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Introduction

• Numerical simulations of protein channels

of biological membranes require connections

of a small discrete simulation volume to large

baths that are maintained at fixed concentra-

tions and voltages.

• The continuum baths are connected to the

simulation through interfaces, located in the

baths sufficiently far from the channel. Aver-

age boundary concentrations have to be main-

tained at their values in the baths by injecting

and removing particles at the interfaces.
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The Physical Setup
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Motivation

• The interface is an imaginary wall, which the

physical trajectories of the diffusing particles

cross and recross any number of times.

• The efflux of simulated trajectories through

the interface is seen in the simulation, how-

ever, the influx of new trajectories, which is

the unidirectional flux (UF) of diffusion, has

to be calculated so as to reproduce the physi-

cal conditions.

• The UF is the source strength of the influx,

and also the number of trajectories that cross

the interface in one direction per unit time.

• The classical diffusion equation defines net

diffusion flux, but not unidirectional fluxes.
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Outline

• The stochastic formulation of classical diffu-
sion in terms of the Wiener process leads to a
Wiener path integral, which can split the net
flux into unidirectional fluxes.

• These unidirectional fluxes are infinite, though
the net flux is finite and agrees with classical
theory.

• The infinite unidirectional flux is an arti-
fact caused by replacing the Langevin dynam-
ics with its Smoluchowski approximation, which
is classical diffusion.

• The probability of Brownian trajectories that
cross an interface in one direction in unit time
∆t equals that of the probability of the corre-
sponding Langevin trajectories if γ∆t = 2.

• The unidirectional flux is proportional to the
concentration and inversely proportional to

√
∆t

to leading order.
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Net Flux

The diffusion equation (DE) is often consid-

ered to be an approximation of the Fokker-

Planck equation (FPE) in the Smoluchowski

limit of large damping.

Both equations can be written as the conser-

vation law

∂p

∂t
= −∇ · J .

The flux density J in the diffusion equation is

given by

J(x, t) = −
1

γ
[ε∇p(x, t)− f(x)p(x, t)] ,

where γ is the friction coefficient (or dynamical

viscosity), ε =
kBT

m
, kB is Boltzmann’s con-

stant, T is absolute temperature, and m is the

mass of the diffusing particle. The external ac-

celeration field is f(x) and p(x, t) is the density

(or probability density) of the particles.
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Net Flux cont.

The flux density in the FPE is given by where
the net probability flux density vector has the
components

Jx(x, v, t) = vp(x, v, t)

Jv(x, v, t) = − (γv − f(x)) p(x, v, t)

−εγ∇vp(x, v, t).

J is a net flux density vector. Splitting of J
into into two unidirectional components across
a given surface, such that the net flux J is
their difference is pretty obvious in the FPE,
because the velocity v at each point x tells the
two UFs apart. Thus, in one dimension,

JLR(x, t) =
∫ ∞
0

vp(x, v, t) dv,

JRL(x, t) = −
∫ 0

−∞
vp(x, v, t) dv

Jnet(x, t) = JLR(x, t)− JRL(x, t)

=
∫ ∞
−∞

vp(x, v, t) dv.
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Infinite UFs

In contrast, the net flux J(x, t) in the DE can-
not be split this way, because velocity is not a
state variable. How to split the net flux?

The trajectories of a diffusion process do not
have well defined velocities, because they are
nowhere differentiable with probability 1.

These trajectories cross and recross every point
x infinitely many times in any time interval
[t, t + ∆t], giving rise to infinite UFs.

However, the net diffusion flux is finite.

The unidirectional diffusion flux, however, is
finite at absorbing boundaries, where the UF
equals the net flux. The UFs measured in dif-
fusion across biological membranes by using
radioactive tracer are in effect UFs at absorb-
ing boundaries, because the tracer is a separate
ionic species.
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An Apparent Paradox

An apparent paradox arises in the Smoluchowski

approximation of the FPE by the DE. Using

the path integral to define the UF of the Langevin

trajectories, it can be shown that their UFs are

those given before. These expressions remain

finite in the Smoluchowski limit γ →∞.

