depend on temperature in the
general case. This temperature dependence arises generally because the
averaging 〈〈. . .〉〉r will imply some temperature dependence. Note also
that the density of the solution medium is the actual physical density
associated with full interactions between all particles with the exception
of the sole distinguished molecule. That solution density will typically
depend on temperature at fixed pressure and composition.

The restriction to dense liquids and, in some respects, to one-component
systems deserves further comment. Such restrictions follow from the
physical assumption here that thermal fluctuations in Φα are negligi-
ble. If a one-component liquid is sufficiently dense, then variety in the
structures that occur with reasonable frequency during the thermal mo-
tion will be limited. Since density fluctuations may be gauged with the
compressibility ∂ρ/∂βp|T , see Eq. (2.24) p. 38, these approximations are
expected to be better where the compressibility is (or more generally,
susceptibilities are) smaller. The compressibility is likely to be smaller
for the higher density fluid states.

Another physical consideration is the spatial range of the interactions
Φα. If a large number of distinct solution elements make small contri-
butions to Φα it is reasonable to hope that fluctuations in the net result
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would be less for that statistical reason. In typical physical cases, this
statistical point is insufficient as a sole argument, but it is typically a
helpful additional point.

For specific cases, it is non-trivial to identify the perturbation Φα that
would make this simple approximation effective. Φα need not be pair
decomposable. Furthermore, for molecules of general interest, presenting
interactions of several types, there is no consensus on specifically how
to separate ∆Uα into two contributions that would make this van der
Waals approximation compelling.1 The most specific utility of this van
der Waals treatment is probably the following: if interactions of some
specific type have been neglected for simplicity, a rough estimate of the
error might be obtained with this first-order perturbation theory.

For atomic liquids, in contrast, that situation is different. Specific
proposals for identification of a perturbative interaction have been well
tested and the van der Waals treatment is very successful for dense one-
component atomic systems. Since a lot has been written about that
subject, we direct the reader to standard sources for more information
on those achievements (Widom, 1967; Lebowitz and Waisman, 1980;
Chandler et al., 1983). Much of the authority of the van der Waals
treatment stems from the detailed checking of those approximations for
atomic liquids. Additionally, van der Waals treatments do have the great
virtue of simplicity.

Finally, we return to consider the description of the reference case
for which the interactions between the solution and the distinguished
solute conform to Φα=0. If the perturbation interactions are weaker
and longer-ranged than ∆Ũα, on a physical basis, that typically leaves
excluded-volume (or overlap) features of intermolecular interactions to
be contained in ∆Ũα. The simplest model for such excluded-volume in-
teractions is a hard-core model: configurations overlapping the van der
Waals volumes of solution molecules with the distinguished solute are
assigned infinitely unfavorable energies. Hard-core models and the pack-
ing problems defined in this way are significant challenges for molecular
theories, despite the drastic simplification. We will return to this prob-
lem in Sec. 4.3, p. 89, but note here only that the free-volume feature
of Eq. (4.1) is an approximate solution of that packing problem for the
present development. In the simplest examples, particularly for atomic
liquids, the identification of ∆Ũα and approximation by hard-sphere
models is highly refined and successful.

1 See, however, the recent suggestion of (Chen et al., 2005).
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Gaussian Extension. Here we identify a natural extension of the van
der Waals theory above; this also serves to elaborate some notation
that will be helpful subsequently. The van der Waals model was based
upon the estimate P̃(ε) ≈ δ (ε− 〈〈Φα〉〉r). With the availability of the
additional information

〈〈
δΦ2

α

〉〉
r
, we could form the gaussian model

P̃(Φα) ≈ 1√
2π 〈〈δΦ2

α〉〉r
exp

[
−1

2
δΦ2

α

〈〈δΦ2
α〉〉r

]
, (4.7)

where δΦα = Φα−〈〈Φα〉〉r. Better, however, is to acknowledge explicitly
that these averages will depend on the conformation of the solute; we
therefore write the conditional expectations 〈Φα|Rn〉r and

〈
δΦ2

α|Rn
〉

r
.

More generally, we consider the partition function〈
e−βΦα |Rn

〉
r

conditional on positioning of the distinguished solute. Us-
ing this information, and a gaussian model distribution, the extended
theory is

µex
α (Rn) ≈ µ̃ex

α (Rn) + 〈Φα|Rn〉r −
β

2
〈
δΦ2

α|Rn
〉

r
. (4.8)

The first two terms here constitute the van der Waals approximation as
discussed above. The succeeding term is a correction that lowers this free
energy. The thermodynamic excess chemical potential is then obtained
by averaging the Boltzmann factor of this conditional result using the
isolated solute distribution function sα

(0)(Rn).

Gaussian Density Fluctuation Theories. The following discussion
is more technical but useful in a subsequent section. We consider again
perturbative interactions and Eq. (4.4). It may sometimes happen that
the perturbative interactions Φα are uncertainly known, but prelimi-
nary calculations can obtain conditional densities and density variances.
Thus, more primitive available information might be 〈ργ(r)|Rn〉r and
〈δργ(r)δρν(r′)|Rn〉r. In the traditional theory of liquids, attention is
directed often to density functional aspects of the theory, and the per-
turbative interactions are perfectly known as a model.

To facilitate manipulation of the densities of the solution, we introduce
expectations conditional also on the solution densities and denote these
quantities as

〈
e−βΦα |Rn, {ργ(r)}

〉
r

The advantage of this formulation is
that some of the averaging can be reserved for the end of the calculation.

Our problem will be further specified by the description of perturba-
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tive interactions in this notation

〈Φα|Rn, {ργ(r)}〉r =
∑

γ

∫
V

ϕαγ(Rn, r)ργ(r)d3r . (4.9)

Thus, ϕαγ(Rn, r) is the perturbation potential of the solution and the
distinguished solute in conformation Rn. If Φα is not decomposable
according to solute-solvent pairs conditional on the solute conformation
Rn, then this relation introduces an effective pair interaction as the
perturbation.

To analyze the van der Waals approach further, we will consider the
approximation〈

e−βΦα |Rn, {ργ(r)}
〉

r
≈ exp

[
−β 〈Φα|Rn, {ργ(r)}〉r

]
. (4.10)

This is a primitive van der Waals approximation for the indicated con-
ditional expectation. The associated physical argument is that with the
density specified, further assessment of fluctuations is less important.

The final ingredient in this theory is an assumption permitting aver-
aging with respect to the density fluctuations to eliminate the condition
here on the densities. The simplest such assumption is that these co-
ordinates obey a gaussian functional distribution built on the informa-
tion 〈ργ(r)|Rn〉r and 〈δργ(r)δρν(r′)|Rn〉r ; this is a standard idea of
the random-phase approximation and related theories (Brout and Car-
ruthers, 1963). Then

〈
e−βΦα |Rn

〉
r
≈ exp

−∑
γ

∫
V

βϕαγ(Rn, r) 〈ργ(r)|Rn〉r d3r

×
exp

1
2

∑
γν

∫
V

∫
V

βϕαγ(Rn, r) 〈δργ(r)δρν(r′)|Rn〉r βϕνα(Rn, r′)d3rd3r′

 .

(4.11)

In evaluating this last average, see Exercise 4.1, p. 83. For the excess
chemical potential then

µex
α (Rn) ≈ µ̃ex

α (Rn) +
∑

γ

∫
V

βϕαγ(Rn, r) 〈ργ(r)|Rn〉r d3r

− β

2

∑
γν

∫
V

∫
V

βϕαγ(Rn, r) 〈δργ(r)δρν(r′)|Rn〉r βϕνα(Rn, r′)d3rd3r′.

(4.12)
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This result should be compared to Eq. (4.8). The information
〈δργ(r)δρν(r′)|Rn〉r offers 3-body and higher correlation information
implicitly because of the involvement of the reference interactions and
the condition on molecular configuration Rn. In the usual notation of
the theory of simple liquids, without the indicated conditions, we would
write

〈δργ(r)δρν(r′)〉 = ργδγνδ(r − r′) + ργρν

(
g(2)

γν (|r − r′|)− 1
)
. (4.13)

The subscript qualifier on 〈. . .〉r (Eq. (4.12)) requests that these quanti-
ties be obtained for the reference system in which a distinguished solute
interacts with the solution through the defined reference system inter-
actions. This distinction will have appreciable consequences only in the
locality of the distinguished solute. Thus, if ϕαγ(Rn, r) contributes to
these formulae predominantly at large distances from the distinguished
solute, it is reasonable to anticipate substitution of Eq. (4.13) for the
correlation information appearing in Eq. (4.12). This last maneuver
alleviates a subtle inconsistency in this physical discussion, where we
argued that Φα might not be perfectly known, but assumed that ∆Ũα

was perfectly known.

Exercises

4.1 The discussion above emphasized the simplicity that can follow
from identification of a physical reference system. Show that

βµex = − ln
∫ ε̄

−∞
P0 (ε) dε+ ln

∫ ε̄

−∞
P (ε) eβεdε , (4.14)

which doesn’t require definition of a reference system, and thus,
for example, applies also to systems with non-pair-decomposable
interactions. Compare this result with Eq. (4.6), p. 78, and
discuss the terms involved in that comparison. Show that an
analogous formula obtains with a smooth cut-off instead of the
sharp cut-off of the integrals at ε̄.

4.2 Follow Eq. (3.27), p. 56, and determine the probability corre-
sponding to the averaging 〈〈. . .〉〉r of Eq. (4.4).

4.3 Determine the interaction contribution to the chemical potential
implied by the equation of state Eq. (4.1). Compare your result
with Ex. 3.6.

4.4 Consider the simple case where the radial distribution function
in the fluid is zero for radii less than a cutoff value determined by
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the size of the hard core of the solute, and one beyond that value.
Calculate the value of the parameter a appearing in the equation
of state Eq. (4.1) for a potential of the form cr−n, where c is a
constant and n is an integer. An example is the Lennard-Jones
potential where n = 6 for the long-ranged attractive interaction.
What happens if n ≤ 3? Explain what happens physically to
resolve this problem? See (Widom, 1963) for a discussion of the
issue of thermodynamic consistency when constructing van der
Waals and related approximations.

4.5 Consider the several random variables xj , j = 1, . . . n. Suppose
that these xj are distributed according to a multi-variable gaus-
sian distribution with means 〈xj〉 and covariances 〈δxjδxk〉 =
〈xjxk〉 − 〈xj〉 〈xk〉. Show that

〈exp [−λjxj ]〉 = exp [−λj 〈xj〉] exp
[
1
2
λj 〈δxjδxk〉λk

]
. (4.15)

Summation over repeated subscripts from 1, . . . , n is implied.
Compare this result with Eqs. 4.11 and 4.12.

4.2 Dielectric Solvation — Born — Models

A virtue of the PDT approach is that it enables precise assessment of the
differing consequences of intermolecular interactions of differing types.
Here we use that feature to inquire into models of electrostatic interac-
tions in biomolecular hydration. This topic provides a definite example
of the issues discussed in the previous section; the perturbative inter-
actions, Φα of the previous section, are just the classic electrostatic
interactions.

We note that if all electrostatic interactions between the solute and sol-
vent are annulled, for example by eliminating all solute partial charges in
force-field models, the potential distribution formula sensibly describes
the hydration of that hypothetical solute:

e−β(µex
α −µ̃ex

α ) =
〈〈

e−βΦα
〉〉

r
. (4.16)

Following the notation of the previous section, Eq. (4.2) p. 77, the tilde
indicates distinguished solute-solvent interactions without electrostatic
interactions. The contribution of electrostatic interactions is then iso-
lated as

e−β(µex
α −µ̃ex

α ) =
∫
P̃α(ε)e−βεdε , (4.17)
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following Eq. (4.4), p. 77. P̃α(ε) is defined by Eq. (4.5), p. 78, and
Φα = ∆Uα - ∆Ũα is the electrostatic contribution to the solute-solvent
interactions. The probability distribution, P̃α(ε), can be modeled using
available information about the system (Hummer et al., 1997). Those
models should be sufficiently accurate, but it is just as important that
their information content be clear so that physical conclusions might be
drawn from the observed accuracy.

Our consideration of this problem benefits from the availability of
simple thermodynamic models for the contribution sought. In particular,
a dielectric model, the Born model, for the hydration free energy of a
spherical ion of radius Rα with a charge qα at its center is

µex
α ≈ µ̃ex

α −
q2α

2Rα

(
ε− 1
ε

)
. (4.18)

The dielectric constant of the external medium is ε. For this discussion,
the significant point of Eq. (4.18) is that the electrostatic contribution is
proportional to q2α. To emphasize this point, we change variables here,
writing ε = qαϕ, and consider the gaussian model (Levy et al., 1991;
Hummer et al., 1998b),

P̃α(ϕ) ≈ 1√
2π 〈〈δϕ2〉〉r

exp
[
−1

2
ϕ2

〈〈δϕ2〉〉r

]
. (4.19)

Using this probability distribution produces

µex
α ≈ µ̃ex

α −
βq2α
2
〈〈
δϕ2

〉〉
r
, (4.20)

which we can compare with Eq. (4.18). The subscript notation on
〈〈. . .〉〉r here indicates that averaging is performed with the solute molecule
present, but in the absence of solute-solvent electrostatic interactions.
This formula avoids the serious issue of the parameterization required
for Rα in Eq. (4.18). It is clear from Eq. (4.20) that this parameter
should depend on thermodynamic state, i.e. temperature, pressure, and
composition of the system. The dependences on temperature, pressure,
and composition of the gaussian model free energy have not received suf-
ficient attention. The most primitive considerations of these questions
are not heartening (see Eqs. 1.10 and 1.11), but this model is simple,
physical, and worthy of further development.

We here extend the adjective realizable (Lesieur, 1997) to mean the-
oretical models obtained from an admissible probability distribution in
evaluating the average Eq. (4.17). Thus, use of Eq. (4.19) produces
the realizable model Eq. (4.20). Accuracy in describing valid data is,
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of course, a further characteristic of interest. Truncation of series ex-
pansions customary to the statistical thermodynamics of solutions can
produce non-realizable results.

Potential of the Phase. An improvement is to permit Eq. (4.19) to
account for a nonzero mean electrostatic potential exerted by the solu-
tion on the distinguished reference solute, writing

P̃α(ε|Rn) ≈ 1√
2π 〈δΦ2

α|Rn〉r
exp

[
−1

2
(ε− 〈Φα|Rn〉r)

2

〈δΦ2
α|Rn〉r

]
, (4.21)

permitting the notation to revert to the general molecular solute case
with Φα the electrostatic interaction impressed by the solution on the
distinguished solute. With this modification Eq. (4.20) becomes

µex
α (Rn) ≈ µ̃ex

α (Rn) + 〈Φα|Rn〉r −
β

2
〈
δΦ2

α|Rn
〉

r
. (4.22)

The thermodynamical chemical potential is then obtained by averaging
the Boltzmann factor of this conditional result using the isolated solute
distribution function s(0)α (Rn).

Consideration of the quantity 〈Φα|Rn〉r requires some conceptual sub-
tlety. This is intended to be the electrostatic potential of the solution in-
duced by reference interactions between the solute and the solution. Any
contribution to the electrostatic potential that exists in the absence of
those reference interactions we will call the electrostatic potential of the
phase, but of course only electrostatic potential differences, e.g. between
uniform conducting materials, are expected to be physically interesting.

The latter point suggests several further observations. First, we are
free to adopt an arbitrarily chosen value for the potential of the phase for
convenience. The value zero (0) is such a choice, and a natural choice for
detailed calculations. Second, if we take a linear combination of µex

α cor-
responding to neutral collections of ions, then the value of the potential
of the phase will contribute zero (0) to that linear combination, because
the contribution would take the form ϕ (

∑
α qα)=0. Those neutral lin-

ear combinations of µex
α are thermodynamically measurable. [A specific

example of experimental comparisons for neutral linear combinations is
shown in Fig. 8.23, p. 243.]

With two conducting fluids in coexistence, the values of the electro-
static potentials of the phases can be regarded as a mechanical property
obtainable by solution of the appropriate Poisson equation of electro-
statics given sufficient information on charge densities and boundary
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conditions. Since the mean electric fields in the interior of a conductor
vanish, electrostatic potential changes can be associated with mean elec-
tric fields at the interface between the conductors considered here. The
electrostatic potential changes are then sometimes called contact poten-
tials (Landau and Lifshitz, 1975, §22. The contact potential), (Pratt,
1992). If those interfacial electric fields were properties of the solvents
only, then it would be reasonable to attempt to determine them by ex-
periment and calculation (Oppenheim, 1964; Pratt, 1992). Alas, these
potential differences are directly influenced by the nature of the ionic so-
lutes that are present. Ionic solutes make a Donnan-like contribution to
contact potentials because short-ranged solute-solvent interactions com-
pete with electrostatic effects to determine the ultimate solubility of a
salt between two phases (Zhou et al., 1988; Asthagiri et al., 2003b). This
competition is non-trivial even at low concentrations, and the effects do
not vanish even in the limit of infinite dilution of those solutes. This
leads to the paradoxical-sounding, but true statement that this ionic
effect on the contact potential is there “even though the ions aren’t”
(Pratt, 1992). Then, of course, it has to be asked which ions aren’t
there. A less inflammatory view is that infinitesimal concentrations of
ions can have a finite effect on the contact potential.

These subtleties sometimes lead to a casual view of detailed molecular
calculations such as are suggested by Eq. (4.22). If the potential of the
phase is always irrelevant to neutral linear combinations of µex

α which
are thermodynamically measurable, then perhaps it is unimportant to
be precise about an assumed value of the potential of the phase entering
into results such as Eq. (4.22). Our suggestion is that results obtained by
molecularly detailed calculations of solvation free energies of single ions
are compared and tabulated. Thus, precision and clarity in the assump-
tions underlying a calculated or tabulated result is important. Indeed, if
calculated or tabulated values based upon different assumptions for the
potential of the phase were to be combined, it would be essential that
the assumptions be precisely known. Nevertheless, an ultimate ther-
modynamic test of a calculation should be made on thermodynamically
measurable combinations of single ion free energies.

Multi-Gaussian Extensions. A number of directions can be taken
to generalize these distributions systematically. Multi-gaussian models
are natural possibilities, and suggest the quasi-chemical theory taken
up later. Here we assume that the distribution P̃α(ε|Rn) in Eq. (4.19)
can be expressed as a linear combination of gaussians corresponding to
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Fig. 4.1. Multi-gaussian analysis of the probability distribution P̃α(ε) for an
atomic ion in water (T=298K and ρ=0.99707g/cm3), redrawn from (Hum-
mer et al., 1997). The reference system is an atomic solute which interacts
with water molecules through a Lennard-Jones potential model, and the inde-
pendent variable ε is |e| times the electrostatic potential at the center of the
reference atom. For positive ions, the left wing of the graph is relevant, and
the right side of the graph describes the low energy behavior in the negative
ion case. The sub-state variable is the number of neighbor water molecules
where neighbor is defined as a water molecule with either H-atom within 3.2Å
of the solute center. The symbols show histogram data. The dashed lines
show the gaussian probability densities with the estimated mean and variance
for each distributions. The solid line of the bottom panel is the result of com-
bining gaussian probability densities of the conditional distributions P̃α(ε|n)
for n = 1 to 7. Notice that the modes of the unconditional distributions are
at positive ε, and the multi-gaussian model is skewed towards positive ε. This
corresponds to the known phenomenon that negative ions are more strongly
hydrated than positive ions. µex is sensitive to behavior of these distributions
outside the histogram data. For such reasons this example calculation is only
qualitatively successful for negative ions.
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configurational substates of the system. As an example for aqueous solu-
tions, the substates might be distinct configurations defined by different
hydrogen bonding configurations for the solute and solvent molecules.
Indexing those substates by s, we then analyze the joint probability
distribution of Φα and s, P̃α(ε, s|Rn), assuming the conditional prob-
ability distributions P̃α(ε|s,Rn) to be gaussian, and that the marginal
distributions pα(s|Rn) =

∫
P̃α(ε, s|Rn)dε are available from simulation

calculations. Then

P̃α(ε|Rn) =
∑

s

P̃α(ε|s,Rn)pα(s|Rn) (4.23)

is the total probability formula. See Fig. 4.1. This approach effectively
fixes the most immediate difficulties of dielectric models (Hummer et al.,
1997). The total probability formula Eq. (4.23) is generally valid, and
typically a helpful divide-and-conquer step. But two further issues then
require resolution. The first issue is the definition of substate, s, and the
second issue is the adoption of models for P̃α(ε|s,Rn); the discussion
here emphasizes gaussian models.

Hydrogen bonds formed by the solute and solvent molecules were sug-
gested for the case of aqueous solutions as an example of a possible
scheme for cataloging configurational substates. This example again
hints that the partition function, Eq. (4.17), is local in nature; in this
case, its evaluation relies on the local composition in the vicinity of the
solute. That this local composition is an important general property in
organizing configurational substates is the most basic concept for the
quasi-chemical theory developed later.

Exercises

4.6 Work out the Born model (Pettitt, 2000) result for a spherical
ion of radius Rα with a charge qα at its center embedded in a
dielectric continuum with dielectric constant ε.

4.7 Consider a polyatomic solute for which the solute-solution elec-
trostatic interactions are described with more than one partial
atomic charge. How you would generalize the approximate mod-
els of this section?

4.8 Assume that the conditional probabilities P̃α(ε|Rn, s) are gen-
eral gaussian distributions and establish the expression for µex

α

implied by the multi-gaussian models in terms of observed pop-
ulations pα(s|Rn) and the parameters (means and variances)
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associated with the gaussian conditional distributions. Hint:
see (Hummer et al., 1997).

4.9 A common and sensible criticism of gaussian models such as
Eq. (4.22) is that the integral of Eq. (4.21) is sensitive to the
ε <0 wings of the distribution because of the exponential weight-
ing. But the distribution is characterized typically on the basis
of thermal fluctuations associated with kT energy scales. These
different ranges might not match as a practical matter, and
therefore the integral of Eq. (4.21) might not be reliably estab-
lished that way. Suppose that you are able to perform a second
calculation to characterize Pα(ε), the distribution of electro-
static solute-solvent coupling for the fully-coupled system. Ex-
plain why

e−β(µex
α −µ̃ex

α ) =

∫∞
ε̄
P̃α(ε)e−βεdε∫∞
ε̄
Pα(ε)dε

, (4.24)

independently of the cut-off parameter ε̄. Work out the form this
approximation takes when each of the required distributions is
modeled as a gaussian distribution with distinct parameters.

4.3 Excluded Volume Interactions and Packing in Liquids

We now consider packing issues associated with the reference term of
van der Waals approaches exemplified by Eq. (4.1), p. 76. As noted
there, the simplest interaction model appropriate for those terms is a
hard-core model. The distinguished molecule considered will perfectly
repel solvent molecules from an overlap, or excluded, volume. The gen-
eral issues we develop will apply to such molecules in general solvents,
i.e., the solvent need not be simple in the same sense as the hard-core
solute we treat. But we will exemplify our general conclusions with re-
sults on the hard-sphere solvent system. The notation here, however,
continues to use the tilde, as µ̃ex

α (Rn), to indicate that the distinguished
solute might serve as a reference case for subsequent treatment of other
interactions.

For such models the interaction part of the chemical potential of the
solute is obtained as

βµ̃ex
α (Rn) = − ln pα (0|Rn) , (4.25)

with pα (0|Rn) the probability that the hard-core solute could be in-
serted into the system without overlap of van der Waals volume of the
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Fig. 4.2. A configuration of a hard-sphere fluid sectioned to show an obser-
vation volume. The observation volume, the large sphere with radius 2d, is
shown in each section. To reconstruct the subsystem from the sections, overlap
the observation ball shown in each section. This is a dense gas thermodynamic
state ρd3 = 0.277.

solvent. This is a specialization of the potential distribution formula
Eq. (3.5), p. 46, according to the following argument: for the hard-core
solute being considered, ∆Uα is either zero or infinity, so the average
sought involves a random variable with value either one or zero; the
averaging collects the fraction of solute placements that would be al-
lowed, those that score one. If presented with a thermal configuration
of a large volume of solvent, we might estimate these quantities by per-
forming many trial placements of the solute throughout the solvent, and
determining the fraction of those trial placements that would be allowed.
This estimates the fractional volume, Vfree/V, accessible to the solute,
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or in other words the available volume fraction. Thus, Eq. (4.25) is a
free-volume formula (Reiss, 1992), exact for the model being considered.

The operation of this formula can be viewed alternatively: imagine
identifying a molecular-scale volume at an arbitrary position in the liq-
uid system by, first, hypothetical placement of the solute, and, second,
determination of those positions of solvent molecules that would be ex-
cluded due to solute-solvent interactions. We will call this volume the
observation volume. With such a molecular-scale volume defined, we
could keep track, during a simulation calculation, of the probabilities
pα (k|Rn) that n = 0, 1, . . . solvent-molecule occupants are observed. As
the notation suggests, pα (0|Rn) is the probability that no occupants are
observed in the molecular volume.

Our strategy for predicting pα (0|Rn) will be to model the distribution
pα (k|Rn), and to extract the extreme member pα (0|Rn). We model the
probabilities pα (k|Rn) on an information theory basis. We consider a
relative or cross information entropy (Shore and Johnson, 1980),

η({pα (k|Rn)}) = −
∞∑

k=0

pα (k|Rn) ln
[
pα (k|Rn)
p̂α (k|Rn)

]
, (4.26)

where p̂α (k|Rn) represents a default model chosen heuristically. We
anticipate that the kth order binomial moments

〈(
n
k

)
|Rn

〉
0

will be used
typically. We then maximize this information entropy subject to the
constraints that the probabilities reproduce the available information.

An appropriate qualitative view of such maximum-entropy modeling is
that it is a betting strategy. More specifically, this procedure identifies an
assignment of probabilities that corresponds to the sampling experiment
that, relative to p̂α (j|Rn), is maximally degenerate consistent with the
constraint of the provided information. The inclusion of the default
model has the consequence that this formulation generalizes gracefully
as the random variable approaches a continuous limiting circumstance,
permitting natural transformations of the random variable.

The formal maximization of this entropy is familiar (Jaynes, 2003).
We consider the functional

η −
kmax∑
k=0

〈
mk|Rn

〉
0

ζk
k!
, (4.27)

with ζk being Lagrange undetermined multipliers for the moment con-
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straints, and 〈
mk|Rn

〉
0

=
∑
m≥0

mkpα (m|Rn) . (4.28)

Here we use the m-to-the-k-falling notation of Eq. (3.44), mk ≡ k!
(
m
k

)
.

The requirement that this functional of the distribution {pj} be station-
ary with respect to first-order variations in the distribution {pj} yields

− ln
[
pα (j|Rn)
p̂α (j|Rn)

]
=

kmax∑
k=0

jk ζk
k!
≈ ζ0 + jζ1 + j(j − 1)

ζ2
2

+ . . . (4.29)

The Lagrange multipliers ζk are adjusted so that the probabilities finally
reproduce the information given initially. For example, ζ0 is understood
to establish the necessary normalization of the probabilities; thus

∑
k≥0

pα (k|Rn) = 1 = e−ζ0
∑
m≥0

(
p̂α (m|Rn)

kmax∏
k=1

e−ζkmk/k!

)
(4.30)

so that

eζ0 =
∑
m≥0

(
p̂α (m|Rn)

kmax∏
k=1

e−ζkmk/k!

)
. (4.31)

Therefore, using Eqs. (4.25), (4.29) and (4.31), the final thermodynamic
result can be given in terms of the required normalization factor

βµ̃ex
α (Rn) = ln

1 +
∑
m≥1

(
p̂α (m|Rn)
p̂α (0|Rn)

kmax∏
k=1

e−ζkmk/k!

) . (4.32)

This is suggestive of the calculation of a partition function for a modest-
sized set of states with effective interactions. The interactions are n-
function interactions, in contrast to density functional (or ρ-functional)
theories, but with strength parameters adjusted to conform to the data
available. A standard procedure for obtaining the Lagrange multipliers
is to minimize the function

f (ζ1, . . . , ζkmax) = ln

1 +
∑
m≥1

(
p̂α (m|Rn)

kmax∏
k=1

e−ζkmk/k!

)
+

kmax∑
k=1

〈
mk|Rn

〉
0

ζk
k!

. (4.33)
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Fig. 4.3. ln pj vs. j, exemplifying the packing model of Eq. (4.29), for a
hard-sphere solute in the hard-sphere fluid. Since there is no conformational
flexibility in this application, we adopt the simpler notation pj ≡ p (j|Rn).
This example utilizes the data of Table 4.3 and p̂j ∝ 1/j!. The left panel
shows the distributions inferred with the lowest two moments of Table 4.3
for each density of that table, low to high respectively corresponding to low
to high on the right side of that panel. The right panel shows changes with
increasing number of moments used (2 through 4) for the highest density
of Table 4.3. Because nk=0 for non-negative integer n < k, direct effects
of adding successively higher order binomial moments are seen in ln pj only
for j ≥ k. Indirect effects come in through the normalization factor that
gives the thermodynamic quantity Eq. (4.32). But since contributions with
j greater than the mean are relatively small, and absolute errors typically
smaller yet with inclusion of binomial moments of order k greater than the
mean, convergence of the chemical potential is expected to be simple when
the order of the moments used is greater than the mean.

This will become operationally problematical if more Lagrange multi-
pliers ζk are used than the data warrant. If operational problems are
encountered, reducing kmax usually fixes those problems.

Table 4.1. Binomial moments Bk ≡
〈(

n
k

)〉
0

for a spherical observation
volume of radius λ = d in hard-sphere fluids(Pratt et al., 2001).

ρd3 B1 B2 B3 B4 B5 B6

0.277 1.16 0.43 0.06 — — —
0.5 2.09 1.56 0.51 0.08 — —
0.6 2.51 2.33 0.99 0.20 0.02 —
0.7 2.93 3.26 1.73 0.45 0.05 —
0.8 3.35 4.39 2.84 0.94 0.15 0.01
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Exercises

4.10 Consider optimization with a contraint, and the Lagrange un-
determined multiplier calculation. Suppose you wish to find an
extreme value of f (x) on a surface g (x) = c, with c a constant.
Explain why the gradients of f and g must be parallel at the
desired extreme points.

4.11 Show how Eq. (4.29) follows from making the object Eq. (4.27)
stationary with respect to variations of the probabilities.

4.12 Show that the equations ∂f/∂ζk = 0, k = 1, . . . kmax locate the
Lagrange multipliers that satisfy the moment data of Eq. (4.28).
Consider the second derivatives of f (ζ1, . . . , ζkmax) to establish
that the stationary point sought is a minimum.

4.13 Show that use of only 〈n|Rn〉0 and the natural default model
p̂j ∝ 1/j! produces the Poisson distribution and further that
ζ1 = − ln 〈n|Rn〉0 and βµ̃ex

α (Rn) = 〈n|Rn〉0. Introducing the
notation

2b(2) (Rn) ρ ≡ 〈n|Rn〉0 = vρ , (4.34)

with v the molecular excluded volume, b(2) (Rn) the second
virial coefficient for this conformation Rn, then this approxima-
tion is the second virial approximation. Evaluate the pressure
of the system at this level of approximation.

4.14 Consider a liquid solvent composed of one atomic type, e.g., liq-
uid N2, and the probability density 4πλ2ρD1(λ) of the distance
λ to the nearest atomic center of an arbitrarily chosen point.
For the case of a spherical distinguished solute, use the notation
that pλ (0) is the insertion probability for a solute that presents
a spherical excluded volume of radius λ. Show that

dpλ (0)
dλ

= −4πλ2ρD1(λ) (4.35)

where λ is the distance of closest approach for a solvent atom
to a hard-sphere solute. Hint: explain why

pλ (0) = 4πρ
∫ ∞

λ

R2D1(R)dR . (4.36)

4.15 Generalize the result of Eq. (4.36) by considering the distribu-
tion of the distance to the nth neighbor of an arbitrary point
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4πλ2ρDn(λ) and proving

n−1∑
j=0

pλ (j) = 4πρ
∫ ∞

λ

R2Dn(R)dR . (4.37)

4.4 Flory-Huggins Model of Polymer Mixtures

The Flory-Huggins theory is a workhorse model of phase equilibria in-
volving polymeric fluids. It gives the description

β∆Gmix

N
= xγ lnφγ + xν ln(1− φγ) + Xγνφγ(1− φγ) (4.38)

of the Gibbs free energy of mixing of two pure liquids. N = nγ +
nν is the total number of molecules, xγ is the mole fraction of the γth

component, and φγ is the volume fraction of the γth component,

φγ =
ργ

ρ̄γ
, (4.39)

with ργ the number density of species γ in the mixture and ρ̄γ the
corresponding quantity in the pure liquid. The last term of Eq. (4.38),
involving the parameter Xγν , describes interactions between the two
components. The other terms supply an approximate description of the
entropy of mixing.

In recent years, there have been substantial efforts to measure this
composition dependence of the interaction parameter such as Xγν (Bates
et al., 1988; Han et al., 1988) — see Fig. 4.4, p. 96 — and thus to refine
our understanding of this theory. The original and customary derivations
of the Flory-Huggins model introduced an interaction parameter that
was considered to be independent of φγ , but it has long been recognized
that this is not the typical case (Flory, 1970). We depart here from the
customary derivations to lay a groundwork for a basic reconsideration
of that composition dependence. For example, we don’t insist here that
Xγν is the traditional Flory-Huggins χγν parameter.

As with the composition dependence, the pressure dependence of χγν

recently has begun to receive more specific study (Beiner et al., 1998).
With regard to temperature dependences, the original view was that
χγν ∝ 1/T . Though there are remarkable exceptions (Lefebvre et al.,
1999), it is an important experimental point that linearity in 1/T is
common; a refinement is that linearity should be distinguished from
proportionality, and this issue will come up in the discussion below.



96 MODELS

0.5

0.6

0.7

0.8

0.9

χ12

φ1

1 0.20. 0.3 0.4 0.5

1.6

1.4

1.2

1.0

0.8

Fig. 4.4. Composition dependence of the Flory-Huggins interaction parame-
ter χγν for physically distinct cases of mixtures of cyclohexane-polystyrene
(upper panel) and water-polyethylene glycol (lower panel), utilizing the data
of (Bae et al., 1993) for several temperatures. φγ is the volume fraction of
the small-molecule solvent. For the upper panel (cyclohexane-polystyrene)
the assumption of composition independence of χγν is qualitatively satisfac-
tory; the lowest curve there is the T =60C data. For the lower panel (water-
polyethylene glycol) the assumption of composition independence of χγν is less
satisfactory; the upper curve there is the T =40C data, and the lower curve
corresponds to T =30C. The data were analyzed on the basis of Eq. (4.63),
determining the value χγν(φγ = 0) by fitting the empirical data to the form
(φγ − [φγ ]min)χγν(φγ = 0), with [φγ ]min the minimum volume fraction mea-
sured, and regarding χγν(φγ = 0) as a fitting parameter. The temperature
dependence is stronger, and thus clearer, for the water-polyethylene glycol
case (lower panel), and the interaction strength increases with increasing tem-
perature reflecting significant entropic contributions.

Here we develop a derivation of the Flory-Huggins model that is
broader than the customary derivations. The derivation below doesn’t
at an initial stage express various quantities related to polymeric ma-
terials on a per monomer basis, as is customary. The chief reason for
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Fig. 4.5. Volume of mixing of poly(ethymethylsiloxane) and
poly(dimethylsiloxane), a case for which this is particularly small. These
results of (Beiner et al., 1998) have been normalized by the specific volume
of poly(dimethylsiloxane) (Markovitz and Zapas, 1989, see Table 13.16.B.1.a)
at T =30C. For other details see (Beiner et al., 1998).

this is that such a definition at an initial stage typically is based upon
lattice modeling of the problem, and we wish here to avoid premature
idealizations.

We consider mixing of two liquids. We will assume, in the first place,
that a satisfactory separation of attractive and repulsive intermolecu-
lar interactions is possible, and that the attractive interactions can be
treated in the usual van der Waals approach of Sec. 4.1, p. 76. Thus, the
interaction contribution to chemical potentials, or the excess chemical
potentials, of each species involved will be assumed to adopt the form

βµex
γ (ργ , ρν) ≈ βµ̃ex

γ (ργ , ρν)− 2
kT

∑
ν

a(2)
γν ρν . (4.40)

The a(2)
γν are van der Waals parameters describing the effects of attrac-

tive interactions, and the tilde with µ̃ex
γ (ργ , ρν) indicates that these are

the excess chemical potentials for the case without attractive interac-
tions, i.e. the packing contributions associated with the repulsive forces
solely. The experimental results replotted in Fig. 4.6 show that the 1/T
dependence implied by this assumption can be satisfactory.

