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A density functional theory is presented for the distribution of charged hard spheres (model for salt) around
an infinite, rigid, and impenetrable charged cylinder (model for DNA or tobacco mosaic virus). The theory
is based on a weighted density approach where the hard-sphere contribution to the one-particle correlation
function is evaluated nonperturbatively using a position dependent effective density, and the ionic part is
obtained through a second-order functional Taylor expansion around a uniform fluid. The theory is in good
agreement with Monte Carlo simulations for the density distribution of monovalent, divalent, and mixed
salts. For axial charge densities corresponding to DNA, the hypernetted chain integral equation theory is not
as accurate as the density functional theory, but both liquid state approaches are superior to the Poisson-
Boltzmann theory. For higher axial charge densities the density functional theory predicts interesting charge
inversion effects that are absent in the nonlinear Poisson-Boltzmann theory.

I. Introduction

The interactions of DNA with its counterions and the
supporting electrolyte are believed to play an important role in
the conformational stability of the polyion and the ligand binding
equilibria in solution,1 as well as the hydrodynamic, transport,
and molecular properties of DNA solutions.2 The interactions
between polyions and small ions are also of significance in many
technologically important systems such as polyacrylates, poly-
methacrylates, polyvinylsulfonates, and polystyrenesulfonate
solutions.3 A detailed knowledge of the spatial distribution of
small ions in the vicinity of a polyelectrolyte is therefore
fundamental to a microscopic understanding of these poly-
electrolyte solutions. In this article we present a density
functional theory for the distribution of small ions around
polyions and compare this theory to computer simulations and
other theoretical approaches.

There have been many studies of the counterion distribution
around DNA.4 It has been popular to model the DNA as
infinitely long, rigid, charged cylinder, although more complex
models have also been investigated.5 Most theoretical studies
are based on two well known theories: the Counterion
Condensation (CC) theory6 and the Poisson-Boltzmann (PB)
theory.7,8

In Manning’s original formulation of the CC theory,9

condensation was introduced as a mathematical device necessary
to prevent the divergence of the phase integral of an infinite
line charge under limiting law conditions. The utility of
theoretical descriptions based on CC theory has been con-
firmed,10 often at salt concentrations well above the expected
range of applicability. Manning’s second theory11 of condensa-
tion was formulated to account for the observed persistence of
counterion binding at moderate salt concentrations at an extent
predicted in the limit of infinite dilution. Counterion condensa-
tion was derived from free energy minimization of a simple
two state model for the counterions. The CC theory has been

extensively applied in several problems including analyses of
competitive binding equilibria.12

The Poisson-Boltzmann equation, in both its linear13 (LPB)
and nonlinear14 (NLPB) form, has been extensively applied to
study the counterion distribution around charged cylinders with15

and without16 added salt. In most cases, the so called cell model
(CPB)17 has been used, where the polyion and electrolyte are
confined within a cylindrical cell and the rest of the solution
enters solely through boundary conditions for the PB equation
at the edge of the cell. The finite size of the cell mimics finite
polyion concentrations, and the single polyion limit is reached
for infinitely large cells. The CPB equation has been used to
calculate the electrostatic free energy,18,19osmotic coefficients,18

and the activity coefficient20 of solutions of DNA and electro-
lyte. An independent way of calculating electrostatic free energy
of polyelectrolyte solutions through LPB, NLPB, and CPB has
also been developed.21 All of the above mentioned studies
neglect correlations between the small ions. The CC and PB
theories are reviewed by Anderson and Record.22

The importance of correlations between small ions on the
counterion distribution has been investigated using functional
expansions, integral equations, and cluster expansions. Fixman23

used functional expansions to study the impact of correlations
on the PB equation. He found that the PB equation was quite
accurate except at high salt conditions or high charge on the
small ions. Other theoretical studies of correlation effects include
those using integral equations,24-28 cluster expansion tech-
niques,29-31 and a modified Poisson-Boltzmann (MPB) ap-
proach.32,33 These studies all agree that the PB equation is
sufficient for salts with monovalent ions at low to moderate
concentrations (less than about 0.1 M) but that correlation effects
are important for divalent or mixed salts and for high concentra-
tions. These theories have been tested against computer
simulations34-39 and are reviewed elsewhere.22,33,36