In contrast, the path integral definition of the

UF of the Smoluchowski (Brownian) trajecto-

ries gives infinite UFs for all γ.
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Short Time Discrepancy

The discrepancy between the Einstein and the

Langevin descriptions of the random motion of

diffusing particles was hinted at by both Ein-

stein and Smoluchowski.

Einstein remarked that his diffusion theory is

based on the assumption that the diffusing par-

ticles are observed intermittently at short time

intervals, but not too short.

Smoluchowski showed that the variance of the

displacement of Langevin trajectories is quadratic

in t for times much shorter than the relaxation

time 1/γ, but is linear in t for times much

longer that 1/γ, which is the same as in Ein-

stein’s theory of diffusion.
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Langevin Dynamics

The Langevin equation

ẍ + γẋ = f(x) +
√

2εγẇ.

is rewritten as the phase space system

ẋ = v, v̇ = −γv + f(x) +
√

2εγ ẇ.

This means that in time ∆t the dynamics pro-

gresses, more or less, according to

x(t + ∆t) = x(t) + v(t)∆t,

v(t + ∆t) = v(t) + [−γv(t) + f(x(t))]∆t

+
√

2εγ ∆w,

where ∆w ∼ N (0,∆t). This means that

p(x, v, t + ∆t) =
1

√
4εγπ∆t

∫ ∫
p(ξ, η, t)δ(x− ξ − η∆t)

× exp

−[v − η − [−γη + f(ξ)]∆t]2

4εγ∆t

 dξ dη.
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The Fokker-Planck Equation

Using the path integral formulation we derive

the Fokker-Planck equation

∂p(x, v, t)

∂t
= −v

∂p(x, v, t)

∂x

+
∂

∂v
[(γv − f(x)) p(x, v, t)]

+εγ
∂2p(x, v, t)

∂v2
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The unidirectional flux of the Langevin equation

The instantaneous unidirectional probability flux

from left to right at a point x1 is defined as

the probability per unit time (∆t), of Langevin

trajectories that are to the left of x1 at time t

(with any velocity) and propagate to the right

of x1 at time t+∆t (with any velocity), in the

limit ∆t → 0. This can be expressed in terms

of a path integral as

JLR(x1, t) = lim
∆t→0

1

∆t

∫ x1

−∞
dξ
∫ ∞
x1

dx
∫ ∞
−∞

dη
∫ ∞
−∞

dv

×
1

√
4εγπ∆t

p(ξ, η, t)δ(x− ξ − η∆t)

× exp

−[v − η − [−γη + f(ξ)]∆t]2

4εγ∆t

 .

13



The unidirectional flux of the Langevin equation

Integrating with respect to v eliminates the ex-

ponential factor and integration with respect

to ξ fixes ξ at x− η∆t, so

JLR(x1, t)

= lim
∆t→0

1

∆t

∫ ∫
x−η∆t<x1

p(x− η∆t, η, t) dη dx

= lim
∆t→0

1

∆t

∫ ∞
0

dη
∫ x1

x1−η∆t
p(u, η, t) du

=
∫ ∞
0

ηp(x1, η, t) dη.
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The Smoluchowski approximation

to the unidirectional current

In the overdamped regime, as γ → ∞, the

Smoluchowski approximation to p(x, v, t) is given

by

p(x, v, t) ∼
e−v2/2ε
√

2πε
×{

p(x, t)−
1

γ

[
∂p(x, t)

∂x
−

1

ε
f(x)p(x, t)

]
v + O

(
1

γ2

)}
,

where the marginal density p(x, t) satisfies the

Fokker-Planck-Smoluchowski equation

γ
∂p(x, t)

∂t
= ε

∂2p(x, t)

∂x2
−

∂

∂x
[f(x)p(x, t)] .
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The Smoluchowski approx. Cont.