We first consider packing contributions and compose the Gibbs free
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energy of mixing for that contribution as

β∆G̃mix

N
= xγ

[
ln
ργ

ρ̄γ
+ βµ̃ex

γ (ργ , ρν)− βµ̃ex
γ (ρ̄γ , 0)

]
+ xν

[
ln
ρν

ρ̄ν
+ βµ̃ex

ν (ργ , ρν)− βµ̃ex
ν (0, ρ̄ν)

]
. (4.41)

The quantities ρ̄γ are the densities of the pure phases at the specified
pressure p, that is, with attractive forces operating to achieve experi-
mental densities; the partial molar volumes of these pure phases are v̄γ

= 1/ρ̄γ . Similarly, the densities of the mixture correspond to the same
pressure p. Remembering Eq. (4.39), a way for this mixing free energy,
Eq. (4.41), to achieve the form of the initial two terms of Eq. (4.38) is
that the excess quantities within the brackets of Eq. (4.41) vanish:

βµ̃ex
γ (φγ ρ̄γ , φν ρ̄ν) = βµ̃ex

γ (ρ̄γ , 0) , (4.42a)

βµ̃ex
ν (φγ ρ̄γ , φν ρ̄ν) = βµ̃ex

ν (0, ρ̄ν) . (4.42b)

To see how this might happen, look at these equations through the level
of second virial coefficients

b̃(2)γγ φγ ρ̄γ + b̃(2)γν φν ρ̄ν = b̃(2)γγ ρ̄γ , (4.43a)

b̃(2)νγ φγ ρ̄γ + b̃(2)νν φν ρ̄ν = b̃(2)νν ρ̄ν . (4.43b)

The tilde is a reminder that we are discussing packing contributions
here. Solving these equations produces

b̃(2)γγ =
v̄γφν

v̄ν(1− φγ)
b̃(2)γν , (4.44a)

b̃(2)νν =
v̄νφγ

v̄γ(1− φν)
b̃(2)γν . (4.44b)

If the excess volume of mixing is zero, then all the volume fraction mul-
tipliers cancel in these forms, because then φγ = (1− φν). Though the
present derivation should provide a basis for doing better, this assump-
tion of zero volume of mixing will be our second assumption here. Then
Eqs. (4.44) describe a scaling of second virial coefficients that is natural
even though special:

b̃(2)γγ =
(
v̄γ

v̄ν

)
b̃(2)γν (4.45a)

b̃(2)νν =
(
v̄ν

v̄γ

)
b̃(2)γν . (4.45b)

If species γ = s is a solvent non-macromolecule of size roughly the same
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Fig. 4.6. Measurements of effective Flory-Huggins χ-parameter for deuterated
polysytrene - poly(vinylmethylether) blends (Han et al., 1988) as a function
of 1/T . The temperature range is typically 100C - 150C, and the numbers
near each set of data indicate the volume fraction of polystrene. The observed
linear dependence on 1/T provides the physical conclusion that first-order
perturbation theory is a satisfactory treatment of attractive interactions here.

as the monomers composing the polymeric species, ν = p, then it is
natural to estimate v̄p/v̄s ≈M , the polymerization index. Further, it is
natural also to estimate b̃(2)sp /b̃

(2)
ss ≈M ; see Eq. (4.34), p. 94.

We now turn to discuss the treatment of attractive interactions. Again,
our first discussion will be confined to a second virial coefficient level.
We will use the notation

b(2)γν (T ) = b̃(2)γν −
a
(2)
γν

kT
. (4.46)

This is consistent with Eq. (4.40) provided the a(2)
γν introduced first were

indeed independent of thermodynamic state. To compose the mixing free
energy, note that

xη =
φηρ̄η

φγ ρ̄γ + φν ρ̄ν
. (4.47)
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We then find

β∆Gmix

N
= xγ lnφγ + xν ln(1− φγ)

− 2φγ(1− φγ)
kT

(
ρ̄γ

2a
(2)
γγ − 2ρ̄ν ρ̄γa

(2)
γν + ρ̄ν

2a
(2)
νν

φγ(ρ̄γ − ρ̄ν) + ρ̄ν

)
(4.48)

provided Eq. (4.45), and assuming that the volume of mixing is zero.
This Eq. (4.48) is recognizable as the form Eq. (4.38) if the interaction
parameter is identified as

Xγν = − 2
kT

(
ρ̄γ

2a
(2)
γγ − 2ρ̄ν ρ̄γa

(2)
γν + ρ̄ν

2a
(2)
νν

φγ(ρ̄γ − ρ̄ν) + ρ̄ν

)
. (4.49)

If the various parameters a(2)
γν were to scale as the repulsive force con-

tributions have been assumed, Eq. (4.45), then this formula Eq. (4.49)
would vanish. But the same scaling for attractive force parameters as for
repulsive force parameters is not as reasonable. The attractive force con-
tributions derive from longer-range interactions and relative strengths of
those interactions may display additional variety. The calculation lead-
ing to Eq. (4.49) does, however, show that the slightly more general
relation

ρ̄γ
2b̃(2)γγ − 2ρ̄ν ρ̄γ b̃

(2)
γν + ρ̄ν

2b̃(2)νν = 0 (4.50)

is a sufficient restriction on the repulsive force contributions through the
level of the second virial coefficients. Thus, through the level of second
virial coefficients only, we could have written

Xγν = 2
(
ρ̄γ

2bγγ − 2ρ̄ν ρ̄γbγν + ρ̄ν
2bνν

φγ(ρ̄γ − ρ̄ν) + ρ̄ν

)
(4.51)

involving the full second virial coefficients, Eq. (4.46). This is a little
less fruitful, however, because Eq. (4.45) is a valuable physical insight,
and we should be able to exploit that further.

The preceding arguments have been specialized, so let’s review in
order to see to what extent they might be generalized. Most impor-
tantly, we see that the conclusion from Eq. (4.43) can be much more
general. The calculation of Eq. (4.43) assesses excluded volumes, and
requires that the volume available to a distinguished additional molecule
be the same for the pure solvent and the mixed solution. Theories of
such packing effects can depend only on packing fractions evaluated by
matching of second virial coefficients for those effects. A simple example
is the primordial free-volume theory − ln (1− ξ) where ξ is the packing
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fraction (Hildebrand, 1947); this primordial free volume − ln (1− ξ) is
approximately equal to ξ for small values of that packing fraction, and
that correspondence provides a fundamental identification of the packing
fraction. Theories of this sort are widespread, typically among the more
accurate theories available (Bjorling et al., 1999), and the developments
above apply to those theories. Indeed, the idea that distinguished par-
ticle packing should depend primarily on the net packing fraction, and
only secondarily on structural idiosyncrasies, conforms to the more com-
mon sense. Liquid crystalline structuring is probably the most imme-
diate contrary case; comparing fluid to liquid crystalline systems at the
same packing fraction, it is clear that the structural distinctions make a
qualitative difference.

A further issue for review here is the treatment of attractive interac-
tions. The treatment here was limited to consideration of the second
virial coefficient as in Eq. (4.46), and this implies the composition and
temperature dependences exhibited in Eq. (4.49). Those composition
and temperature dependences are certainly the leading factors, but a
more general evaluation of first-order perturbation theory could result
in subtle corrections to those dependences. Additionally, some implicit
temperature and pressure dependence is implied by the variations of
the pure liquid properties in those factors. Finally, the limitation of
the first-order perturbation theory must also be born in mind; there are
experimental cases where first-order perturbation theory appears to be
unsatisfactory (Lefebvre et al., 1999).

The view here is broader than the classic view of the Flory-Huggins
model. Though consistent with the qualitative message of traditional
Flory-Huggins treatments, the requirement Eq. (4.45) will be used in
developing subsequent corrections to the most primitive Flory-Huggins
treatments. The required scaling of virial coefficients is reasonable for
polymeric mixtures. The requirement on the volume of mixing is based
upon the experience that the volume of mixing of polymeric liquids is
typically small. Neither of these requirements need be the case of other
liquid mixtures of molecules of different sizes, e.g. I2 and (C3F7COOCH2)4C
(Hildebrand et al., 1970). Together these restrictions amount to a com-
mon sense but approximate procedure for avoiding dominating packing
issues.

We can formalize the discussion above, perhaps at the loss of some
molecular-scale insight, by making replacements of bγν according to con-
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sideration of Eqs. (4.42) on the basis of

µ̃ex
γ (φγ ρ̄γ , φν ρ̄ν) ≈ µ̃ex

γ (ρ̄γ , 0)

+ (φγ − 1) ρ̄γ

∂µ̃ex
γ

∂ργ
(ρ̄γ , 0) + φν ρ̄ν

∂µ̃ex
γ

∂ρν
(ρ̄γ , 0) , (4.52a)

µ̃ex
ν (φγ ρ̄γ , φν ρ̄ν) ≈ µ̃ex

ν (0, ρ̄ν)

+ φγ ρ̄γ
∂µ̃ex

ν

∂ργ
(0, ρ̄ν) + (φν − 1) ρ̄ν

∂µ̃ex
ν

∂ρν
(0, ρ̄ν) . (4.52b)

From the point of view of molecular theory, the coefficients ∂µex
γ /∂ρν

are fundamentally related to structural properties of these fluids — OZ
direct correlation functions (Eq. (6.70), p. 164) — as is discussed in de-
tail subsequently in Sec. 6.3 on the Kirkwood-Buff theory. Alternatively,
these coefficients could be explicitly evaluated if an explicit statistical
thermodynamic model, as in the discussion here, were available for the
unmixed fluids. Finally, these comments indicate that much of the in-
formation supplied by these coefficients is susceptible to measurement
on and modeling of the unmixed liquids, as for example

ρ̄γ

∂µ̃ex
γ

∂ργ
(ρ̄γ , 0) =

∂p̃ex

∂ργ
=

∂p̃

∂ργ
− kT

≈ ∂p

∂ργ
+ 2a(2)

γγ ργ − kT (4.53)

for the pure fluid. This gives further perspective on the appearance of
pure-fluid compressibilities in formulae such as Eq. (4.57) below.

We now specialize these general formulae to the common case that
this mixing free energy is expressed on a per monomer basis. As a
notational convenience we consider specifically the case of a polymer
species mixed into a small molecule solvent, and use M = v̄ν/v̄γ as the
empirical polymerization index parameter. Then

β∆Gmix

ρ̄γV
= φγ lnφγ +

(1− φγ)
M

ln(1− φγ) (4.54)

is the ideal contribution to the mixing free energy on a per monomer
basis. The quantity ρ̄γV would be the nominal number of monomers
that would occupy the volume V under the conditions considered. For
the interaction contribution the required conversion is

N

ρ̄γV
= φγ +

1
M
φν , (4.55)

which is directly proportional to the denominator of Eq. (4.68). Defining
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Fig. 4.7. Examples of the function Eq. (4.56) for M=100, and χγν = 1/4, 1/2,
1 from bottom to top.

χγν yields then the conventional form:

β∆Gmix

ρ̄γV
= φγ lnφγ +

(1− φγ)
M

ln(1− φγ) + χγνφγ(1− φγ) . (4.56)

Fig. 4.7 shows what this function of φγ looks like for several values of
χγν . Then if we accept the specific calculation of Eq. (4.68), for example,

− kT ρ̄γχγν = 2ρ̄γ
2

(
a(2)

γγ −
2a(2)

γν

M
+
a
(2)
νν

M2

)

+
(

1
κ̄T γ

− kT ρ̄γ + 2a(2)
γγ ρ̄

2
γ

)(
1− b̃

(2)
γν

b̃
(2)
γγ

1
M

)

+
(

1
κ̄T ν

− kT ρ̄ν + 2a(2)
νν ρ̄ν

2

)(
1− b̃

(2)
γν

b̃
(2)
νν

M

)
, (4.57)

on a per monomer basis.
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Exercises

4.16 Consider a case of a mixture of two polymer species with nom-
inal polymerization indices of Mγ and Mν where the ideal free
energy of mixing is to be described by

φγ

Mγ
lnφγ +

φν

Mν
lnφν . (4.58)

Suggest what the normalization might be for this mixing free
energy.

4.17 Show that [
∂∆Gmix

∂nγ

]
T,p,nα 6=γ

= µγ − µ̄γ , (4.59)

where the rightmost quantity is the indicated chemical potential
for the pure liquid of species η at the prescribed temperature
and pressure. Show further that[

∂φγ

∂nγ

]
T,p,nα 6=γ

=
φγ (1− φγ)

nγ
, (4.60)

under the assumption that the volume of mixing vanishes. Then
consider the Flory-Huggins expression for the ideal entropy of
mixing, Eq. (4.54), and show that

βµγ − βµ̄γ = lnφγ + (1− φγ)
(

1− 1
M

)
. (4.61)

Give an interpretation of the last term shown here.
4.18 Consider the conditions of equilibrium involving the chemical

potentials for two phases at specified temperature and pressure.
Show that a double tangent in the β∆Gmix/N vs. mole fraction
(or volume fraction) curve indicates a phase separation in a
binary liquid mixture. What is the physical origin for phase
separation at the level of Flory-Huggins theory?

4.19 With natural assumptions of the Flory-Huggins theory, from
Eq. (4.38) show that

βµγ = βµ̄γ + lnφγ + (1− φγ)
(

1− 1
M

)
+ (1− φγ)2 χγν + (1− φγ)2 φγ

∂χγν

∂φγ
. (4.62)
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4.20 Eq. (4.62) suggests an operational definition of an empirical χ
parameter

χ ≡ 1
(1− φγ)2

[
βµγ − βµ̄γ − lnφγ − (1− φγ)

(
1− 1

M

)]
= χγν + φγ

∂χγν

∂φγ
; (4.63)

see (Bae et al., 1993). Following Eq. (4.63), show that the Flory-
Huggins χγν can be obtained from the empirical χ according to
the relation

φγχγν (φγ) =
∫ φγ

0

χ(φ)dφ . (4.64)

4.21 Give a thermodynamic explanation why bγν = bνγ . What can
you say about this symmetry in the context of the formalization
Eq. (4.52)?

4.22 Let’s consider a specific development of the argument above.
Suppose that each βµ̃γ(ργ , ρν) does have the form of a free vol-
ume theory, thus being given by βµ̃γ(ργ , ρν) = m(ξγ) where ξγ
are the packing fractions

1
2
ξγ = b̃(2)γγ φγ ρ̄γ + b̃(2)γν φν ρ̄ν , (4.65a)

1
2
ξν = b̃(2)νγ φγ ρ̄γ + b̃(2)νν φν ρ̄ν . (4.65b)

and m(x) is a given function such as -ln (1− x). Suppose fur-
ther that the virial coefficients don’t quite obey Eq. (4.44) and
consider the discrepancies

1
2
δξγ = −b̃(2)γγ (1− φγ)ρ̄γ + b̃(2)γν φν ρ̄ν , (4.66a)

1
2
δξν = −b̃(2)νν (1− φν)ρ̄ν + b̃(2)γν φγ ρ̄γ . (4.66b)

Assuming that the volume of mixing is zero, and that these
discrepancies aren’t large, write

m
(
2b̃(2)γγ ρ̄γ + δξγ

)
−m

(
2b̃(2)γγ ρ̄γ

)
≈ m′

(
2b̃(2)γγ ρ̄γ

)
δξγ

= −φν

(
b̃
(2)
γγ ρ̄γ − b̃(2)γν ρ̄ν

b̃
(2)
γγ ρ̄γ

)(
β

ρ̄γ κ̄T (1)
− 1 + 2βa(2)

γγ ρ̄1

)
.

(4.67)
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The correction is the first term in a Taylor series for small dis-
crepancies, and involvesm′(ξγ) a property of the pure liquid that
has been here evaluated in terms of the pure liquid compress-
ibility, κ̄T γ . The term 2βa(2)

γγ ρ̄1 appears because m(x) describes
only the packing contributions, and in exploiting the measured
compressibility of the actual system we should correct for the
influence of attractive interactions. We do that on the basis of
a van der Waals model with parameter a = aγγ for pure fluid γ,
compensating for a trivial temperature dependent contribution
in the κ̄T γ . Thus the temperature dependences of those coeffi-
cients are intended to be weak. Including this correction, show
that the revised strength of the interaction parameter is

−Xγν =
2
kT

(
ρ̄γ

2a
(2)
γγ − 2ρ̄ν ρ̄1a

(2)
γν + ρ̄ν

2a
(2)
νν

φγ (ρ̄γ − ρ̄ν) + ρ̄ν

)
+

[(
β

ρ̄γ κ̄T γ
− 1 + 2βa(2)

γγ ρ̄1

)(
ρ̄γ −

b̃(2)γν

b̃
(2)
γγ

ρ̄ν

)
+
(

β
ρ̄ν κ̄T ν

− 1 + 2βa(2)
νν ρ̄ν

)(
ρ̄ν −

b̃(2)γν

b̃
(2)
νν

ρ̄γ

)]
/ [φγ (ρ̄γ − ρ̄ν) + ρ̄ν ] . (4.68)

This is no longer proportional to 1/T but is linear in 1/T ,
aside from dependences on pure fluid properties. The last term
of Eq. (4.68) would be regarded as an entropic contribution to
Xγν .

4.23 Show that the corrected result Eq. (4.68) matches Eq. (4.49)
through the second virial coefficient contributions.

4.24 The discussion of this Section introduced volume fractions

φi ≡
ρi

ρ̄γ
, (4.69)

and at opportune steps assumed that the volume of mixing van-
ished, so φγ + φν = 1. Reconsider these derivations permitting
the volume of mixing to be non-zero,

φγ + φν = 1− ∆V
V

, (4.70)

and see what you can learn.
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4.5 Electrolyte Solutions and the Debye-Hückel Theory

The distinction between drinking water and seawater is obvious. Elec-
trolyte solutions, as the name suggests, involve neutral components that
separate into electrically non-neutral units, ions. Ionic interactions are
qηqν/r for a pair of ions with formal charges qη and qν separated by a
distance r.

Typical ionic interactions are strong on a thermal energy scale. We
can characterize the strength of these interactions by considering the
distance between monovalent ions when their mutual interaction poten-
tial energy corresponds to the standard thermal energy (T=298K): r =
βe2 ≈ 561 Å. Because these interactions are strong, electrolyte solutions
are common for cases where a substantial solvent dielectric constant can
weaken the net size of inter-ionic influences. For the common example
of liquid water solvent, ε ≈ 80 roughly. Then it is common initially to
consider models in which the effects of the solvent are subsumed by this
dielectric screening (Friedman and Dale, 1977), and the inter-ionic inter-
actions are described by qηqν/εr. Still, ion pairs closer than about 7 Å
have mutual interactions stronger then kT . Typical inter-ionic distances
for solutes as concentrated as 1 mol/l of a 1-1 salt, such as NaCl, are
about 9 Å estimated as ρ−1/3 where ρ is the number density of ions. In
order to put these strength-of-interaction issues in the background, we
restrict attention to significantly lower concentrations than this.

But even at low concentration difficulties remain: the characteris-
tic difficulty of these interactions is their long range. One important
consequence of the long range of these interactions is that the bulk com-
positions of electrolyte solutions are neutral. These solutions conduct
electricity and the macroscopic electric field in the interior of a conduc-
tor at equilibrium must be zero. Otherwise, currents would flow, heat
would be generated, and the system wouldn’t be at thermal equilibrium.
But if the macroscopic electric field is zero in an interior of a conduc-
tor at equilibrium, then the Poisson equation can be read in reverse
as implying that the equilibrium macroscopic charge density must be
zero. Viewed physically, a slight excess charge will be conducted until
it reaches a surface without possibilities for further adjustment. This
influence of the system surface is a clue that long-ranged interactions
are involved.

These considerations can make the thermodynamics of electrolyte so-
lutions tricky. Despite such possibilities, the right side of Eq. (3.20),
p. 54, is typically inoffensive for the problems of ionic contributions to
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single ion activities. In fact, early instances (Kirkwood and Poirier,
1954; Jackson and Klein, 1964) of the PDT were focused precisely on
our present problem. The averaging need only involve a neutral solution
and a decoupled distinguished ion. The requirements are only that the
potential energy change be well defined and that the sampling can be
carried out.

We will begin a more detailed discussion from the point of view of
a gaussian model Eq. (4.12), p. 81. Because we will be interested in
the lowest concentrations, we will neglect consideration of short-ranged
interactions; they are necessary to define our problem but wouldn’t ap-
pear in our final result here. Also because we are interested in the lowest
concentrations (so the typical ionic interactions aren’t too strong) and
temperatures not too low (β not too high), the fact that the terms of
Eq. (4.12), p. 81, exhibit a formal ordering in powers of β is also moti-
vational. Thus,

µex
γ ≈ µ̃ex

γ +
∫
V

ϕγη(r) 〈ρη(r)〉r d3r

− β

2

∫
V

∫
V

ϕγη(r) 〈δρη(r)δρν(r′)〉r ϕνγ(r′)d3rd3r′ (4.71)

where we have dropped the notation of the condition Rn since we won’t
exploit information of that type in the present discussion. Here ϕην(r)
= qηqν/εr; 〈ρη(r)〉r is the density of species η obtained for the reference
system with a distinguished particle which interacts with the solution
on the basis of the defined reference interactions.

The discussion surrounding Eq. (4.13), p. 82, suggested it was rea-
sonable to drop the subscript qualifier on 〈. . .〉r in treating the longest-
ranged interactions. Noting that in that case the middle term of Eq. (4.71)
vanishes by electroneutrality of the bulk compositions, we then consider
the simplification

µex
γ ≈ µ̃ex

γ −
β

2

∫
V

∫
V

ϕγη(r) 〈δρη(r)δρν(r′)〉ϕνγ(r′)d3rd3r′ . (4.72)

This looks like the most primitive theory that we might justifiably take
seriously. It depends on information about correlations

〈δρη(r)δρν(r′)〉 = ρνδνηδ(r − r′) + ρνρη

(
g(2)

νη (|r − r′|)− 1
)
. (4.73)
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This type of information might be obtained as data from simulation or
some other experiment.

But the PDT permits the same tools to be applied also to study
g
(2)
νη (|r − r′|); see Eq. (3.52), p. 64, which we rewrite for the specific case

here:

g(2)
νη (r, r′) =

(
zν

ρνΛ3
ν

)(
zη

ρηΛ3
η

)
e−βu(2)

νη (r,r′)

×
〈
e−β∆U(2)

νη |r1ν = r, r1η = r′
〉

0
. (4.74)

The thermodynamic multipliers in Eq. (4.74) play the role of achieving
g
(2)
νη (|r − r′|) ∼ 1 for large |r − r′|; see Eq (3.52) p. 64.
For simplicity in the present context, we will assume that the micro-

scopic binding energies of the two distinguished ions are additive accord-
ing to ∆U (2)

νη = ∆U (1)
ν + ∆U (1)

η . If the variables ∆U (1)
ν and ∆U (1)

η were
uncorrelated, then because of the normalization achieved by the thermo-
dynamic multipliers, Eq. (4.74) would yield g

(2)
νη (r, r′) = e−βu(2)

νη (r,r′).
This is not satisfactory in the present case because of the long range of
the inter-ionic interactions u(2)

νη (r, r′). Therefore, the effects that we are
after here involve the correlations of these variables.

We can make this issue of correlations more definite by writing〈
e−β(∆U(1)

ν +∆U(1)
η )|r1ν = r, r1η = r′

〉
0

=
∫
P(0)

νη (ε, ε′|r1ν = r, r1η = r′) e−β(ε+ε′)dεdε′ (4.75)

where

P(0)
νη (ε, ε′|r1ν = r, r1η = r′) =〈

δ
(
∆U (1)

ν − ε
)
δ
(
∆U (1)

η − ε′
)
|r1ν = r, r1η = r′

〉
0
. (4.76)

Introducing the marginal distributions

P(0)
ν (ε) =

∫
P(0)

νη (ε, ε′|r1ν = r, r1η = r′) dε′ , (4.77)

then the uncorrelated approximation is

P(0)
νη (ε, ε′|r1ν = r, r1η = r′) ≈ P(0)

ν (ε)P(0)
η (ε′) , (4.78)

without dependence on the separation |r − r′|.
Now the statistical model that underlies Eq. (4.72) is a gaussian

one. Thus we anticipate that a gaussian model should be consistent
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for P(0)
νη (ε, ε′|r1ν = r, r1η = r′) although we should exclude uncorrelated

features of the joint gaussian distribution. On the basis of Eq. (4.78)
those uncorrelated features just establish an |r − r′| independent nor-
malization. Performing that calculation (see Eq. (4.15), p. 83) gives

− β−1 ln g(2)
νη (r) = u(2)

νη (r)

− β
〈
δ∆U (1)

ν δ∆U (1)
η |r1ν = 0, r1η = r

〉
0
. (4.79)

The δ∆U (1)
ν here means the usual thing:

δ∆U (1)
ν = ∆U (1)

ν −
〈
∆U (1)

ν |r1ν = 0, r1η = r
〉

0
. (4.80)

In contrast with formulae like Eq. (4.72), p. 108, there is no surviving
factor of 1

2 with the fluctuation term of Eq. (4.79). This fluctuation con-
tribution comes from a quadratic cross-term and the customary factor
of 2 with that cross-term has cancelled the 1

2 ; again see Eq. (4.15), p. 83.
In approaching a final result here, we emphasize again that this model

must be expected to be unsatisfactory for the shortest-range correlations.
For example, it cannot be expected to be satisfactory if ∆U (1)

ν describes
van der Waals excluded volume interactions. With this restriction in
mind, and with our physical orientation on this problem, we replace
∆U (1)

ν = Φ(1)
ν , so that Eqs. (4.79) and (4.80) are replaced by

−β−1 ln g(2)
νη (r) = u(2)

νη (r)− β
〈
δΦ(1)

ν δΦ(1)
η |r1ν = 0, r1η = r

〉
0
. (4.81)

and

δΦ(1)
ν = Φ(1)

ν −
〈
Φ(1)

ν |r1ν = 0, r1η = r
〉

0
. (4.82)

Translating this result into the notation of Eq. (4.72), we have

ln g(2)
νη (r) ≈ −βϕνη (r)

+ β2

∫
V

∫
V

ϕγη(r′) 〈δρη(r′)δρν(r′′)〉ϕνγ(r′′ − r)d3r′d3r′′ . (4.83)

We emphasize again that this is only reasonable at long range where
g
(2)
νη (r) tends to one (1) and h(2)

νη (r) = g
(2)
νη (r)−1 tends to zero (0). It is

then natural to linearize according to ln
[
1 + h

(2)
νη (r)

]
≈ h

(2)
νη (r) which



4.5 Electrolyte Solutions and the Debye-Hückel Theory 111

yields the classic Debye-Hückel theory:

h(2)
νη (r) ≈ −βϕνη (r)

+ β2

∫
V

∫
V

ϕγη(r′) 〈δρη(r′)δρν(r′′)〉ϕνγ(r′′ − r)d3r′d3r′′ . (4.84)

The quantity 〈δρη(r′)δρν(r′′)〉 on the right side involves h(2)
νη (r), so this

is an integral equation to be solved for h(2)
νη (r).

The linearization that leads here to the Debye-Hückel model is phys-
ically consistent in this argument. But the possibility of a model that
is unlinearized in this sense is a popular query. More than one response
has been offered including the (nonlinear) Poisson-Boltzmann theory
and the EXP approximation; see (Stell, 1977) also for representative
numerical results for the systems discussed here.

In concluding this section, we note that the physical arguments here
are involved for a subject (the Debye-Hückel theory) that is at once so
basic, so firmly established, and so limited in physical scope to molecu-
lar science. The traditional presentation, e.g. (Hill, 1986), (Lewis et al.,
1961, see §23), is fine as far as it goes but gives little support for ex-
tensions of the theory, and little perspective on the basic issues of the
theory of solutions. The physical discussion here is different than the
most conventional presentations, does give further perspective on the
role of the PDT here, but is too extended without other pieces of the
theory of solutions in place. All these points surely mean that this is one
area where the beautiful but more esoteric theoretical tools (Lebowitz
et al., 1965) of professional theory of liquids are relevant to a simple view
of the problem. This topic is taken up again after the developments of
Sec. 6.1; see Eq. (6.28), p. 155.

Exercises

4.25 Take the model

hαγ (r) ≈ −βqαqγe−κr

εr
(4.85)

where

κ2 ≡ 4πβ
ε

∑
γ

ργqγ
2 (4.86)
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ln γ±

ln γ±
√C (mol/l)

0.0                    1.0                    2.0

 2.0

 1.0

 0.0

-1.0

√C (mol/l)

Fig. 4.8. Chemical potential data for a primitive model 1-1 electrolyte from
(Valleau and Cohen, 1980). See Eq. (4.87). The upper results are ln γ±, and
the dashed-dot curve is a parabola fitted to those results. The lower results
are ln γ±/

√
C and the solid line is −0.99 + 0.89

√
C fitted to those results; C

is in mol/l.

and show that the fluctuation contribution to Eq. (4.72) eval-
uates to −

(
qα

2κ
2ε

)
(Hill, 1986). We have emphasized that fluc-

tuation contributions, e.g. Eq. (4.71) p. 108, have a definite
sign. This Debye-Hückel theory treats correlations between
ionic species, so we conclude here that treatment of correlations
lowers this free energy.

4.26 Consider the converse of the question addressed in the previous
exercise, i.e. in what sense is the identification of κ (Eq. (4.86))
necessary? Assume that Eq. (4.72) is satisfactory and that the
correlations can be described with a simple screening length as
in Eq. (4.85). Discuss why κ must be given by Eq. (4.86).

4.27 The simplest inclusion of a reference system contribution would



4.6 Clustering in Dilute Solutions and Pitzer Models 113

be

µex
γ ≈ 2kT

∑
ν

b̃γνρν −
qγ

2κ

2ε
, (4.87)

where b̃γν are expected to be positive, reflecting dominance of
repulsive inter-ionic interactions for the reference system. Con-
sider the data shown in Fig. 4.8 in the light of this simplest
model. The fitted straight line gives ln γ± = 0.89C − 0.99

√
C,

where C is the molar concentration of the salt. Evaluate the
coefficients in Eq. (4.87), and check to what extent that model
provides a satisfactory description of these data.

4.6 Clustering in Dilute Solutions and Pitzer Models

Here we discuss a thermodynamic model appropriate to describe effects
of strong association in dilute solutions. To have a definite example,
consider a dilute electrolyte solution of a salt, say MaXb that in solu-
tion dissociates to produce cations M of charge qM|e| and anions X of
charge −qX|e| with aqM = bqX. The interactions between these ions are
composed of short-ranged interactions and long-ranged ionic interactions
screened by the dielectric response of the solvent with dielectric constant
ε, as qMqX/εr, with r the distance between the ions. If the ionic charges
are high or if the solvent dielectric constant isn’t particularly high, then
such interactions can lead to ion pairing, or clustering, and it is to mod-
els of this association phenomenon that we direct our attention. The
model discussed here is a simplification (Pratt and LaViolette, 1998)
of a quasi-chemical theory developed later but is similar to an informal
physical treatment of ionic equilibria in steam given by (Pitzer, 1982,
1983).

Clustering: Partitioning Statistical Possibilities. In order to seek
ion clusters that might form, we need an operational definition useful in
identifying them. Let’s direct our attention to a specific, distinguished
M ion. We will presume that a rule is available to determine how many
other ions, probably X ions, are clustered with the distinguished M
ion (Lewis et al., 1961, see discussion “What do we mean by degree
of dissociation?”, pp. 307–308). If there are k of those counter-ions
clustered, we would consider this M to be the nucleus of an MXk cluster
that has a net charge of qM − kqX.

Similarly, all other M ions could be considered in turn and we could
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determine the number, k, of counter-ions each M ion possesses in its
cluster. In this way we could determine the number of M ions having
precisely k counter-ion partners. We will denote the fraction of M ions
with k counter-ion partners by xk. [It isn’t important to our formal
development whether some of the those X ions might be involved in more
than one MXk cluster.] If we persist in focusing on a sole distinguished
M ion, xk is expected to be the fraction of time in a long record during
which the ion has k clustered X partners. The size of these clusters will
be limited by the maximum coordination number of the distinguished
central particle. We will use the language that an MXk cluster is a
cluster of size k ligands.

This clustering idea seeks to partition our difficulties according to the
numbers of ligands, k, that might be associated with a distinguished M
ion. The basic equation

〈nM〉 =
∑

k

〈nMXk
〉 =
Vqint

M zM
ΛM

3

〈〈
e−β∆U

(1)
M

〉〉
0

(4.88)

will be a target of our present discussion; see Eq. (3.20) p. 54. The
sum is over all MXk clusters that can form on the distinguished M
nucleus. This partition being established, it offers a divide-and-conquer
possibility; calculations/measurements can be focused on a small number
of cases, and then the net result composed according to Eq. (4.88).

To make progress with a specific term, say 〈nMXk
〉, we assume that

the PDT applies to this species too:

〈nMXk
〉 =
Vqint

MXk
zMXk

ΛMXk
3

〈〈
e−β∆U

(1)
MXk

〉〉
0

. (4.89)

This argument is examined and supported in more detail later, in Sec. 7.2
p. 170. The quantities qint

MXk
and ΛMXk

3 are proposed to be factors of the
canonical partition function of an MXk molecule/cluster, as in Eq. (3.18)
p. 53. Our further assignment

zMXk
= zMzX

k (4.90)

is perhaps less obvious, and it too will be scrutinized in a subsequent
chapter. Here we note that it is an assertion of chemical equilibrium

µMXk
= µM + kµX (4.91)

for the transformation

M + kX 
 MXk . (4.92)
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Altogether we then obtain〈〈
e−β∆U

(1)
M

〉〉
0

=
∑

k

(
qint
MXk

ΛM
3

ΛMXk
3qint

M

)〈〈
e−β∆U

(1)
MXk

〉〉
0

zX
k . (4.93)

This should be compared to Eq. (7.19) p. 173. The primitive quasi-
chemical approximation is obtained from Eq. (4.93) upon〈〈

e−β∆UMXk

〉〉
0
≈
[〈〈

e−β∆UX
〉〉

0

]k
. (4.94)

This expresses the physical view that the M ion is well-buried and thus
not affected by the material exterior to the cluster, and that the condi-
tions of the ligands are about the same whether bound in the cluster or
nonspecifically considered. The summand of Eq. (4.93) then simplifies
to 〈〈

e−β∆UMXk

〉〉
0
zX

k ≈
(
ρXΛX

3

qint
X

)k

. (4.95)

Finally we form the standard combination of the left side of Eq. (3.20),
p. 54:

ρMΛM
3

zMqint
M

≈ 1 +
∑
k≥1

K
(0)
k (T )ρX

k, (4.96)

where

K
(0)
k (T ) =

qint
MXk

/ΛMXk
3(

qint
M /ΛM

3
) (
qint
X /ΛX

3
)k . (4.97)

These coefficients are just the equilibrium ratios (Eq. (2.8), p. 35) for
chemical conversions Eq. (4.92) evaluated ideally. This primitive quasi-
chemical model

βµex
M ≈ − ln

1 +
∑
k≥1

K
(0)
k (T )ρX

k

 , (4.98)

is a simple sum over compositional possibilities for binding to an M ion,
and thus has the feel of a reduced partition function. Being based upon
the approximation Eq. (4.94), it neglects many of the physical contribu-
tions that have been discussed previously in this Chapter; those preced-
ing results could be marshalled to improve the approximation Eq. (4.94).
Also, our discussion here hasn’t worried about the possibilities that the
M ion might interact with things other than the X ions that bind to
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it. These further issues are necessary in realistic applications. A sub-
sequent chapter will establish quasi-chemical results more fully so that
these important issues can be addressed in a more organized way.

Exercises

4.28 Pressure Variation of Solvation Free Energies. The variation
of the solvation free energies with pressure is the partial mo-
lar volume and gives direct information on hydration structure.
Consider a solute species such as the ion M above, dilute in a
solvent denoted by W, for example, water. Recalling the chemi-
cal potential expression of Eq. (3.3), p. 46, show that the partial
molar volume is

vM ≡
(
∂µM

∂p

)
β,n

=
1
ρM

(
∂ρM

∂βp

)
β,n

+
(
∂βµex

M

∂ρW

)
β,n

(
∂ρW

∂βp

)
β,n

. (4.99)

Then confine interest to conditions of infinite dilution and show
that

lim
ρM→0

vM = (κT /β)

[
1 + ρW

(
∂βµex

M

∂ρW

)
β

]
, (4.100)

where κT = (−1/V) (∂V/∂p)T is the isothermal coefficient of
bulk compressibility of the pure solvent.

