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bstract

Results of a Monte Carlo simulation of the electrode|electrolyte interface with and without solvent molecules are reported. The solvent molecules
re modelled by neutral hard spheres immersed in a homogeneous dielectric medium. Calculations have been performed for 1:1 and 1:2 electrolytes
t c = 1 M, with packing fraction η= 0.3 when the solvent molecules were present, and at a wide range of electrode charge. Insertion of the solvent

olecules induces a layering of ion and solvent molecules in the vicinity of the electrode surface. The presence of the solvent molecules reduces

he thickness of the electric double layer, lowers the value of the mean electrostatic potential and raises capacitance. The differential capacitance
esults are compared with the MPB theory predictions.

2006 Elsevier Ltd. All rights reserved.
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. Introduction

The simplest model of the electrode|electrolyte interface,
hich is even currently used to analyse some anomalous
ehaviour at low temperatures [1], does not differ too much
rom that considered by Gouy [2] and Chapman [3]: the only
hange is that the point charges are replaced by hard spheres
ith point charges at their centres. The main shortcoming of

his model is that the solvent is treated as a continuous medium.
elmholtz [4] was the first to introduce solvent molecules into

he model of the electrode|electrolyte interface by assuming
on and electrode solvation. Since then there have been par-
llel developments of both models and theories which treat the
olvent as a medium made up of individual molecules. Different
pproaches can be found in the literature [5–9]. In the simplest
olecular model introduced by Grimson and Rickayzen [10], the

olvent molecules are represented by hard spheres immersed in a
ontinuous dielectric medium. This model does not describe the

ielectric properties of the interface region, but fairly well char-
cterizes the hard-core interactions. Its importance stems from
he fact that it can be used both in molecular simulations and the-

∗ Corresponding author. Tel.: +48 61 8291454; fax: +48 61 8658008.
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Differential capacitance

retical studies. Thus the theoretical predictions can be directly
erified by the simulation results. The model was used in the
nvestigation of phase equilibrium [11], membranes [12,13], ion
hannels [14], conductivity and diffusivity in a nanopore [15].
e concentrate on its application to the planar electric double

ayer. In this area, we must mention first of all the comprehensive
ork of Tang et al. [16]. The authors based their study on density

unctional theory (DFT). The DFT theory has also been applied
y other authors [17–21]. The first reliable but scattered Monte
arlo (MC) results were published by Zhang et al. [22]. Lam-
erski et al. [23] showed that the modified Poisson–Boltzmann
MPB) extension to solvent molecules was in reasonable agree-
ent with these MC results. The MC investigation of Boda and
enderson [24] revealed anomalous capacitance behaviour at

ow temperatures. Recently, the influence of the size of the sol-
ent molecules was investigated by di Caprio et al. [25], Stafiej et
l. [26] using field theoretical approaches and by Lamperski and
uthwaite [27] using a theory based on incorporating the exclu-

ion volume term into the inhomogeneous Poisson–Boltzmann
heory [28,29].

The model which treats solvent molecules as neutral hard

pheres is a very simple one and can be used in the analysis of
teric effects. More sophisticated models of the solvent like ST2
30] (Philpott and Glosli [31]) or SPC/E [32] (Schmickler and
eiva [9], Spohr [33,34], Crozier et al. [35]) give much more
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ealistic description of properties of charged interfaces, but they
re too complicated to be described by theory.

In this paper, we present a systematic MC analysis of the steric
ffect imposed by the solvent molecules on the properties of the
lectrode|electrolyte interface. Additionally, we describe a new
rocedure for calculating the differential capacitance from the
C results and compare the capacitance results with the predic-

ions of MPB theory [36] and its extension to solvent molecules
23]. The structure of the paper is similar to that of Tang et al.
16]. However, as our intention is not to assess the results of
hese authors but to give reliable MC results useful for compar-
son with the theoretical predictions, we use slightly different

olecular parameters and consider a 1:2 rather than a 2:2 elec-
rolyte. The behaviour of the divalent counter-ions of 2:2 and 1:2
lectrolytes at the interfacial region is similar [37] but the 1:2
lectrolyte reveals some additional interesting features at small
lectrode charges due to the charge asymmetry of ions.