An attractive approach to the study of nonuniform fluids is
using density functional theory (DFT).40,41In this approach one
starts with a grand free energy as a functional of the density
distribution. A minimization of the functional with respect to* E-mail: yethiraj@chem.wisc.edu.
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variations in the density distribution gives both the density
distributions and the free energy. The advantages of this
approach are that the density distributions can be easily
calculated with the chemical potential of the small ions held
fixed. Density functional theory has been widely applied to the
structure of nonuniform simple liquids,42 the freezing of
liquids,43 the liquid surface,44 and nonuniform ionic45,46 and
dipolar47,48fluids. The successful application of nonperturbative
approaches to DFT has led to the development of weighted
density approximation (WDA) techniques which have been
applied to simple fluids,49,50 ionic,51,52 and dipolar47,48 fluids,
and also for polymers.53

In this paper, we investigate a partially perturbative approach
of DFT to the polyelectrolyte system where the hard sphere
contribution to the excess free energy is calculated through a
nonperturbative WDA and the electrical contribution is calcu-
lated by perturbation with respect to the uniform fluid. We find
that the DFT is in good agreement with simulations for the
density distribution of monovalent, divalent, and mixed salts
around charged cylinders. For monovalent salts, the DFT, PB,
and HNC theories are all quite accurate, but for divalent and
mixed salts the DFT is more accurate than the other approaches.

For high axial charge densities on the cylinder, the DFT
predicts interesting correlation and charge reversal effects. At
low salt concentrations the DFT predicts a significantly greater
accumulation of both counterions and co-ions near the DNA
when compared to the PB approach. At intermediate and high
salt concentrations the DFT predicts significant charge reversal,
where at intermediate and large distances the electrostatic
potential is always positive even though the cylinder charge is
negative. These effects are not seen in the PB theory. Unfor-
tunately we were unable to get converged solutions to the HNC
theory in these cases.

The rest of this paper is organized as follows. The theory is
described in section II, results are presented in section III, and
a few concluding remarks are presented in section IV.

II. Theoretical Formulation

A. Molecular Model. The polyion is modeled as an infinite,
isolated, rigid cylinder bearing a uniform axial charge density
given by

wheree is the electron charge,b is the length per electronic
unit of charge (inverse of linear charge density),â0 ) (kBT)-1,
kB is Boltzmann’s constant,T is the temperature, andε is the
dielectric constant of the pure solvent, modeled as a uniform
dielectric continuum withε ) 78.358 (characterizing water).
Throughout this work we setT ) 298.15 K,ê ) 4.2, andb )
1.7 Å, which are the accepted values for double-stranded DNA.22

The small ions (withR denoting the species) are modeled using
the restricted primitive model (RPM), i.e., they are charged hard
spheres of equal diameter,dR ) 4 Å, and chargeqR. The DNA
is impenetrable to the ions with a distance of closest approach
of 10 Å, i.e., the DNA radius isR ) 8 Å.

B. Density Functional Theory. In density functional theory
one starts with an expression for the grand free energy,Ω, as
a functional of the singlet density profiles,FR(r ), of each of the
species,R. At equilibrium the grand free energy is minimal with
respect to variations in the density profiles, i.e.,

for eachR, and this condition is used to determine the density
profiles and the free energy.

The grand potential functional is related to the Helmholtz
free energy functional through a Legendre transform

whereuR(r ) is the external field (due to the DNA) acting on
the atoms of speciesR, µR is the chemical potential of theRth
component, and{FR} is the set of all density profiles.

The functionalF[{FR}] is generally expressed as the sum of
an ideal gas and an excess part. The ideal gas part is known
exactly, and approximations must be developed for the excess
part. With this decomposition,F[{FR}] may be written as

whereFex is the excess free energy functional andλR is the de
Broglie wavelength of theRth component. The main ap-
proximation in any density functional theory is the choice of
Fex. In developing such approximations, it is useful to recall
the fact thatFex defines the direct correlation functions of
different order through functional derivatives, the most important
ones being the first- and second-order correlation functions
defined, respectively, as

and

Without loss of generality, we decomposeFex into three terms:

where the first term on the right hand side is the hard sphere
contribution, the second term is the direct Coulomb contribution
(in the van der Waals type approximation), and the third term
is the residual electrostatic contribution. Equation 7 is formally
exact, but expressions for the excess free energy functionals
are not known. In this work we use the weighted density
approximation forFex

hs and use a perturbative scheme forFex
el .