The UF is

JLR(x1, t) =
∫ ∞
0

vp(x1, v, t) dv

=
∫ ∞
0

v
e−v2/2ε
√

2πε
dv ×{

p(x, t)−
1

γ

[
∂p(x, t)

∂x
−

1

ε
f(x)p(x, t)

]
v + O

(
1

γ2

)}

=
√

ε

2π
p(x1, t)−

1

2γ

[
ε
∂p(x, t)

∂x
− f(x)p(x, t)

]

+O

(
1

γ2

)
.

Similarly, the UF from right to left is

JRL(x1, t) = −
∫ 0

−∞
vp(x1, v, t) dv

=
√

ε

2π
p(x1, t) +

1

2γ

[
ε
∂p(x, t)

∂x
− f(x)p(x, t)

]

+O

(
1

γ2

)
.
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The Smoluchowski approx. Cont.

Both UFs in are finite and proportional to the

marginal density at x1.

The net flux is the difference

Jnet(x1, t) = JLR(x1, t)− JRL(x1, t)

= −
1

γ

[
ε
∂p(x, t)

∂x
− f(x)p(x, t)

]
,

as in classical diffusion theory.
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The unidirectional current in the
Smoluchowski equation

Classical diffusion theory, however, gives a dif-
ferent result. In the overdamped regime the
Langevin equation is reduced to the Smolu-
chowski equation

γẋ = f(x) +
√

2εγ ẇ.

The unidirectional probability current (flux) den-
sity at a point x1 can be expressed in terms of
a path integral as

JLR(x1, t) = lim
∆t→0

JLR(x1, t,∆t),

where

JLR(x1, t,∆t) =
√

γ

4πε∆t

∫ ∞
0

dξ
∫ ∞
ξ

dζ exp

{
−

γζ2

4ε

}

×
{

p (x1, t)

−
√

∆t

[
−

ζf(x1)

2ε
p (x1, t) + (ζ − ξ)

∂p(x1, t)

∂x

]

+O

(
∆t

γ

)}
.
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The unidirectional current in the
Smoluchowski equation - Cont.

Integration yields

JLR(x1, t,∆t) =

√
ε

πγ∆t
p(x1, t)

+
1

2γ

(
f(x1)p(x1, t)− ε

∂p(x1, t)

∂x

)
+ O

(√
∆t

γ3/2

)
.

Similarly,

JRL(x1, t,∆t) =

√
ε

πγ∆t
p(x1, t)

−
1

2γ

(
f(x1)p(x1, t)− ε

∂p(x1, t)

∂x

)
+ O

(√
∆t

γ3/2

)
.

If p(x1, t) > 0, then both JLR(x1, t) and JRL(x1, t)
are infinite, in contradiction to the LD UFs.
However, the net flux density is finite

Jnet(x1, t) = lim
∆t→0

{JLR(x1, t,∆t)− JRL(x1, t,∆t)}

= −
1

γ

[
ε

∂

∂x
p(x1, t)− f(x1)p(x1, t)

]
.
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Application to Simulation

In a BD simulation of a channel the dynam-
ics in the channel region may be much more
complicated than the dynamics near the inter-
face, somewhere inside the continuum bath,
sufficiently far from the channel. Thus the net
flux is unknown, while the boundary concen-
tration is known. It follow that the simulation
should be run with source strengths

JLR ∼
√

ε

πγ∆t
CL +

1

2
Jnet,

JRL ∼
√

ε

πγ∆t
CR −

1

2
Jnet.

However, Jnet is unknown, so neglecting it rel-

ative to

√
ε

πγ∆t
CL,R will lead to steady state

boundary concentrations that are close, but
not necessarily equal to CL and CR. Thus a
shooting procedure has to be adopted to ad-
just the boundary fluxes so that the output
concentrations agree with CL and CR, and then
the net flux can be readily found.
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Summary

Net fluxes of BD and LD are finite and equal.

The UFs of LD are finite, but the UFs of BD

are infinite and diverge as 1/
√

∆t.

Refining the numerical time step of BD re-

quires increasing the sources strength. The

constant LD UFs should not be used (causes

depletion of particles from the simulation).

For γ∆t = 2 the UFs of LD and BD are equal.
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