. Model

The electrode|electrolyte interface occurs when an electrolyte
s in contact with the charged surface of a metal (electrode).

e assume that the electrode is a planar, infinitely large hard
all carrying a uniform electrical surface charge, σ. The elec-

rolyte is composed of ions and solvent molecules. The ions
re represented by hard spheres of diameter d with the electric
harge ze embedded at the centre (e is the elementary charge
nd z its charge number). The solvent molecules are neutral
ard spheres having the same diameter as the ions. All the
pecies are immersed in a homogeneous medium of relative
lectrical permittivity, εr. Its value is typical of the considered
olvent. Thus the properties of the solvent are described by two
arameters: molecular d and thermodynamic εr. Such a model is
alled the solvent primitive model (SPM). The results from the
PM theory are compared with those of the restricted primitive
odel (RPM) of the electrolyte. The word ‘restricted’ means

hat the diameters of anions and cations are the same. In the
PM, the solvent is represented by a continuous medium of
ermittivity εr.

. Simulation details

The simulations were performed using the standard Metropo-
is canonical Monte Carlo technique, similar to that applied by
orrie and Valleau [38]. The simulation box was a rectangular
rism of size W × W × L. Two opposite, square walls of the side
ength W represented the electrodes while the distance between
he electrodes was L. The electrode was characterized by the
lectrical surface charge σ. For the symmetrical 1:1 electrolyte
nly one electrode was charged (the opposite electrode was dis-
harged) while the asymmetrical 1:2 electrolyte required two
harged electrodes. When simulating the asymmetrical elec-
rolyte in the box with one charged electrode the anion and cation

istribution functions deviate in the vicinity of the discharged
lectrode. This leads to electrical charge being concentrated near
he discharged electrode. This charge disturbs the results. The
lectrodes are impenetrable to ions, so the periodic boundary
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onditions and the minimum image convention were applied to
he directions parallel to the electrode surface. The simulation
ox contained N− anions, N+ cations and optionally N0 solvent
olecules. The numbers N− and N+ together with L and W have

o fulfil two conditions: give the required bulk molar ion con-
entrations c−, c+ and the desired surface charge, σ

= −e(z−N− + z+N+)

neW2 , (1)

here ne is the number of charged electrodes of the simulation
ox (ne = 1 for the 1:1 electrolyte and ne = 2 for 1:2 one). Addi-
ionally, the numbers of all the species have to give the assumed
ulk packing fraction, η

= πd3(ρo− + ρo+ + ρo0)

6
. (2)

ereρoi is the bulk density number of species i. We have assumed
hat when the solvent molecules are present, the packing frac-
ion η of the 1:1 and 1:2 electrolyte is equal to 0.3. This value is
lightly lower than that used by Tang et al. [16] (ηsolv ≈ 0.3665)
r Patra and Ghosh [20] (ηsolv ≈ 0.4189). However at higher
non-ergodicity could occur. This is characteristic for a hard

phere fluid at high density [39]. Due to non-ergodicity the pre-
ision of the MC results decreases. We expect that the applied
oncentration of solvent is sufficiently low to avoid the ergodic-
ty problem and high enough to observe and analyse the result
f steric effect imposed by the hard sphere solvent molecules.

The electrostatic and/or hard-core overlap interactions
etween all the particles located in the simulation box, and
etween these particles and the electrodes, were calculated
xplicitly. To estimate the long-range electrostatic interactions
he method of infinitely large, equidistantly spaced, charged
lanes with a square hole for the simulation box was used [38].
he Verlet neighbour list [40] was applied to facilitate the com-
utations when the solvent molecules were present.