Following Patra and Ghosh46 we develop approximations for
the direct correlation functions rather than the free energy
functional itself. Note that the NLPB equation is recovered if
we setFex

hs ) Fex
el ) 0. In this limit, eq 7 therefore provides a

simple expression for the free energy in the NLPB approxima-
tion, which may be compared to the development of Sharp and
Honig.21

Before stating our approximations for the excess free energy
functional, some manipulations are instructive. A formal
minimization of the grand free energy gives

ê )
â0e

2

εb
(1)

δΩ
δFR(r )

) 0 (2)

Ω[{FR}] ) F[{FR}] + ∑
R
∫dr [uR(r ) - µR]FR(r ) (3)

F[{FR}] ) kBT∑
R
∫drFR(r ){ln[FR(r )λR

3] - 1} + Fex[{FR}]

(4)

cR
(1) (r 1) ) -â0

δFex[{FR}]

δFR(r 1)
(5)

cRâ
(2) (r 1,r 2) ) -â0

δ2Fex[{FR}]

δFR(r 1)δFâ(r 2)
)

δcR
(1) (r 1)

δFâ(r 2)
(6)

Fex[{FR}] ) Fex
hs[{FR}] +

1

2
∫∫dr 1dr 2∑

Râ

qRqâ

FR(r 1)Fâ(r 2)

|r 1 - r 2|
+

Fex
el [{FR}] (7)
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If one considers the cylindrical symmetry of the present system,
the density variations occur only in radial direction (x), and one
can simplify the above equation to:

whereuR
hs(x) is the hard-sphere potential andψ(x) is the mean

electrostatic potential due to the surface charge and the ionic
distribution. The quantitiescR

(1)hs(x;[{FR}]) and cR
(1)el(x;[{FR}])

denote, respectively, the hard-sphere and electrical-hard-sphere
coupling contributions to the first order correlation function and
are defined through expressions similar to equation 5.

The electrostatic potentialψ(x) is obtained from a solution
of the corresponding Poisson-Boltzmann equation in cylindrical
geometry, which gives

whereσ is the surface charge density defined as

Using the electroneutrality condition, given by

equation (10) can be simplified to

The free energy functional is completely specified by
expressions forcR

(1)hs(x;[{FR}]) and cR
(1)el(x;[{FR}]) for a non-

uniform density distribution. In fact we only need expressions
for the difference between these correlation functions and the
corresponding correlation functions for a bulk fluid, as can be
seen if we rewrite eq 9 by evaluating the chemical potential,
µR using the bulk phase densityFR

0 and substituting this result
into eq 9. This gives

which determines the density distribution of small ions in the
regionx > (R + dR/2). In the absence of explicit expressions
for cR

(1)hs(x;[{FR}]) and cR
(1)el(x;[{FR}]), we propose an ap-

proximation scheme based on the knowledge of these correlation
functions for a uniform fluid. Our approach is similar to that of
Patra and Ghosh.46

In the present work, because the hard-sphere diameters of
anions and cations are equal, the procedure used for the
calculation of cR

(1)hs(x;[{FR}]) is identical to that for a one-
component hard-sphere liquid, and we evaluate this function

using weighted density approximation (WDA) of Denton and
Ashcroft.54 In this approach thecR

(1)hs(x;[{FR}]) for a nonuni-
form system is evaluated using the expression for a uniform
system at a weighted density, i.e.,

where thec̃ denotes the correlation function of a uniform fluid,
the weighted density is defined by

andwhs(x, t) is the weighting function, discussed below. Note
that because the species have identical hard-sphere diameters,
cR

(1)hs(x;[{FR}]) is a function only of the total density of sites.
The weighting function is determined by requiring that the

first functional derivative of eq 15 with respect to the densities
FR(x) or Fâ(x) should yield the exact appropriate two-particle
correlation functions in the uniform limit. This gives

where the interparticle distancescan be expressed in cylindrical
coordinates as

and the integration limitsz0 andφ0 are given by

In the above, we have used the mean spherical approximation
(or Percus-Yevick) result, i.e.,c̃(2)hs(s) ) 0 for s > dR.