4.29 Consider the model Eq. (4.98) where W molecules may complex
an M solute according to

M + lW 
 MWl . (4.101)

Show that the interaction contribution to vM is

lim
ρM→0

vex
M = −

(
ρWκT

β

)(
∂

∂ρW

)
β

ln

1 +
∑
l≥1

K
(0)
l ρW

l


= −

(
ρWκT

β

)
vW l̄ , (4.102)

where vW = 1/ρW is the partial molar volume of the pure solvent
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(water) and

l̄ =
(

∂

∂ ln ρW

)
β

ln

1 +
∑
l≥1

K
(0)
l ρW

l

 =
∑
l≥0

lxl . (4.103)

4.30 Temperature Variation of Solvation Free Energies. The temper-
ature variation of the solvation free energy is the partial molar
entropy and, because of its interpretation as an indicator of dis-
orderliness, is of wide interest. As above, we focus here in the
conditions of infinite dilution of a solute M in a W solution.
Show that the interaction contribution to the partial molar en-
tropy is

lim
ρM→0

sexM =

[(
∂ρW

∂T

)
p

(
∂

∂ρW

)
T

+
(
∂

∂T

)
ρW

]

×

 1
β

ln

1 +
∑
l≥1

K
(0)
l ρW

l

 . (4.104)

The first term on the right-hand side accounts for the temper-
ature dependence of the solvent density; that brings in the coeffi-
cient of thermal expansion for the pure solvent αp =(1/V )(∂V/∂T )p

and then requires the density derivative of the quasi-chemical
contributions. But that density derivative was analyzed above
when we considered the partial molar volume. Using those re-
sults, show that

lim
ρM→0

sexM/k = −l̄ (Tαp)+
(
∂

∂T

)
ρW

T ln

1 +
∑
l≥1

K
(0)
l ρW

l


= −l̄ (Tαp) +

(
1− β

(
∂

∂β

)
ρW

)
ln

1 +
∑
l≥1

K
(0)
l ρW

l

 .

(4.105)

Eq. (4.105) highlights chemical contributions to this entropy
because(

∂

∂β

)
ρW

ln

1 +
∑
l≥1

K
(0)
l ρW

l

 = −
∑
l≥0

xl∆H
(0)
l . (4.106)

Obtain this equation and explain the heats that appear. Eq. (4.105)
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then becomes

lim
ρM→0

sexM/k = −l̄ (Tαp) + ln

1 +
∑
l≥1

K
(0)
l ρW

l


+ β

∑
l≥0

xl∆H
(0)
l . (4.107)



5

GENERALITIES

The following is a survey of some of general and useful relations for eval-
uation of chemical potentials and free energy changes. The number of
such relations isn’t large, but an overview is warranted here. Evalua-
tions of free energy changes are typically the most basic and convincing
validations of molecular simulation research. Calculations of free energy
changes are typically more specialized undertakings than unspecialized
simulations. If the problem at hand has been well-considered and calcu-
lations are to be specially directed to evaluate free energy changes, then
thermodynamic or coupling parameter integration procedures are likely
to be the most efficient possibilities. They are favorably stratified, they
can have low bias, it is clear how computational effort can be added
effectively as results accumulate, and they can be embarrassingly paral-
lel. Other methods considered here, such as importance sampling and
overlap methods, can be incorporated into thermodynamic integration
methods, and can improve the results.

Nevertheless, there are cases where the alternatives to thermodynamic
integration would be chosen instead. In the first place, there are many
cases where the problem hasn’t yet been considered fully enough to es-
tablish a natural integration path. But in the second place, it would
often be argued that non-specialized calculations are more efficient be-
cause they produce ancillary results too. Furthermore, the success of
alternative free energy calculations often depends on some physical in-
sight. So those alternative approaches often have the virtue of testing
a physical insight specific to the problem, and that would be a separate
advantage counterbalancing the general numerical efficacy of thermody-
namic integration.

119
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5.1 Reference Systems and Umbrella Sampling

We have several times above exploited knowledge of a physically relevant
reference system to write

e−βµex
α = e−βµ̃α

ex
〈〈

e−β(∆Uα−∆Ũα)
〉〉

r
. (5.1)

In this approach e−β∆Ũα is selected on the basis of physical insight, and
the goal is to reduce the uncertainty of the estimate. This might permit
simplified physical theories for the average.

Another view is that the additional factor eβ∆Ũα serves to broaden
the sampling. With this view, we might consider another configurational
function Ω that helpfully broadens the sampling and write

e−βµex
α (Rn) =

〈(
e−β∆Uα/Ω

)
|Rn

〉
Ω

〈(1/Ω) |Rn〉Ω
. (5.2)

The sampling distribution indicated for 〈. . . |Rn〉Ω is proportional to
PB (N )×Ω (N ). The denominator of Eq. (5.2) would correspond to the
factor eβµ̃α

ex(Rn) of Eq. (5.1). In contrast to the view of Eq. (5.1), here
it is typically not assumed that 〈Ω|Rn〉Ω is separately known. Thus bias
or variance reduction issues would involve both the numerator and the
denominator of Eq. (5.2).

Ω is called an importance function or sometimes an umbrella function
(Torrie and Valleau, 1977). The latter name arises from the view that Ω
broadens the sampling to cover relevant cases more effectively. Since Ω is
involved as an unnormalized probability, it shouldn’t change sign, and it
shouldn’t be zero throughout regions where the unmodified distribution
and integrand are nonzero.

The importance language has a longer history than does umbrella; this
reflects the fact that adjusting the sampling with importance functions
is one of the small number of general tricks of Monte Carlo methods
(Hammersley and Handscomb, 1964; Kalos and Whitlock, 1986). It
is worth making this point more basically because this trick can be
disguised. Consider a naive Monte Carlo estimate of the integral

I =

1∫
0

f(x)dx ≈ 1
N

N∑
i=1

f(xi) , (5.3)

where the N sample points are drawn from a uniform distribution on
the interval 0 ≤ x ≤ 1. Importance sampling to improve the estimate
exploits any knowledge of a normalized density p(x) that might reduce
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the variation of the ratio f(x)/p(x). Then

I =

1∫
0

[
f(x)
p(x)

]
p(x)dx ≈ 1

N

N∑
i=1

[
f(xi)
p(xi)

]
, (5.4)

where now the points are drawn from the distribution p(x). The restric-
tions for p(x) are essentially the same as those for Ω discussed above
except that here we have assumed that p(x) is normalized. A notational
curiosity is that this can be written as

I =

1∫
0

f(x)e− ln p(x)dP (5.5)

with dP = p(x)dx and P (x) the cumulative distribution of p(x). A
change of integration coordinate has mapped the integration interval,
x = x(P ), and p(x) is the Jacobian for this coordinate change.

As an example of importance sampling ideas, consider the situation
that the actual interest is in a family of solutes. When this comes up in
pharmaceutical contexts, the family might be tens of molecules (Shaikh
et al., 2004). Is there a good reference system to use to get comparative
thermodynamic properties for all members of this family? Let’s simplify
the question by supposing specific interest in a particular conformation
of each molecule. There is a theoretical answer that is analogous to the
Hebb training rule of neural networks (Hertz et al., 1991; Plishke and
Bergerson, 1994), and generalizes a procedure of (Bennett, 1976):

Ω =
∑

m=molecules

e−β∆Um (5.6)

The sum is over all molecules in the family, each in the specific confor-
mation of interest. When this reference potential is used to get the free
energy for a specific solute in the family, it will match at least one contri-
bution in the sum. So the umbrella covers everybody in the family, and
this is literally the point of the original umbrella sampling: Ω “should
cover simultaneously the regions of configuration space relevant to two
or more physical systems” (Torrie and Valleau, 1977). Jointly matching
several members of the family will help too. The penalty is just the sum
over the family. The hydration free energy of the reference system, that
is the denominator of Eq. (5.2), is not germane to the evaluation of free
energy differences between the members of the family.



122 GENERALITIES

Exercises

5.1 Consider reference interactions established as required by Eq. (5.1)
and demonstrate the analogue of Eq. (3.27), p. 56:

P (N , N + 1) = exp {−β [Φ− (µex
α − µ̃ex

α )]}

× P̃ (N , N + 1) , (5.7)

and

Pα(ε) = exp {−β [ε− (µex
α − µ̃ex

α )]} P̃α(ε) , (5.8)

where, for example, P̃ (ε) is defined by Eq. (4.5), p. 78.
5.2 Following the additive suggestion Eq. (5.6), consider the pro-

posal

Ω = e−β∆Uα + 1 . (5.9)

Intuitively, this corresponds to the possibilities that the distin-
guished molecule is present or not. Show that

e−βµex
α =

〈〈
e−β∆Uα/2

e−β∆Uα/2+eβ∆Uα/2

〉〉
Ω〈〈

eβ∆Uα/2

e−β∆Uα/2+eβ∆Uα/2

〉〉
Ω

. (5.10)

5.3 Comparisons available from statistical data allow us to discuss
a foundational issue, the possibility of entropy calculated from
the trajectory of motion, raised years ago (Ma, 1985). This is
a digression that illustrates the use of reference systems and
statistical comparisons for the conceptualization of entropy.

The topic arises from the following sequence of aspects of
entropy: When entropy is introduced on a thermodynamic ba-
sis the issue is the motion of heat (Jaynes, 1988), and the as-
sessment involves calorimetry; an entropy change is evaluated.
When entropy is formalized with the classical view of statistical
thermodynamics, the entropy is found by evaluating a configu-
rational integral (Bennett, 1976). But a macroscopic physical
system at a particular thermodynamic state has a particular en-
tropy, a state function, and the whole description of the physical
system shouldn’t involve more than a mechanical trajectory for
the system in a stationary, equilibrium condition. How are these
different concepts compatible?

The previous discussion (Ma, 1985) considered a lattice (Ising)
model as a physical example, and focused the concepts on recur-
rences in the trajectory. A method of evaluating the entropy was
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suggested. Here we carry that suggestion further, and discuss
how that idea can be used to estimate values of integrals. We
consider a classic quadrature problem, evaluation of an integral
such as

I =

1∫
0

f(x)dx . (5.11)

Fig. 5.1 shows an example that can be kept in mind with this
discussion. [As for many Monte Carlo methods exemplified with
low-dimensional cases, sophisticated quadrature approaches are
available here and would be much more efficient than Monte
Carlo methods.]

Suppose that configurations visited by a thermal trajectory,
for example from Markov Chain Monte Carlo, samples points
uniformly in the allowed area. Let N be the total number of
points involved, n(δλ) be the number of points within a disk
of small radius δλ of a distinguished point. Explain why the
combination

πδλ2N/n(δλ) ≈ I (5.12)

estimates the area under the curve when δλ is sufficiently small.
Discuss what might go wrong for δλ too large.

5.2 Overlap Methods

With Eq. (3.27), p. 56, we have already indicated that the distribution
function of the binding energy for the distinguished solute in the actual,
fully-coupled system Pα(ε) = 〈δ(ε−∆Uα)〉 is related to the distribution
function P(0)

α (ε) of Eq. (3.5), p. 46 by

Pα(ε) = e−β(ε−µex
α )P(0)

α (ε) . (5.13)

This has something in common with the importance sampling discussed
in the preceding section, except that the parameter sought, µex

α , is now
definitely supplying the normalization needed to implement the new
sampling. Therefore, information on both distributions might be used
to extract that thermodynamic quantity (Bennett, 1976; Ciccotti et al.,
1987)

ln
[
Pα(ε)/P(0)

α (ε)
]

= −βε+ βµex
α . (5.14)
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Fig. 5.1. Example accompanying the discussion following Eq. (5.11). The
function f(x) = 4x(1 − x) is plotted. The dots indicate points drawn from
a uniform distribution in the enclosed area. The bulls-eye is a distinguished
point.

Graphed as a function ε this should be linear with slope −β. The inter-
cept then provides the thermodynamic parameter sought.

Similarly, if chemical potential contributions in excess of a defined
reference system are sought, then

ln
[
Pα(ε)/P̃α(ε)

]
= −βε+ βµex

α − βµ̃ex
α , (5.15)

following Eq. (5.8). p. 122.

5.3 Thermodynamic Integration

The derivative ∂µex
α (λ)/∂λ =

〈
∆U (1)

α

〉
λ

can be obtained straightfor-

wardly from simulation data. On this basis, mere quadrature (Press
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Fig. 5.2. Assessment of electrostatic contributions to the excess chemical po-
tential of water, following Eq. (5.15) redrawn from (Hummer et al., 1995). The
temperature is T = 298K and the density is ρ = 0.03333/Å3. The SPC model
of water was used and the reference system interactions are those interactions
with all partial charges given the value zero.

et al., 1992, see chapter 4) provides an evaluation of

µex
α =

∫ 1

0

〈
∆U (1)

α

〉
λ

dλ . (5.16)

This is conceptually simple. But it would typically be a problematic
approach for undifferentiated intermolecular interactions because that
would typically include excluded volume interactions — reference system
interactions in a van der Waals view — which can be infinitely large,
and therefore highly variable. In such a case, the statistical efficiency,
and perhaps also the statistical quality, is likely to be troublesome.

Instead the most natural use of thermodynamic integration is to treat
interactions beyond physically defined reference interactions. To proceed
in that direction, we reconsider Eq. (4.4), p. 77, in the form

µex
α (Rn) = µ̃ex

α (Rn) +
∫ 1

0

〈Φα|Rn〉λ dλ , (5.17)

including the conformational coordinate for generality. The use of λ to
scale partial atomic charges on the distinguished solute is an example.
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In such physically defined cases, the statistical quality of the derivative
estimates are likely to be better controlled.

Exercises

5.4 Consider the case that a distinguished solute is coupled to the
solution on the basis of the interaction ∆Ũα + λΦα. Show that

∂µex
α (Rn)
∂λ

= 〈Φα|Rn〉λ , (5.18a)

∂2µex
α (Rn)
∂λ2

= −β
〈
δΦ2

α|Rn
〉

λ
, (5.18b)

where 〈
δΦ2

α|Rn
〉

λ
=
〈
Φ2

α|Rn
〉

λ
− 〈Φα|Rn〉λ

2 .

5.5 Notice that the second derivative Eq. (5.18b) is never posi-
tive. Use this observation to prove that µex

α (Rn)− µ̃ex
α (Rn) ≤

〈Φα|Rn〉0 .
5.6 Consider implementing Eq. (5.17) on the basis of the midpoint

rule and evaluation of the integral at the M equally spaced
points, λj = (j−1/2)

M :

µex (Rn)− µ̃ex (Rn) ≈ 1
M

M∑
j=1

〈Φα|Rn〉λj
. (5.19)

Suppose that the variance of the estimate of each 〈Φα|Rn〉λj
is

1
m

〈
δΦ2

α|Rn
〉

λj
, (5.20)

i.e. assume that there m effectively uncorrelated blocks of data
for the estimation of each summand of Eq. (5.19). Consider the
statistical uncertainty of the estimate Eq. (5.19), and show that
for large M the standard error σ is given by

σ2 (Rn) ≈ kT

mM
[〈Φα|Rn〉λ=0 − 〈Φα|Rn〉λ=1] . (5.21)

This can be used with literature results for thermodynamic in-
tegration that aren’t accompanied by a specific statistical un-
certainty.
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5.7 Show that

µex
α (Rn) = µ̃ex

α (Rn)− kT
M∑

j=1

ln

[〈
e−βΦα/2M

〉
λj〈

eβΦα/2M
〉

λj

]
, (5.22)

formally without quadrature error, as compared to Eq. (5.19).

5.4 Bias

We will introduce this subject through discussion of a central example.
Suppose that we have a sample {ω1, ω2, . . . , ωM} = Ω from which we
will estimate a partition function Z. This means that we have a func-
tion Ẑ(Ω) to be evaluated for our sample to produce a numerical value
that we take to be the estimate of Z. We assume here the common
circumstance that Ẑ(Ω) takes the form

Ẑ(Ω) =
1
M

M∑
i=1

f(ωi). (5.23)

We will also assume the common circumstance that Ẑ(Ω) is an unbiased
estimator of Z; in practical terms, this means that if the same estima-
tion is performed repeatedly then the average of the estimates is the
quantity desired, Z = E

[
Ẑ(Ω)

]
, the expected value of the estimator;

the alternative notation for expectation is used here to avoid potential
confusion with the statistical mechanical averages used throughout this
book.

With this setup, notice what happens when we inquire about a value
for a free energy βF ≡ − lnZ. Then

βF̂ = − ln Ẑ = − ln

[
Z +

1
M

M∑
i=1

(f(ωi)−Z)

]
. (5.24)

Expanding to the lowest-order nonvanishing term, averaging the result
obtained, and assuming that the sample points are independent, identi-
cally distributed (iid), we obtain

E
[
β(F̂ − F )

]
≈ 1

2M
E

[(
f (ω)−Z
Z

)2
]
> 0. (5.25)

The difference E
[
β(F̂ − F )

]
is called the bias, and Eq. (5.25) is an

approximate evaluation of the bias. This approximate bias is positive
and diminishes proportionally to 1/M with increasing sample size. The
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conclusion of Eq. (5.25) is that the estimated free energy, utilizing a
sample of size n, is greater than the true free energy; performing the
same estimation many times doesn’t change this.

The most straightforward remedy for this specific situation is clear. If
we were to perform this estimation several times — perhaps m times —
we would have several samples Ω(j), j = 1, . . . ,m of size M . We could
aggregate these samples to produce one sample of size mM , evaluate
Ẑ with the aggregated sample, and the bias in the reported free energy
should be smaller according to Eq. (5.25). Extrapolation of the estimates
obtained from different possibilities for aggregating the samples is the
basic idea behind the jackknife method of estimating the bias (Efron
and Tibshirani, 1993; Zuckerman and Woolf, 2002). Generalization of
these concepts leads to bootstrap methods for these data analysis issues
(Efron and Tibshirani, 1993).

Exercises

5.8 Jackknife estimate of the bias. For the estimate discussed above,
consider the jackknifed samples obtained by deleting one point
from an original sample, Ω(k) = Ω − ωk. Let F̂(k) be the esti-
mated free energy obtained with kth jackknifed sample Ω(k) so
that

βF̂(k) = − ln

 1
n− 1

∑
i 6=k

f(ωi)

 ≡ − ln Ẑ(k) . (5.26)

Let F̂n = − ln Ẑn be the estimate with the whole, original sam-
ple Ω. Using the approximate form Eq. (5.25), find the more
evolved estimate:

βF̂ ≈ 1
n

n∑
i=1

βF̂(i) +
n∑

i=1

(
βF̂n − βF̂(i)

)
. (5.27)

5.9 The difference Ẑn − Ẑ(k) involves the contribution of only one
observation, a small difference when n is large. Expand the last
term of Eq. (5.27) to quadratic order in these small differences
and compare the result with Eq. (5.25).

5.10 Reconsider the previous discussion of entropy calculated from
the trajectory of motion, associated with Fig. 5.1, p. 124. A
view taken in that previous exercise is that a large, fixed num-
ber N of data points are sampled uniformly in the area that is



5.5 Perturbation Theory 129

to be estimated. With a fixed reference sub-area πδλ2, the num-
ber of points, n(δλ), within the reference sub-area is a random
variable. Observations of n(δλ) are used to estimate the total
area. An alternative view would be to adopt a target value n
and find the δλ(n) that incloses that many of the data points.
The observed δλ is then the random variable. Discuss the issue
of bias in the context of these two distinct approaches. Can you
work out a correction for the bias specifically for these cases?
Beyond the issue of bias, are there other reasons to prefer one
method over the other?

5.5 Perturbation Theory

To organize the description of interactions of a specified type, it is often
helpful to introduce an ordering parameter λ in

µex
α (Rn) = µ̃ex

α (Rn)− kT ln
〈
e−βλΦ|Rn

〉
r
. (5.28)

λ might also be viewed as a perturbative parameter in cases where it
appears naturally as a gauge of the strength of solute-solvent interac-
tions. In either case, the goal is to express βµex

α (Rn) as a series ordered
in powers of λ. Using the standard series for ex and ln(1 + x), and
collecting powers of λ, we find

µex
α (Rn) = µ̃ex

α (Rn) + 〈Φ|Rn〉r λ−
〈
δΦ2|Rn

〉
r

βλ2

2
. . . (5.29)

where δΦ=Φ−〈Φ|Rn〉r. This result should be compared with Eqs. (4.8),
p. 80 and (4.12), p. 81 that we obtained on the basis of gaussian dis-
tribution models. Note again that going from the first of the terms on
the right side of Eq. (5.29) to the sum of the first two terms necessarily
lowers the value of the excess chemical potential.

This expansion in powers of λ can be viewed from a more general
perspective. The counting and arranging of powers of λ is a formal
operation, so we can carry out that analysis on the basis of a simpler
notation, e.g.

ln
〈
eλx
〉

=
∑
j=1

Cj
λj

j!
, (5.30)

where x is the random variable, and the coefficients Cj are cumulants
(Kubo, 1962), or sometimes in the older literature they are referred to
as the semi-invariants of Thiele (Graham et al., 1994). The calculation
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leading to Eq. (5.29) establishes the first two cumulants, and the next
two cumulants after that are given in Table 5.1. More coefficients than
those four are rarely useful because convergence is typically problematic:
cumulant series truncated beyond second order are not necessarily real-
izable (Marcienkeiwicz, 1939). If an additional term or two beyond the
second order — gaussian — theory doesn’t provide a minor improvement
of a generally satisfactory result, then some other approach is probably
required.

Table 5.1. Successive cumulants, Cj, following Eq. (5.30). See also
Table 6.1.

j Cj

1 〈x〉
2 〈x2〉 − 〈x〉2 = 〈δx2〉
3 〈x3〉 − 3〈x〉〈x2〉+ 2〈x〉3 = 〈δx3〉
4 〈x4〉 − 4〈x〉〈x3〉+ 12〈x〉2〈x2〉 − 3〈x2〉2 − 6〈x〉4 = 〈δx4〉 − 3〈δx2〉2

Thermodynamic Perturbation Theory. Thermodynamic perturba-
tion theory has an extended history (Peierls, 1933), (Kirkwood, 1938),
(Zwanzig, 1954), (Landau et al., 1980, §32. Thermodynamic Perturba-
tion Theory), (Peierls, 1979, § 3.3 Perturbation Theory for Statistical
Equilibrium) and a decided practical utility. Here we discuss one of
the subtler points. The common case for thermodynamic perturbation
theory is to focus on the difference of the Helmholtz free energies be-
tween two systems with interactions described by UI(N ) and UII(N )
(McQuarrie, 1976):

exp [−β (AII −AI)] = 〈exp [−β (UII(N )− UI(N ))]〉I . (5.31)

The indicated averaging 〈. . .〉I is obtained for the system with inter-
actions UI(N ). Eq. (5.31) has a strong formal similarity to Eq. (5.1).
Beyond the formalities, however, there is a subtle difference that is im-
portant. For example, the system described by the interactions UI(N )
could be qualitatively different from that corresponding to interactions
UII(N ), even if the differences in interactions seem small on a molec-
ular basis: the two systems could even adopt different thermodynamic
phases! This is a symptom of the fact that the energy differences expo-
nentiated in Eq. (5.31) are extensive in the system size. This difficulty
won’t arise with Eq. (5.1) as we have already emphasized. On a more
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workman-like basis, exponentiating energy differences that are exten-
sively large will promptly make practical calculations unmanageable. It
is a striking point that the initial attempts to use Eq. (5.31) (Torrie
and Valleau, 1977; Valleau and Torrie, 1977) in practical calculations
were limited to unusually small systems and to small changes in the
interactions.

We can begin to address the issue of extensivity by further theoretical
development, rewriting Eq. (5.31) as

e−β∆A =
∫
w(Nε)e−Nβεd (Nε) (5.32)

with

w(Nε) ≡ 〈δ (Nε− (UII(N )− UI(N )))〉I . (5.33)

In the usual thermodynamic setting, we expect that lnw(Nε) ∼ O(N)
because distant regions of a macroscopically large system will be practi-
cally uncorrelated. And we expect lnw(Nε) to increase with increasing
Nε, i.e. there are more states available at higher energy. Therefore, we
expect to be able to find Nε = Nε̄ at which point the exponents of the
integrand of Eq. (5.32) will balance, and we write

ln
[
w(Nε)e−Nβε

]
≈ −Nβε̄+ lnw(Nε̄)

+ (ε− ε̄)
[
d lnw(Nε̄)

dε̄
−Nβ

]
+

(ε− ε̄)2

2
d2 lnw(Nε̄)

dε̄2
. (5.34)

Locating the maximum of the integrand by

d lnw(Nε̄)
dNε̄

= β , (5.35)

and using the gaussian approximation, to leading order in N , we find

∆A ∼ Nε̄− kT lnw(Nε̄) . (5.36)

Together with Eq. (5.36), Eq. (5.35) suggests the thermodynamic ver-
ity ∂S/∂E = 1/T . Note also the expected behavior that the coefficient
of the quadratic term Eq. (5.34) scales with 1/N , and the variance as-
sociated with the gaussian integrand is kT 2CV /N

2. The conclusion of
this argument is that thermodynamic perturbation theory as addressed
generally through Eq. (5.31) will depend on a small fraction of the sta-
tistical data in the neighborhood of Nε = Nε̄, a fraction which vanishes
exponentially with N in the large system limit; and that will be true
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even when the physical differences between UI(N ) and UII(N ) are mi-
nor. This issue is important for practical calculations but needn’t be
a problem for calculations of a more theoretical type. Still, analytical
expression of the second-order perturbation contribution to ∆A requires
special technical subtlety due exactly to this issue: because an extensive
quantity is being considered in the exponent, weak correlations between
distant molecule pairs have to be considered carefully (Zwanzig, 1954),
(Henderson and Barker, 1971), (Hansen and McDonald, 1976, see §6.2).

Exercises

5.11 Evaluate the average on the left of Eq. (5.30) assuming a gaus-
sian distribution for the random variable x, thereby establishing
that the cumulant series truncated at second order is correct for
a gaussian distribution.

5.12 Consider Eq. (5.22), p. 127, from the point of view of a cumulant
expansion and derive

µex
α (Rn) ≈ µ̃ex

α (Rn)

+
1
M

M∑
j=1

[
〈Φα|Rn〉λj

+
β2

4M2

〈
δΦ3

α|Rn
〉

λj

]
(5.37)

as an improvement to Eq. (5.19), p. 126. Conclude that the
quadrature Eq. (5.19) is locally correct through the order of the
second derivative of µex.

Electrostatics in Simulation: Periodic Boundary Conditions.
Intermolecular electrostatic interactions are often the target of perturba-
tion analysis on the basis of simulation data (Hummer et al., 1998b). We
give here a non-traditional discussion of the Ewald electrostatic potential
often used in computer simulation with periodic, or Born-von Karman,
boundary conditions (Ashcroft and Mermin, 1976), (Peierls, 1979, § 3.6
Influence of Boundary Conditions). In particular, we discuss how Pois-
son’s equation can be solved in periodic boundary conditions, avoiding
the delicacies of the conditionally convergent lattice sums (Leeuw et al.,
1980). Ideas developed in several exercises are then employed to con-
sider the Ewald potential appropriate for non-neutral solutes to obtain
size-consistent results for small systems (Hummer et al., 1998b). This
approach is useful in perturbation theories of ion solvation. The outlook
of this extended discussion is to encourage the theoretical analysis of the
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Ewald potential for its physical consequences, in addition to the analysis
of the computational exertion of evaluating it.

We begin by considering a neutral system confined to a simulation
cell. We seek to solve the Poisson equation

∇2Φ(r) = −4π%(r) , (5.38)

where %(r) is the density of electric charge, under the condition that the
solution should be periodic with the simulation cell as the fundamental
period. Because of the linearity of Eq. (5.38), we will separate contribu-
tions from elementary charge sources, and denote those contributions by
ϕ(r). This step is less innocuous than it sounds, and we will discuss the
consequences in what follows. Because of the intended periodicity, when
considering an elementary charge source we translate the simulation cell
so that the source is at the center. It is then obvious that the surface
integral ∫

cell

n̂ · ∇ϕ(r)d2r (5.39)

for the electric potential ϕ(r) due to that elementary charge source
should be zero because of the periodicity. But the straightforward
Gauss’s Law calculation shows this to be impossible if the net charge
enclosed isn’t zero. A simple modification that permits periodic solu-
tions for the separated contributions is obtained by inserting a uniform
neutralizing background; thus

∇2ϕ(r) = −4π
(
δ(r)− 1

V

)
(5.40)

for a unit magnitude source. If the net charge of the system is zero,
this modification is innocuous because the sum of the background con-
tributions to the elementary charges vanishes. If the net charge of the
system isn’t zero, then this is a reasonable modification of the problem
to permit a periodic solution.

To proceed further, we consider the simplification of a cubic cell so
that n̂ · ∇ϕ=0 identically on the surface of the cell, and write the usual
Green’s Theorem application (see Eq. (5.43) below or (Jackson, 1975))

ϕ(r) =
1
r
− 1
L3

∫
cell

d3r′

|r − r′|
− 1

4π

∫
surface

n̂ · ∇′
(

1
|r − r′|

)
ϕ(r′)d2r′ .

(5.41)

The first two terms on the right comprise the Coulomb potential due
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to the source and the neutralizing background. The last term on the
right is a dipole layer contribution from the surface, necessary to achieve
n̂ · ∇ϕ=0 on the surface.

Solution of the Poisson equation in periodic boundaries by finite differ-
ence methods (Beck, 2000) provides yet another way to view the Ewald
potential. In that case, iterative methods with the periodic boundary
conditions converge provided the net charge is zero inside the domain.
The charge neutrality is enforced by addition of a uniform neutralizing
background. Each iterative step only involves near-local information in
the neighborhood of a given grid point, and potential values are only
required within the volume V and on the boundaries. The solution can
be made unique by imposing a subsidiary condition such as setting the
integral of the potential over the domain to zero.

The alternative viewpoints here emphasize that the uniform neutraliz-
ing background for the individual contributions just permits the normal
electric field to be zero on the boundary. These viewpoints avoid tradi-
tional (Valleau and Torrie, 1977), but inconclusive discussions of what
periodic images might be doing when lattice sums are conceived with
Ewald potentials.

Exercises

5.13 Consider solution of the Poisson equation in one spatial dimen-
sion for a system with a uniform charge density 1/L in the
interval -L/2 < x < L/2. Write out the general solution for this
domain, and discuss the possibilities for making this general
solution periodic with period L.

5.14 Evaluate the derivatives of

ϕ(x) = −2π |x|+ 2π

L/2∫
−L/2

|x− x′|
L

dx′ (5.42)

to compose the Poisson equation on -L/2 < x < L/2. What is
the charge density implied?

5.15 Starting from

φ
d2ψ

dx2
=

d

dx

(
φ
dψ

dx

)
− dψ

dx

dφ

dx
(5.43)

construct Eq. (5.42) as the one-dimensional analogue of the
Green’s Theorem result Eq. (5.41).
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Fig. 5.3. Comparison of Ewald and bare electrostatic potential in one dimen-
sion. See Eq. (5.44).

5.16 From Eq. (5.42) show that

ϕ(x) = −2π
(
|x| − x2

L

)
, (5.44)

achieves ϕ′(L/2)=0, and being an even function of x can be a
periodic solution of Eq. (5.40) in one dimension.

5.17 The Ewald potential traditionally includes an additive constant
to achieve ∫

cell

ϕ(r)d3r = 0. (5.45)

Since periodic boundary conditions preserve translational ho-
mogeneity, a physical perspective on this requirement is that
the potential of the phase — see p. 85 — is zero. Show that the
potential

ϕ(x) = −2π |x|+ 2π
L

(x2 + L2/6) , (5.46)

agrees with this requirement for the one dimensional case. See
Fig. 5.3.
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5.18 Show that the solution of Eq. (5.41) is not otherwise changed by
adjusting ϕ(r) by a spatially uniform constant. Hint: remember
that ∫

surface

n̂ · ∇′
(

1
|r − r′|

)
d2r′ = −4π . (5.47)

5.19 Eq. (5.41) is obtained from a standard Green’s Theorem expres-
sion (Jackson, 1975) by the identification∫

surface

n̂ · ∇′ϕ(r)
|r − r′|

d2r′ = 0 (5.48)

following from the intention that the normal derivative should
be identically zero. Consider the converse issue: does a solution
of Eq. (5.41) necessarily imply that the normal derivative should
be identically zero? Hint: n̂ · ∇′ϕ(r) functions in Eq. (5.41) as
a surface charge density, so a Gauss’s Law calculation might be
useful.

The Ewald Potential and Lattice Sums. The Ewald potential is
traditionally implemented as a lattice sum (Ziman, 1972; Leeuw et al.,
1980). We just outlined a conceptualization of electrostatic interactions
in periodic boundary conditions that involved adding a uniform neutral-
izing background for each charge, and the subsequent solution of the
Poisson equation in periodic boundary conditions. Here we discuss the
interconnections between that conceptualization and the traditional lat-
tice sums, as presented in many sources, e.g. (Allen and Tildesley, 1987;
Frenkel and Smit, 2002; Leeuw et al., 1980). WE ASSUME THAT THE
PHYSICAL SYSTEM IS EMBEDDED IN A SURROUNDING CON-
DUCTOR.

Consider a system composed of a collection of molecules and ions, with
partial charges distributed according to the details of the forcefield, in
a cubic volume V = L3. Let’s begin by considering the electrostatic
potential

ψ(r) =
∑
n

erfc(η|r + nL|)
|r + nL|

+
4π
L3

∑
k 6=0

(
e−k2/4η2

k2

)
eik·r − π

L3η2

(5.49)

where n = (nx, ny, nz) is a vector with integer components, k = 2π
L n,
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and

erfc (z) ≡ 1− 2√
π

∫ z

0

e−u2
du . (5.50)

An exercise that follows requests utilization of the Poisson equation to
evaluate the charge density implied by Eq. (5.49); the result of that
calculation is the charge density in the Poisson equation of Eq. (5.40),
p. 133. The potential in Eq. (5.49) is identical to traditional expressions
for the Ewald potential (Leeuw et al., 1980) except for the final term;
that additive constant implies∫

cell

ψ(r)dr = 0 (5.51)

because ∫
cell

∑
n

erfc(η|r + nL|)
|r + nL|

dr =
π

η2
. (5.52)

The spatial integral of the middle term of Eq. (5.49) is zero because of
the k 6= 0 exclusion. In addition, the potential ψ(r) has the virtue of
being independent of η. In view of Eq. (5.51), the potential energy

1
2

∫
cell

∑
j

qj

(
δ(r − rj)−

1
L3

)∑
k

qkψ(r − rk)dr

=
1
2

∑
jk

qjqkψ(rkj) (5.53)

won’t specifically exhibit the background charge. This potential energy,
however, formally includes a bare self-interaction that we wish to ex-
clude. Separating out the j = k contribution, and then excluding the
bare self-interaction produces

U =
1
2

∑
j 6=k

qjqkψ(rkj) +
1
2

∑
k

qk
2 lim

r→0

(
ψ(r)− 1

r

)
≡ 1

2

∑
j 6=k

qjqkψ(rkj) +
ξ

2L
∑

k

qk
2 . (5.54)

This energy includes all the relevant interactions after removing the
interaction of the ion in the cell with itself; the interaction of the ion
with its periodic images is retained. The potential ξ/L is that due to the
neutralizing background in the cell and all periodic images of the unit
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charge and the background. From Eq. (5.49), we see that this potential
is given by

ξ

L
=
∑
n6=0

erfc(η|nL|)
|nL|

+
4π
L3

∑
k 6=0

(
e−k2/4η2

k2

)
− π

L3η2
− 2η√

π
, (5.55)

which has used the relation

lim
r→0

(
erfc(ηr)

r
− 1
r

)
= − 2η√

π
. (5.56)

Thus after exclusion of the bare interaction from the n = 0 term of
the real-space sum, that contribution yields a constant. In practical
calculations it is common to use a convergence parameter of η ≈ 5.6/L,
in which case the first term on the right side of Eq. (5.55) is negligibly
small, and we shall omit this term in the discussion to follows. The
numerical value of ξ for a cubic lattice is approximately −2.837297 (see
the exercises). The choice Eq. (5.51) thus removes the interaction of
each ion with the charge backgrounds in this energy expression, but a
self-interaction remains. The displayed self-energy is merely a constant
for the common case of permanent particles with permanent charges. On
the other hand, if the calculation manipulates the charge state of solution
species, as in Sec. 4.2, then specific awareness of this self-energy has an
advantage of mechanical consistency. Fig. 5.4 displays the distribution
of electrostatic interaction energies for an ion in water with and without
the above-discussed correction terms. This illustrates the importance of
these corrections in obtaining reliable hydration free energies.