The simulations were performed for the electrode charges,
/C m−2, changing from −0.1 to +1.0. We assumed that the bulk
oncentration of both 1:1 and 1:2 (divalent anion) electrolytes
as equal to 1 M, with εr = 78.5, d = 400 pm, T = 298.15 K,
= 4902.316 or 5063.196 pm, and L ≈ 8100 pm for two charged

lectrodes or approximately 4800 pm for one charged electrode.
he required bulk concentrations were obtained by small adjust-
ents to the box length, L, or to the number of ions, N−, N+,

nd/or to the solvent molecules, N0. The value of d assumed
n the calculations needs a comment. It is approximately the

ean crystallographic diameter of simple spherical anions: Cl−
362 pm), Br− (392 pm) and I− (440 pm) [41]. Other authors
sed 425 pm [38] or 300 pm [42] for the ion diameter.

To equilibrate the SPM system we used 150 × 106 (30 × 106

or RPM) MC configurations. The averages were calculated
rom the next 300 × 106 configurations (60 × 106 for RPM).
imulations for RPM were repeated three times at each σ to

mprove the statistics. Such a procedure was not sufficient for

PM. Here, at each σ we repeated the simulations until obtain-

ng five sets of results with a flat ion and solvent distribution in
he central part of the simulation box. The average of these sets
as taken for further analysis.
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Fig. 1. Singlet distribution functions of anions, cations and solvent molecules
for a 1:1 electrolyte at σ/C m−2 = 0.1 (circles), 0.3 (triangles) and 0.5 (squares).
The solid symbols correspond to the system with SPM while the open symbols
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The main average quantity obtained from the simulation was
he concentration distribution of each species against the elec-
rode surface described by the singlet distribution function, gi(x).
t was calculated as a local density ρi(x) at a distance x from the
lectrode surface related to the bulk density, ρoi :

i(x) = ρi(x)

ρoi
, i = −,+, 0. (3)

he contact value of the distribution function, gi(d/2), was
btained by a polynomial extrapolation. The bulk density was
btained by averaging the density profile in its flat region (the
ulk molarity, ci = ρoi /1000NA, NA is the Avogadro constant).
he singlet distribution function was used to calculate the mean
lectrostatic potential

(x) = − e

εrε0

∑
i=−,+

ziρ
o
i

∫ flat region

max(x,d/2)
gi(x1)(x1 − x) dx1. (4)

ere ε0 is the electrical permittivity of vacuum. From the poten-
ial of the electrode, ψ(0), the integral capacitance, Cint, was
alculated

int = σ

ψ(0)
. (5)

The differential capacitance, Cdiff, of the interface

diff = dσ

dψ(0)
(6)

s the main, experimentally available quantity. Its calculation
rom the MC results requires application of numerical differen-
iation. However, our results are not smooth enough to perform
standard three point [y′

n = (yn+1 − yn−1)/2h] or a more precise
ve point [y′

n = (−yn+2 + 8yn+1 − 8yn−1 + yn−2)/12h] numerical
ifferentiation. It is well known that numerical differentiation
mplifies roughness. Also the analytical form for the ψ(0) − σ
ependence, which would be useful in our studies, is unknown.
o our best knowledge, there is no information in literature
n calculation of differential capacitance of the electric double
ayer from MC results. Therefore, to carry out such calcula-
ions we elaborated and applied the following algorithm. Let
he points (σ, ψ(0)) be arranged in order of increasing surface
harge. The nth degree polynomial (n ≤ 3) is fitted to the first
ve points by the least square method. Such an interpolation
olynomial smoothes out the results without losing their physi-
al meaning. The derivative of the polynomial is calculated for
he first three points. Its inverse is the differential capacitance.
he algorithm is repeated for the consecutive five points start-

ng from the second one, but now the capacitance is calculated
or the middle point, only. The calculations are continued until
he last five points are reached. Then the capacitance is calcu-

ated for the last three points. The algorithm works pretty-well
see Figs. 9 and 10), but it must be realised that the preci-
ion of the differential capacitance for the first and the last
wo points is lower than for the central points. Further in the
ext we will call this algorithm the interpolation polynomials
ethod.

a
s
t
a
p
i

o RPM. The dashed line with diamonds corresponds to the discharged system
t η= 0.3. The other parameters as in the text.