We obtain the electrical contribution to the one-particle
correlation function in eq 14 in a partially perturbative manner,
i.e., by evaluating

where

The theory is now completely specified by approximations
for the pair direct correlation functions of the uniform fluid,
which are readily available55 in the mean spherical approxima-
tion, and explicit expressions for which are given below

valid for s < dR and zero otherwise. In the above expressions

cR
(1)hs(x;[{FR}]) ) c̃(1)hs(Fj(x)) (15)

Fj(x) ) ∫dt twhs(x, t; Fj(x))[∑
R

FR(t)] (16)

whs(x, t; Fj(x)) )
∫-z0

z0 ∫0

φ0dz dφc̃(2)hs(s;Fj(x))

∂c̃(1)hs/∂F|Fj(x)

(17)

s2 ) z2 + x2 + t2 - 2xt cosφ (18)

z0 ) (dR
2 - x2 - t2 + 2xt cosφ)1/2 (19)

φ0 ) cos-1(x2 + t2 - dR
2

2xt ) (20)

cR
(1)el(x,[{FR}]) - cR

(1)el([{FR
0}]) )

∑
â
∫dt t c̃Râ

(2)el(x,t;[{FR
0}])(Fâ(t) - Fâ

0) (21)

c̃Râ
(2)el(x,t;[{FR

0}]) ) ∫-z0

z0 ∫0

φ0dz dφ c̃Râ
(2)el(s;[{FR

0}]) (22)

cRâ
(2)hs(s; F0) ) a1 + a2s + a3s

3 (23)

cRâ
(2)el(s; F0) ) -(â0qRqâ

ε )[2B - B2s - 1
s] (24)

µR ) uR(r ) +
δF[{FR}]

δFR(r )
(8)

µR ) uR
hs(x) + qRψ(x) + 1

â0
{ln FR(x)λR

3 - cR
(1)hs(x;[{FR}]) -

cR
(1)el(x;[{FR}])} (9)

ψ(x) ) -
4π

ε
[Rσ ln x + ln x∫R

x
dt t∑

R
qRFR(t) +

∫x

∞
dt t∑

R
qRFR(t)] (10)

σ ) e
2πRb

(11)

∫R

∞
dt t∑

R
qRFR(t) ) -Rσ (12)

ψ(x) )
4π

ε
∫x

∞
dt t ln(xt)∑R

qRFR(t) (13)

FR(x) ) FR
0 exp{-â0qRψ(x) + cR
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C. Hypernetted Chain Integral Equation Theory. In
cylindrical geometry, the Ornstein-Zernike (OZ) equation56

takes the form (in Fourier space)57

where the overbars indicate two-dimensional Fourier transforms
of circularly symmetric functions (Hankel transforms of order
zero), carets indicate three-dimensional Fourier transforms of
spherically symmetric functions, and the subscriptp denotes
polyion. We close eq 30 with the hypernetted chain (HNC)
closure approximation. The density profiles of the ions are
obtained fromFR(r) ) FR

0(1 + hpR(r)) where FR
0 is the bulk

density of speciesR. The correlation functions,ĥâR(k), for the
pure salt case may be obtained by first solving the OZ equation
for the pure salt case, i.e.,

with the HNC closure approximation. These integral equations
are solved by standard Picard iteration techniques using the fast
Fourier transforms, with the long-ranged part of the correlation
functions evaluated analytically as described elsewhere.28,58

III. Results and Discussion

We first discuss ion distributions for pure 1:1 (NaCl), pure
2:1 (MgCl2), and mixed 1:2:1 (NaCl/MgCl2) salts at concentra-
tions of 16 mM, 72 mM, and 239 mM, in each case. We present
results for parameters that are identical to those employed in
recent computer simulations59 in order to test predictions of the
various theories. These parameter values are given byT )
298.15 K, ε ) 78.358,ê ) 4.2, R ) 8 Å, and dR ) 4 Å.
Subsequently, we investigate the effect of linear charge density
for 2:1 and 2:2 salts at conditions where simulation results are
not available.