The textbook formula for the total potential energy of a collection
of charges in the traditional Ewald method (Allen and Tildesley, 1987;
Frenkel and Smit, 2002) is:

U =
1
2

N∑
i 6=j

qiqj

{∑
n

erfc(η|rij + nL|)
|rij + nL|

}

+
1
2

N∑
i,j

qiqj

4π
L3

∑
k 6=0

(
e−k2/4η2

k2

)
eik·rij

− η√
π

N∑
i

q2i . (5.57)

Charge balance is assumed in the derivation of this energy formula (Zi-
man, 1972). A following exercise calculates the total potential energy at
an ion using Eqs. (5.54) and (5.57); the result shows that the traditional
expression is obtained for the case of total system charge zero.



5.5 Perturbation Theory 139

0

0.01

0.02

-600 -500 -400 -300 -200 -100 0

ε (kJ/mol)

512

256
128

64

32

N=16

fin
ite

-si
ze corre

ctio
n

P(ε)
∼

Fig. 5.4. Finite-size correction of the probability densities of the electrostatic
energies of positively charged imidazolium ion in water. The uncorrected
distributions are shown with symbols, together with corresponding Gaussian
distributions. In addition to the electrostatic correction, a thermodynamic
correction is also applied, but this correction is small in magnitude, see (Hum-
mer et al., 1998b). With the corrections, the distributions collapse and agree
closely for all system sizes of 16 ≤ N ≤ 512 water molecules.

Exercises

5.20 Evaluate the Poisson equation for the potential of Eq. (5.49)
to determine the charge density implied. Hints: relationships
developed in (Arfken, 1985) are helpful. Additionally, the theta-
function transformation (Ziman, 1972)

4η3

√
π

∑
n

e−η2|r−nL|2 =
4π
L3

∑
k

e−k2/4η2
eik·r (5.58)

might be useful.
5.21 Show that ∂ψ(r)/∂η = 0. See the previous exercise for useful

information.
5.22 Prove Eq. (5.52).
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5.23 Write a computer program to compute ξ using Eq. (5.55). Can
you develop an approximate analytical expression that yields a
similar result?

5.24 Prove Eq. (5.56).
5.25 Consider η−1 as a length scale parameter, and develop a dimen-

sional scaling argument to conclude that

4π
L3

∑
k 6=0

e−k2/4η2

k2
∼ ηf (ηL) . (5.59)

Show that

lim
L→∞

4π
L3

∑
k 6=0

e−k2/4η2

k2
=

2η√
π
. (5.60)

This is the infinite-volume limit of the corresponding sum ob-
tained from Eq. (5.55).

5.26 Show that ∑
i 6=j

qiqj = Q2 −
∑

i

qi
2 (5.61)

where Q is the total charge of the system.
5.27 Determine the total electrostatic potential at an ion site from the

two expressions Eqs. (5.54) and (5.57). The potential derived
from Eq. (5.57) is appropriate for a system with overall charge
neutrality. Note that the k-space sum in Eq. (5.57) includes
all i, j terms as opposed to Eq. (5.54). The total electrostatic
energy is simply U = 1/2

∑
i qiφ

tot
i (ri).

5.28 Using the above result, show that the total potential at an ion
for a charged system compensated by a neutralizing background
is

φtot(ri) =
N∑

i 6=j

qj

{∑
n

erfc(η|rij + nL|)
|rij + nL|

}

+
N∑
j

qj


(

4π
L3

)∑
k 6=0

eik·rij
e−k2/4η2

k2

− π

L3η2
Q− 2η√

π
qi,

(5.62)

which verifies that the traditional total potential is obtained for
the case Q = 0. This exercise shows that a simple modification
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of a traditional Ewald code can be used to construct the total
potential for a charged system.

5.29 Show that if the total system charge Q is the charge q on one
ion, the change in system total energy upon mutation of that
charge from q0 to q1 is

∆U = ∆qφ̂(ri) +
ξ

2L
(q21 − q20) (5.63)

where ∆q = q1 − q0 and

φ̂(ri) =
N∑

j 6=i

qj

{∑
n

erfc(η|rij + nL|)
|rij + nL|

}

+
N∑

j 6=i

qj


(

4π
L3

)∑
k 6=0

eik·rij
e−k2/4η2

k2

 . (5.64)

5.30 Use the previous result to show that the second-order cumulant
expansion for the change in excess chemical potential is then

∆µex = ∆q
[
〈φ̂〉q0 +

q0ξ

L

]
− β

2
∆q2

[
〈(φ̂− 〈φ̂〉q0)

2〉q0 −
ξ

βL

]
+. . .

(5.65)

5.31 Extend the above discussion to a molecular ion with charges
distributed at several sites on the ion. See (Hummer et al.,
1998b).

5.6 Stratification

Comparison of numerical efficiencies of computing a value µex either di-
rectly — Eq. (3.5), p. 46 perhaps with importance sampling — or on
the basis of thermodynamic integration — Eq. (5.16), p. 125 or (5.19),
p. 126 or (5.37), p. 132 — leads us to the discussion of an important
trick for these calculations: stratification. We focus here on specific ex-
amples, but the general advantage of stratification can be considered in
a much less specific context: statistical uncertainties are mitigated by
a non-statistical subdivision of the problem, solution of the subdivided
problems, and then recomposition of the whole (Hammersley and Hand-
scomb, 1964, §5.3), (Kalos and Whitlock, 1986, §4.5), (Press et al., 1992,
§7.8).
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Consider statistical evaluation of

e−βµex
α =

∫
P(0)

α (ε)e−βεdε ≈ 1
m

m∑
j=1

[
e−β∆Uα

]
j
, (5.66)

as with Eq. (3.5), p. 46. To achieve a simple comparison we won’t involve
importance sampling which could be additionally advantageous. When
m is large, the variance of this estimator is approximately

σ2 =
1
m

[〈〈
e−2β∆Uα

〉〉
0
−
〈〈

e−β∆Uα
〉〉

0
2
]

=
1
m

e−βµex
α
[〈

e−β∆Uα
〉
−
〈〈

e−β∆Uα
〉〉

0

]
. (5.67)

The physical interpretation of the contributions in the brackets is that
the system additionally prefers lower energy configurations as the inter-
actions get turned-on. Thus the first of the terms in brackets is larger
than the second term, as it must be.

For hard-core interactions this variance is p(1 − p)/m, with p ≤ 1,
familiar as the variance for the case of Bernoulli sampling that applies
with hard-core insertions. How should the sample size be adjusted when
the thermodynamic state, and hence p, is adjusted? The interesting
circumstance is when p is small. Intuitively, we expect the sample size
must be larger than m ≈ 1/p for credible results.

This point is also supported by the natural identification of σ/p as
an indicator of the fractional statistical error in the partition function,
or the error in the logarithm, i.e., in the desired free energy. It is also
this ratio that contributes to the bias in the classic view of Eq. (5.25),
p. 127. When p�1, therefore, we expect that the sample size should be
scaled as m ∼ (1− p)/p ∼ e− ln p. The qualitative conclusion suggested
is that the sample size has to grow proportionally to the exponential of
the entropy change that is sought.

Now consider an alternative calculation for a corresponding case of a
hard-sphere solute. We start from

βµex
HC = − ln

〈〈
e−β∆UHC

〉〉
0
, (5.68)

and imagine increasing the radius of the spherical solute by an amount
dλ. The change in the solvation free energy is

dβµex
HC (λ) = −

[〈〈
e−β∆UHC (λ+ dλ)

〉〉
0
−
〈〈

e−β∆UHC (λ)
〉〉

0

]
〈〈e−β∆UHC (λ)〉〉0

. (5.69)

In the numerator the varied term excludes solvent from a thin shell of
width dλ, and volume 4πλ2dλ, that is not excluded from the unvaried
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term. This is exclusion from the core — the unvaried sphere — plus
exclusion from the shell. If we use the exclusion from the core as an
importance function, and use the denominator on the basis of our rule
for averages this becomes

dβµex
HC (λ) = 〈dn〉λ

≡ 4πλ2ρG (λ) dλ . (5.70)

The last of these equations introduces the customary notation of G (λ),
and ρ is the number density of excluded solvent centers. The first of
these equations indicates that the change in the solvation free energy is
the expectation of the number of solvent centers in the shell. This is an
infinitesimal quantity because the shell is infinitesimally thin.

Because the shell is thin, it will mostly be unoccupied. The prob-
ability that a single solvent center is located in the shell, pλ(1), is an
infinitesimal quantity, and the probability that more than one solvent
center is located in the shell is a quantity of higher infinitesimal or-
der. Therefore, 〈dn〉λ = pλ(1). Since there are only two probabilities
to be considered here, pλ(1) and 1− pλ(1), a Bernoulli sampling model
is appropriate, and as we have seen above the variance of such an es-
timator is pλ(1) (1− pλ(1)) /m, where m is the number of independent
observations.

These arguments lead us to the conclusions that the integrated change
in the solvation free energy is

∑
j

pλj (1) ∼ 4π
∫ λ

0

G (λ′) ρλ′2dλ′ = βµex
HC (λ) ; (5.71)

and the variance of this estimator is

σ2 =
1
m

∑
j

pλj (1)
(
1− pλj (1)

)
≈ 1

m

∑
j

pλj (1) ∼ βµex
HC

m
, (5.72)

because pλ(1)�1. Thus, to maintain a satisfactory accuracy when the
thermodynamic state is changed, λ being fixed of course, we should
increase m ∼ βµex

HC, in sharp contrast to the estimate m ∼ exp [βµex
HC]

above. Stratification is the reason for this improvement, and it would
be a decisive improvement in serious applications.

The λ integration achieves this stratification for the present example.
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The coupling parameter integration of Eq. (5.17), p. 125, similarly strati-
fies that application, and the variance found for the estimator, Eq. (5.21),
p. 126, is analogous to that of the example of this section. The colloquial
windowing methods exploit this stratification precisely, and a variety of
histogram methods rely on this too. Umbrella sampling is fundamen-
tally importance sampling as we emphasize in Sec. 5.1, p. 120. But it
is occasionally discussed with multiple umbrellas (Chandler, 1987), and
that mixes the two distinct ideas.

Exercises

5.32 Explain why the comparison of σeβµex

utilizing Eq. (5.67) with
σ of Eq. (5.72) is the proper comparison here.
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STATISTICAL TENTACLES

This chapter discusses several statistical mechanical theories that are
strongly positioned in the historical sweep of the theory of liquids. They
are chosen for inclusion here on the basis of their potential for utility in
analyzing simulation calculations, and their directness in connecting to
the other fundamental topic discussed in this book, the potential distri-
bution theorem. Therefore tentacles can be understood as tentacles of
the potential distribution theorem. From the perspective of the PREF-
ACE discussion, the theories presented here might be useful for discovery
of models such as those discussed in Chapter 4. These theories are a sig-
nificant subset of those referred to in the INTRODUCTION as “. . . both
difficult and strongly established . . . ” (Friedman and Dale, 1977), but
the present chapter does not exhaust the interesting prior academic de-
velopment of statistical mechanical theories of solutions. Secs. 6.2 and
6.3 discuss alternative views of chemical potentials, namely those of den-
sity functional theory and fluctuation theory.

6.1 The MM and KS expansions

The Mayer-Montroll (Mayer and Montroll, 1941) and Kirkwood-Salsburg
(Kirkwood and Salsburg, 1953) expansions are storied parts of basic
statistical thermodynamics (Stell, 1985), but have been neglected for
practical purposes because of a lack of recognition of how simple and
simplifying they can be.

We introduce results with the specific example of a hard-core solute
that was previously considered in Sec. 4.3. The hard-core results give
perspective for a direct generalization to more realistic interactions.

145
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p(0|Rn) = 
             

>0 + <m(m-1)|  /2 +

+

Rn Rn>0

+ +

= 1 -  < m| 

ρ(1) ρ(2)

Fig. 6.1. Mayer-Montroll expansion for the insertion probability p(0|Rn). The
notation here is fairly standard; see, for example, (Hansen and McDonald,
1976; Andersen, 1977). The solid lines indicate factors of Mayer f -functions
as in Eq. (6.2) and further discussed as Ursell functions beginning on p. 148.

The second term shown is thus
R

f(r)ρ(1)(r)d3r. The second line evaluates the
diagrams shown in the present case of a hard-core solute. m is the number
of solvent centers in the observation volume identified by f (r) 6= 0. The
inclusion-exclusion interpretation for hard-core cases is that the term 〈m|Rn〉0
is the sum of the m molecular volumes excluded to the distinguished solute.
Then 〈m (m− 1) /2|Rn〉0 corrects for pair overlaps of those excluded volumes.
That pair correction generally needs a further triple overlap correction, and
so on.

Inclusion-exclusion and the MM expansion. Consider again p (0|Rn)
= exp [−βµ̃ex

α (Rn)] for hard-core solutes as in Sec. 4.3. The most imme-
diate guiding theory is the inclusion-exclusion development (Reiss et al.,
1959; Reiss, 1977; Riordan, 1978; van Kampen, 1992):

p (0|Rn) =
∞∑

k=0

(−1)k

〈(
m

k

)
|Rn

〉
0

. (6.1)

Here the random variable m is the number of solvent centers within the
observation volume. As examples: 〈m|Rn〉0 is the expected number of
centers within the observation volume, and

〈(
m
2

)
|Rn

〉
0

= 1
2 〈m (m− 1) |Rn〉0

is the number of pairs of centers included. These are standard combi-
natorial results (Riordan, 1978), as discussed with Fig. 6.1, and can be
depicted in physical applications as shown there.

These results are obtained straightforwardly from the potential dis-
tribution theorem. We write (Kirkwood and Salsburg, 1953)

e−βµex
α (Rn) =

〈
e−β∆Uα |Rn

〉
0

=

〈
m∏

j=1

e−β∆Uα(j)|Rn

〉
0

=

〈
m∏

j=1

[1 + fα (j)]|Rn

〉
0

, (6.2)

then expand the product, and collect terms with a specified number of
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factors of fα (j) ≡ e−β∆Uα(j) − 1. There are
(
m
k

)
terms with k factors

of fα so

e−βµex
α (Rn) = 1 +

〈(
m

1

)
fα (1)|Rn

〉
0

+
〈(

m

2

)
fα (1) fα (2) |Rn

〉
0

+
〈(

m

3

)
fα (1) fα (2) fα (3) |Rn

〉
0

+ . . . (6.3)

For the hard-core case, fα (j) = −1 when the jth molecule overlaps the
observation volume for the distinguished species, and fα (j) = 0 other-
wise. This is then the inclusion-exclusion Eq. (6.1) that motivated this
discussion. Several important points can be made from these results.
The first is that the primordial available volume model is obtained from
the first two terms shown βµ̃ex

α (Rn) ≈ − ln [1− 〈m|Rn〉0]. [See also the
discussion of the Flory-Huggins model, Sec. 4.4, p. 100.] The second
point is more basic: p(0|Rn) is naturally expressed in terms of occu-
pancy moments. The sum truncates sharply for cases where a finite
maximum number of particles can be present in the observation vol-
ume. Note that the moments involved in the inclusion-exclusion series
Eq. (6.1) are the same as the moments used in the information model
Eq (4.32), p. 92. Since the latter procedure doesn’t use this information
in a series expansion, that information model procedure can be regarded
as a resummation of the inclusion-exclusion series. In the general case
for non-hard-core interactions, Eq. (6.3) with the general f -functions
involved is the Mayer-Montroll expansion.

Exercises

6.1 Evaluate the general term of the series Eq. (6.1) for the case
that the particles are positioned randomly so that the Poisson
distribution, p(k|Rn) = <m|Rn>0

k

k! e−<m|Rn>0 , applies. Confirm
that this evaluation of Eq. (6.1) is consistent with the prediction
that p (0|Rn) = e−<m|Rn>0 .

6.2 Show that if all terms of Eq. (6.1) with index k > m are zero
(due to the inability of fitting more than m particles in the ob-
servation volume), then the last non-zero term is the probability
p (m|Rn).

6.3 For the case of a hard-core solute the condition f 6= 0 sharply
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defines the overlap volume. Generalize the combinatorial results
above by considering the quantity〈

m∏
j=1

(1 + bα (j) + fα (j))|Rn

〉
0

(6.4)

in which fα (j)=−1 if molecule j is in an observation volume
and zero (0) otherwise, and bα (j) ≡ −fα (j). Thus bα (j) is
one (1) in the observation volume and zero (0) otherwise. The
average Eq. (6.4) is equal to one (1). If all bα (j)’s were stricken,
then the quantity Eq. (6.4) would be p (0|Rn); see Eq. (6.1). By
expanding and collecting terms ordered by the number of factors
of b (j) show that

k!p(k|Rn) =
∑
j=0

(−1)j

j!
〈m(m− 1) . . . (m− k − j + 1)|Rn〉0 .

(6.5)
Evaluate this average for the case of a Poisson distribution and
thus confirm the correctness of this formula for that case.

Non-pair-decomposable interactions and Ursell functions. A dif-
ference between the study of simple models and the serious consideration
of molecular liquids is the experimental possibility of interaction poten-
tial energies not representable by just a sum over molecular pairs. U is
pair-decomposable if

U(N ) =
N∑

i=1

u(1)(i) +
N∑

i>j=1

u(2)(i, j) . (6.6)

The second sum is over N(N − 1)/2 pairs of molecules. In the typical
situation, the terms above would be examined according to the sequence

u(1)(1) ≡ U(1) (6.7)

u(2) (1, 2) ≡ U (1, 2)− U (1)− U (2) . (6.8)

Pair-decomposability is a special case, and realistic interactions can
be non-pair-decomposable. If a triplet contribution were required this
would be represented as

U(N ) =
N∑

i=1

u(1)(i) +
N∑

i>j=1

u(2)(i, j) +
N∑

i>j>k=1

u(3)(i, j, k) , (6.9)
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and

u(3) (1, 2, 3) ≡ U (1, 2, 3)− U (1, 2)− U (2, 3)− U (3, 1)

+ U (1) + U (2) + U (3) . (6.10)

Eq. (6.9) is triplet-decomposable. The prescription for determining the
functions u(m) is that an m-decomposable model should be correct if the
system consisted only of m molecules. Formulae such as Eq. (6.2) and
(6.3) involve the Mayer f -function that, for a pair decomposable case,
is fα (j) = exp

[
−βu(2)(0, j)

]
− 1. A natural accommodation of non-

pair-decomposable interactions in this case takes the goal of insuring
that successive terms in a virial expansion are ordered by the density.
This is the historical approach (Ursell, 1927), and is called an Ursell
expansion. In this language, fα (j) is an Ursell function (Stell, 1964;
Münster, 1969). Again the idea is to require that the desired m-body
Ursell function would make the product of Eq. (6.2) correct if just m
molecules are involved. Thus for the case that only two (2) molecules
are involved

e−β∆Uα = e−β(U(0,1)−U(0)−U(1)) = 1 + f (2)
α (1) ,

f (2)
α (1) = e−βu(2)(0,1) − 1 . (6.11)

For the case that three (3) molecules are involved we write

e−β∆Uα = e−β[u(2)(0,1)+u(2)(0,2)+u(3)(0,1,2)]

= 1 + f (2)
α (1) + f (2)

α (2) + f (3)
α (1) f (3)

α (2) , (6.12)

on the basis of the identification of Eq. (6.11), and the formal multi-
plication of the factors of (1 + fα (j)). ∆Uα here is the full potential
energy of molecules (1,2,3) less the potential energy of the distinguished
molecule (0), and the potential energy of the bath molecules (1,2) con-
sidered separately. Then

f (3)
α (1) f (3)

α (2) = e−β[u(2)(0,1)+u(2)(0,2)+u(3)(0,1,2)]

− e−βu(2)(0,1) − e−βu(2)(0,2) + 1

= f (2)
α (1) f (2)

α (2)

+
(
1 + f (2)

α (1)
)(

1 + f (2)
α (2)

)(
e−βu(3)(0,1,2) − 1

)
. (6.13)

It is just this product that is required in these expansions, so it isn’t
necessary to go further here. It should be clear how to write out the
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specific jth order term. We emphasize again that these approaches offer
the possibility of considering series with only a finite number of non-
negligible terms!

Exercises

6.4 Ursell decomposition can just as well be considered for repre-
sentation of p-particle joint densities ρ(p)

i1i2...ip
(r1, . . . , rp) (Stell,

1964; Münster, 1969). For this more general problem, the idea
is that when one subset of coordinates is distant from all others
the distribution should gracefully adopt the form of independent
distributions. For example, ρ(2)(r1, r2) ≈ ρ(1)(r1)ρ(1)(r2) when
r1 and r2 are well separated. Therefore, we would define Ursell
functions

ρ(1)(r1) = U (1)(r1)

ρ(2)(r1, r2) = U (2)(r1, r2) + U (1)(r1)U (1)(r2), (6.14)

so that

U (2)(r1, r2) = ρ(2)(r1, r2)− ρ(1)(r1)ρ(1)(r2) (6.15)

[A customary notation for fluids is that ρ(2)/ρ2 ≡ g(2) and
U (2)/ρ2 ≡ h(2) = g(2) − 1.] Consider how ρ(3) should be repre-
sented according to these ideas and work out U (3) in terms of
ρ(p) with p ≤ 3.

Cumulant Expansion. For convenience (Graham et al., 1994), we use
them-to-the-k-falling notation

〈
mk|Rn

〉
≡ 〈m(m− 1) . . . (m− k + 1)|Rn〉.

Then Eq. (6.1) can be rewritten as

p (0|Rn) =
∑
k=0

(−1)k

k!
〈
mk|Rn

〉
0
≡
〈
e−m|Rn

〉
0
. (6.16)

The last of these identifications is formal and symbolic; mk must be
interpreted as mk in the expansion of this exponential.

Though this notation has some mnemonic value, it is helpful here in
suggesting the naturalness of a cumulant expansion; the prominence of
the k! in Eq. (6.16) is the important issue, not the complication of the
values for the moments. Further, the simplest approximation〈

e−m|Rn
〉
0
≈ e−〈m|Rn〉0 (6.17)
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-βµex( ) =  

                 =  - <m| >0 + {<m(m-1)| >0 - <m| >0
2 }/2 + ...

+ +
ρ(1)

Rn

Rn Rn Rn

δρ(2)

Fig. 6.2. Cumulant expansion, notation as in Fig. 6.1. Here we assume full
knowledge of the medium correlation functions in the absence of the solute;
δρ(2)(1, 2) = ρ(2)(1, 2) − ρ(2)(1)ρ(1)(2). These contributions are ordered ac-
cording to the number of bonds attached to the root point. Table 6.1 gives
formulae for contributions through 4th order.

is already a sensible first step forward; this is the uncorrelated theory
that would follow from the assumption of the Poisson distribution as has
been discussed above.

The formal manipulation of the moments that produces a cumulant
expansion (see Eq. (5.30), p. 129) applies to the alternative moments
considered here. Thus, for example,

ln p (0|Rn) ≈ −〈m|Rn〉0 +
1
2
[〈
m2|Rn

〉
0
− 〈m|Rn〉0

2
]

= −〈m|Rn〉0 +
1
2
[
〈m(m− 1)|Rn〉0 − 〈m|R

n〉0
2
]

(6.18)

to 2nd order and Table 6.1 gives the combinations of moments through
4th order.

Table 6.1. Successive contributions to the series β∆µ =
∑∞

1 aj/j! of
Figure 6.2. See also Table 5.1

j aj

1 +〈m〉0
2 −〈m2〉0 + 〈m〉02

3 +〈m3〉0 − 3〈m〉0〈m2〉0 + 2〈m〉03

4 −〈m4〉0 + 4〈m〉0〈m3〉0 − 12〈m〉02〈m2〉0 + 3〈m2〉02 + 6〈m〉04
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Exercises

6.5 Following Eq. (6.5) write

k!p(k|Rn) =
∑
j=0

(−1)j

j!
〈
mk+j |Rn

〉
0
≡
〈
mke−m|Rn

〉
0
, (6.19)

where in the last formula powers such as ml within brackets
〈. . . |Rn〉0 must be interpreted as ml. In view of the Poisson
distribution, the uncorrelated approximation should be〈

mke−m|Rn
〉
0
≈ 〈m|Rn〉0

ke−〈m|Rn〉0 . (6.20)

Note that〈
mke−m|Rn

〉
0

=
[

dk

dλk

〈
eλm|Rn

〉
0

]
λ=−1

(6.21)

and devise a statistical approximation for p(k|Rn) that is con-
sistent with the 2nd-order result Eq. (6.18).

Kirkwood-Salsburg Expansion. The idea for the potential distribu-
tion theorem, and consequently the Mayer-Montroll expansion Eq. (6.3),
is to consider a distinguished, additional molecule. The idea for the
Kirkwood-Salsburg expansion is to consider a distinguished, additional,
pth atom conditional upon locations of (p− 1) others. We will consider
the p = 2 case specifically.

To this end, recall Eq. (3.52), p. 64:

g(2)
αγ (r, r′) = e−βu(2)

αγ (r,r′)


〈
e−β∆U(2)

αγ |r, r′
〉

0〈
e−β∆U

(1)
α |r

〉
0

〈
e−β∆U

(1)
γ |r′

〉
0

 . (6.22)

We can reexpress the factors in the denominator in the following way:
one of those factors is used following Eq. (3.26), p. 56 to transform one
of the distinguished test atoms into a real atom; the second of those
factors is expressed with thermodynamic quantities on the basis of the
potential distribution theorem to give

g(2)
αγ (r, r′) =

zγ

ργΛ3
γ

e−βu(2)
αγ (r,r′)

〈
e−β(∆U(2)

αγ −∆U(1)
α ) |r, r′

〉
0

(6.23)

or

g(2)
αγ (r, r′) = e−βu(2)

αγ (r,r′)
〈
e−β(∆U(1)

γ −µex
γ ) |r, r′

〉
0
, (6.24)

making the additive assumption that ∆U (2)
αγ = ∆U (1)

α + ∆U (1)
γ . If the
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deficit from pair decomposability of interactions is important, then the
simplified notation in the last step to arrive at Eq. (6.24) should be
born in mind. Furthermore, the notation doesn’t specifically emphasize
that the atom of type α is actual and the atom of type γ is a test
particle, so be careful. This hints at the fact that this formulation is
not trivially symmetric when the two labeled particles are of the same
type. But the quantity on the left is symmetric, so nice approximations
should conform to this observation. Eq. (6.24) should be compared with
Eq. (3.37), p. 59.

We now proceed in much that same way that was effective for Eq. (6.2):

eβ(u(2)
αγ(r,r′)−µex

γ )g(2)
αγ (r, r′) = 1

+
〈(

m− 1
1

)
f (2)

αγ (2) |r, r′
〉

0

+
〈(

m− 1
2

)
f (2)

αγ (2) f (2)
αγ (3) |r, r′

〉
0

+
〈(

m− 1
3

)
f (2)

αγ (2) f (2)
αγ (3) f (2)

αγ (4) |r, r′
〉

0

+ . . . (6.25)

A depiction of these results is shown in Fig. 6.3. Notice that the Mayer-
Montroll expansion for e−βµex

γ is obtained for large separations where
both exp

[
−βu(2)

αγ (r, r′)
]

and g
(2)
αγ (r, r′) are practically one (1). The

terms in the MM expansion of Eq. (6.3) can be matched up in a one-
to-one fashion with terms in the KS expansion Eq. (6.25). In this way,
approximate use of this series for g(2)

αγ (r, r′) can correspond to an ap-
proximate result for e−βµex

γ and vice-versa. Furthermore, a term-by-term
subtraction introduces the Ursell function h(2)

αγ = g
(2)
αγ − 1 on the left, an

initial f (2)
αγ on the right, and simplifies the integrals to be considered on

the right.
Aside from potential utility as generators of approximate physical the-

ories for g(2)
αγ (r, r′), these Kirkwood-Salsburg expansions permit system-

atic construction of series for µex
α that are ordered in powers of the den-

sity, known as virial expansions. The way this can work is that the
Kirkwood-Salsburg equations permit elimination of distribution func-
tions in the Mayer-Montroll series (Fig. 6.1), through the necessary order
in the density.
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                    +

                    +

                    +   ...  

g(2) = +exp[β(u-µex)]

Fig. 6.3. Compare to Fig. 6.1. Here again the solid lines indicate factors of
Mayer f -functions as in Eq. (6.25) and further discussed as Ursell functions

beginning on p. 148. The second term shown is
R

f(r′)ρ(1)(r′ |r )d3r′ for
a simple fluid. The shaded regions with m − 1 black disks and one white
disk represent conditional densities ρ(m−1)(r1, . . . , rn−1 |r ). That white disk,
rightmost here, corresponds to the real atom positioned at r on which the
averages are conditioned. The other white disk, leftmost here, corresponds to
the test particle.

Exercises

6.6 Consider the KS expansion, Fig. 6.3, applied to a one-component
fluid and truncated at the second term displayed; this will be
satisfactory for low density because the subsequent terms have
higher-power initial density multipliers. What is the corre-
sponding MM approximate theory for the excess chemical po-
tential? Show that this KS approximate theory, expressed for
h(2), is

e−βµex
h(2)(r) = f(r)

(
1 +

∫
f(r)ρd3r

)
+ (1 + f(r))

∫
f(r′)h(2)(r′ − r)ρd3r′ . (6.26)

Consider a hard-core system for which h(2) = −1 = f inside the
core. What can you conclude about the consistency of this sim-
ple theory with the approximate result for the excess chemical
potential?



6.2 Density Functional and Classic Integral Equation Theories 155

6.7 Consider using Eq. (6.25), p. 153, to determine the form of
g(2) (r, r′) as a density expansion. Use that approach together
with the cumulant expansion (Fig. 6.2) to find µex that is correct
to O(ρ2).

6.8 Consider the hard-sphere fluid and establish the zero separa-
tion theorem

[
eβu(2)(r,r′)g(2) (r, r′)

]
r=r′

= eβµex
for that case.

Explain how Eq. (6.25), p. 153, achieves this result.
6.9 Consider a primitive model of a dilute electrolyte solution: the

system is composed of ions of two types that interact as

uην(|r − r′|) =
qηqν

ε |r − r′|
. (6.27)

ε is interpreted as the dielectric constant of the solvent. The
system is at high temperature (small β), and low densities con-
forming to bulk solution neutrality

∑
ρηqη = 0. Short-ranged

repulsive interactions between ions prevent collapse but won’t
be present in the final form here. Consider the approximation
to g(2)

ην that corresponds to the first line of Fig. 6.3. Explain why
f

(2)
ην ≈ -βu(0)

ην and µex
η ≈ 0 in the present case. With comparable

approximations, obtain the Debye-Hückel integral equation:

h(2)
ην (|r − r′|) ≈ −βu(0)

ην (|r − r′|)

−
∫
βu(0)

ηγ (|r − r′′|)ργh
(2)
γν (|r′′ − r′|)d3r′′ (6.28)

with h(2)
ην (|r − r′|) = g

(2)
ην (|r − r′|)− 1.

6.2 Density Functional and Classic Integral Equation
Theories

Our goal in this section is to establish a common density functional
language for considering solution thermodynamics, and then to provide
some density functional perspective on the chemical potentials which are
the principal actors in this book. Those results are the foremost goal
of this section. But we then use those results to follow Percus’s devel-
opment (Percus, 1964) of classic integral equations for the structure of
liquids, and to make further observations that provide more perspective
on these issues.

Functionals and Functional Derivatives. A rule that assigns to
each function in a suitable set a number in another set is a functional
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(Mathews and Walker, 1964; Stakgold, 1979). According to some prac-
tices, a basic view of the theory of solutions is to find, study, and char-
acterize the functionals which yield the thermodynamic properties when
the intermolecular interactions are supplied. Thus, some of the tools of
functional analysis are commonplace in our subject, and identifications
of some functional derivatives are basic. Here we catalog the necessary
functional derivative relations.

The functional derivative relations we consider here are defined as
follows (Hansen and McDonald, 1976, see §4.2), (Rowlinson and Widom,
1982, see Section 4.5). Consider a functional A of functions f(x); this
will be denoted by A[f(x)]. Then consider a small change f → f + δf .
An evaluation of the change

A[f + δf ] = A[f ] +
∫

δA

δf(x)
δf(x)dx (6.29)

to linear order in δf identifies the indicated kernel

δA

δf(x)
=

δA

δf(x)
[f ] (6.30)

as the functional derivative. The simplest example is obtained by con-
sidering the form of the contribution of the internal energy of a simple
atomic system from a generic external field ϕ(r):

U [ϕ(r)] =
∫
V
ϕ(r)ρ(r)d3r . (6.31)

Then
δU

δϕ(r)
= ρ(r) . (6.32)

A small handful of functional derivatives underlie the discussions that
will follow. Our initial step will be to consider the Helmholtz free energy
A, introduced in Eq. (2.15), p. 36, and how it depends on an external
potential energy field of the form anticipated by Eq. (6.31). In the
absence of such an external field, the Helmholtz free energy is a function
of (n,V, T ), A = A(n,V, T ). Thus we now generalize our questions to
consider A[ϕ(r)] ≡ A(n,V, T )[ϕ(r)]. Our evaluation will be based upon
the classical expression

A[ϕ(r) + δϕ(r)]−A[ϕ(r)] =

− kT ln

〈
exp

−β∑
α,j

δϕα(rj)

〉 [ϕ(r)] . (6.33)
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[Compare this to Eq. (2.27), p. 38.] The average on the right is the
thermal average for the interacting system corresponding to the condi-
tions (n,V, T )[ϕ(r)]. [If there are particles of several types, then we
consider fields ϕα(r) for each type; the right side of Eq. (6.33) makes
that clear, but we will not have an explicit notation like that for the left
side of Eq. (6.33).] It is then an algebraic exercise, one that we have
encountered already in Secs. 4.1 and 5.5, to show that

A[ϕ(r) + δϕ(r)]−A[ϕ(r)] =
∫
V
〈ρα(r)〉 δϕα(r)d3r

− β

2

∫
V

∫
V
〈δρα(r)δργ(r′)〉 δϕα(r)δϕγ(r′)d3rd3r′ + . . . (6.34)

Thus,
δA

δϕα(r)
[ϕ(r)] = 〈ρα(r)〉 , (6.35)

and the second derivative is
δρα(r)
δϕγ(r′)

= −β 〈δρα(r)δργ(r′)〉 ≡ χαγ(r, r′) . (6.36)

The latter coefficient addresses the question of the response of the sys-
tem density to an applied external field, and is called the susceptibility.
The final functional derivative relation that we will use views this sus-
ceptibility — Eq. (6.36)) — as a matrix, considers the matrix inverse,
and is a generalization of the partial derivative relation

δαγ =
∑

η

(
∂fα

∂xη

)∣∣∣∣
xν ,ν 6=η

(
∂xη

∂fγ

)∣∣∣∣
fζ ,ζ 6=γ

. (6.37)

Then the analogous relation

δαγδ (r − r′) =
∫
V

∑
η

δρα(r)
δϕη(r′′)

δϕη(r′′)
δργ(r′)

d3r′′ (6.38)

permits an evaluation of the inverse susceptibility

δϕα(r)
δργ(r′)

≡ χ−1
αγ (r, r′) . (6.39)

Pushing the analogy of Eq. (6.37) further leads to the suggestion that
χ−1 migth be naturally a functional of ρ rather than ϕ. In the context
of the theory of liquids, this inverse susceptibility is written as

−β δϕα(r)
δργ(r′)

=
δαγδ(r − r′)

ρα(r)
− cαγ(r, r′), (6.40)
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which introduces the Ornstein-Zernike (OZ) direct correlation function
cαγ(r, r′). Note again that

〈δρα(r)δργ(r′)〉 = ρα(r)δαγδ (r − r′) + ρα(r)ργ(r′)hαγ(r, r′) ; (6.41)

see Eq. (6.28). Here we drop the superscript ‘(2)’, and consider this
Ursell function hαγ of particles of species type α and γ. We can consider
again the inverse relation Eq. (6.38), which becomes

hαγ(r, r′) = cαγ(r, r′) +
∫
V
cαη(r, r′′)ρη(r′′)hηγ(r′′, r′)d3r′′ . (6.42)

This is the Ornstein-Zernike (OZ) equation from which the function
cαγ(r, r′) acquires its name.