. Results and discussion

We begin the discussion by considering the singlet distribu-
ion functions. These functions provide information about the
tructure of the electrolyte in the vicinity of the electrode sur-
ace and are used to calculate the thermodynamic properties of
he interfacial region. In Fig. 1, we show separately the distri-
ution functions of anions, cations and solvent molecules for a
:1 electrolyte at σ/C m−2 = 0.1 (circles), 0.3 (triangles) and 0.5
squares). The open graphic symbols correspond to RPM while
he solid to the SPM electrolyte. The MC points have been joined
y lines to guide the eye. The singlet distribution functions for
1:1 RPM electrolyte at relatively small electrode charges are

imilar to those predicted by the Gouy–Chapman–Stern (GCS)
heory [2,3,43]: the positively charged electrode attracts anions

nd repels cations. At higher electrode charges, an additional
eak appears on the anion distribution curve at x/d ≈ 1.55. This
s due to the formation of a second layer of anions (the counter-
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on layering effect) [28,29]. Insertion of the neutral hard spheres
educes the amount of free volume and thus the molecules form
ore structured configurations. In the vicinity of the planar

lectrode surface damped oscillations in the concentration dis-
ributions take place. This effect for discharged inhomogeneous
ystem (the hard wall and the hard spheres) at η= 0.3 is shown in
he bottom sub-figure of Fig. 1 by the dashed line with diamonds.
he oscillations imply a layering of the solvent molecules in the
icinity of the electrode surface which influence the distribution
f the ions. The maximum of the singlet distribution function
f anions at the contact distance (x/d = 0.5) is higher and thin-
er than that for the system without solvent molecules. Also,
ew maxima are observed at x/d ≈ 1.55 and 2.65. The cation
istribution curves exhibit the analogous new maxima. An inter-
sting behaviour of the cations is observed in the immediate
icinity of the electrode surface. Here, we have a competition
etween electrostatic and steric forces. The electric charge of
he electrode repels the cations, while the solvent molecules
upport their adsorption. The qualitatively similar behaviour of
he cations in the vicinity of the electrode was predicted by
he DFT [16,20] and MPB [23] theories and also by the ear-
ier MC simulation [22,24]. Consideration of the realistic model
f water changes this picture. Spohr [33] found that e.g. near the
ncharged electrode surface the concentration of Cl− ions is sig-
ificantly reduced, while the concentration of water molecules
t the same distance is large. This is perhaps due to the anion
olvation. The solvation effect cannot be observed for SPM, as
here is no attraction term in the ion–solvent potential. Generally,
ny comparison of our results with those of the realistic model
f ions and solvent molecules is difficult because of the differ-
nt size of the species in the realistic model. Also the hard-core
nteractions are soft. This makes that the density oscillations are
ot as strong as for the SPM model.

Hitherto, we have discussed the influence of the solvent
olecules on the ion distribution. But the reverse effect also

xists. The adsorption of the anions leads to the depletion of
olvent molecules, which is evidenced by the distribution func-
ions of solvent molecules. The removed solvent molecules
oncentrate at some greater distance contributing to the peak
t x/d ≈ 1.55 d. The same behaviour is observed for the charge
ependence of the exclusion volume term, this term describing
he distribution of the uncharged ion of species α at a charged
nterface. The exclusion volume term plays an important role in
he theory of charged systems [36].