Figure 1a-d depicts concentration profiles of co-ions and
counterions as a function of radial distance from the DNA for
various total salt concentrations and NaCl mole fractions. In
all cases there is a significant accumulation of counterions near
the DNA (note that the ordinates use a logarithmic scale) which
results in a local concentration in the molar range which is
several orders of magnitude higher than the bulk salt concentra-

Figure 1. Concentration profiles for an NaCl/MgCl2 salt around (negatively charged) DNA for: (a) pure 16 mM NaCl, (b) pure 16 mM MgCl2,
(c) 16 mM NaCl with MgCl2 added so that the ratio of Mg2+ to Na+ is 1:4, and (d) same as (c) but for 72 mM NaCl. The curves with a higher value
near the DNA (compared to in the bulk) represent counterion concentration profiles and the other curves represent co-ion concentration profiles.
Circles are simulation results59 and lines are predictions of the DFT (s), PB (- - - -), and HNC (- - - - -) theories.

η )
π

6
F0d

3 F0 ) ∑
R

FR
0 (25)

a1 )
2a3

η
) -

(1 + 2η)2

(1 - η)4
(26)

a2 ) 6η
(1 + η

2)
(1 - η)4

(27)

B )
m + 1 - (1 + 2m)1/2

m
(28)

m )
4πâ0

ε
∑

R
qR

2 FR (29)

hhpR(k) ) cjpR(k) + ∑
γ

Fγ
0 cjpγ(k)ĥγR(k) (30)
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γ

Fγ
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tion. This is accompanied by a depletion of co-ions near the
DNA by a similar amount.

In the case of pure NaCl (Figure 1a) the Na+ concentration
profiles predicted by all of the theories (DFT, HNC, PB) are
almost identical to each other and agree quite well with the
MC results. Differences between theoretical predictions are
observed in the Cl- concentration profiles, where the DFT and
PB approaches are quite accurate when compared to the
simulations but the value of the concentration near the DNA
obtained from the HNC theory is higher in magnitude. Even
though the concentration of co-ions near the DNA is rather small
(∼ 0.1 mM), this difference could be significant in biological
experiments where the concentrations of supporting electrolytes
are also of this order.

There is more structure in the concentration profiles of the
2:1 salt (MgCl2) when compared to similar profiles of NaCl. In
Figure 1b, the small ion distributions decrease rapidly to the
bulk value within a distance of about 8d. The Cl- concentration
near the DNA is about two orders of magnitude higher than in
the NaCl case, and the profile is relatively flat for distances
greater than about 4d. These features may be attributed to the
increase of effective screening of the cylindrical polyion charge
by the presence of divalent (as opposed to monovalent)
counterions. In addition there is a cusp in the concentration
profiles at distances ofr ) R + 3dR/2 which we attribute to
layering due to hard-sphere exclusions. The HNC and DFT
approaches reproduce all of the qualitative features observed
in the simulations, but the PB theory does not. For example the
PB theory misses the hard-sphere-induced structure and the
crossing of the Mg2+ and Cl- concentration profiles. In fact it
is not in good agreement with the simulations even for the
counterion concentration profile. The HNC theory is more
accurate than the PB, although it significantly overestimates the
value of the Cl- concentration near the DNA. The DFT is clearly
the most accurate of the theories tested, and is in good agreement
with the simulations at all distances.