The functional Eq. (6.33) suggests that it is most natural to consider
the Helmholtz free energy as a functional of the external potential energy
field: A = A[ϕα(r)]. Our interests will be in density functionals. To
pursue this we introduce the Legendre transform (Callen, 1985), A −∑

α

∫
V ϕα(r)ρα(r)d3r ≡ W[ρα(r)]. Consider a change δϕα (r) in the

external potential. Of course, the equilibrium density will change by
δρα (r), and further

δW =
∫
V

(
δA

δϕα (r)
− ρα (r)

)
δϕα (r) d3r

−
∫
V
ϕα (r) δρα (r) d3r . (6.43)

In view of Eq. (6.35), if we use the equilibrium density corresponding to
ϕα (r) then the first of these terms vanishes, and

ϕα (r) = − δW
δρα (r)

, (6.44)

a functional of the density, ρα(r). If this functional were satisfactorily
known, we might consider solving for the equilibrium density given the
field. The second functional derivative is then

δ2βW
δρα (r) δργ (r′)

=
δαγδ (r − r′)

ρα (r)
− cαγ (r, r′) . (6.45)

Density Functional Perspective on Chemical Potentials. Our
target for these formalities is a density functional perspective on chemi-
cal potentials. Notice that for a given ϕα(r) both A[ϕ] (Eq. (6.33)) and
ρα(r) (Eq. (6.35)) are determined. We might consider an alteration of
the density pattern, δρα(r), but without a changed external field. The
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altered density is not the equilibrium result of a change of the exter-
nal field, but is just a hypothetical different density. For this virtual
variation in the density, the free energy change is

δA =
∫
V

∑
α

(
ϕα(r) +

δW
δρα(r)

)
δρα(r)d3r . (6.46)

This comes from A ≡
∑

α

∫
V ϕα(r)ρα(r)d3r +W[ρα(r)] as above, but

with the virtual density variation not requiring the equilibrium con-
ditions implicit in Eq. (6.44). From here we proceed with the usual
Lagrange multiplier calculation to make this free energy stationary for
variations that don’t change the particle number:

δ(A−
∑
α

µαnα) =
∫
V

∑
α

(
ϕα(r) +

δW
δρα(r)

− µα

)
δρα(r)d3r, (6.47)

where µα are the necessary Lagrange multipliers. Requiring the free
energy to be stationary with respect to now-unrestricted variations in
the density implies the condition of equilibrium:

ϕα (r)− µα = − δW
δρα (r)

. (6.48)

This differs from Eq. (6.44) by a constant. But in hindsight we recog-
nize that the derivation of Eq. (6.44), following from Eq. (6.33), was
blind to changes in the numbers of molecules, and thus permitted a spa-
tially uniform constant to settle the question of net changes in molecule
numbers.

The thermodynamic interpretation of the spatially uniform constant
µα is found by considering the case that the solution of Eq. (6.48) is
found. Using that solution in the formula Eq. (6.46) gives

δA =
∑
α

µαδnα . (6.49)

Thus µα is the thermodynamic chemical potential.
The first contribution of Eq. (6.45) is easy to integrate. So we can

write

δ2βWex

δρα(r)δργ(r′)
= −cαγ(r, r′) , (6.50)
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and

βµα = βϕα(r) + ln ρα(r) + lnΛα
3 +

δβWex

δρα(r)

= βϕα(r) + ln
[
ρα(r)Λα

3
]
+
δβWex

δρα(r)
, (6.51)

where lnΛα
3 is the required constant of integration; this identification

is justified by the known result for the non-interacting atomic case,
Eq. (2.4), p. 34. Notice especially the superscript ex in the notation
Wex.

With these formulae the inverse question is formally simple. Given
the density, and the functional we could determine the external field
from Eq. (6.51)

βϕα(r) = − ln ρα(r)− δβWex

δρα(r)
, (6.52)

to within a constant.
These results establish that

cαγ(r, r′) = −δβµ
ex
α (r)

δργ(r′)
[ρ] , (6.53)

and that the excess chemical potential obtained by integrating this in-
formation is

βµex
α =

βδWex

δρα(r)
= βµex

α (r) [ρ] . (6.54)

Nonuniformities: PY and HNC integral equations. These results per-
mit a useful expression for the interaction contribution to the chemical
potential when the system is nonuniform:

exp{−βµex
α (r) [ρ]} =

exp{−βµex
α (r) [ρ̄] +

∑
γ

∫
V
cαγ(r, r′) [ργ(r′)− ρ̄γ)]d3r′ + . . .} . (6.55)

Here ρ̄γ are uniform densities providing the basis for a functional Tay-
lor series. Then the subsequent terms are ordered in the differences
[ργ(r′)− ρ̄γ ] and the coefficients such as cαγ(r, r′) — see Eq. (6.53)] —
are properties of the uniform system at densities ρ̄γ .

The relation Eq. (6.55) is key to Percus’s derivation of the Percus-
Yevick approximation (Percus, 1964). We consider the case where the
inhomogeneity is produced by the location of a distinguished particle
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of type ν at the origin, and inquire about the surrounding fluid. The
Kirkwood-Salsburg formula Eq. (6.24), p. 152, offers the interpretation
of the left-side of Eq. (6.55):

exp{−βµex
α (r) [ρ]} =

ρ̄αgαν(r)
zαe−βuνα(r)

. (6.56)

To obtain the Percus-Yevick approximation, we neglect second-order and
higher contributions, and the right-side of Eq. (6.55) is evaluated as

exp{−βµex
α (r) [ρ̄] +

∑
γ

∫
V
cαγ(r, r′) [ργ(r′)− ρ̄γ)]d3r′}

=
ρ̄α

zα
exp{

∑
γ

∫
V
cαγ(r, r′) [ργ(r′)− ρ̄γ)]d3r′}

≈ ρ̄α

zα
{1 +

∑
γ

∫
V
cαγ(r, r′) [ργ(r′)− ρ̄γ)]d3r′}

=
ρ̄α

zα
{1 +

∑
γ

ργ

∫
V
cαγ(r, r′)hγν(r′)d3r′}. (6.57)

Combining, using the OZ equation, and cleaning up, we obtain

eβuνα(r)gαν(r) = 1 + hαν(r)− cαν(r), (6.58)

or

cαν(r) = (1− eβuνα(r))gαν(r) = (e−βuνα(r) − 1)eβuνα(r)gαν(r)

= fαν(r)yαν(r), (6.59)

the PY approximation. Notice that if the range of intermolecular inter-
actions is finite, as is the case for hard-core interactions, then cαν(r) is
zero outside that range. On the other hand, Eq. (6.58) shows that for
hard-core interactions gαν(r) will be zero for overlapped configurations
in this approximation, and that is physically correct.

The hypernetted chain approximation obtains if we don’t linearize, so

eβuνα(r)gαν(r) = exp{hαν(r)− cαν(r)}, (6.60)

or

gαν(r) = exp{−βuνα(r) + hαν(r)− cαν(r)}, (6.61)

the HNC approximation.
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Further perspective: The HLR theory. The hydrostatic linear-response
(HLR) theory (Chen and Weeks, 2003) gives further perspective on the
PY theory, and exercises the preceding concepts of this section. We can
illustrate that development starting with the questions of the density
distortion of a solution in the neighborhood of a distinguished molecule.
As with the Kirkwood-Salsburg approach and the density functional
approach, the distinguished molecule is viewed as a source of an external
field exerted on the solution. The linear-response perspective on that
density distortion is

ρ(r) [ϕ] ≈ ρ(r) [ϕ̄] +
∫
V
χ(r, r′) [ϕ̄] (ϕ(r′)− ϕ̄) d3r′ , (6.62)

where ϕ̄ is a uniform field that produces the density ρ̄, i.e. ρ(r) [ϕ̄]
= ρ̄ [ϕ̄]. χ(r, r′) [ϕ̄] is the susceptibility of the liquid experiencing the
uniform field ϕ̄. It is a standard idea (Pratt et al., 1988, 1990; Hoffman
and Pratt, 1990, 1991) to try to optimize this description by considering
each r in turn, finding a ϕ̄ = ϕ̄r that does a good job for each r. In
particular, the solution of the nonlinear equation

ϕ̄r =

∫
V χ(r, r′) [ϕ̄r]ϕ(r′)d3r′∫

V χ(r, r′) [ϕ̄r] d3r′
(6.63)

annuls the linear-response contribution, and provides a field to use in
the locally uniform approximation ρ(r) [ϕ] ≈ ρ̄ [ϕ̄r].

It is interesting also to ask the inverse question: what is the field
corresponding to an observed density? Then

ϕ(r) [ρ] ≈ ϕ(r) [ρ̄] +
∫
V
χ−1(r, r′) [ρ̄] (ρ(r′)− ρ̄) d3r′ . (6.64)

The field on the right-side ϕ(r) [ρ̄] is the one that produces a uniform
density ρ̄; we could represent that uniform case entirely with a chemical
potential as

ϕ(r) [ρ] ≈ µex (ρ̄) +
∫
V
χ−1(r, r′) [ρ̄] (ρ(r′)− ρ̄) d3r′ . (6.65)

The optimization condition here is

0 =
∫
V
χ−1(r, r′) [ρ̄] (ρ(r′)− ρ̄r) d3r′ , (6.66)

or, in view of Eq. (6.40), p. 157

ρ(r) = ρ̄r + ρ̄r

∫
V
c(r, r′) [ρ̄r] (ρ(r′)− ρ̄r) d3r′ , (6.67)
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suggestively similar to the OZ equation, Eq. (6.42), p. 158.
Eq. (6.67) might be used in two different ways. The first way is to

answer the question originally posed: given ρ(r), what is ϕ(r)? The
density ρ(r), the uniform system chemical potential µex (ρ̄), and the
direct correlation function for the uniform solution must be known for
this purpose.

Another use is available, however, if ϕ(r) is known. Then we can view
Eq. (6.66) as an insistence on the hydrostatic choice for ρ̄r; that is with
µex (ρ̄) known, choose µex (ρ̄r) = ϕ(r), assuming that a solution for ρ̄r
exists on the basis of this requirement. Finally, if c(r, r′) [ρ̄r] is available
too, Eq. (6.67) might be solved for the full density response ρ(r). The
interesting point of perspective is that for the case of a hard-core solute,
Eq. (6.67) implies the PY theory because the hydrostatic choice sets ρ̄r
= 0, and thus ρ(r) = 0, for overlapping configurations; but for non-
overlap configurations ρ̄r = ρ, the bulk density. Then, Eq. (6.67) is

ρ(r)− ρ = ρ

∫
V
c(r, r′) [ρ̄r] (ρ(r′)− ρ) d3r′ (6.68)

for all non-overlapping configurations. But this corresponds to the usual
OZ equation, Eq. (6.42), p. 158, without an explicit contribution from
the OZ direct correlation, that is with the assumption that such a con-
tribution is zero for non-overlapping configurations, as in the PY ap-
proximation for hard-core interactions.

Further perspective: HNC and RISM Theories of Molecular Liquids. A
beautiful, strongly established feature of the classic theory of liquids,
but too involved for our current discussion, is the formal determination
(Morita and Hiroike, 1961, specifically Eq. 4.22) (Stell, 1964, specifically
Eq. 10-12) of the interaction contributions to the chemical potential on
the basis of system densities and observed molecule-molecule correlations
for the case of pair decomposable intermolecular interactions. Those de-
velopments are dazzlingly complete — for the case of pair interactions —
but formal in the sense that they involve an infinite series with unproven
convergence in specific cases of interest.

With the HNC approximation this development is explicit and concise.
For cases where the HNC approximation is known to be usefully accu-
rate, it would be interesting to attempt to evaluate those developments
more fully on the basis of correlation functions observed in simulations,
in order to learn something about the characteristics of successive terms
in those series in a favorable case.
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This point of interest is brought forward by the RISM approach to the
structure of molecular liquids, and a RISM model with HNC closure sup-
ports a similar result for the excess chemical potential in terms of atom-
atom correlations (Singer and Chandler, 1985; Hirata, 1998). ‘RISM’ —
Reference Interaction Site Model — is an anachronism that refers to a
class of theories for the joint 2-atom distributions in molecular liquids.
The most basic decision of RISM models is that theories of molecular
liquids should focus first on the atom-atom distributions extracted from
X-ray and neutron scattering data rather than more complex possibil-
ities; this highly practical point was not so obvious in an earlier epoch
when models of molecular liquids were scarcely realistic on an atomic
scale. That basic decision was encapsulated by invention of a site-site (or
atom-atom) Ornstein-Zernike (SSOZ) (Cummings and Stell, 1982) equa-
tion that involved intramolecular atom-atom correlations. The original
suggestions (Chandler and Andersen, 1972) were sufficiently successful
as to support subsequent flamboyant developments, and to be substan-
tially impervious to more fundamental improvements (Chandler et al.,
1982). For these reasons a full discussion of the RISM models wouldn’t
fit here. Fortunately, a devoted exposition of current RISM work is
already available (Hirata, 1998).

6.3 Kirkwood-Buff Theory

The Kirkwood-Buff theory of solutions (Kirkwook and Buff, 1951) doesn’t
depend on special assumptions about the nature of the intermolecular
interactions such as pairwise additivity, and can be based upon the rela-
tion Eq. (6.53) which leads to the density derivatives of the interaction
contributions to chemical potentials, and in this way leads to evaluations
of those chemical potentials. The KB approach has been of significant
practical importance (Mansoori and Matteoli, 1990).

We obtain the KB relations by considering the change in the interac-
tion contribution to the chemical potential of species α upon increasing
the density of species γ (with temperature fixed):

δµex
α =

∫
V

δµex
α

δργ(r)
δργ(r)d3r. (6.69)

We consider a fluid, and take the density change to be uniform in the
system volume δργ(r) =dργ . Noting also Eq. (6.53), this leads to(

β∂µex
α

∂ργ

)∣∣∣∣
ρν ,ν 6=γ

= −
∫
V
cαγ(r)d3r. (6.70)
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This relation can be exploited by obtaining information on the corre-
lations as described by Eq. (6.42) and using the OZ relation to obtain
the integral of the direct correlation function. A density integration
would then typically permit reconstruction of µex

α relative to a defined
standard state. We have already encountered the interesting point that
the density derivative on the left of Eq. (6.70) is ill-defined for the case
of ionic interactions in the limit of low concentrations; the interaction
contributions to chemical potentials of ions vary as

√
ρ for vanishing

concentrations, see p. 111. This leads to the conclusion that the integral
on the right of Eq. (6.70) is ill-defined in that situation.

Exercises

6.10 Consider the case of a spherical solute (A) dissolved at infinite
dilution in a molecular solvent (S), and show that the partial
molar volume — see Eq. (4.100), p. 116 — can be expressed as

vA = −kTκT − 4π
∫ ∞

0

(gAS (r)− 1) r2dr , (6.71)

where gAS (r) is the radial distribution of solvent centers from
the solute, and κT is the isothermal compressibility of the sol-
vent. Hint: see (Pratt and Pohorille, 1993; Paulaitis et al.,
1994). Give an interpretation of the factor of κT . Give a qualita-
tive drawing of gAS (r), and discuss consequences of the features
of that drawing for vA.
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QUASI-CHEMICAL THEORY

An initial discussion of a quasi-chemical approach was presented in
Sec. 4.6. This chapter gives a fuller development of those ideas. The
idea of our initial discussion was to introduce a statistical model capable
of a natural description of strong association phenomena in solutions,
and the example of ion clustering in electrolyte solutions was considered.
But the quasi-chemical developments here may be founded on broader
concepts, and given a more extensive development. The most primitive
idea is to identify an inner-shell region from the rest of the neighborhood
of a distinguished solute, and to rely on a painstaking treatment of the
inner shell, with full molecular resolution. The remainder of the neigh-
borhood of that distinguished solute — the outer-shell region — can be
given an alternative statistical description, and then a proper match-
ing of results for inner and outer shells must be accomplished. The
pragmatic approach of using alternative methods for physically distinct
spatial regions is important.

Many problems of solution theory cry out for chemical treatment of
an obvious inner shell. For example, complexes such as Fe(H2O)6

3+(aq)
naturally present themselves as important solution structures when Fe3+(aq)
is considered. But discussion of the thermodynamics of Fe3+(aq) on that
basis requires a satisfactory parsing of the thermochemistry associated
with the ligand species. In evaluating the standard Gibbs free energy of
a complex solution species, what contribution should be assigned to the
ligands? Should those contributions be a standard Gibbs free energy
for those ligand species? Or should those ligand contributions corre-
spond to the actual activity of the ligands? The quasi-chemical theory
supports the latter alternative: the absolute activity — including the
ideal concentration dependence — is directly involved in constructing
the standard free energy of Fe3+(aq).

166
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The appellation quasi-chemical is acquired from Guggenheim (Guggen-
heim, 1935, 1938). This is because central equations of the theory have
a structure that is familiar from chemical considerations; this is true of
the developments below too. The independent and simultaneous theory
of (Bethe, 1935), soon shown to be essentially equivalent (Fowler and
Guggenheim, 1940), was called the “method of local configurations” by
(Kirkwood, 1940), and that idea is a characteristic of the present con-
siderations as well.

Despite the kinship of the present development to those historical
works, we don’t try to follow upon those historical footsteps directly.
Part of the distinction is that those historical works were based upon
lattice-gas models which are archaic as contributions to molecular sci-
ence: sometimes useful, but rarely an attempt to come to grips with
molecular problems at a molecular resolution. Nevertheless, quasi-chemical/Bethe
theories are probably the most effective approximate physical theories
available for those lattice gas problems, and an important goal of our
present discussion will be to discover corresponding theories of molecular
science, as distinct from lattice gases.

It is interesting that Eq. (4.98), p. 115, offers a discrete-state parti-
tion function for the description of the inner-sphere contribution to the
thermodynamics. But the discrete coordinate is an occupation number
for a precisely defined configurational region, and parameters required
for this discrete-state partition function are obtained by molecular-level
calculations. Therefore, molecular realism isn’t the first casualty of these
theories, although strong approximations are typically accumulated after
the formulation of quasi-chemical theories.

7.1 Derivation of the Basic Quasi-chemical Formula

This quasi-chemical development can be motivated by the observation
that many solute-solvent interactions can be characterized as chemical
associations — strong relative to the thermal energy, kT — although not
necessarily covalent interactions. The interactions here considered are
typically both short-ranged and structurally specific. So we can identify
an inner shell or proximal region around the solute that will accommo-
date strongly associating solvent molecules, and a second region, the
outer shell, that corresponds to the remainder of the system volume.
For protein solutions, we might define this inner shell to include regions
the size of water molecules in close proximity to solvent-accessible, hy-
drophilic groups that are likely to bind water molecules. The definition
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of a hydrogen bond between pairs of water molecules, or between a wa-
ter molecule and a particular amino acid on the surface of a protein are
customary considerations in describing hydrogen-bonding interactions
in aqueous solutions. The inner shell can be specified by defining an
indicator function bα (j), such that bα (j) =1 when solvent molecule j
occupies the inner shell of a distinguished molecule of type α, and bα (j)
=0 when this solvent molecule is outside that region. With this def-
inition, a natural outer-shell contribution to the potential distribution
theorem expression for the solute excess chemical potential is

βµex
α |outer = − ln

〈〈
e−β∆Uα

∏
j

[1− bα (j)]

〉〉
0

. (7.1)

Note that the additional factor within the average, the Πj(1 − bα (j)),
would be zero for any solvent configuration in which a solvent molecule
is found in the inner shell. Thus, this expression involves a potential
distribution average under the constraint that no binding in the inner
shell is permitted. We can formally write the full expression for the
excess chemical potential as

βµex
α = − ln


〈〈

e−β∆Uα
〉〉

0〈〈
e−β∆Uα

∏
j

[1− bα (j)]

〉〉
0


− ln

〈〈
e−β∆Uα

∏
j

[1− bα (j)]

〉〉
0

. (7.2)

This expression separates solute-solvent interactions into an outer-shell
contribution, for which simpler physical approximations might be help-
ful, and an inner-shell contribution, which we consider from the perspec-
tive of quasi-chemical theory.

Note that the ratio of averages appearing in Eq. (7.2) is of just the
form considered in Sec. 3.3, p. 56, where the averaged quantity is just
the indicator function Πj [1− bα (j)], but the average is performed with
the solute present. Since this function is equal to one (1) for precisely
those cases that the defined inner shell is empty, and is equal to zero (0)
otherwise, we can recast Eq. (7.2) as

βµex
α = lnx0 − ln

〈〈
e−β∆Uα

∏
j

[1− bα (j)]

〉〉
0

, (7.3)
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where x0 is the probability of those configurations for which the solute
has no solvent molecules bound in the inner shell, i.e., it is the normal
average of the indicator function:

x0 =

〈〈
e−β∆Uα

∏
j

[1− bα (j)]

〉〉
0

〈〈e−β∆Uα〉〉0
(7.4)

Chemical Equilibrium Description of x0. The conclusive step in
this quasi-chemical development is to recognize that a stoichiometric
model for chemical equilibrium provides a correct description of x0. We
imagine following a specific solute molecule of interest through chemical
conversions defined as changes in the inner-shell populations,

α+ nW 
 αWn, (7.5)

where α indicates the solute — for example, a protein molecule — and
‘W’ a solvent species — water is the most common one. When these
transformations are in equilibrium,

cn
c0

= KnρW
n (7.6)

with cn indicating the concentration of a complex consisting of the
protein and n water molecules. Eq. (7.6) serves as a definition of Kn

and is just the usual products over reactants chemical equilibrium ratio.
Supplying the appropriate normalization to evaluate x0 explicitly gives

x0 ≡
c0∑
n cn

=
1

1 +
∑
n≥1

KnρW
n

(7.7)

and substituting into Eq. (7.3) gives the desired final result,

βµex
α = − ln

1 +
∑
n≥1

KnρW
n

− ln

〈〈
e−β∆Uα

∏
j

[1− bα (j)]

〉〉
0

.

(7.8)

Eq. (7.8) offers a clear separation of inner- and outer-shell contribu-
tions so that different physical approximations might be used in these
different regions, and then matched. The description of inner-shell in-
teractions will depend on access to the equilibrium constants Kn. These
are well defined, observationally and computationally (see Eq. (7.10)),
and so might be the subject of either experiments or statistical thermo-
dynamic computations. For simple solutes, such as the Li+ ion, ab initio
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calculations can be carried out to obtain theKn (Pratt and Rempe, 1999;
Rempe et al., 2000; Rempe and Pratt, 2001), on the basis of Eq. (2.8),
p. 35. With definite quantitative values for these coefficients, the inner-
shell contribution in Eq. (7.8) appears just as a local grand canonical
partition function involving the composition of the defined inner shell.
We note that the net result of dividing the excess chemical potential in
Eq. (7.8) into inner- and outer-shell contributions should not depend on
the specifics of that division. This requirement can provide a variational
check that the accumulated approximations are well matched.

Exercises

7.1 Show that the traditional chemical thermodynamic considera-
tion of a chemical transformation such as

nAA + nBB 
 nCC + nDD (7.9)

with the potential distribution theorem Eq. (3.20) leads to

K ≡ ρC
nCρD

nD

ρA
nAρB

nB

=

(〈〈
e−β∆UC

〉〉
0

qint
C

ΛC
3

)
nC

(〈〈
e−β∆UD

〉〉
0

qint
D

ΛD
3

)
nD(

〈〈e−β∆UA〉〉0
qint
A

ΛA
3

)
nA

(
〈〈e−β∆UB〉〉0

qint
B

ΛB
3

)
nB

, (7.10)

generalizing Eq. (2.8), p. 35. Writing this as

K = K(0)

(〈〈
e−β∆UC

〉〉
0

)
nC
(〈〈

e−β∆UD
〉〉

0

)
nD

(〈〈e−β∆UA〉〉0) nA (〈〈e−β∆UB〉〉0) nB
, (7.11)

displays the ideal K(0) explicitly. The conclusion is that the
equilibrium ratios so defined are indeed well defined as a matter
of observation and of molecular computation.

7.2 Clustering in More Detail

The preceding general derivation didn’t seek details that can serve to
ground the theory better. One ingredient for deriving the quasi-chemical
pattern is a counting device used to sort configurations according to
proximity. If ∆Uα were pairwise decomposable we would write

e−β∆Uα =
∏
j

[1 + fα (j)], (7.12)
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where, as in Sec. 6.1, p. 145, fα (j) is the Mayer f -(cluster)-function
describing the interactions between the α solute and the solvent molecule
j. Series expansions then proceed in a direct and simple way for the
simple case to which this equation applies. The clustering features of
these expansions are valuable, and we can preserve them in cases that
don’t present pairwise decomposable ∆Uα by writing

1 =
∏
j

[1 + bα (j) + fα (j)]. (7.13)

bα (j) is one (1) in a geometrically defined αj-bonding region and zero
(0) otherwise; bα (j) is an indicator function (van Kampen, 1992). fα (j)
is then defined by

fα (j) = −bα (j) . (7.14)

With this setup the fα (j) is analogous to a Mayer f -function for a
hard object and can play the same role of monitoring the description of
packing effects in liquids. See Ex. 6.1, p. 147 for example.

The strategy for our derivation will be to insert this resolution of
unity, Eq. (7.13), within the averaging brackets of the potential distri-
bution theorem, then expand and order the contributions according to
the number of factors of bα (j) that appear. We emphasize that physical
interactions are not addressed here and that the hard-core interactions
associated with discontinuity in fα (j) appear for counting purposes only.

Low-Order Contributions. Let’s note some of the properties of this
expansion, and of the terms that result. Consider initially the term that
is zeroth order, with no factors of bα (j) appearing. That term is

0th order in bα (j):
∏
j

[1 + fα (j)]. This would be the interaction poten-

tial energy for the bath with a hard object that excludes the bath from
any bonding region, because then fα (j) = −1 and the statistical weight
would be zero.

1st order in bα (j): Nbα (1)
∏
j 6=1

[1 + fα (j)]. There is just one bath/solvent

molecule in the bonding region and N possibilities for that specific
molecule due to the existence of N solvent molecules in the system.
All other molecules are excluded from the bonding region.
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2nd order in bα (j):
(

N(N−1)
2

)
bα (1) bα (2)

∏
j 6∈{1,2}

[1 + fα (j)]. Now there

are two bath/solvent molecules in the bonding region, that pair could
have been chosen in N (N − 1) /2 ways, and all others than the specific
pair are excluded.

General Term. The pattern of these contributions to this cluster ex-
pansion is obvious. If we take the general formula for the mth order ex-
pansion term and now include the Boltzmann factor for the full system
of solute and solvent molecules, then we can illustrate the equivalence of
two different views of the total system. In one view the system is divided
into a distinguished solute and N solvent molecules. In an alternative
view the distinguished solute is a complex cluster. In the cluster view,
the solute is surrounded by m solvent ligand molecules in the bond-
ing region with the remaining N −m solvent molecules occupying the
external region. The full mechanical potential energy is parsed as

U(α) + U(N ) + ∆Uα = U(α+ m) + U(N −m) + ∆Uα+m . (7.15)

None of the energies considered here need be pairwise decomposable.
The general mth term then adopts the form

e−β[U(α+m)+U(N−m)+∆Uα+m]
“N

m

” Y
i∈m

bα (i)

!0@ Y
j 6∈m

[1 + fα (j)]

1A
=
“N

m

”
e−βU(N−m)

× e−βU(α+m)

 Y
i∈m

bα (i)

!

× e−β∆Uα+m

0@ Y
j 6∈m

[1 + fα (j)]

1A . (7.16)

The factor
(
N
m

)
is the number of ways of selecting m specific solvent

molecules as occupants of the inner shell; those are selected for the m
factors of bα (i).

The remaining factors of Eq. (7.16) will make up the integrand in-
volved in a canonical partition function. But we will prefer to evaluate
a grand canonical partition function. In doing this, we will select the
appropriate m factors of the activity out of the activities available, and
denote that combination by zm. The

(
N
m

)
feature will be zero for cases

that N isn’t sufficient to supply the ligand set m. Therefore, all nonzero
contributions will be proportional to the factor of zm.
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There will be activities z(N − m) left aside from such a contribution to
the desired grand canonical partition function. The factor

(
N
m

)
supplies

a numerator of N ! that cancels exactly that factor in the denominator
of the original grand partition function population weight;

(
N
m

)
also con-

tributes a handy denominator of the form (N − m)!, and leaves another
denominator factor of m! This argument amounts to

zN

N !
e−β[U(α+m)+U(N−m)+∆Uα+m]

“N

m

” Y
i∈m

bα (i)

!0@ Y
j 6∈m

[1 + fα (j)]

1A
=

z(N − m)`
N − m

´
!
e−βU(N−m)

×
zm

m!
e−βU(α+m)

 Y
i∈m

bα (i)

!

× e−β∆Uα+m

0@ Y
j 6∈m

[1 + fα (j)]

1A . (7.17)

Then, as with Eq. (3.19), p. 54, we multiply and divide by Q(N − m)
to compose the sought-after grand canonical population weight. Finally,
we multiply and divide to factor-forward a configurational partition func-
tion associated with the weight

e−βU(α+m)
Y

i∈m
bα (i) (7.18)

for the α+m complex. The canonical partition function for that defined
case will be denoted by Q(α+ m)/m!. Then

mth term contributing to
〈〈

e−β∆Uα
〉〉

0
:〈〈

e−β∆Uα+m
∏

j 6∈m

[1 + fα (j)]

〉〉
0

Q(α+ m)
zm

m!
.

Using the notation Q(α+ m)/m! = V qint
α+m/Λα+m

3 and collecting these
results, finally we get the intended partition function formula

e−βµex
α =

X
m≥0

qint
α+mΛα

3

qint
α Λα+m3

**
e−β∆Uα+m

Y
j 6∈m

[1 + fα (j)]

++
0

zm . (7.19)

Compare this result with Eq. (4.93), p. 115. After noting again that
fα (j) = −bα (j), the m=0 term is recognized as the outer-shell contri-
bution of Eq. (7.1) p. 168.
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Be

Be Be

Fig. 7.1. Structures representing the deprotonated tetra-aquo cation,
BeOH(H2O)3

+, and the aggregate formed by the coalescence of one such

unit and a Be(H2O)4
2+ ion, with expulsion of a water molecule.

Exercises

7.2 Use the general potential distribution theorem to eliminate the
explicit factors zm from Eq. (7.19) to obtain Eq. (7.8), p. 169.
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7.3 An Example of a Primitive Quasi-Chemical Treatment:
Be2+(aq)

In order to fix the ideas in a simple case, let’s discuss an example of a
primitive quasi-chemical treatment of the statistical thermodynamics of
Be2+(aq). This follows closely (Asthagiri and Pratt, 2003).

Beryllium metal has properties that make it technologically attractive
(Alderighi et al., 2000), but these advantages are severely counterbal-
anced by the toxicity of inhaled beryllium dust, which can cause chronic
beryllium disease (Sauer et al., 2002). The etiology of this immune
hyper-response disease (Fontenot et al., 2001) is poorly understood, but
the final disease state is characterized by lung failure.

At low concentrations and neutral pH conditions, Be2+(aq) can hy-
drolyze water and then form colloidal aggregates linked with HO− species
(Alderighi et al., 2000; Bruno, 1987), as suggested by Fig. 7.1. These
are chemical issues.

The inner-shell combinations pertinent to a quasi-chemical treatment
of Be2+ hydration are

Be2+ + nH2O 
 Be(H2O)n2+ , (7.20)

and the equilibrium ratios Kn are defined for these chemical processes.
A simple quasi-chemical approximation for the hydration free energy of
such ions is

βµex
Be2+ ≈ − ln

[
K

(0)
n̄ ρH2O

n̄
]

+ βµex
Be(H2O)n̄

2+ − n̄βµex
H2O . (7.21)

K
(0)
n are those coefficients evaluated for the case that the effects of a

medium external to the n-ligand cluster are neglected. Those parameters
can be obtained by calculating free energy changes for these reactions
with, e.g. the Gaussian suite of programs to treat electronic structure
(Frisch, 1998).

The largest term of the sum of Eq. (7.8), p. 169, is indicated by n̄

in Eq. (7.21). Limiting that sum to the largest term makes a negligible
difference in these situations. There are two reasons for that. The first is
that succeeding terms in such a sum reflect chemical energy differences.
A slight advantage in energy on a chemical scale for one term means that
it dominates all others on a thermal energy scale. The second reason is
that there are only a finite, and small, number of terms in the full sum,
so there isn’t a chance to accumulate a significant entropic contribution
in that way. For example, if two terms in the general sum were precisely
the same, the present neglect would entail an error in the free energy of



176 QUASI-CHEMICAL THEORY

kT ln 2, which is a negligible magnitude here. A more significant entropic
contribution is the temperature dependence of the density displayed in
Eq. (7.21).

The density ρH2O appearing in Eq. (7.21) is the actual density of
liquid water. At standard conditions this is roughly 1 g/cm3. Since
K

(0)
n is calculated for an ideal gas pf=1 atm standard state, the effect of

the actual density is a replacement contribution of −nkT ln(ρH2O/ρ0) ≈
−nkT ln(1354), where ρ0 = 1atm/RT . This amounts to a contribution
of −4.27 kcal/mol per ligand. This contribution is favorable to this
reaction, and reflects the higher availability of ligands at the density of
the liquid, 1354 times higher than that of the standard state.

The parameters K(0)
n evaluated in this way express no influence of the

medium external to the cluster. Consulting Eq. (7.11), p. 170, we see
that we should incorporate that influence through contributions as

− lnKn = − lnK(0)
n

+ βµex
Be(H2O)n

2+ − βµex
Be(H2O)n=0

2+ − nβµex
H2O . (7.22)

But the contribution βµex
Be(H2O)n=0

2+ is precisely the outer-shell contribu-
tion obtained from Eq. (7.8), p. 169. Thus this contribution is cancelled
exactly by the outer-shell contribution that is acknowledged just at this
point. This is how the approximation Eq. (7.21) is obtained.

A dielectric model, as discussed in fundamental form in Sec. 4.2, p. 83,
was adopted for the results of Fig. 7.2. It is found that n̄=4, not sur-
prisingly. The calculated hydration free energy of −567.7 kcal/mole
is in reasonable agreement with the value of −574.6 kcal/mol cited in
(Marcus, 1985).

In contrast to more typical applications of a dielectric model, the
present result is not very sensitive to the radius parameters that are used.
There are two reasons for that insensitivity. First, the radius parameters
used for ligand molecules are the same for the difference of Eq. (7.21),
and the variations expected in each term track each other to some extent.
Second, the exact cancellation of the outer-shell contribution means that
a radius parameter used for the species at the core of the complex, the
beryllium ion, is largely irrelevant because the ligands serve effectively
to bury that species. Of course, exact cancellation is another case of a
difference between two terms with variations in one term compensating
for the variations of the other. Variational qualities will be discussed
further in the following section.
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Fig. 7.2. Quasi-chemical contributions of the hydration free energy of
Be2+(aq). Cluster geometries were optimized using the B3LYP hybrid density
functional (Becke, 1993) and the 6-31+G(d,p) basis set. Frequency calcula-
tions confirmed a true minimum, and the zero point energies were computed
at the same level of theory. Single-point energies were calculated using the
6-311+G(2d,p) basis set. A purely inner-shell n = 5 cluster was not found;
the optimization gave structures with four (4) inner- and one (1) outer-sphere
water molecule. For n = 6 both a purely inner-shell configuration, and a
structure with four (4) inner- and two (2) outer-shell water molecules were
obtained. The quasi-chemical theory here utilizes only the inner-shell struc-

ture. ©: −kT ln
h
K

(0)
n ρH2O

n
i
− nµex

H2O + µex
Be(H2O)n

2+ (left ordinate) vs. n.

4: −kT ln Kn
(0) − nkT ln(1354); ×: µex

Be(H2O)n
2+ − nµH2O. The inner shell

was defined by a Be-O radius of 2.0 Å. Using a smaller radius did not make
an appreciable difference. Note that the outer-shell contribution is about half
of the inner-shell, so neither contribution is irrelevant. For further details, see
(Asthagiri and Pratt, 2003).

The acidity of Be(H2O)42+ is described by

Ka =
[BeOH(H2O)3+] [H+]

[Be(H2O)42+]
, (7.23)

corresponding to the reaction

Be(H2O)42+ 
 BeOH(H2O)3+ + H+ (7.24)

under standard conditions. A detailed discussion of this extension of
our present quasi-chemical activity would take us too far afield for now.
We can note, however, that natural further calculations yield pKa ≈
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3.8. By fitting experimental free energy changes for the case of low total
Be2+ concentration (Alderighi et al., 2000; Bruno, 1987), it is found that
Be(H2O)42+ exists in appreciable amounts only below a pH of 3.5. The
present calculated pKa is in good agreement with these observations.
This value of pKa has the standard interpretation that the deproto-
nated complex BeOH(H2O)3+ is a thousand times more probable than
Be(H2O)42+ at neutral pH.