In Fig. 2, we present the singlet distribution functions for the
:2 electrolyte. The RPM curves exhibit a different behaviour
han those for 1:1 electrolyte and the predictions of the GCS the-
ry are completely unsatisfactory here [29,44]. However, more
ophisticated theories such as a density functional [16,21,42] or
MPB theory [45] provide a correct description the ion distri-
ution of 1:2 RPM electrolyte interface. As shown in Fig. 2,
he solvent molecules alter the ion distribution in a similar way
s observed for the 1:1 electrolyte. It is worth noting that the

epletion of the solvent molecules from the vicinity of the elec-
rode is weaker than that discussed previously. The explanation
f this phenomenon is as follows. At the same electrode charge
he number of divalent anions is approximately two times lower

S

d
e

ig. 2. Singlet distribution functions of anions, cations and solvent molecules
or a 1:2 electrolyte at σ/C m−2 = 0.1, 0.3 and 0.5. The symbols have the same
eaning as in Fig. 1.

han that of the monovalent ones. Thus, the steric repulsion of
he solvent molecules by the adsorbed divalent anions is weaker
n this case.

Integration of the singlet distribution function gives, accord-
ng to Eq. (4), the mean electrostatic potential. The results for the
:1 and 1:2 electrolytes are shown in Figs. 3 and 4, respectively.
or the 1:1 electrolyte, we observe a monotonic exponential-like
ecay of the mean potential. At large distances, the potential
ends to zero. The curves for SPM lie below the corresponding
PM curves. The separation between the curves increases with

ncreasing electrode charge. The situation is different for the 1:2
lectrolyte. Here, the mean potential curves have a negative min-
mum value at x/d ≈ 0.6, and then the curves gradually tend to
ero at larger x values. Again the presence of solvent molecules
enerally lowers the value of the mean electrostatic potential.
owever, in some region after the minimum the potential of the

PM electrolyte is higher than that of the RPM.

Dependence of the mean electrostatic potential at the contact
istance, ψ(d/2), called the diffuse layer potential, against the
lectrode surface charge is regarded as the equation of state for
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Fig. 3. The profile of mean electrostatic potential for a 1:1 electrolyte at
σ/C m−2 = 0.1, 0.3 and 0.5. The symbols have the same meaning as in Fig. 1.
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ig. 4. The profile of mean electrostatic potential for a 1:2 electrolyte at
/C m−2 = 0.1, 0.3 and 0.5. The symbols have the same meaning as in Fig. 1.
harged inhomogeneous systems. We present this dependence
or the 1:1 and 1:2 electrolytes in Figs. 5 and 6, respectively. For
he 1:1 electrolyte we observe a monotonic increase of the dif-
use layer potential in the whole range of electrode charges. The

ig. 5. Mean electrostatic potential at the contact distance ψ(d/2) as a function
f the surface charge density for a 1:1 electrolyte. The solid circles correspond
o the system with SPM while the open circles to RPM.
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ig. 6. Mean electrostatic potential at the contact distance ψ(d/2) as a function
f the surface charge density for a 1:2 electrolyte. The symbols have the same
eaning as in Fig. 5.

ehaviour of the 1:2 electrolyte is different. The curves resemble
n inverted parabola with a maximum at low, positive electrode
harges. The potential reaches positive values only in the vicinity
f the maximum. At higher electrode charges the potential is neg-
tive. This sign change is characteristic for strong electrostatic
nteractions. That is why it is observed for divalent counter-ions
42,44,45] and presumably for low electrical permittivity sol-
ents [37]. It occurs also at high electrolyte concentrations [38].
he presence of the solvent molecules causes a decrease in the
alue of the diffuse layer potential, which means that they reduce
he thickness of the diffuse layer. The influence of the solvent

olecules on the potential is smaller than that predicted by Tang
t al. [16], presumably because we assumed a lower density of
he solvent molecules.