7.4 Analysis of Ab Initio Molecular Dynamics

This section continues the discussion of the quasi-chemical theory, but
incorporates AIMD calculations to develop the point that the central
quantities of quasi-chemical theories can be obtained from simulation
calculations. Additionally, we develop a variational perspective on the
quasi-chemical partitioning of inner and outer shells. The calculations
which provide the basis of this discussion treat liquid water (Asthagiri
et al., 2003c).

We discuss the latter topic — the variational character — first. The
inner-shell and outer-shell terms displayed in Eq. (7.8) offer the possi-
bility of balancing contributions. In fact, the sum of those two terms
would be independent of the definition of the inner shell if no further
approximations were made. This is because the rearrangement induced
by definition of the inner shall was entirely formal and correct, and the
original problem was independent of the definition of the inner shell.

When approximations are made in the evaluation of those distinct
terms, the sum needn’t be independent of definition of the inner shell.
We argue here that when sum is insensitive to local adjustment of the
inner shell then the inevitable approximations are well balanced. The
quasi-chemical approach is variational in this sense.

We now develop an example of this variational character. We utilize
results from ab initio molecular dynamics (AIMD) for that purpose,
and estimate µex

H2O
for liquid water. The ab initio molecular dynamics

(AIMD) simulations were carried out with the VASP (Kresse and Hafner,
1993; Kresse and Furthmüller, 1996) simulation program, as described
in detail in (Asthagiri et al., 2003c). Ab initio molecular dynamics
of aqueous solutions are recent activities compared to other simulation
methods for aqueous solutions, and basic characterization of the new
methods is still underway; see (Grossman et al., 2004; Schwegler et al.,
2004) for initial examples.

Fig. 7.3 shows the OO radial distribution function. Note that the first
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Fig. 7.3. Oxygen-oxygen radial density distribution for liquid water. The
smooth curve is the experimental result of (Head-Gordon and Hura, 2002);
the dots are the data, collected in bins of width 0.05 Å, from ab initio molec-
ular dynamics utilizing the rPBE electron density functional. The estimated
temperature is 314 K for the latter case, slightly higher than that of the ex-
periments at 300 K. See (Asthagiri et al., 2003c).

minimum of gOO(r) is around 3.3 Å, and this suggests an inner-sphere
radius for a quasi-chemical analysis.

We focus first on the outer-shell contribution of Eq. (7.8). That con-
tribution is the hydration free energy in liquid water for a distinguished
water molecule under the constraint that no inner-shell neighbors are
permitted. We will adopt a van der Waals model for that quantity, as in
Sec. 4.1. Thus, we treat first the packing issue implied by the constraint∏
j

[1− bα (j)] of Eq. (7.8); then we append a contribution due to disper-

sion interactions, Eq. (4.6), p. 78. Finally, we include a contribution due
to classic electrostatic interactions on the basis of a dielectric continuum
model, Sec. 4.2, p. 83.

For the packing contributions we follow the discussion of Sec. 4.3.
For each configuration sampled from the simulation, 10000 points were
placed randomly in the simulation cell, and the population of water
molecules in the defined inner-shell volume calculated. Those sample-
averaged frequencies give satisfactory estimates of the pn that have sub-



180 QUASI-CHEMICAL THEORY

stantial values, and robust estimates of the moments 〈n〉0 and 〈n(n− 1)〉0/2.
p0 was obtained by the information theory procedure, and −kT ln p0

directly gives the packing contribution that is sought. [See Fig. 7.4.]
Fig. 7.4 shows the {pn} distribution for a cavity of size 3.3 Å.

The distribution {xn} was analyzed in the same way, and is shown
in Fig. 7.4 for this particular case. The wings of these distributions are
difficult to access, and the estimates of p0 (and x0) are likely the roughest
parts of this example calculation. But since the mean and the second
moment seem reliable, the inferred probabilities also appear reasonable.

2                4               6                8

n

ln pn

 -2
 

 -4

 -6

 -8

-10

-12

Fig. 7.4. {pn} vs. n. The points are the rPBE AIMD simulation results as
in Fig. 7.3, p. 179; the dashed line is the information theory fit to the rPBE
results, utilizing the Gibbs default distribution, p̂j ∝ 1/j!.

For the dispersion contribution, we assume that the solute-solvent in-
teraction, in the outer shell, is of the form C/r6 and that the distribution
of water outside the inner shell is uniform. Thus the dispersion contri-
bution is −4πρC/(3R3), where for the SPC/E water model, 4πρC/3 is
87.3 kcal/mole Å3. The electrostatic effects were modeled with a dielec-
tric continuum approach (Yoon and Lenhoff, 1990), using a spherical
cavity of radius R. The SPC/E (Berendsen et al., 1987) charge set was
used for the water molecule in the center of the cavity.

This procedure can be carried out for observation volumes of different
sizes. Of particular interest to us are the sizes 3.0 to 3.4 Å that bracket
the minimum in gOO(r) (Fig. 7.3). Fig. 7.6 shows the hydration free
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Fig. 7.5. {xn} vs. n, as in Fig. 7.4.

energy for cavity sizes in this regime. In Fig. 7.6 the minimum for µex

is obtained for R =3.3 Å. This is consistent with the expectations from
gOO(r) (Fig. 7.3).

Using the values for x0 and p0 for a cavity of size 3.3 Å, the sum of
the chemical (−9.5 kcal/mole) and packing (8.1 kcal/mole) contributions
is −1.4 kcal/mole. From scaled-particle theory (Ashbaugh and Pratt,
2004), at 314 K and under saturation conditions, a value of around
6 kcal/mole is expected for the packing contribution. Our computed
value is a bit higher perhaps because the density is a bit higher than that
corresponding to saturation conditions at 314 K. Likewise our chemical
contribution is expected to be a bit more negative than that expected at
314 K under saturation conditions. But since these effects go in opposite
directions, they tend to balance. The results show that the balance
between occupancies involved with inner- and outer-shell contributions
is decisive in establishing an appropriate size of the inner shell. Longer-
ranged interactions don’t affect that issue significantly, but do contribute
importantly to the value of the excess chemical potential found. A more
detailed consideration of longer-ranged interactions would be expected
to lead to adjustment of the specific net value obtained here.

This is a case where an idea of a reasonable inner-shell definition can
be obtained from casual observation, Fig. 7.3. But there do exist well-
known cases, involving strong interactions, where the observed g(r) does
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Fig. 7.6. Cluster-variation of the hydration free energy of water. The open
circles give the chemical contribution, kT ln x0. The open squares give the
packing contribution, −kT ln p0. The open triangles give the sum of outer-
sphere electrostatic and dispersion contributions. The net free energy is shown
by a solid line.

not provide a trivial structural guidance; an example is shown in Fig. 7.7.
A quasi-chemical treatment can still be helpful, however.

7.5 Quasi-chemical Description of Packing in Classical Liquids

Packing contributions are most obvious in the outer-shell contribution
to Eq. (7.8) because the indicator function Πj [1− bα (j)] constrains that
term to the case where no occupancy of the defined inner shell is per-
mitted. These excluded volume interactions are the essence of packing
contributions. To study those contributions, we consider a solute that
does not interact with the solvent at all so that e−β∆Uα=1. In that case,
of course, µex

α is zero and we write

0 = − ln

1 +
∑
n≥1

K̃nρ
n

− ln

〈〈∏
j

[1− bα (j)]

〉〉
0

(7.25)
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Fig. 7.7. The radial distribution function gKO(r) for oxygen atoms about a
K+ ion in liquid water. See (Rempe et al., 2004). The dashed curve is the con-
tribution to gKO(r) from the nearest four oxygen atoms, and the dashed-dot
curve is the contribution from the 5th and 6th nearest oxygen atoms. Notice
the lack of definition obtained from the gKO(r) solely because a minimum
separating a 1st from a 2nd mean hydration shell is indistinct.

where the tilde over the equilibrium coefficients indicates that these coef-
ficients correspond to this specific conceptual case. The rightmost term
of Eq. (7.25) gives the contribution to the chemical potential of a solute
that perfectly excludes solvent from the region defined by bα (j) = 1 for
all j, which we henceforth abbreviate as b=1. Thus, we have the formal
result,

βµex
α |HC = ln

1 +
∑
n≥1

K̃nρ
n

 , (7.26)

where ‘HC’ stands for hard core.
This result has a pleasing formal interpretation that develops from

Eq. (7.6), p. 169. Successive contributions to the partition function sum
of Eq. (7.26) are evidently c̃n/c̃0. The tilde again is a reminder that we
are considering the conceptual case on which this argument is founded;
c̃n is the concentration of those species with n ligands. Noting also that
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Table 7.1. Quasi Monte Carlo approximations for
1
n ln K̃n

(0)(Eq. (7.28)) for unit diameter hard spheres, after (Pratt
et al., 2001).

n 1 2 3 4 5 6 7

1
n

ln K̃n
(0) ln

ˆ
4π
3

˜
1
2

ln
h

17π2

36

i
0.189 -0.367 -0.937 -1.53 -2.22

c̃0/c̃0=1, the sum is then the total concentration of the conceptual case
considered, divided by the concentration of those species with zero (0)
ligands, c̃0. This ratio is the inverse of the probability that a distin-
guished one of these conceptual case would have zero (0) ligands. Thus,
Eq. (7.26) reduces formally to the well known βµex

α |HC=− ln p(0) as in
Eq. (4.25), p. 89. In contrast to the more general quasi-chemical formula
Eq. (7.8), p. 169, the hard-core case involves no outer-shell term, and a
change in sign for the inner-shell contribution.

This theory is easy to implement in its most primitive form that uses
the approximate value for the equilibrium coefficients obtained by ne-
glecting external medium effects: K̃n ≈ K̃(0)

n . The quantities n!K̃(0)
n are

then just n-molecule configurational integrals in which all n molecular
centers must be inside the inner region b=1. The geometric multipliers
ρ in Eq. (7.26) serve to make that sum a grand-canonical partition func-
tion for solvent molecules confined to the region b=1. Self-consistency
with the specified solution density 〈n〉0 = vρ, where v is the volume of
the b=1 region, can be achieved by augmenting this geometric weighting
with a Lagrange multiplier γ that serves as a self-consistent molecular
field. But this might just as well be considered an activity coefficient
that accounts for using the approximate values, K̃(0)

n :

cn
c0

= K̃nρ
n ≈ K̃(0)

n γnρn . (7.27)

Table 7.1 gives quasi Monte Carlo estimates of the K̃n
(0) for the case

of hard spheres. For the hard-sphere fluid, the predicted distributions
xn for two densities are in Figs. 7.8 and 7.9. The predicted occupancy
distributions are physically faithful to the data.
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Fig. 7.8. For the unit-diameter hard sphere fluid at ρ=0.277, comparison of the
Poisson distribution (solid curve) with primitive quasi-chemical distribution
Eq. (7.27) (dashed curve). This is the dense gas thermodynamic suggested
in Fig. 4.2, p. 90, and the dots are the results of Monte Carlo simulation
(Gomez et al., 1999). The primitive quasi-chemical default model depletes the
probability of high-n and low-n constellations and enhances the probability
near the mode.

Exercises

7.3 Show that

n!K̃(0)
n =

∫
v

d3r1 . . .

∫
v

d3rn

 n∏
j>i=1

e(i, j)

 , (7.28)

where the notation
∫

v
d3rk indicates the three-dimensional spa-

tial integral over the volume of a sphere of radius 1, and the
integrand is zero (0) if |ri − rj| < 1 (overlap) for any (ij) and
one (1) otherwise.

7.6 Self-Consistent Molecular Field Theory for Packing

The quantities K̃n(R) describe occupancy transformations fully involv-
ing the solution neighborhood of the observation volume. These coeffi-
cients are known only approximately. Building on the preceding discus-
sion, however, we can go further to develop a self-consistent molecular
field theory for packing problems in classical liquids. We discuss here
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Fig. 7.9. As in Fig. 7.8 but for ρ=0.8. The error bars indicate the statistical
uncertainty by showing the 67% confidence interval.

specifically the one component hard-sphere fluid; this discussion follows
(Pratt and Ashbaugh, 2003).

Our primitive quasi-chemical approximation, Eq. (7.27), was

K̃n ≈
γn

n!

∫
v

∂r1 . . .

∫
v

∂rn exp

− n∑
i>j=1

βu(rij)

 . (7.29)

Here v = 4πR3/3 is the volume of the observation sphere, b=1. Because
of the explicit factors of ρ in Eq. (7.26), γ will approach the thermo-
dynamic excess activity, γ ∼ eβµex

, when R is macroscopically large.
The integrals of Eq. (7.29) are few-body integrals that can be estimated
by Monte Carlo methods as in Table 7.1. A natural extension of the
primitive idea is to approximate K̃n(R) on the basis of n-molecule con-
figurational integrals that give the low-density limiting quantity, but
with inclusion of a molecular field βφMF(r) as

K̃n ≈
γn

n!

∫
v

∂r1 . . .

∫
v

∂rn exp

− n∑
i=1

βφMF(ri)−
n∑

i>j=1

βu(rij)


≡ K̃(0)

n [φMF] . (7.30)

This molecular field βφMF(r) describes the effect of the exterior solution
on solvent molecules within the observation volume. We will adopt the
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Fig. 7.10. The self-consistent molecular field βφMF(r) for unit-diameter hard
spheres in a spherical observation volume. r = 0 is the center of the observation
volume, and r = 1 is the surface. The curves on the bottom panel correspond,
from bottom to top, to reduced densities ρ = 0.1, . . . , 0.9, in increments of
0.1 (Pratt and Ashbaugh, 2003).

convention that the molecular field βφMF(r) be zero at the center of the
observation volume. This convention resolves a spatially uniform, addi-
tive contribution to βφMF(r) that would otherwise be ambiguous, and
with this convention the Lagrange multiplier γ may still be recognized
as the excess activity in the large R limit. The molecular field βφMF(r),
together with the Lagrange multiplier, may be made consistent with the
information that the prescribed density of the liquid is uniform within
the observation volume. The density profile for the n-molecule case is

ρn(r) = − δ ln K̃(0)
n

δβφMF(r)
[φMF] (7.31)

inside the observation volume. Averaging these profiles with respect to
the possible occupancies should produce the observed density. The con-
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sistency sought is then uniformity of the density, see Eq. (6.35), p. 157,

−
∑
m

p(m)
δ ln K̃(0)

m

δβφMF(r)
=

δ ln p(0)
δβφMF(r)

= − δβµex

δβφMF(r)
= ρ , (7.32)

for r inside the observation volume.
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Fig. 7.11. Example dependence of the density profile on scaled molecular field
λφMF(r); ρ = 0.8. Notice that the density profile is not flat without the full
self-consistent mean field (Pratt and Ashbaugh, 2003).

Example results are shown in Figs. 7.10-7.14 (Pratt and Ashbaugh,
2003). The self-consistent molecular field was obtained iteratively, in-
cluding an update of K̃(0)

n [φMF] by performing additional few-body sim-
ulations to evaluate the work associated with turning on the molecular
field using thermodynamic integration:

K̃
(0)
n [φMF ]

K̃
(0)
n [0]

= exp

−β ∫ 1

0

〈
n∑

j=1

φMF(rj)

〉
λ

∂λ

 ,
where λ is a coupling parameter, and 〈. . .〉λ indicates averaging over
configurations generated under the influence of the molecular field scaled
as λφMF(r).
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Fig. 7.12. Excess chemical potential of the hard-sphere fluid as a function
of density. The open and filled circles correspond to the predictions of the
primitive quasi-chemical theory and the self-consistent molecular field theory,
respectively. The solid and dashed lines are the scaled-particle (Percus-Yevick
compressibility) theory and the Carnahan-Starling equation of state, respec-
tively (Pratt and Ashbaugh, 2003).

Fig. 7.10 shows the self-consistent molecular fields obtained using the
procedure described above up to fluid densities of ρ = 0.9, just below
the hard-sphere freezing transition. φMF(r) is a monotonically increas-
ing function of radial position from the center of the stencil volume to
its boundary. This reflects the fact that, in the absence of the molecular
field, the hard-sphere particles tend to collect on the surface of the ob-
servation volume to minimize their interactions with the other particles
(Fig. 7.11). The molecular field makes the boundary repulsive, depletes
the surface density, and homogenizes the density within the volume. The
magnitude of this repulsive field increases with increasing fluid density.

The predicted hard-sphere chemical potentials as a function of den-
sity using the primitive and self-consistent molecular field quasi-chemical
theories are compared to the chemical potential from the Carnahan-
Starling equation in Fig. 7.12. The primitive theory works well up to ρ ≈
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0.35, roughly the critical density for Ar and a density region suggested
to mark qualitative packing changes in the hard-sphere fluid (Giaquinta
and Giunta, 1987). The molecular field theory significantly improves the
agreement with the Carnahan-Starling equation over the entire density
range. Fig. 7.13 shows that the most important deficiencies of the primi-
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Fig. 7.13. Distributions pn for unit-diameter hard spheres at densities of ρ =
0.35 (filled circles) and 0.8 (open circles). The dashed lines are the primitive
quasi-chemical theory of Ref. (Pratt et al., 2001), Eq. (7.27), p. 184, and the
solid lines correspond to the present MF theory. Note the marked break-away
of the n=0 point from the primitive quasi-chemical curve, observed before
(Pratt et al., 2001). The errors on the high n side of these distributions
might reflect the fact that the present MF theory doesn’t explicitly treat pair

correlations. Those correlations enter only through the integrals K̃
(0)
n [φMF]

(Pratt and Ashbaugh, 2003).

tive quasi-chemical theory are corrected by the self-consistent molecular
field theory. Note that the theory captures the break-away of ln p(0)
from the primitive quasi-chemical prediction at high density. The self-
consistent molecular field theory is in close agreement with the scaled-
particle (or Percus-Yevick compressibility) theory for the chemical po-
tential.
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In addition to achieving a uniform density across the observation vol-
ume, the self-consistent molecular field also nearly achieves thermody-
namic consistency for the chemical potential. With the choice of an ad-
ditive constant which makes φMF(r) zero in the deepest interior of the
observation volume, ln γ should approach βµex in the limit of a large R.
φMF(r) describes an interaction between the interior and the exterior
of the observation volume across the intervening boundary. Particularly
in the present case of short-ranged interactions, we expect spatial varia-
tion of φMF(r) to be confined to a surface region. Though a observation
volume of radius R = d is evidently not large enough to observe bulk
behavior of φMF(r) (Fig. 7.10), Fig. 7.14 compares − ln p(0) and ln γ
as determined by the primitive and self-consistent molecular field quasi-
chemical theories. While the excess activity evaluated within the prim-
itive theory significantly under-predicts p(0), the self-consistent molec-
ular field theory yields nearly perfect agreement of ln γ and − ln p(0).
At the highest densities, there is a slight disparity between these two
quantities, and the calculated values for ln γ are in better agreement
with the empirically known βµex for the hard-sphere fluid.

The present results address contributions essential to quasi-chemical
descriptions of solvation in more realistic cases. An interesting issue is
how these packing questions are affected by multiphasic behavior of the
solution. In such cases, the self-consistent molecular field φMF should
reflect those multiphase possibilities just as it can in pedagogical treat-
ments of non-molecular models of phase transitions (Ma, 1985).

Exercises

7.4 We have previously shown — see Sec. 5.6 — that

4πρR2G(R) ≡ ∂βµex

∂R
(7.33)

Show that in the present molecular field approximation, the
preceding derivative is expressed as

4πρR2G(R) ≈
∑
m

p(m)

(
∂ ln K̃(0)

m [φ]
∂R

)
. (7.34)

7.5 Analyze the derivative required above by considering that the
radius R is defined in the first place by a bare field βφ0 that is
zero (0) inside the observation volume and∞ outside. Then the
full field encountered with the integrals Eq. (7.30) is βφ = βφ0
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Fig. 7.14. Comparison of ln γ, with γ the Lagrange multiplier of Eq. (7.30),
p. 186, against computed excess chemical potential, βµex = − ln p(0), demon-
strating the thermodynamic consistency of these quasi-chemical theories. The
open circles are the primitive quasi-chemical theory (Eq. (7.29), p. 186), and
the filled circles are the present self-consistent molecular field theory (Pratt
and Ashbaugh, 2003).

+ βφMF - ln γ. Show that the result corresponding to Eq. (7.31)
is

∂ ln K̃(0)
m [φ]

∂R
= −

∫
v

ρm(r;βφMF)
∂βφ(r)
∂R

d3r .

7.6 Show that
δρm (r)
δβφ (r′)

= −〈δρm (r) δρm (r′)〉 . (7.35)

7.7 Using then the averaged quantity

− δρ (r)
δβφ (r′)

= 〈δρ (r) δρ (r′)〉 ≡ χ (r, r′) (7.36)

and

−δβφ (r) =
∫
χ−1 (r, r′) δρ (r′) d3r′ , (7.37)
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Fig. 7.15. Two-dimensional square lattice and figure for development of a
historical quasi-chemical theory. The model assumes that each lattice site
will be occupied by either a red or a green disk. Near-neighbor pairs of the
same color contribute −J <0 to the net interaction energy. Near-neighbor
pairs of the different color contribute J >0 to the net interaction energy. Our
calculation will focus on this five site figure.

show that

−∂βφ (r)
∂R

= R2ρ

∫
|r′|=R−

χ−1 (r, r′) d2Ω′ , (7.38)

where the latter integral is over solid angles covering the surface
of the ball.

7.8 Finally, introduce c (r, r′), the Ornstein-Zernike direct correla-
tion function defined by χ−1 (r, r′) = δ (r − r′)/ρ(r)− c (r, r′),
and derive

G(R) = 1−
∫

v

c (r, r′ = ẑR) ρd3r (7.39)

within the present approximation. In the indicated integral the
r′ coordinate is pinned to the sphere surface, and the r inte-
gration is over the interior of the sphere because of Eq. (7.35).
The function c (r, r′) = c (r, r′) [φ] is the OZ direct correlation
function in the field φ including the self-consistent molecular
field; thus this is for the case of a uniform density enclosed in a
sphere of radius R with no material outside.
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7.7 Historical Quasi-chemical Calculation

Working out the historical quasi-chemical approximation in the present
language for the two-dimensional Ising model of a binary solution will
give perspective on the developments of this chapter. The model system
is depicted in Fig. 7.15. Each site of the lattice possesses a binary
occupancy variable, si = {−1, 1} for the ith site. This will be interpreted
so that si = 1 indicates occupancy of the ith site by one species, e.g. W
(water), and si = −1 then indicates occupancy of that site by the other
species, say O (oil). We write

nOµO + nWµW =
1
2
(µO + µW)N +

1
2
(µW − µO)(nW − nO) . (7.40)

The combination N = nW + nO is the non-fluctuating total number of
lattice sites and is irrelevant to the statistical issues. We then take

exp

βJ ∑
nn pairs

sisj + β(∆µ/2)
∑

i

si

 , (7.41)

with ∆µ = µW−µO, to be a statistical weight. The generating function

χ =
∑

exp

βJ ∑
nn pairs

sisj + β(∆µ/2)
∑

i

si

 , (7.42)

then serves as a partition function. Here we use the notation z=exp [β∆µ/2],
and K = exp [βJ ]. Considering Fig. 7.15, the partition function for that
five-site system is

χ = z(Kz +
1
Kz

)4 +
1
z
(
z

K
+
K

z
)4 . (7.43)

Letting xW be the mole fraction of W (water) occupying the central site,
then

xW

1− xW
=
z
(
Kz + 1

Kz

)4
1
z

(
z
K + K

z

)4 = z2

(
K2z2 + 1
K2 + z2

)4

. (7.44)

As throughout the book, we notice: known concentration factors on the
left, leading factors of activities on the right, and our goal is to isolate
the dependence of the activities on the concentration, based upon such
relations.

To make such a toy calculation more accurate in describing a ther-
modynamically large system, we consider an adjusted activity y as ap-
propriate to replace the factors of z in Eq. (7.42) associated with the
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peripheral sites, the ligands of the complex. This is intended to com-
pensate for the fact that the cluster is amputated there. Then

xW

1− xW
= z2

(
K2y2 + 1
K2 + y2

)4

. (7.45)

Making the similar replacement with y in the partition function of
Eq. (7.43), we consider the occupancy of the peripheral sites without
respect to the occupancy of the central site in order to establish the
mean-field activity y for those sites, obeying the equation

xW

1− xW
=

y

[
Kz

(
Ky + 1

Ky

)3

+ 1
Kz

(
y
K + K

y

)3
]

1
y

[
z
K

(
Ky + 1

Ky

)3

+ K
z

(
y
K + K

y

)3
]

= y2

[(
K2 + y2

)3 +K2
(
1 +K2 y2

)3
z2

K2 (K2 + y2)3 + (1 +K2 y2)3 z2

]
. (7.46)

The activity y can be algebraically eliminated between Eqs. (7.45) and
(7.46) yielding

√
z =

(
xW

1− xW

) 1
4

×

(
K2 (1− xW)

3
4 + xW

3
4
(
K4 (1− xW) + xW

) √
z

(1− xW)
3
4 (1 + (−1 +K4) xW) +K2 xW

3
4
√
z

)
. (7.47)

Finally, solving these equations for z gives

β∆µ = ln
(

xW

1− xW

)

+ 4 ln

−1 + 2xW +
√

(1− 2xW)2 + 4K4 (1− xW) xW

2K2 xW

 . (7.48)

This predicts a critical point for phase separation at K2=2 and xw = 1
2 .

Exact results for the 2d Ising lattice gas model are K2= 1√
2−1
≈2.4 and

xw= 1
2 (Hill, 1987, §44).

7.8 Explicit-Implicit Solvent Models

In view of the results of the previous two sections, we can carry the
practical development of quasi-chemical approximations further. We
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will initially consider cases for which the interactions are fundamentally
short ranged. For the principal contrary example — ionic species —
the outer-shell term would represent the Born contribution because it
describes a hard ion stripped of any inner-shell ligands. But the balance
of treatments of long-ranged interactions requires specific subsequent
consideration.

With that motivation and restriction, we identify the outer-shell term
as an initial packing contribution〈〈

e−β∆Uα

∏
j

[1− bα (j)]] |Rn

〉〉
0

=

〈〈∏
j

[1− bα (j)] |Rn

〉〉
0

.

(7.49)
This is a packing contribution of the type analyzed previously. Adopting
the simplest of the preceding results, Eq. (7.30) p. 186, directly we have〈〈

e−β∆Uα

∏
j

[1− bα (j)] |Rn

〉〉
0

≈ 1

1 +
∑
n≥1

K̃
(0)
n [φMF] γnρn

. (7.50)

Returning to consider the inner-shell contribution, following a pre-
ceding section, the natural idea is to exploit the same self-consistent
molecular field to approximate

Kn ≈ γnK(0)
n [φMF] (7.51)

so that

µex
α (Rn) ≈ −kT ln


1 +

∑
n≥1

K
(0)
n [φMF] γnρn

1 +
∑
n≥1

K̃
(0)
n [φMF] γnρn

 . (7.52)

Substituting

K(0)
n [φMF] =

(
K

(0)
n [φMF]

K̃
(0)
n [φMF]

)
K̃(0)

n [φMF] (7.53)

in the numerator gives

1 +
∑
n≥1

K
(0)
n [φMF] γnρn

1 +
∑
n≥1

K̃
(0)
n [φMF] γnρn

=

〈(
K

(0)
n [φMF]

K̃
(0)
n [φMF]

)
|Rn

〉
GC

, (7.54)

adapting the notation of Eq. (3.19), p. 54; GC indicates a grand canonical
average for a system confined to the volume b=1, here utilizing the
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activity γρ. The quantities being averaged depend on the molecular
field φMF. The numerator and denominator of the ratio appearing on
the right side of Eq. (7.54) are configurational integrals involving the
same coordinates. The integrands differ only in the Boltzmann factor of
solute-solution interactions. Thus, we can rewrite Eq. (7.52) as

µex
α (Rn) ≈ −kT ln

〈
e−β∆Uα |Rn

〉
GC

[φMF ] . (7.55)

This notation [φMF ] emphasizes that this is a functional of φMF, the
enclosed material being subject to the molecular field φMF.

Evaluation of the partition function Eq. (7.55) typically would not be
a trivial task, but all the Chapter 5 Generalities, p. 119, can be brought
to bear because this is such a standard form.

Correspondence to Multi-Gaussian Models. The result Eq. (7.54)
is also remarkable because it takes the form anticipated intuitively by
the multi-gaussian theory Eq. (4.23). The observation that

p̃ (s) =
K̃

(0)
s [φMF] γsρs

1 +
∑
n≥1

K̃
(0)
n [φMF] γnρn

(7.56)

makes that clear. Here the p̃ (s) are the occupancy probabilities for
the b=1 region. For hard-core packing problems, this b=1 region is, of
course, larger than the excluded volume; it might naturally include an
anticipated first-shell region. We can then generalize Eq. (7.54) beyond
the thermodynamic potential distribution theorem to

P(0)
α (ε) =

∑
s≥0

P(0)
α (ε|s)p̃ (s) , (7.57)

which can be compared to Eq. (4.23), p. 88. For excluded-volume prob-
lems, this expression would be written

p (n) =
∑
s≥0

p(n|s)p̃ (s) . (7.58)

This relation says that the probability of n solvent centers occupying the
excluded volume is the product of two probabilities: the probability that
the larger (b=1) region has s solvent centers times the conditional prob-
ability that the observation volume has n centers when the larger region
has s centers. For packing problem the approximation obtained above
amounts to p(n = 0|s) ≈ Ks

(0) [φMF] /K̃s
(0) [φMF] with a quasi-chemical

approximation Eq. (7.56) for p̃ (s). If a gaussian model for p(n|s) were
satisfactory for Eq. (7.58), then this would be a multi-gaussian model.
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Implicit Solvent Models. The solvent is a necessary part of the
physical problem for computational studies of macromolecules, or other
nanoscale structures, in solution. But often the solvent is of secondary
interest. Therefore, there has been extended attention to implicit sol-
vent models for those computational studies, models that provide the
proper statistical description of the macromolecule but without the sol-
vent explicitly present (Roux and Simonson, 1999). Eq. (3.40), p. 60,
provides a fundamental basis for implicit solvent models.

There seems to be a well-developed folklore that judicious inclusion of
a small number of solvent (water) molecules explicitly can dramatically
improve the accuracy of implicit hydration models (Gilson et al., 1997).
An important physical observation is that an appropriate inclusion of
an inner shell only can capture most of the effects of the solvent on the
solute of interest (Beglov and Roux, 1994, 1995; Bizzarri and Cannis-
traro, 2002). The quasi-chemical approach is the theory for inclusions
of that sort.

For macromolecules in solution, treatment of conformational fluctua-
tions and shape variations, which might be treated by implicit solvent
models, is the most important issue for simulations with periodic bound-
ary conditions. The present quasi-chemical approach permits shape fluc-
tuations if the inner shell is defined with respect to atomic sites of the
macromolecular solutes that become more or less accessible as the con-
formation of the solute changes in sampling sα

(0)(Rn). The volume of
the inner-shell region can then change, and consequently the occupan-
cies also. In addition to suggesting explicit-implicit models, the quasi-
chemical theory permits well-defined investigation of further corrections
to simple models.
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DEVELOPED EXAMPLES

This chapter takes up a sequence of examples of application of the con-
cepts discussed above. Each example is in the nature of a seminar. Initial
examples of quasi-chemical calculations are presented in Secs. 7.3, 7.4,
and 7.6.

8.1 Polymers

Polymer solutions figure in a vast array of practical materials and pro-
cesses in the modern world. Ideas about polymers are also highly rele-
vant to understanding solutions of DNA, proteins, polysaccharides, and
other solutions of biological interest. Because of the size and complex-
ity of the chain molecule solutes, polymer solutions present challenging
problems in solution theory, and a great deal of work has been directed
toward a theoretical understanding of these solutions over the last cen-
tury.

Chemical Potentials and the Equation of State. (Okamoto, 1993;
Escobedo and dePablo, 1995) relate the pressure to the excess chemical
potentials on the basis of a Gibbs-Duhem integration. We integrate

dp =
∑
α

ραdµα (8.1)

with respect to volume V with temperature T , and particle numbers nα

fixed. The ideal gas functions obey this relation so we can subtract that
relation for the ideal functions, and use the same expression

dpex =
∑
α

ραdµex
α (8.2)

199
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for the excess quantities. It is convenient to integrate by parts

d

(
pex −

∑
α

ραµ
ex
α

)
= −

∑
α

µex
α nα d

(
1
V

)
. (8.3)

Note that excess properties are zero in the limit of infinite volume V, so
that

βpV
N

= 1 +
∑
α

xα

(
βµex

α −
∫ 1

0

βµex
α (λρ) dλ

)
, (8.4)

where µex
α (λρ) are the excess chemical potentials evaluated at the den-

sities ρ = {ρ1 . . .} scaled by the volume ratio λ = V/Vλ. Eq. (8.4), the
osmotic equation of state, provides a direct connection between the po-
tential distribution theorem and the equation of state for any molecular
mixture.

Exercises

8.1 The osmotic pressure is the pressure difference between two sys-
tems that equilibrate with respect to transfer of one component,
the solvent, but not other components, perhaps a polymeric so-
lute. Following Eq, (8.4), derive a general formula for the os-
motic pressure.

8.2 Derive an explicit formula for the osmotic pressure, correct for
the lowest solute concentrations.

8.3 On the basis of the general formulae obtained above, see how far
you can get in evaluating the osmotic pressure at the next higher
order of solute concentration, discussing how your results might
be evaluated on the basis of molecular structural information.

Flory-Huggins Theory. Our discussion here explores active connec-
tions between the potential distribution theorem (PDT) and the theory
of polymer solutions. In Chapter 4 we have already derived the Flory-
Huggins model in broad form, and discussed its basis in a van der Waals
model of solution thermodynamics. That derivation highlighted the ori-
gins of composition, temperature, and pressure effects on the Flory-
Huggins interaction parameter χ. We recall that in the sense of molec-
ular science this theory is based upon a van der Waals treatment of
solutions with the additional assumptions of zero volume of mixing and
more technical approximations such as Eq. (4.45), p. 98. Considering a
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Fig. 8.1. The process of computing the incremental chemical potential involves
adding one extra segment to an M -1 segment chain moving in the solvent. The
tangent hard sphere model of a (M -1)-mer (M=5) is shown here. The dashed
circles enclose the volume excluded to the centers of the solvent spheres.

system of polymers (p) of polymerization index M dissolved in a solvent
(s), the Flory-Huggins model is

β∆Gmix

ρ̄sV
= φs lnφs +

(1− φs)
M

ln(1− φs) + χspφs(1− φs) (8.5)

(See Eq. (4.56), p. 103.) The chemical potentials are correspondingly

βµs = βµ̄s + lnφs +
(

1− 1
M

)
(1− φs) + χsp (1− φs)

2 (8.6a)

βµp = βµ̄p + ln (1− φs)− (M − 1)φs +Mχspφ
2
s . (8.6b)

(See Eq. (4.62), p. 104). If χsp is large and positive, a loop appears as
in Fig. 4.7, p. 103, indicating a separation into a polymer rich phase and
solvent rich phase.

For a polymer blend of two components,

βGmix

ρ̄sV
=
[
φα

Mα
lnφα +

φγ

Mγ
lnφγ + χαγφαφγ

]
(8.7)

is the corresponding free energy of mixing. Here Mα and Mγ are the
polymerization indices on the scale of the size, 1/ρ̄s, attributed to a
molecule of type s. It is clear that ifMα andMγ are large, the interaction
term dominates the free energy of mixing. Since for many polymer
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systems χαγ > 0, it is often the case that mixtures of two different
polymers phase separate due to the interaction term.

Consider computing the excess chemical potential for a chain molecule
composed of M monomers, denoting such a molecule type by αM . The
longer the chain, the more difficult the computation. It is easier to com-
pute the incremental chemical potential for addition of a single segment.
Following the notation discussed in Sec. 1.3, p. 28,

e−βµex
αM

(Rn) =
〈
e−β∆UαM |Rn

〉
0
. (8.8)

To assist in the statistical evaluation on the right side of this relation,
we choose e−β∆UαM−1 as an importance function so that

e−βµex
αM

(Rn) = e−βµex
αM−1(R̄

n)
〈
e−β(∆UαM

−∆UαM−1)|Rn
〉

M−1
. (8.9)

Here R̄n is the subset of all Rn that specifies the configuration of the
αM−1 molecule. The notation 〈. . . |Rn〉M−1 indicates the expected value
conditional on the configuration Rn and with the importance function
e−β∆UαM−1 associated with the (M − 1)-mer. We compute then the
average Boltzmann factor for the incremental energy require to add the
M th segment. It is clear from the experience suggested by Fig. 1.10,
p. 30, and the surrounding discussion, that this type of restriction can
achieve a surprising simplification. The picture of adding a segment to
the end of a chain to obtain the incremental excess chemical potential is
close in spirit to the Kirkwood-Salsburg statistical theory presented in
Sec. 6.1, p. 152.

Exercises

8.4 Why don’t the Flory-Huggins approximations for the chemical
potentials Eqs. (8.6) require any evaluation of the internal par-
tition function of a single chain molecular, qint

p ?

Monte Carlo Methods for Chain Molecules. Molecule-scale statis-
tical simulations of chain molecular solutions are specialized relative to
simulation of small-molecule solutions. Here we discuss some of the spe-
cial issues that come up. Dynamical simulations have also been pursued,
and those results typically have been satisfactory though fundamental
questions have been raised (Madras and Sokal, 1987; Sokal, 1995).
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Fig. 8.2. Examples of freely-jointed, tangent hard disk chains (M=20) pro-
duced by an inversely restricted sampling method. In this case, the angle φj

of the jth bond was chosen randomly in the fraction of 2π available without
overlap of the (j + 1)th disk with any previously placed disk, 1. . . j. The ratio
of weights Ω (left) /Ω (right) ≈ 0.76, so the left configuration is more probable
than the right configuration, whereas the Boltzmann distribution assigns equal
probabilities to these configurations; see (McCrackin, 1972). Thus, in this case
if the left configuration were the proposed, or trial, configuration to succeed
the right configuration — r > 1 in Eq. (8.14) — it would be accepted with
probability one. If the right configuration were the trial configuration and
the left configuration the current state, then the right configuration would
be accepted as the next state with probability 0.76, and the left one with
probability 0.24.

Sampling configurations of an isolated chain molecule. Because the ther-
modynamic parameter is expressed as

e−βµex
αM = V−1

∫ 〈
e−β∆UαM |Rn

〉
0
sαM

(0)(Rn)d (Rn) (8.10)

in terms of the statistical problem of Eq. (8.8), let’s first consider sam-
pling sαM

(0)(Rn). An idea for a practical calculation is to sample
sαM

(0)(Rn), then estimate the required integrand, Eq. (8.8), either di-
rectly on that basis, or incrementally as with Eq. (8.9).

One charming idea for sampling sαM
(0)(Rn) is inversely restricted

sampling (IRS) (Hammersley and Morton, 1954), or Rosenbluth sam-
pling (Rosenbluth and Rosenbluth, 1955); see also (Hammersley and
Handscomb, 1964, §10.3). The idea, physically expressed, is to design
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a growth algorithm for serial construction of a chain configuration, see
Fig. 8.2. This algorithm should be simple enough to obtain nonstatis-
tically the normalized probability distributions for configurations pro-
duced on that basis; let’s call that distribution 1/Ω (Rn) for chain con-
figurationRn. Such a growth mechanism needn’t produce configurations
in proportions consistent with statistical equilibrium at temperature T ,
and they don’t do that in the typical case (Widom, 1966; McCrackin,
1972). But integrals such as∫

C (Rn) dRn =
∫
C (Rn) Ω (Rn)

(
1

Ω (Rn)

)
dRn (8.11)

can be estimated in the usual way∫
C (Rn) dRn ∝ E

(
1
m

m∑
k=1

Ω ([Rn]k)C ([Rn]k)

)
, (8.12)

provided the conventional multiply-and-divide is permitted; see Sec. 5.1,
p. 120. The proportionality of Eq. (8.12) reflects an acknowledged lack of
detail with respect to dimensional issues here. The sample for Eq. (8.12)
is generated with the growth algorithm. With this background, averages
corresponding to statistical equilibrium at temperature T would be es-
timated from

V−1

∫
C (Rn) sαM

(0)(Rn)d (Rn)

=
E
(∑m

k=1 Ω ([Rn]k) e−βU(1)
αM

([Rn]k)C ([Rn]k)
)

E
(∑m

k=1 Ω ([Rn]k) e−βU
(1)
αM ([Rn]k)

) . (8.13)

Because of the ratio, the estimate Eq. (8.13) is biased, in the conventional
sense of Sec. 5.4, p. 127, though the estimate Eq. (8.12) is unbiased in
that conventional sense. Such an approach can work in cases of interest,
but the characteristic difficulty is that the weights in the summands of
Eq. (8.13) grow exponentially with M ; and concurrently “. . . the weights
are almost certain to get out of hand, a few of them being much larger
than all the rest.” (Hammersley and Handscomb, 1964, §10.3)

For the purposes of sampling the normalized distribution sαM
(0)(Rn),

in contrast to estimation of integrals such as Eq. (8.12), the procedure
above can be improved by utilizing the Metropolis rejection idea (Ka-
los and Whitlock, 1986, §3.7). Suppose that a configuration [Rn]k is in
hand. It’s probability density on the basis of the growth algorithm is
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1/Ω ([Rn]k). A typical choice for this probability density is the Boltz-
mann factor for an added segment in a test direction divided by the
sum of the Boltzmann factors over a randomly chosen set of test di-
rections; the product of all of these factors for the grown chain yields
the final 1/Ω ([Rn]k). Now on the basis of the growth algorithm gener-
ate another configuration, [Rn]k′ with probability density 1/Ω ([Rn]k′),
and view this configuration as a proposed, or trial, configuration in the
sense of the Metropolis Monte Carlo algorithm. Thus, if the ratio of
probabilities

r =

e−βU(1)
αM

([Rn]k′)/e−βU(1)
αM

([Rn]k)(
1

Ω([Rn]k′)

)
/

(
1

Ω([Rn]k)

)
 (8.14)

is greater than one, r > 1, then choose the (k + 1)th state to be [Rn]k′ .
If r ≤ 1, then choose the (k+ 1)th state to be [Rn]k′ with probability r,
or the (k+ 1)th state to be [Rn]k with probability 1− r. This choice for
the Metroplis selection criterion assures detailed balance, and thus the
generation of states which sample the Boltzmann distribution.

Notice that this latter procedure produces two data streams, one
the IRS stream and the other the Boltzmann data stream. Both data
streams are useful, and the ratios of the distributions obtained from
these data streams are useful also.

The above discussion has focused on generating free chain configura-
tions to sample the distribution sαM

(0)(Rn). These configurations can
then be utilized to compute the excess chemical potential for short chains
directly, Eq. (8.8), or the incremental excess chemical potential (Kumar
et al., 1996) for longer chains on the basis of Eq. (8.9). A direct exten-
sion of the IRS sampling scheme to include interactions with solvent and
other polymers in the solution is the configurational bias Monte Carlo
method; for reviews and applications to chain-molecule phase equilibria,
see (Mooij and Frenkel, 1994; dePablo and Escobedo, 1999; Siepmann,
1999).

Exercises

8.5 Reconsider the Metropolis rejection Monte Carlo method (Kalos
and Whitlock, 1986, §3.7), and derive the acceptance probabil-
ity Eq. (8.14) on the basis of the traditional detailed balance
specification.
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8.6 Use the potential distribution theorem and the above discus-
sion to derive an expression for the excess chemical potential
computed using the IRS idea.

A Generalized Flory-Huggins Theory. To address the limitations
of ancestral polymer solution theories, recent work has studied specific
molecular models — the tangent hard-sphere chain model of a polymer
molecule — in high detail, and developed a generalized Flory theory
(Dickman and Hall, 1986; Yethiraj and Hall, 1991). The justification
for this simplification is the van der Waals models of solution thermo-
dynamics, see Sec. 4.1, p. 76: attractive interactions that stabilize the
liquid at low pressure are considered to have weak structural effects, and
are included finally at the level of first-order perturbation theory. The
packing problems remaining are attacked on the basis of a hard-core
model reference system.

Thus, we first consider Eq. (8.10) for hard-core chain models, specifi-
cally tangent hard-sphere chain models (Dickman and Hall, 1986; Yethi-
raj and Hall, 1991). Models and theories of the packing problems asso-
ciated with hard-core molecules have been treated in Secs. 4.3, 6.1, 7.5,
and 7.6. We recall

e−βµ̃ex
αM

(Rn) = pαM
(0|Rn) . (8.15)

(See Eq. (4.25), p. 89.) pαM
(0|Rn) is the probability that a stencil

outlining the excluded volume of the αM polymer, with conformation
sampled from the isolated molecular potential energy surface, would
have zero (0) occupancy.

The simplest view for our present problem is based upon the Flory-
Huggins scaling b̃(2)sp /b̃

(2)
ss ≈M , cf. p. 99 or p. 103. Thus, we expect that

βµex
αM
∼M . Consideration of the incremental free energy changes upon

addition of a terminal site suggests how this might work.

pαM
(0|Rn) = pα (0|Rn)

M ′=M∏
M ′=2

(
pαM′ (0|Rn)
pαM′−1

(0|Rn)

)
(8.16)

Each of the factors on the right side of Eq. (8.16) reflects a statistical
assessment of the possibilities for insertion of a single monomer.

The conventional idea for making this formal expression tractable is
analogous to the Ursell development (see p. 148).

ln pαM
(0|Rn) =

M ′=M∑
M ′=1

ω
(1)
M ′ (Rn) +

∑
pairs

ω
(2)
M ′M ′′ (Rn) + . . . (8.17)
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It is simplest, though not necessary, to restrict the pair sum to just
chemically adjacent pairs, so we do that for the present discussion. The
prescription for determining the functions ω(j) (Rn) is that they should
make the development correct if M = j. Thus

ω
(1)
M ′ (Rn) = ln pα (0|Rn) , (8.18a)

ω
(2)
M ′M ′+1 (Rn) = ln pα2 (0|Rn)− 2 ln pα (0|Rn) . (8.18b)

This generates the sequence of approximations

pαM
(0|Rn) ≈ pα (0|Rn)M

, (8.19a)

pαM
(0|Rn) ≈ pα (0|Rn)

(
pα2 (0|Rn)
pα (0|Rn)

)M−1

, (8.19b)

the latter approximation being similar to the son-of-superposition ap-
proximation (Chae et al., 1969). More subtly, (Dickman and Hall, 1986)
propose the sequence of approximations

pαM
(0|Rn) ≈ pα (0|Rn)ve(M)/ve(1)

, (8.20a)

pαM
(0|Rn) ≈ pα (0|Rn)

(
pα2 (0|Rn)
pα (0|Rn)

) ve(M)−ve(1)
ve(2)−ve(1)

, (8.20b)

revising the simple exponents to reflect the fact that the exposed region
of influence of successive spheres overlap, as in Fig. 1.10, p. 30; the
revised exponents eventually increase linearly with M . The equation of
state for the hard dumb-bell fluid (Tildesley and Streett, 1980) can be
used to implement the pair theory. The theory has been extended to
incorporate a square-well attractive potential (Yethiraj and Hall, 1991).

These approximations can then be used in the osmotic equation of
state to obtain the compressibility factor. Monte Carlo simulations us-
ing the above-discussed Monte Carlo techniques have been performed
to assess the approximations inherent in the generalized Flory theory
of hard-core chain systems. This theory does quite well in predicting
the equations of state of hard-core chains at fluid densities. The ques-
tion then arises, why does it do so well since the theory typically only
incorporates information from a dimer fluid as a reference state?

The clearest answer to this question comes from comparisons of the
simulations to the generalized Flory theory. This is because of the direct
connection to the PDT through the cavity probabilities. The simulations
have shown (Escobedo and dePablo, 1995; Kumar et al., 1996) that the
weakest approximation is that of assuming the cavity probability of a
monomer in the M -mer fluid is the same as that for a monomer in a
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monomer fluid. The generalized Flory theory underestimates this cavity
probability (thus overestimating the excess chemical potential) by up to
40%. The error is in turn balanced by errors in the the conditional cav-
ity probabilities for addition of succeeding segments, leading to overall
good agreement. Further development of the QCA approach to chain
molecules will be interesting since this theory incorporates a more de-
tailed picture of the local structure around the chain segments. This
section has only touched on the relevance of the potential distribution
theorem to polymer science.

Exercises

8.7 Write out the general term following from the Ursell expansion,
and describe what to do if you have results for an n-alkane in
water.

8.2 Primitive Hydrophobic Effects

“No one has yet proposed a quantitative theory of aqueous solutions
of nonelectrolytes, and such solutions will probably be the last to be
understood fully.” (Rowlinson and Swinton, 1982)

Hydrophobic and hydrophilic are categories of hydration effects in
aqueous liquids. Classical ions such as Na+ or polar molecules such as
urea [(NH2)2 CO] are simply recognized hydrophilic solutes. In contrast,
the interactions of hydrophobic solutes or groups with water molecules
do not display classic electrostatic or specific chemical interactions. Prim-
itive hydrophobic solutes are inert gases and simple hydrocarbons that
are sparingly soluble in water. Nevertheless, much of the interest in hy-
drophobic effects is associated with more complex solutes that contain
both hydrophobic and hydrophilic moieties. Surfactant molecules, for
example the decanoate anion, include both hydrophobic and hydrophilic
parts and are called amphiphilic.

Solutions containing amphiphiles often show exotic behaviors. The
assembly of micelles and bilayer membranes is associated with the bi-
functional character of the species that compose them. These structures
attempt to sequester hydrophobic groups away from the aqueous envi-
ronment while still satisfying tendencies of hydrophilic groups for contact
with water. Many amino acids and peptides are amphiphilic molecules.
Protein molecular structure, function, and aggregation has provided an
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important motivation for study of hydrophobic effects. It is widely be-
lieved that hydrophobic interactions drive protein folding by providing a
nonspecific, cohesive stabilization of structures that successfully satisfy
the contrasting hydration requirements of hydrophilic and hydrophobic
molecular parts.

Hydrophobic effects are thus of practical interest. If we accept the goal
of a simple, physical, molecularly valid explanation, then hydrophobic
effects have also proved conceptually subtle. The reason is that hy-
drophobic phenomena are not tied directly to a simple dominating in-
teraction as is the case for hydrophilic hydration of Na+, as an example.
Instead hydrophobic effects are built up more collectively. In concert
with this indirectness, hydrophobic effects are viewed as entropic in-
teractions and exhibit counterintuitive temperature dependencies. An
example is the cold denaturation of globular proteins. Though it is be-
lieved that hydrophobic effects stabilize compact protein structures and
proteins denature when heated sufficiently, it now appears common for
protein structures to unfold upon appropriate cooling. This entropic
character of hydrophobic effects makes them more fascinating and more
difficult.

The strictly hydrophobic case is one in which ∆U involves no clas-
sic electrostatic interactions, no hydrogen bonding, and no other chem-
ical or associative interactions. ∆U is of van der Waals type. In
the extreme model, ∆U involves only hard-core repulsions preventing
overlap of van der Waals volume of any solution constituents with the
van der Waals volume a solute molecule. This approach is consistent
with the view that dissolving a solute can be considered as a two-step
process. First, a cavity for the solute is created and then the solute
is placed in this cavity. Final contributions from other interactions are
typically interesting, but are not addressed at this stage.

Hard-core models of solute-water interactions serve as a valuable refer-
ence point for two reasons. A first reason is conceptual and reductionist.
This simplified case has historically been considered as expressing the
basic puzzle of hydrophobic effects. Solving this basic puzzle enables
specific cases to be described by combination of what is understood for
the simpler cases. A second reason is that hard-core models of solute-
water interactions are expected to have direct applicability to cases of
non-macromolecular hydrophobic solutes, and those small-molecule ap-
plications can be expected to be less sensitive to specifics of the actual
interactions.
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Testing Physical Ideas of Hydrophobic Effects. The idea of con-
structing an information theory description of cavity formation in wa-
ter (Hummer et al., 1996b) reinvigorated the molecular theory of hy-
drophobic effects (Hummer et al., 1998a; Pratt, 1998; Hummer et al.,
2000; Pratt, 2002; Paulaitis and Pratt, 2002; Pratt and Pohorille, 2002;
Ashbaugh and Pratt, 2004). One advantage of this approach is that
physical hypotheses can be expressed simply in a default model. Given
a fixed amount of specific information experimental or simulation, i.e.,
data, the quality of the predictions gives an assessment of the physi-
cal ideas that are embodied in the underlying default model. Relevant
physical ideas include: whether a direct description of dense fluid pack-
ings significantly improves the predictions, or whether incorporation of
de-wetting of hydrophobic surfaces is required, or whether specific ex-
pression of the roughly tetrahedral coordination of water molecules in
liquid water is the most helpful next step for these theories.

The information theory approach studied here grew out of earlier stud-
ies of formation of atomic sized cavities in molecular liquids (Pohorille
and Pratt, 1990; Pratt and Pohorille, 1992, 1993). Since we deal with
rigid and spherical solutes in the discussion we will drop the explicit
indication of conformational coordinates and discuss p (n) = pα(n|Rn).
We emphasize that the overall distribution p (n) is well described by the
information theory with the first two moments, 〈n〉0 and 〈n(n− 1)/2〉0.
It is the prediction of the extreme member p (0) that makes the differ-
ences in these default models significant. Computing thermodynamic
properties demands more than merely observing typical behavior.

To begin, we note (see Fig. 8.3) that use of the flat or Poisson default
models accurately predicts the hydrophobic hydration free energy at the
two-moment level, partly due to the non-monotonicity of the convergence
with increasing moment information.

Packing. A first idea is that the default model should contain a direct
description of dense fluid packings that are central to the theory of
liquids; see Sec. 4.1, p. 76. Accordingly, (Gomez et al., 1999) computed
p (n) for the fluid of hard spheres of diameter d = 2.67 Å at a density ρd3

= 0.633, and adopted those results as p̂ (n). Predictions obtained with
this default model are shown in Fig. 8.3. Direct convergence is only seen
if four or more moments are included. Though the convergence is more
nearly monotonic from the beginning, the prediction obtained from a
two-moment model is worse than from the flat and the Poisson default
cases.
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Fig. 8.3. Convergence with number of binomial moments of hydration free
energy βµ̃ex predicted using several default models for a spherical solute with
distance of closest approach 3.0Å for water oxygen atoms. Identifications are:
diamonds (dash-dot lines), hard-sphere default (HS); crosses (short dash line),
Lennard-Jones (LJ ) default; squares (long dash line), Poisson default; trian-
gles (dotted line), cluster Poisson default; and circles (gray line), flat default.
For this circumstance, jth order binomial moments are non-zero through j = 9,
and the horizontal lined is the prediction with all nine moments included.
Among the predictions at j=2, the best default model is the Lennard-Jones
case. But with the hard-sphere model excepted, the differences are slight. See
(Hummer et al., 1996b; Gomez et al., 1999; Pratt et al., 1999) for details of
the calculations.

Attractive Interactions among Solvent Molecules. Attractive forces be-
tween solvent molecules might play a significant role in hydrophobicity,
particularly because attractive forces lower the pressure of the solvent.
Dehydration of hydrophobic surfaces becomes a principal consideration
for solutes larger in size than the solvent molecules (Stillinger, 1973).
But perhaps such effects are being felt already for atomic solutes. Ac-
cordingly, we computed p (n) for the Lennard-Jones liquid studied by
(Pratt and Pohorille, 1992) for which attractive interactions were ad-
justed so that the macroscopic pressure of the solvent would be ap-
proximately zero, and adopted those results as p̂ (n). The results of
Fig. 8.3 confirm that the results are better than for the hard-sphere de-
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Fig. 8.4. A tetrahedral cluster, the observation volume (sphere with solid out-
line), and the augmented volume (sphere with dashed outline). The cluster
may contribute occupants of the observation volume only if the center is within
the augmented volume (Gomez et al., 1999).

fault model, but also show that the convergence with number of moments
is again non-monotonic, not better than for the flat and the Poisson de-
fault models. Again, direct, non-monotonic convergence is only seen
after four occupancy moments are included.

Tetrahedral Coordination of Solvent Molecules. The final idea checked
here is whether incorporating a tetrahedral coordination structure for
water molecules in liquid water significantly improves the prediction of
cavity formation free energy. We used a cluster Poisson model to ac-
complish this (Neyman and Scott, September, 1956). The physical pic-
ture is of tetrahedral clusters of water molecules with prescribed intra-
cluster correlations but random positions and orientations as suggested
in Fig. 8.4.

This default model can be evaluated compactly (Gomez et al., 1999).
We assume the clusters to be tetrahedra with the oxygen atom of a
water molecule at the center and at each vertex. Thus we prescribe
the number of clusters to be ρv/5, with v the volume of the augmented
region and ρ the molecular density of the liquid water. The OO intra-
cluster near-neighbor distance, the distance of a point of a tetrahedron
from its center, is 2.67Å and the augmented volume is a sphere with
radius λ + 2.67Å.

Fig. 8.3 shows the predictions for cavity formation free energy ob-
tained with the cluster Poisson default model. The non-monotonic con-
vergence is still evident. The prediction utilizing two moments is more
accurate than that utilizing the Poisson default model and similar to
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Fig. 8.5. Performance of the practically perfect tetrahedral default model dis-
cussed above in predicting βµ̃ex = − ln p (0). Since this default model was
built using the best default model of Fig. 8.3 plus the observed first four bino-
mial moments, the predictions are unchanged at the k= 4 moment value until
more than four moments are provided. The result is poorer predictions at the
k = 2 moment level. The crosses connected by the dashed line segments are
the LJ default model results of Fig. 8.3.

the predictions made by the flat default or the Lennard-Jones default
models.

Discussion. There are several conclusions to be drawn from this worked
example. The broadest conclusion is that these PDT-based approaches
provide flexibility for interrogation of physical issues underlying models
of solution free energies.

Proceeding toward conclusions of higher specificity, notice that all of
these applications achieve monotonic convergence only when at least four
moments are utilized. The reason for this is a general one connected
to the structure of the formula Eq. (4.32), p. 92. Here the probable
occupancies are n = 3 and 4. Other occupancies are improbable relative
to those cases, and terms of Eq. (4.32) other than n = 3, and 4 are
extremely small. But nk is zero for terms n < k. Thus, final adjustments
of the predicted probable populations await the moment information
k > 3 which makes direct adjustments to the largest terms of Eq. (4.32).
After k > 〈n〉0, subsequent adjustments are either indirect, through the
consistency and normalization requirements on the ζk, or through the
extremely small terms of the sum.



214 DEVELOPED EXAMPLES

The next general conclusion for this discussion is associated with the
fact that the predictions shown in Fig. 8.3 of the different models with
k=2 moments cluster into two groups, one group being the hard-sphere
model only. Since prediction based upon k=2 moments can be quali-
tatively considered a shift and scaling of the default model, using k=2
moments can be qualitatively viewed as adapting the default model to
the present problem. This qualitative view is precisely true for the tradi-
tional continuous normal distribution. A general observation is that un-
less the default model is almost perfect, these information theory meth-
ods do better with a broad and less specific default model. Specific
errors in a default model have to be corrected by high-order moments,
and that suggests delayed convergence. The more successful group of
models considered here all have broader default distributions.

For the specific physical case, we conclude that a hard-sphere solvent
provides a less successful model of hydrophobicity relative to the other
models considered here. Even though that hard-sphere system might be
a classic initial model in the theory of liquids, specific physical conclu-
sions on that basis should not be accepted uncritically.

A final specific conclusion, and a provocative one, concerns the rele-
vance of tetrahedrality of solvent structure or the clathrate-likeness of
the solvent in establishing characteristic hydrophobic effects (Ashbaugh
et al., 2003). The cluster Poisson model builds tetrahedral structure
into the default model, but crudely. How might we build a more precise
default model that captures such characteristics in an organized way?
The structural features of interest here are expressed in terms of molec-
ular angular correlations, and those angular correlations are embodied
in the observed moments k=3, 4, . . . Thus one well-organized way to
produce a tetrahedral default model is to use the output of a calculation
that produces Fig. 8.3, with a specific k=4, as a proposed practically
perfect default model for this application. Fig. 8.5 shows what to expect
from such a nice default model: poorer predictions at k = 2 for just the
reasons for non-monotonicity of convergence that we have discussed in
detail. This goodness-of-default-model criterion therefore does not sup-
port the concept that tetrahedrality or clathrate-likeness is a required
ingredient in theories of hydrophobic hydration (Ashbaugh et al., 2003).
The suggestion is that the distinctive, but weak, orientational structure
associated with simulation of hydrophobic species in water is an ancillary
observation, not a theory of hydrophobicity.

Note that the poorest performing default model of Fig. 8.3 — the
HS default model — gives results qualitatively similar to the practically
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Fig. 8.6. Excess chemical potentials µ̃ex of model hard-sphere solutes of sizes
roughly comparable to Ne, Ar, methane (Me), and Xe as a function of tem-
perature. The hard-sphere diameters used were 2.8Å, 3.1Å, 3.3Å, and 3.45Å,
respectively. The lines indicate the information theory model results and the
symbols are the values computed directly with typical error bars (Garde et al.,
1996).

perfect tetrahedral default model, Fig. 8.5; specifically they both com-
fortingly give nearly monotonic convergence. The spectacular accuracy
of the other results of Fig. 8.3 was not anticipated, and was understood
after the fact as due to an inadvertant cancellation of errors (Pratt,
2002).

Entropy convergence. The results surveyed in Fig. 8.3, p. 211, prove
that the two moment information model provides a robust, physically
valid description of those primitive hydrophobic hydration free ener-
gies, with the additional observation that highly specific default models,
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particularly the hard-sphere default model, are less successful for that
purpose.

We therefore bring these models to bear on the most puzzling feature
of hydrophobic effects, the temperature effects exemplified by entropy
convergence behavior (Garde et al., 1996). The convergence of entropies
of hydration of hydrocarbons to a value near zero at a common tem-
perature of approximately 385K is well known (Baldwin, 1986; Baldwin
and Muller, 1992; Fu and Freire, 1992; Lee, 1991). Entropy conver-
gence displays the behavior common to hydrophobic effects in that they
become increasingly strong with increasing temperatures for tempera-
tures below the entropy convergence temperature. Entropy convergence
displays the further curiosity that the upper-temperature limit for this
increasing strength with temperature is common to many cases of ex-
perimental relevance.

Fig. 8.6 shows the modelled µex’s for spherical solutes as a function
of temperature along the saturation curve of liquid water, and compares
them to the chemical potentials computed directly. The quantitative
agreement between the two methods is excellent over the entire tem-
perature range. The chemical potential increases with temperature past
400K but eventually decreases. The maximum in chemical potential oc-
curs at about the same temperature in each case. These curves have
the same shape as the experimental ones (Harvey et al., 1991) for inert
gases dissolved in water, but they are shifted upward due to the use of
a hard-sphere model.

Entropies calculated as the temperature derivative of µex along the
saturation curve are shown in Fig. 8.7. As expected, these entropies are
large and negative at room temperature, and increase with temperature.
The entropies of hydration for these solutes converge in a temperature
region around 400K, close to the temperature at which they are zero.
The observed entropy convergence for transfer of simple nonpolar species
from the dilute gas to water (Harvey et al., 1991) is similar.

A simplification of the two-moment model is obtained from the gaus-
sian estimate

p (n) ≈ e−(n−〈n〉0)
2
/2σ2

√
2πσ2

, (8.21)

where σ2 =
〈
(n− 〈n〉0)

2
〉

0
. Remembering that 〈n〉0 = ρv, this gives
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Fig. 8.7. − (∂µex/∂T )σ along the saturation curve of liquid water for model
hard-sphere solutes of sizes comparable to Ne, Ar, methane (Me), and Xe as
a function of temperature. Additional, equation of state contributions to the
standard hydration entropy are negligible: |(∂µex/∂T )p − (∂µex/∂T )σ| < 1
and < 10 (J/mol)/K for temperatures T < 450 and < 550K, respectively
(Garde et al., 1996).

the explicit expression

µex = −kT ln p (0) ≈ Tρ2

[
kv2

2σ2

]
+ T

[
k

2
ln
(
2πσ2

)]
, (8.22)

connecting the chemical potential to the density and density fluctuations
of liquid water This gaussian formula is consistent with the historical
Pratt-Chandler theory (Pratt and Chandler, 1977; Hummer et al., 1996b;
Berne, 1996; Chandler, 1993; Pratt, 2002).

The second term of Eq. (8.22) is smaller than the first, and is only log-
arithmically sensitive to the size of the solute. Eq. (8.22) therefore says
physically that the hydration free energy may be lowered by decreasing
the density or the temperature of the solvent — the Tρ2 factor, or by
enhancing the ability of the solvent to open cavities of a size necessary
to accommodate the solute — the σ2 factor in the first term.

Surprisingly, σ2(T, v) has a negligible dependence on the temperature
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over that range, so that

µex ≈ Tρ(T )2x(v) + Ty(v). (8.23)

The quantities x(v) and y(v), defined by the correspondence between
Eqs. (8.22) and (8.23), are only weakly dependent on the temperature.
Along the saturation curve in Fig. 8.6, the combination Tρ2(T ) exhibits
a non-monotonic temperature dependence. Fig. 8.8 discusses schemati-
cally how this approximate formula then works. Valid guidance can be
obtained by the crude estimate(

∂µex

∂T

)
σ

∝ ρ (T ) 2 + 2Tρ (T )
(
∂ρ(T )
∂T

)
σ

, (8.24)

which yields for the entropy convergence temperature Tc ≈ 1/(2ασ),
with ασ the coefficient of thermal expansion along the saturation curve.

Entropy convergence and solute size. For hard-sphere solutes this en-
tropy convergence point has a non-trivial size dependence that isn’t ap-
parent from Fig. 8.7 (Huang and Chandler, 2000; Ashbaugh and Pratt,
2004). Fig. 8.9 gives a current estimate of those entropy convergence
temperatures as a function of radius R. With increasing solute size
Tc decreases so that above a radius of ≈8Å it is less than the normal
freezing point of water. At the intermediate methane radius of 3.3Å,
however, the convergence temperature is 382K, in excellent agreement
with the experimental convergence temperature of 385K for simple non-
polar gases and linear alkanes.

The relevance of this specific entropy convergence behavior to protein
folding free energetics is problematic (Robertson and Murphy, 1997).
Proteins are complicated molecules participating in both hydrophobic
and hydrophilic interactions with the solution. The widely appreciated
point that protein folding thermodynamics may be primarily sensitive to
hydration of unfolded configurations is just as important (Paulaitis and
Pratt, 2002; Pratt and Pohorille, 2002). Considering unfolded possibili-
ties, the sizes of the obvious hydrophobic units are in the range of small-
molecule hydrocarbon solutes. The largest hydrophobic side chain, that
of phenylalanine, is an example. Solution thermodynamic data are avail-
able for hydrophobic solutes of just this size, e.g. for benzene, toluene,
and ethyl benzene (Privalov and Gill, 1989), and those data suggest that
these solutes exhibit conventional entropy convergence behavior. Thus,
it is a plausible hypothesis that entropy convergence will be expressed
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Fig. 8.8. − (∂µex/∂T )σ along the saturation curve of liquid water, as in
Fig. 8.7 but schematically. (a) Contribution to the entropy from the
Tρ2(T )x(v) term of Eq. (8.23). This contribution dominates Eq. (8.23). (b)
Sum of the contributions from both the terms in Eq. (8.23). The lack of
dependence of σ2 on temperature is assumed. (c) Entropies calculated from
Eq. (4.25), p. 89, accounting for the temperature dependence of σ2 (Garde
et al., 1996).

in protein folding thermodynamics primarily through contributions as-
sociated with the unfolded configurations.
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Fig. 8.9. Variation of the entropy convergence temperature with increasing
hard-sphere radius. The thin solid line is the convergence temperature deter-
mined under the assumption that the heat capacity is independent of tem-
perature, and the thick solid line is the exact entropy convergence tempera-
ture for spheres smaller than R < σWW/2 (Ashbaugh and Pratt, 2004). The
dashed line smoothly interpolates between the exact and constant heat ca-
pacity curves at 1.25Å and 3.3Å, respectively. The filled circle indicates the
entropy convergence temperature of a methane-sized solute (Tc = 382K). The
open circle indicates the entropy convergence temperature based on the infor-
mation model (Tc = 420K) (Ashbaugh and Pratt, 2004).

Pragmatic interpretation: “What are we to tell students?”
(Pratt and Pohorille, 2002; Ashbaugh et al., 2003) The views suggested
by the model above are heretical (Dill, 1990). But that model is suf-
ficiently basic, successful, and compelling to require discussion of the
question “what are we to tell students?”

In preparation we can note that hydrophobicity as judged by hydra-
tion free energy is greatest at moderately elevated temperatures >100C
along the vapor saturation curve, as was emphasized by (Murphy et al.,
1990). Furthermore, the most provoking puzzle for molecular mecha-
nisms of hydrophobic phenomena has always been the apparent increase
in attractive strength of hydrophobic effects with increasing tempera-
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ture for temperatures not too high. This point is experimentally clear in
the phenomenon of cold-denaturation wherein unfolded soluble proteins
fold upon heating (Franks and Hatley, 1985; Hatley and Franks, 1986;
Franks et al., 1988; Privalov, 1990). Thus it is important to explain hy-
drophobicity at temperatures as high as, even higher, than conventional
physiological conditions. In contrast, molecular structural pictures such
as clathrate models — as discussed in (Ashbaugh et al., 2003; LaViolette
et al., 2003) and Fig. 8.10 — seem to point to low temperature regimes
and behaviors as identifying the essence of hydrophobicity.

14 16 18 20 22 24
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Fig. 8.10. The distribution of the number of oxygen atoms within 5.1Å of the
Kr atom in aqueous solution at an elevated temperature in the region of the
entropy convergence temperature (LaViolette et al., 2003). These results were
obtained to investigate the possibilities of clathrate nucleation upon quench-
ing; see (Filipponi et al., 1997; Bowron et al., 1998). Note that the coordi-
nation numbers n=20 or n=24, that are associated with clathrate cages, are
unexceptional in this distribution for the liquid solution. The subtle structure
in this distribution for n below the mode may be reflective of possibilities for
alternative thermodynamic phases, e.g. the coexisting gas phase, or structures
with commodious cages.

Two characteristics of liquid water that are relevant to the present
answer are the equation of state characteristics shown in Figs. 8.11 and
8.12. The isothermal compressibilities shown in Fig. 8.11 indicate that
water is stiffer than organic solvents, and that the stiffness is only weakly
temperature dependent. We don’t propose here a detailed explanation
of that stiffness — it is due to intermolecular interactions among solvent
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Fig. 8.11. Isothermal compressibilities, κT = − 1
V

“
∂V
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T
, for several solvents

plotted as a function of temperature along their saturation curves. The results
are taken from (Rowlinson and Swinton, 1982). Liquid water is stiffer than
the other solvents here, and that stiffness is less temperature dependent.

molecules, H-bonding in the case of liquid water (Debenedetti, 2003) —
but the present empirical theory of hydrophobicity merely exploits those
results. This stiffness is the principal determinant of the low solubility of
inert gases in liquid water. In the simplest information models this stiff-
ness, and its temperature dependence, is expressed by the experimental
〈n (n− 1)〉0, which is distinctive of liquid water.

The second characteristic in our answer is the variation of the liq-
uid density along the liquid-vapor coexistence curve in the temperature
regimes of interest here. The coefficient of thermal expansion along the
coexistence curve, plotted in Fig. 8.12 for several solvents, is typically
more than five times smaller for water than for common organic sol-
vents. It is a secondary curiosity that liquid water has a small regime
of density increase with increasing temperature; we are interested here
in a much broader temperature region. Also, the critical temperature of
liquid water is significantly higher than is the case for the comparative
organic solvents. In consequence of these observations, the densities of
typical organic solvents decrease more rapidly with increasing tempera-
ture than does the density of water in the temperature region of interest
here.

These two points lead to a picture in which the aqueous medium is
stiffer over a substantial temperature range, and expands with temper-
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Fig. 8.12. Coefficient of thermal expansion, ασ(T ) = 1
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liquid-gas saturation curve as a function of temperature for several solvents.
The The bottom curve is liquid water. top band are the organic solvents
CCl4, benzene, and n-heptane. Of course, this quantity is negative for liquid
water below 4◦C, and that region isn’t plotted here. Water expands more
slowly than the other solvents shown here. All results are from (Rowlinson
and Swinton, 1982).

ature less significantly than the natural comparative solvents. If these
structural features of the aqueous medium are thus tempered relative
to normal changes with increasing temperatures, then at higher tem-
peratures the solvent exerts a higher kinetic pressure through collisions
with hydrophobic solutes which experience principally repulsive forces
on those encounters. These collisions are more energetic proportion-
ally with increasing temperature — this is the leftmost factor of T in
Eq. (8.22), p. 217. The aqueous environment thus becomes more unfa-
vorable for hydrophobic solutes with increasing temperature. The rate of
density decrease with increasing temperature eventually dominates this
mechanism at the highest temperatures of interest here, and less un-
conventional behavior is then expected. This paraphrase of the model
above is a realistic response to “what are we to tell students?”