The electrode potential, ψ(0), is a sum of the potential drop
cross the inner layer (here it is the range between the electrode
urface and the contact distance) and the potential of the diffuse
ayer

(0) = σd/2ε0εr + ψ(d/2). (7)

he first term comprises the information about the thickness of
he inner layer (d/2) and the electric field (σ/ε0εr) occurring in
his region. Its value is usually several times higher than that of
he second term. So the dependence of the electrode potential
gainst the electrode surface charge shown in Figs. 7 and 8 for 1:1
nd 1:2 electrolytes, respectively, is nearly linear with a positive
lope. In both cases, the curve for the SPM electrolyte lies below
he corresponding RPM curve. The curves for the 1:1 electrolyte
ross the σ axis exactly at the origin of the coordination sys-
em while for the 1:2 case—at small negative electrode charges
at σ0/C m−2 ≈ −0.0092 for SPM and −0.0074 for RPM). The
lectrode potential at σ = 0 amounts to 0.0028 V for SPM and
.0032 V for the RPM electrolyte. This phenomenon is due to
he charge asymmetry of the ions [37].
The charge dependence of the integral capacitance, Cint,
alculated from the electrode potential results is shown in
igs. 9 and 10 by graphic characters (solid circles—SPM, open
ircles—RPM). The dashed lines show the integral capacitance
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Fig. 7. Electrostatic potential of the electrode ψ(0) as a function of the surface
charge density for a 1:1 electrolyte. The symbols have the same meaning as in
Fig. 5.

Fig. 8. Electrostatic potential of the electrode ψ(0) as a function of the surface
charge density for a 1:2 electrolyte. The symbols have the same meaning as in
Fig. 5.

Fig. 9. Capacitance of the electrical double layer as a function of the sur-
face charge density for a 1:1 electrolyte (MC integral capacitance: solid
circles—SPM, open circles—RPM; from the interpolation polynomials method:
integral capacitance—dashed lines, differential capacitance—solid lines).
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ig. 10. Capacitance of the electrical double layer as a function of the surface
harge density for a 1:2 electrolyte. Notation as Fig. 9.

alculated from the potential obtained from the interpolation
olynomials method described in the previous section. The
urves are very well fitted to the graphic symbols, which per-
its expecting that the differential capacitance results from the

nterpolation polynomial are also correct.
The presence of the solvent molecules increases the integral

apacitance of both 1:1 and 1:2 electrolytes (see also Ref. [24]).
his confirms our earlier opinion that the insertion of the sol-
ent molecules reduces the thickness of the interfacial region.
he capacitance curves for 1:1 electrolyte (Fig. 9) have a well-
efined maximum at σ/C m−2 ≈ 0.6. Here, the separation of the
PM and RPM curves is the largest. The decrease in the capac-

tance after the maximum is a result of formation of the second
ayer of anions. This increases the thickness of the interfacial
egion. The shape of the capacitance curve for 1:2 electrolyte is
ifferent. The maximum is flat and the decrease in the capac-
tance after the maximum is small. It means that at very high
lectrode charge, varying the charge has only a small influence
n the thickness of the interfacial region. The plot of the integral
apacitance against the electrode charge is discontinuous at σ0
ecause of the zero potential at this charge.

The dependence of the differential capacitance, Cdiff, on the
lectrode charge calculated from the interpolation polynomials
ethod is shown in Figs. 9 and 10 by solid lines for 1:1 and
:2 electrolytes, respectively. We used the third order polyno-
ials for the 1:1 electrolyte and the second order ones for the

:2 electrolyte. As one can expect, for a symmetrical 1:1 elec-
rolyte at σ = 0 the integral and differential capacitances have the
ame value (Fig. 9), but with increasing σ the differential capac-
tance rises faster than the integral one, and reaches a maximum
t lower electrode charges, at σ/C m−2 ≈ 0.35. The SPM curve
oes above the RPM one. A different behaviour is observed only
t very high electrode charges, above 0.8 C/m2. The differential
apacitance curves for a 1:2 electrolyte do not exhibit discon-
inuity observed for the integral capacitance at ψ(0) = 0. They

ave a well formed maximum at σ/C m−2 ≈ 0.35 (RPM) and 0.4
SPM). The SPM curve goes above the RPM one in the whole
ange of the investigated electrode charges. Our Cdiff results for
:1 RPM and SPM as well as for 1:2 RPM electrolyte coincide
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Fig. 11. Differential capacitance of the electrical double layer as a function of
t
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he surface charge density for a 1:1 electrolyte calculated from the MPB theory
solid lines) and from the interpolation polynomials method (dashed lines with
raphic characters: solid circles—SPM, open circles—RPM).

ell with the DFT predictions of Tang et al. [16]. Some dif-
erences are observed for 1:2 SPM case. Tang et al. [16] found
hat the capacitance maximum occurs at higher electrode charges
nd the value at the maximum is approximately two times higher
han our.

We compare in this paper the differential capacity results of
he MPB theory [36] and its extension to SPM [23] with our MC
ata, both calculated for exactly the same values of the physical
arameters. The comparison is presented in Figs. 11 and 12 for
:1 and 1:2 electrolytes, respectively. Solid line shows the MPB
redictions. A comparison with Figs. 9 and 10 shows that the
ange of the electrode surface charge is limited here to 0.4 C/m2

or a 1:1 electrolyte and to 0.2 C/m2 for a 1:2 one. This is due
o some numerical problems arriving when solving the MPB
heory at higher electrode charges. The quantitative agreement

or 1:1 RPM electrolyte is excellent, as noticed earlier e.g. by
arnie and Torrie in their review paper [37]. This agreement
ecomes a little-bit worse when increasing counter-ion charge
r adding solvent molecules. The MPB theory predicts higher

ig. 12. Differential capacitance of the electrical double layer as a function of
he surface charge density for a 1:2 electrolyte calculated from the MPB theory
nd from the interpolation polynomials method. Notation as Fig. 11.
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apacitance at small electrode charges and a maximum located
t lower charges. Nevertheless, the qualitative agreement is still
atisfactory.

. Conclusions

The conclusions following from our results confirm the DFT
redictions of Tang et al. [16]. Insertion of neutral hard spheres,
epresenting solvent molecules, induces the layering of ions and
olvent molecules in the vicinity of the planar electrode surface.
resence of the solvent molecules reduces the thickness of the
lectric double layer, lowers the value of the mean electrostatic
otential and increases the integral and differential capacitance.
e performed simulations at bulk packing fraction values lower

han those considered by Tang et al. [16] and Patra and Ghosh
20]. Because of this, we observed less pronounced damped
scillatory distributions of the ions and the solvent molecules.
lso the changes we observed in the electrostatic potential and

lectrical capacitance were smaller. On the other hand, the use
f lower concentrations of the solvent molecules allowed us to
btain comparatively precise results.

The MC results presented in this paper can be used to asses
sefulness of a particular theory describing properties of the
lectrode|SPM electrolyte interface. We have compared the MC
ifferential capacitance results with the theoretical MPB predic-
ions and found a good qualitative agreement, better for the 1:1
lectrolyte.

The MC simulations of SPM in the canonical ensemble are
ifficult not only because of the high packing fraction but also
ue to the small adjustments to the box length or to the num-
er of ions and solvent molecules needed to obtain the required
ulk concentrations. These difficulties could be solved by appli-
ation of the grand canonical Monte Carlo technique. Lee et al.
46] used this technique to investigate forces between charged
urfaces in an electrolyte with SPM. They were able to perform
imulations even at one order lower bulk electrolyte concen-
ration (0.1 M) and at a similar packing fraction of the solvent
ηsolv = 0.3). Thus, it seems that this technique can be useful
lso in investigation of the electrode|SPM interfaces at low elec-
rolyte concentrations.
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