Hydrogen bonding, tetrahedral coordination, random networks and
related concepts are not direct features of this answer. Nevertheless,
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they are relevant to understanding liquid water; they are elements in the
bag of tricks that is used to achieve the engineering consequences that
are discussed in the picture above (Pratt and Pohorille, 2002; Ashbaugh
et al., 2003).

This argument has descended onto the equation of state as a prin-
cipal determinant of peculiar temperature dependences of hydrophobic
effects. The statistical thermodynamic model discussed above, however,
started with probabilities and fluctuations. But equations of state and
fluctuations are connected by the most basic of results of Gibbsian sta-
tistical mechanics, e.g. Eq. (2.24), p. 38. Ad hoc models, such as the
more simplistic lattice gas models, can be adjusted to agree with solu-
bility at a thermodynamic state point, but if they don’t agree with the
equation of state of liquid water more broadly they can’t be expected to
describe molecular fluctuations of liquid water consistently and realisti-
cally. Thus, models of that sort are unlikely to be consistent with the
picture explored here.

A Broader View: It is difficult to overstate the breadth of scientific and
technological interest in liquid water. The breadth of interest leads to a
wide range of mechanistic speculations about molecular-scale phenom-
ena of aqueous solutions. As a recent example, we note sophisticated and
apparently mutually exclusive molecular statistical thermodynamic the-
ories of micellization (Bock and Gubbins, 2004; Maibaum et al., 2004).
The present answer to “what are we to tell students?” was designed
aggressively to limit mechanistic speculations. Once that response is
appreciated, however, it suggests a broader view of water as the matrix
of life (Ball, 1999; Franks, 2000). Specifically, this broader view is that
liquid water, compared to other possibilities, widens the temperature
domain over which biomolecular structures are stable and functional.

This is the view of hydrophobic effects suggested here. But satisfac-
tory hydration of polar and ionic moieties is also essential for practical
cases of soluble biomolecules. For hydrophilic hydration the simplest
relevant observation about water as a medium is that it has a high di-
electric constant. We know from preceding considerations — see Sec. 4.2,
p. 83, for example — that this high dielectric constant is correlated with
good solubility of charged and polar molecules. Further, we know that
a dielectric constant as high as that for liquid water also serves to make
interactions of charged and polar groups less sensitive to other variations
of the solvent properties.

It is also important to recognize that water molecules participate
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in aqueous phase chemical processes, specifically acid-base chemistry.
Chemical buffering that is universal in biophysical systems serves to
mitigate changes in charge state of macromolecules. In this respect also
liquid water moderates the possibilities for catastrophes associated with
changes in solvent properties.

The natural view of these arguments is, therefore, that biochemical
processes have adapted to occupy a medium offering reduced sensitivity
to alterations of solvent qualities. In comparison to media and processes
with higher sensitivity to changes of solvent quality, such an adaptation
should be advantageous.

Coda. It is important that the theories and discussions above have con-
sidered simple models — hard spheres — of small-molecule hydrophobic
solutes. As noted above, this is partly because that problem historically
has been regarded as a basic puzzle of hydrophobic phenomena. The
tools developed in this book have provided a compelling analysis of that
basic puzzle.

But the size dependence of these results have long been an interest also
(Stillinger, 1973). For hard-sphere model solutes, the size dependence is
analyzed by introducing

ρG(λ)4πλ2dλ = −
(
∂ ln pλ (0)

∂λ

)
dλ . (8.25)

Following the notation of Sec. 7.33, specifically p. 191, λ is the distance
of closest approach of the solvent (water) center to the hard spherical
solute. The left-side of Eq. (8.25) is the differential work done in expand-
ing the solute sphere against the solvent pressure. A previous exercise,
p. 191, requested a demonstration that G (λ) is the contact value of
the radial distribution function of solvent centers from the position of a
hard-spherical solute. G (λ) then gives molecular-scale structural infor-
mation to obtain that solvent pressure, and Fig. 8.13 shows the current
best information on that molecular-scale pressure (Ashbaugh and Pratt,
2004).

We don’t pursue a further detailed discussion of these results here,
but confine ourselves to a few broad observations. First, the theories
and discussions above have focused on hard-spherical solutes of size lo-
cated roughly by the maximum of G (λ), Fig. 8.13. These solutes are
candidates for most hydrophobic because the solvent pressure is greatest
for those sizes. The location of that maximum gives a convenient size to
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Fig. 8.13. The function G (λ) for water at 300K at the liquid saturation con-
ditions (Ashbaugh and Pratt, 2004). The points are obtained by direct Monte
Carlo calculation, and the solid line by matching an empirical thermodynamic
model for the large solute case. The dashed lines are the classic scaled-particle
model (Pierotti, 1976) predictions for several solvent hard-sphere diameter pa-
rameters between σWW = 2.6Å to 3.0Å in 0.1Å increments. Notice that the
parameter value that provides the best fit of the classic scaled-particle model
for small radii is not the same as that for the large radii results.

discriminate between small and large molecule scales for these hydration
problems.

The fact that the maximal G (λ) is substantially larger than one in-
dicates that the local density contacting the solute surface is relatively
large. In that case, the physical discussion of the van der Waals models,
Sec. 4.1, p. 76, has a chance of being physically valid. The most impor-
tant physical observation about the behavior of G (λ) for large radii is
that the physical problems for those length scales are likely to be sensi-
tive to attractive solute-solvent interactions (Weeks, 2002; Zhou et al.,
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Fig. 8.14. The product of the tension of the liquid-vapor surface, σ, and the
isothermal compressibility, κT , identified by (Egelstaff and Widom, 1970) as
proportional to the spatial correlation length. This combination was suggested
as appropriate for the neighborhood of the triple point. But the physical argu-
ment didn’t require three phase coexistance, instead relying more specifically
on the molecular-scale sharpness of the liquid-vapor interfacial profile, and the
low density of the coexisting vapor phase. Those physical conditions obtain
here, so an examination of the temperature dependence of this product is rea-
sonable. The magnitudes here are expected, but the temperature dependences
are different.

2004). This can be appreciated by noting that in those cases the G (λ) is
substantially less than one, the predicted contact density isn’t high, and
the van der Waals argument of Sec. 4.1 probably doesn’t apply. This is
our second broad observation.

Our final observation focuses on the length scales involved in results
such as shown in Fig. 8.13. We have noted the length λ ≈ 3Å that locates
the maximum. Further detailed analyses permit extraction of additional
physically interesting length scales, e.g., characterizing curvature effects
(Ashbaugh and Pratt, 2004). But a nice element of context is obtained
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by noting a classic identification due to (Egelstaff and Widom, 1970) of
a correlation length for liquids viewed broadly. Results comparing water
to several organic solvents are shown in Fig. 8.14. The magnitudes of
those lengths are as expected (Egelstaff and Widom, 1970). But the
temperature variations are distinctly different, and it is the temperature
variations that are the issues of significance for hydrophobic effects. This
reinforces the point that temperature dependences intrinsic to liquid
water can be peculiar, and this point has to be remembered when the
additional issue of hydrophobicity is considered.

8.3 Primitive Hydrophilic Phenomena: Ion Hydration

The discussion of the previous section emphasized that hydrophobic ef-
fects, as peculiar as they are, are only one side of the coin for aque-
ous solution chemistry and for the biophysics and biochemistry that
inevitably involves water. If we are interested in molecules in aqueous
solution, those molecules are likely to be hydrophilic to some extent.

Atomic ions, such as Li+(aq), are common and chemically the sim-
plest hydrophilic aqueous solution species. The hydration free energies
are known to be in the range of −100 kcal/mol (Friedman and Krish-
nan, 1973). This magnitude is comparable to chemical bond energies,
and therefore the molecular-scale details of ion hydration are typically
idiosyncratic in ways that are characteristic of chemical effects. The ex-
ample of Sec. 7.3, p. 175, made it clear that chemistry is the issue of first
importance for the Be2+(aq) ion. Fig. 8.15 compares primitive aspects
of the hydration structure of the simplest comparable ions in aqueous
solution, Li+, Na+, and K+ (Asthagiri et al., 2004c).

This simplest comparison is interesting partly because of the famous
observation of (Friedman and Krishnan, 1973, see Table III): the sum of
standard hydration entropies for K+ and Cl− is about twice the stan-
dard hydration entropy of Ar, with the case of 2Ar having an entropy
loss on dissolution about 20% larger than the case of KCl. For methanol
as a solvent, the situation is different: these solution entropies are dif-
ferent by nearly a factor of three, and the entropy loss on dissolution is
higher for the ions. This observation is a severe challenge for mechanistic
interpretations of hydration entropies.

Nevertheless, many ionic solutes in water display standard hydropho-
bic behavior such as closed loop coexistence curves (Xu et al., 1991;
Weingartner and Steinle, 1992). So the possibilities for ion hydration
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Fig. 8.15. Comparison of radial distributions of oxygen atoms conditional on
the simplest metal ions in typical aqueous solutions obtained by ab initio
molecular dynamics (AIMD). See (Asthagiri et al., 2004c) for details. The
potassium result was presented by itself in higher detail in Fig. 7.7, p. 183.
Notice that the lithium result (displaced vertically by 2) and the sodium result
(displaced vertically by 1) have inner shells clearly defined on the basis of the
g(r). For lithium, the occupancy of that inner shell is almost exclusively 4. For
sodium, the principal occupancy is 4, but there is a statistical admixture of
another oxygen that also serves to blur the primary minimum; this occupancy
is indicated by 4− 1. For potassium, this statistical characterization is 4− 2,
as was also shown differently by Fig. 7.7; this leads to the occultation of the
principal minimum in that case.

range from hydrophobic to primitive chemical interactions, and leave
lots of room for molecular-scale complexity in between.

Aqueous solutions offer yet another complexity because typically the
dissociation

H2O 
 HO− + H+

is significant in aqueous-phase chemistry and biochemistry. The ions
HO−(aq) and H+(aq) are intrinsic to aqueous materials, and molecular-
scale processes in aqueous solutions typically require buffering to control
the levels of these ions. This reaction is most fundamental among all
chemical reactions in aqueous solution chemistry (Stillinger, 1978). Since
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this dissociation is a chemical process it is reasonable to expect that a
chemical description is necessary for the hydration of these ions.

The discussion that follows treats the hydration of each of these ions in
turn. These are current research problems, and current research opinion
is non-uniform. At the least, quasi-chemical treatments can serve as
initial physical theories — sanity checks — and subsequent refinements
can be seen in the light of a primitive physical theory. For the purposes
of this book, the focus on these important ions is justified by the fact
that they are likely to be tricky cases, and this permits us to investigate
quasi-chemical theories in situations that make different demands on the
theory than the simplest metal ions do.

HO−(aq). We consider the inner-shell reactions

HO− + nH2O 
 HO[H2O]n
− . (8.26)

The free energy changes for these reactions were calculated using the
Gaussian programs (Frisch, 1998); the approach was that of the primitive
quasi-chemical model of Sec. 7.3, p. 175, but the particular details are
in (Asthagiri et al., 2003d).

The results are summarized in Fig. 8.16, which is comparable to
Fig. 7.2, p. 177. This simple theory predicts the predominance of the
HO · [H2O]3− quasi-component, and that prediction is independent of
the level of sophistication of electronic structure theory; calculations
with conventional basis sets give the same trends as calculations with
larger basis sets (Asthagiri et al., 2003d).

A simple rationalization of the electronic structure results on HO · [H2O]3−

and HO · [H2O]4− is the following: The nominal hydroxide hydrogen
atom in these negative ions is less positively charged than is typical of
water hydrogen atoms. As a result, opportunities for hydrogen bond do-
nation to that nominal hydroxide hydrogen have diminished profitability.
The fourth water ligand then prefers to crowd among the other three on
the oxygen side of the hydroxide anion.

Fig. 8.16 shows that the chemical binding contributions for inner-shell
water additions to HO · [H2O]3− are in fact favorable. Accounting for
the activity of liquid water on the basis of the ideal ρm factors makes
formation of larger complexes even more favorable; as in Fig. 7.2, p. 177,
this is the routine observation. Including hydration effects, in particu-
lar the differential hydration of ligands bound and unbound, makes the
addition of water to HO · [H2O]3− unfavorable. This emphasizes the sig-
nificant role of hydration in establishing probable coordination numbers.
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Fig. 8.16. Top panel: Quasi-chemical contributions to the hydration free en-
ergy of HO−(aq) as a function of the inner-shell coordination number n. Bot-
tom panel: quasi-chemical estimate of the hydration free energy, with indi-
vidual terms in the sum shown separately. An observation volume of radius
1.7 Å centered on the anionic oxygen defined the inner shell. Change of that
radius, say to 2.0 Å, would change the n = 0 contribution roughly by a factor
of (1.7/2.0). But that wouldn’t change the net result substantially since the
n = 3 contribution dominates, and the ion is nearly buried by the ligands in
that case as was discussed in Secs. 7.3 and 7.4 (Asthagiri et al., 2003d).
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Another common observation in applying a quasi-chemical approach
to ion hydration problems is that aggregates beyond the most probable
size begin to find favorable outer-shell placements for the later additions.
This seems to be the case in the present problem too. Alternative ar-
rangements of four water molecules, such as HO · [H2O]3 · [H2O]−, are
routinely found to be more favorable than HO · [H2O]4−. Numerous
such arrangements are possible (Chaudhuri et al., 2001). In a specific
case considered by (Asthagiri et al., 2003d), the fourth water molecule
hydrogen-bonds with the inner-shell water molecules to form a structure
similar to OHW4III in Fig. 2 of (Chaudhuri et al., 2001).

The lower energy of the outer-shell arrangement of the fourth wa-
ter was confirmed spectroscopically by (Robertson et al., 2003). Those
experiments showed shell closure by the ligating water molecules when
three water molecules are hydrogen bonded to the HO− ion.

Critique. Tetrahedral (Mootz and Stäben, 1992) and octahedral (Rustad
et al., 2003) coordination environments are known for HO− in crystalline
hydrates. Evidently the numbers and arrangements of water molecules
coordinating an HO− ion are flexible enough to be decided by a crys-
tal environment. Therefore development of the self-consistent molecular
field models suggested by Sec. 7.8 would be valuable. Proximity of a spe-
cific cation is an issue, in general, for crystals. But it is interesting that,
in crystalline NaOH hydrates beyond the monohydrate, the counterion is
excluded from the inner hydration shell of both Na+ and HO− (Rustad
et al., 2003). The latter work used the PBE electron density functional,
and found overall excellent results for crystalline NaOH hydrates. So
that electron density functional model is able properly to characterize
higher coordination structures where they are known to exist.

AIMD for HO−(aq). AIMD calculations were carried out to follow up
the nontrivial results just described for the simplest physical theory; the
full details are in (Asthagiri et al., 2004b). The electron density func-
tional models that underlie current AIMD calculations are not perfect,
and the AIMD work in (Asthagiri et al., 2004b) investigated more than
one such density functional. We discuss just one of those sets of results,
the set likely to be most satisfactory of those considered. These results
utilized the rPBE functional, comparable to the discussion of Sec. 7.4.
But the broad pictures from the different functionals are qualitatively
similar.

The system considered included one hydroxide anion in a periodic



8.3 Primitive Hydrophilic Phenomena: Ion Hydration 233

cube of 32 water molecules. The box size was 9.8788 Å, consistent with
the experimental partial specific volume of HO−(aq) (Marcus, 1985).
All the hydrogen atoms were the deuterium isotopes, thus simulating
the classical statistical mechanics of aqueous DO− in D2O. This system
was aged through several steps, including utilization of classical model
forcefields and alternative electron density functional models (Asthagiri
et al., 2004b). Finally, it was aged with the rPBE functional for 5.9 ps,
and a further production run of 5.9 ps was conducted. The mean tem-
perature was 313 K.

√
δE2/|Ē| was 2.0 · 10−5. The drift in the relative

energy was about 5 · 10−6 ps−1.
Fig. 8.17 introduces the geometric notation used in analyzing the co-

ordination of HO− (aq). Fig. 8.18 shows the coordination number at
each time, and also the instantaneous temperature observed. Radial
distribution functions are shown in Fig. 8.19. Table 8.1 presents the av-
erage fractional coordination number populations, and Table 8.2 records
averages of H-bonding angles using the notation of Fig. 8.17.

R
O

H
θ

HO

H
φ

Fig. 8.17. R, is the radius of the observation volume centered on the hydroxide
oxygen. θ and φ identify the angles that specify the directionality of the H-
bond to water. The hydroxide hydrogen, uppermost here, is not included in
the coordination number counts or in the radial distribution functions shown
later.

Consulting Fig. 8.19, it is clear that R ≤ 2.5 Å is a reasonable selection
criterion, and that n = 3 is the prominent case. Tables 8.1 and 8.2
provide guidance on whether many of these n = 4 configurations should
be excluded as not hydrogen-bonded.

Though the n=3 case is prominent, it is clear also that the prim-
itive quasi-chemical model seriously underestimates the population of
the n=4 case — see Table 8.1. Using the R ≤ 2.5 Å criterion, we find
about equal populations of n = 3 and n = 4. Tightening this criterion
by 0.25 Å drops the n=4 population by 40% relative to the n=3 case.
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Fig. 8.18. Coordination number and temperature versus time. The block-
averaged temperature is shown with the solid line, and the mean tempera-
ture is 313±21 K. The short vertical bars at the n = 3.5 level flag hydro-
gen exchange events, which also changes the identity of the hydroxide. Note
that many hydrogen exchange events occur without intercession of the n=4
configuration. The dashed line applies to the selection criterion involving
R ≤ 2.5 , θ ≥ 80◦, φ ≥ 150◦; otherwise (solid line) R = 2.5 Å defines the ob-
servation volume. Note that many hydrogen exchange events occur without
intercession of the n=4 configuration.

Table 8.1 shows that a permissive θ ≥ 80◦ cutoff excludes more of those
n = 4 cases. The configurations thereby excluded are on the ‘forward’
side of the hydroxide-water complex, i.e., θ < 90◦ in Fig. 8.17.

The distance-order decompositions of the radial distributions (Fig. 8.19)
are particularly interesting. The fourth-nearest oxygen atom builds a
shoulder on the outside of the principal maximum of the O∗O radial
distribution functions. The contributions from the nearest three protons
and the nearest three oxygens are concentrated, and those protons are
about 1Å nearer the hydroxide oxygen. In contrast, the contributions
from the fourth-nearest proton and fourth-nearest oxygen are diffuse and
overlapping; the contribution from the fourth-nearest proton is not al-
ways inside the contribution from the fourth-nearest oxygen. Of course,
those atoms are not necessarily directly bonded. These observations sug-
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HO chemical bond, otherwise the nearest H, isn’t included in this distance-
ordering.
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Table 8.1. Relative populations x̂i = xi/x3 for different selection
criteria defined by Fig. 8.17. The primitive quasi-chemical theory

results are denoted by PQC.

Method Criteria x̂1 x̂2 x̂3 x̂4

PQC — 0.03 0.26 1.0 0.0

AIMD R ≤ 2.5 — — 1.0 1.02
AIMD R ≤ 2.25 — 0.01 1.0 0.60
AIMD R ≤ 2.5 , θ ≥ 80◦ — 0.01 1.0 0.43
AIMD R ≤ 2.5 , θ ≥ 80◦, φ ≥ 150◦ — 0.07 1.0 0.36

Table 8.2. Mean values of angles (degrees) defined by Fig. 8.17. The
jth value pertains to the jth nearest coordinating proton after the

chemically bonded H atom.

j 1 2 3 4

〈θj〉 109.1±9.9 108.0±11.9 103.4±13.1 91.8±24.5
〈φj〉 169.8±5.4 168.0±6.0 165.0±7.9 124.9±45.8

gest that the fourth-nearest water molecule is not always participating
in a structurally conventional H-bond, but is less specifically arranged.
This description as a whole is consistent with the hypothesis that the tri-
coordinated species is a prominent species though the tetra-coordinated
species is also present to some extent.

Note also (Fig. 8.19) that the nearest water-oxygen is located about
2.45 ±0.1 Å from the hydroxide oxygen. This distance is close to the
O-O separation in the calculated gas-phase structure of HO · [H2O]−,
2.46Å. We conclude that HO · [H2O]− is a prominent sub-grouping in
the HO · [H2O]n− (n = 2, 3, 4) species.

The 〈θj〉 results of Table 8.2 document the interesting point that three
nearest coordinating protons are physically equivalent as far as averages
go, and approximately disposed towards the corners of a tetrahedron.
The fourth-nearest proton is distributed broadly about the plane con-
taining the hydroxide oxygen and perpendicular to the OH chemical
bond. These values are in good agreement with angles (110◦) obtained
from the optimized HO · [H2O]3− cluster. 〈θ4〉 is different, typically
located closer to the equatorial plane, but with bigger statistical dis-
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persion. 〈θ4〉 is also different from the angle (116◦) obtained from the
optimized HO · [H2O]4− cluster. The angles 〈φj〉 indicate that the co-
ordinating OH bond is not collinear with the O∗O vector, and this is
consistent with the cluster results. Note specifically that the water oxy-
gen atom determining the angle φj doesn’t correspond uniquely to a
particular distance order for oxygen atoms; this angle is defined by the
distance-ordering of the hydrogen atoms, and the oxygen atoms to which
those hydrogen atoms are directly bonded.

These AIMD results (Fig. 8.19) are roughly consistent with the in-
ferences formulated upon neutron scattering from 4.6M NaOD aqueous
solutions (Botti et al., 2003) which report a mean coordination number of
3.7±0.3. This value is consistent with integrals of the results of Fig. 8.19,
and suggests the natural interpretation of 70% tetra-coordinated and
30% tri-coordinated species, qualitatively consistent with the view that
the tri-coordinated species is substantially represented. But the results
suggest the subtlety that the total population obtained by integrating
to the first minimum includes a substantial fraction of the fourth-most-
distant water molecules. These waters are not involved chemically like
the nearer three water molecules. It should be additionally noted that
the interpretation of the neutron scattering data involves empirical po-
tential structure refinement (EPSR) modelling (Botti et al., 2003) that
produces radial distribution functions that have some interesting differ-
ences with the recent AIMD results (Tuckerman et al., 2002; Zhu and
Tuckerman, 2002; Chen et al., 2002), including the results of Fig. 8.19.
For example, with all AIMD results the maximum value of g(O∗O) is
less than 6, and the principal peak of g(O∗O) shows perceptible asym-
metry on the outer side of the principal maximum, as exemplified by the
identification of the contribution of the fourth-most-distant oxygen con-
tribution in Fig. 8.19. In contrast, the EPSR model of the neutron scat-
tering data show maximum values that exceed 6, and that principal peak
seems qualitatively less asymmetric. That EPSR modelled first peak is
reported to occur at ≈2.3Å, which is significantly shorter than the an-
ticipated value 2.45Å discussed above. Note that those experiments and
the present calculations differ in concentration and temperature.

The identification of HO · [H2O]− as a prominent sub-grouping agrees
with spectroscopic studies on concentrated hydroxide solutions. The IR
and Raman spectra of concentrated hydroxide solutions have been inter-
preted in terms of HO · [H2O]− as a principal structural possibility for
those systems (Zatsepina, 1971; Schiöberg and Zundel, 1973; Librovich
et al., 1979; Librovich and Maiorov, 1982).
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This HO · [H2O]− sub-grouping also concisely resolves the high effec-
tive (not microscopic) hydration numbers extracted from dielectric dis-
persion measurements (Buchner et al., 1999). A super-grouping of hy-
drated HO · [H2O]−, one involving several more water molecules, could
well be relevant to the time scale of the measurement, a possibility sug-
gested by (Agmon, 2000).

These comparisons teach us about the performance of this simplest
physical theory. An important point is how the inner shell should be
defined to make reasonable statistical thermodynamic predictions. As
with the K+(aq) case of Fig. 8.15, a naive eye-ball analysis of a radial
distribution function might not be the wisest for this assignment. On
physical grounds, it has been argued that the inner-shell volume should
be chosen aggressively small so that subsequent approximations such
as a harmonic approximation for the optimized structure have the best
chance to be valid (Pratt and Rempe, 1999). But the discussion of
Sec. 7.4 pointed out that this question has a variational answer — see
Fig. 7.6, p. 182. We expect it would be instructive to return to that
variational perspective for both the K+(aq) and HO−(aq) cases.

H+(aq). With this example we address also the issue that quasi-chemical
approaches sometimes offer flexibility in designing an inner shell, and dif-
ferently designed approaches permit us to learn different features from
the molecular statistical thermodynamic calculations.

As a preliminary point, we note that with a liquid material composed
of n O atoms, 2n H atoms, and one H+ ion, and with a specific spa-
tial configuration of those nuclei sampled from an AIMD calculation, it
isn’t entirely trivial to identify one H nucleus as locating the H+(aq)
species. This basic problem also arises with the HO− case discussed
above, though the net composition is different. For the HO−(aq) AIMD
calculations a satisfactory way to identify the hydroxide ion is concep-
tually to associate each H nucleus with the nearest O nucleus. An al-
ternative is to find the two nearest H nuclei to each O nucleus, and to
identify the hydroxide O as the one with the largest difference between
the nearest and 2nd nearest H nucleus. Those two approaches invariably
gave the same answer with those AIMD data.

Those alternatives have analogues for the H+(aq) case too. We might
assign each H nucleus to its closest O nucleus. We expect on physical
grounds that such a procedure would identify one H3O+ ion — though
that expectation is not guaranteed. Alternatively, we might find the
shortest 3rd nearest OH distance, and regard that O nucleus as the
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center of an H3O+ ion. In the latter case, an H nucleus is distinguished
in addition to an O nucleus that might be taken as the centering nucleus
for an H3O+ ion.

But it is an interesting physical question whether an O nucleus centers
the ionic structure that is the most appropriate representative of H+(aq).
The Zundel ion — see Fig. 8.20 — is another possibility, an H-centered
proposal. To investigate this possibility, we choose our distinguished H+

ion to be identified as discussed in the previous paragraph. We choose
the indicator function discussed in basic fashion in Chapter 7 to require
an oxygen atom within a spherical observation ball, and further require
that O atom to be carrying two additional H atoms at least as close
to it as the distance to the central H atom. The detailed specification
might be comforting logically, but we don’t expect the details to have
high practical relevance, involved as they are.

With this setup, we then study equilibria for chemical equations

H+ +mH2O 
 H(H2O)m
+ (8.27)

describing formation of inner-shell complexes. The present formulation
has the advantage that only two cases are significant, the cases shown
in Fig. 8.20. The free energy change for these reactions were calculated
using the Gaussian programs (Frisch, 1998) as above, but the particular
details are in (Grabowski et al., 2002; Asthagiri et al., 2003b).

Utilizing a dielectric continuum model for the outer-shell contribu-
tion (Grabowski et al., 2002), the Zundel structure was found to be
the dominant representative, and a hydration free energy µex

H+(aq) ≈
−255 kcal/mole was obtained. This is within the wide range −253 to
−265 kcal/mol of tabulated values.

In this case, outer-shell electrostatic contributions were investigated
with classical molecular simulation models also (Asthagiri et al., 2003b).
The same partial charges for the solute were considered, but the van der
Waals interactions were those of standard simulation model. Again the
Zundel structure was predicted to be the dominant representative, the
outer-shell contributions were less deep in those cases, and net values
near −244 kcal/mol were found.

As noted above, we could have formulated this problem with an O-
centered definition. In that case OH3 ·(H2O)3

+, the Eigen cation, would
have been the principal representative. The corresponding result of a
primitive quasi-chemical calculation is −248 kcal/mol. This must be
regarded as within the uncertainty of all the calculations; for example,
packing effects and dispersion interactions have not been considered.
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O

Fig. 8.20. Configurations considered in the primitive quasi-chemical model of
this section. The complex on the right, H5O2

+ is the Zundel structure, on the
left is the classic oxonium (hydronium) ion.

But the H-centered definition permits us to provide a rough comparison
between the free energetics of the Zundel case and the Eigen case, with
the latter alternative regarded as a specification of the outer-shell mate-
rial for the left possibility of Fig. 8.20. The physical suggestion is that
the Zundel case is more populous. It has been noted, however, that this
simplest physical theory might be more satisfactory for more restricted
inner-shell definitions with the expectation that a harmonic approxima-
tion would be more satisfactory then. Thus, it is possible that such
a simplest physical theory is less satisfactory for larger complex ions.
In any case, the alternative H-centered definition of this problem per-
mitted us to address the sub-grouping puzzle of the previous HO−(aq)
discussion.

AIMD for H+(aq). Again, the revised PBE (rPBE) functional was used;
the full details are specified in (Asthagiri et al., 2004a). The system is
32 water molecules and a single H+ in a cubic box of length 9.8432 Å.
All the hydrogen atoms were replaced by deuterium atoms in the ab
initio simulation. A total of 22.1 ps of simulation was performed, of
which the first 13.5 ps was for equilibration and the last 8.6 ps was for
data collection. The mean temperature in the production phase was
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Fig. 8.21. Bonding arrangement about the excess proton H?.

301± 20 K. The relative energy fluctuation,
√
δE2/|Ē|, was 6.5× 10−5.

The relative drift in the energy was about −3× 10−5 ps−1.
Fig. 8.22 provides the density distributions around O? and H? (Fig. 8.21).

It is clear that water oxygens around O? are not symmetrically placed.
O′′ is always closer to O? and at a distance of about 2.45 Å. This is very
close to the O?-O separation expected in the Zundel complex.

The oxygen density distribution around H? shows many interesting
features. There are two oxygen atoms coordinating the H?, and an
observation volume of radius 1.5 Å would substantially include both of
them (Fig. 8.22). But the oxygens are asymmetrically disposed around
H?. The H? −O? bond length is shorter at about 1.14 Å. The H? −O?

bond is statistically different — longer — than the 1.01 Å expected for
an Eigen complex. But it is also somewhat shorter than the 1.20 Å
expected for the Zundel complex.

The quasi-chemical theory suggests that, from the perspective of the
proton, the Zundel cation is the most appropriate structure for describ-
ing the thermodynamics of H+(aq). The simulation results support this
prediction, but display additional subtlety. Most importantly, the dis-
tinguished proton is asymmetrically positioned between the two coordi-
nating oxygen atoms.

The asymmetric placement of the proton in H5O2
+ has been noted

earlier (Lobaugh and Voth, 1996; Schmitt and Voth, 1999; Vuilleumier
and Borgis, 1999), and the origin traced to the classical description of
proton motion. In particular, for classical nuclear motion, the central
proton in H5O2

+ traverses a double-well potential which has a barrier on
the order of kT for nominal oxygen-oxygen distances. Incorporating nu-
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Fig. 8.22. Radial distribution functions associated with the distinguished acid
proton H? and its closest oxygen O?. The darker lines show decomposition
according to the distance-order of the contributing atoms, i.e., the solid line
is the contribution from the nearest-neighbor O atom in each case, the dark
dashed curve is the contribution of the 2nd nearest neighbor, and so on.

clear quantum effects either explicitly (Lobaugh and Voth, 1996; Schmitt
and Voth, 1999) or implicitly in terms of effective potentials (Vuilleumier
and Borgis, 1999) was sufficient to wash out bimodal results.

Concentrated HCl(aq) solutions have been studied by X-ray and neu-
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Fig. 8.23. Comparison of experimental absolute hydration free energies for
some monovalent ions with values calculated on the basis of the primitive
quasi-chemical approximation, at ideal 1 M standard state conditions (Astha-
giri et al., 2003a). The left panel with single-ion values shows an offset of
positive and negative ions identifying at this level of approximation a poten-
tial of the phase contribution as discussed in Sec. 4.2, following p. 85. This
offset vanishes with neutral combinations shown in the right panel.

tron diffraction methods (Triolo and Narten, 1975; Botti et al., 2004).
Comparison of our results to those works is problematic because the
interpretations are not uniform, and the assumptions seem to preclude
some of the questions we address. For example, the interpretations as-
sume rigid H3O+ molecular units.

Comparison to experimental hydration free energies. Having
considered aqueous ions of both positive and negative charge types,
we can make direct thermodynamic comparisons utilizing charge neu-
tral combinations as discussed in Sec. 4.2, specifically p. 85. Corrected
to the ideal 1 M standard state, the combination µH+(aq) + µHO−(aq) is
computed to be −244 kcal/mol −124 kcal/mol = −368 kcal/mol (Astha-
giri et al., 2003b); experimental values in the range −[368, 371] kcal/mol
(Asthagiri et al., 2003b; Klots, 1981) have been offered.

A slightly broader comparison is shown in Fig. 8.23. The encouraging
comparison shown should be viewed critically for several reasons. In
the first place, the energies displayed are chemical scale energies, and
errors that are substantial on the thermal scale kT aren’t exposed. This
emphasizes again that a chemical description is an essential ingredient
to convincing theories of the free energies. In the second place, partial
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molar volumes and entropies haven’t been similarly studied, and these
properties are expected to test molecular-scale theories more sensitively.
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basis of anion selectivity. Nature 415, 287–294 (2002).

Dutzler, R., Campbell, E. B., and MacKinnon, R., Gating the selectivity filter
in ClC chloride channels. Science 300, 108–112 (2003).

Efron, B. and Tibshirani, R. J., An Introduction to the Bootstrap. Chapman
& Hall (1993).

Egelstaff, P. A. and Widom, B., Liquid surface tension near the triple point.
J. Chem. Phys. 53, 2667 – 9 (1970).

Eikerling, M., Paddison, S. J., Pratt, L. R., and Zawodzinski, T. A., Defect
structure for proton transport in a triflic acid monohydrate solid. Chem.
Phys. Letts. 368, 108–114 (2003).

Eisenberg, D. and Kauzmann, W., The Structure and Properties of Water.
Singapore: Oxford University Press (1969).

Escobedo, F. A. and dePablo, J. J., Chemical potential and equations of state
of hard core chain molecules. J. Chem. Phys. 103, 1946–1956 (1995).

Feynman, R. P., Statistical Mechanics. A Set of Lectures. Reading, MA: W.
A. Benjamin (1972).

Feynman, R. P. and Hibbs, A. R., Quantum Mechanics and Path Integrals.
New York: McGraw-Hill (1965).

Filipponi, A., Bowron, D. T., Lobban, C., and Finney, J. L., Structural deter-
mination of the hydrophobic hydration shell of Kr. Phys. Rev. Letts. 79,
1293 – 6 (1997).

Flory, P. J., Thermodynamics of polymer solutions. Disc. Faraday Soc. 58, 7
– 29 (1970).

Fontenot, A. P., Newman, L. S., and Kotzin, B. L., Chronic beryllium disease:
T cell recognition of a metal presented by HLA-DP. Clin. Imm. 100, 4–14
(2001).

Fowler, R. H. and Guggenheim, E. A., Statistical thermodynamics of super-
lattices. Proc. Rov. Soc. London A 174, 189 (1940).

Franks, F., Water (2nd Edition): A Matrix of Life. Cambridge: Royal Society
of Chemistry (2000).

Franks, F. and Hatley, R. H. M., Low temperature unfolding of chymotrypsino-
gen. Cryo Letts. 6, 171 – 180 (1985).

Franks, F., Hatley, R. H. M., and Friedman, H. L., The thermodynamics of
protein stability. Cold destabilization as a general phenomenon. Biophys.
Chem. 31, 307 – 316 (1988).

Frenkel, D., Free-energy computation and first-order phase transitions. In In-
ternational School of Physics ‘Enrico Fermi’, volume XCVII, pp. 151–188,
Bologna: Soc. Italiana di Fisica (1986).

Frenkel, D. and Smit, B., Understanding Molecular Simulation. From Algo-



252 References

rithms to Applications. San Diego: Academic Press, 2nd edition (2002).
Friedman, H. L. and Dale, W. D. T., Electrolyte solutions at equilibrium. In

B. J. Berne (ed.), Statistical Mechanics. Part A: Equilibrium Techniques,
pp. 85–135, New York: Plenum (1977).

Friedman, H. L. and Krishnan, C. V., Thermodynamics of ion hydration. In
F. Franks (ed.), Water A Comprehensive Treatise, volume 3, pp. 1–118,
New York: Plenum (1973).

Frisch, M. J., et al. Gaussian 98 (Revision A.2) (1998), Gaussian, Inc., Pitts-
burgh PA.

Fu, L. and Freire, E., On the origin of the enthalpy and entropy convergence
temperatures in protein folding. Proc. Natl. Acad. Sci. USA 89, 9335–
9338 (1992).
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