In mixed 1:2:1 (NaCl/MgCl2) salts, the introduction of a small
amount of divalent (Mg2+) counterions leads to the reduction
of the concentration of monovalent counterions (Na+) around
the DNA, when compared to the pure NaCl case. This is seen
in Figures 1c and 1d which depict the concentration profiles
for a mixed NaCl/MgCl2 salt with 16 and 72 mM NaCl,
respectively, and added MgCl2 so that the ratio of Na+ to Mg2+

concentrations is 4. The exclusion of co-ions (Cl-) around DNA
in the presence of divalent counterion (Mg2+) is much less than
in the case of pure NaCl salt. Both of these effects may be
attributed to the accumulation of Mg2+ counterions near the
DNA, which leads to exclusion of Na+ counterions and a
reduction of the effective charge of the DNA felt by the co-
ions. The relative performance of the DFT, HNC, and PB
theories is intermediate to that observed in the limiting cases
of pure 1:1 and 2:1 salts, and although the DFT is more accurate
than the other two approaches, quantitative differences are
smaller than in the pure MgCl2 case. Interestingly, as the overall
concentration is increased, the PB theory becomes more
competitive with the DFT. This may be because the the small
ions screen the electrostatic interactions with the DNA, thus
making the mean field approximations in the PB more appropri-
ate.

Figure 2 compares the mean electrostatic potential from the
PB and DFT theories for salt concentrations ranging from 16
to 239 mM and various NaCl mole fractions. (Note that we
plot -â0ψ(x) on the ordinate, and therefore a large positive value
in Figure 2 corresponds to an attractive potential for a positive

ion.) With increasing concentration or Mg2+ fraction, the mean
electrostatic potential becomes less negative because of the
increased strength of electrostatic interactions between the
counterions and the DNA, i.e., the counterions screen the DNA
charge and thus reduce the magnitude of the net electrostatic
potential at larger distances. The PB theory always predicts an
electrostatic potential of greater magnitude than the DFT,
although the qualitative behavior in the two approaches is
similar.

An interesting phenomenon in DNA salt systems is the
possibility of “charge inversion” where the electrostatic potential
becomes positive at some distance even though the polyion is
negatively charged. The increased electrostatic attraction be-
tween the counterions and the polyion causes a reduction of
effective charge of the polyion (DNA), and at high enough
concentrations with divalent salts this effective charge some-
times changes sign. This is seen in Figure 3 which depicts DFT
and PB predictions for the mean electrostatic potential in 2:1
and 2:2 salts for a concentration of 239 mM. At distances

Figure 2. Mean (dimensionless) electrostatic potential around the DNA
for 16 mM, 72 mM, and 239 mM NaCl salt with added MgCl2 and
various ratios of Mg2+ to Na+. Lines are predictions of the DFT (s)
and PB (- - - -) theories. Note that the curves for the two lower
concentrations have been shifted in order to fit all three on the same
plot.

Figure 3. Mean electrostatic potential for pure 2:1 and 2:2 salts around
DNA for a bulk concentration of 239 mM from DFT (s) and PB (- - -)
theories. The inset shows an expanded view to emphasize the “charge
reversal” for the 2:1 salt predicted by the DFT but not by the PB.
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between 3< x/d < 6.5 the DFT predicts a positive electrostatic
potential, i.e., charge inversion, for the 2:1 but not the 2:2 salt
at this concentration. (At higher concentrations the DFT predicts
charge inversions for 2:2 salts as well.) The charge inversion is
obtained at lower concentrations for the 2:1 salt than in the 2:2
salt because in the former case the counterions have a smaller
attraction to the co-ions, resulting in a stronger effective
counterion-polyion interaction. The PB theory does not predict
any charge inversion at all. Such charge inversion effects are
predicted by the modified PB theory32,33 in some cases.

There is considerably more structure in the pair correlation
function between polyion and small ions for high values of the
axial charge density,ê. The results presented so far have been
for ê ) 4.2 which corresponds roughly to double stranded DNA.
There are other systems, such as rodlike tobacco mosaic virus
(TMV) colloidal particles, where the axial charge density may
be higher. TMV is 300 nm long and is believed to have more
than 4000 charged groups on its surface, and for this systemê
≈ 10. In Figures 4-6 we compare the DFT and PB approaches
for ê ) 4.2 and 10.

Figure 4a-c depicts DFT predictions for 2:1 and 2:2 salts,
for ê ) 4.2 and 10, and for concentrations of 16 mM, 239 mM,
and 478 mM, respectively. At the lowest concentration (Figure
4a) the DFT predicts a significant increase in the accumulation
of both counterions and co-ions near the charged cylinder. The
shape of the pair correlation functions is very different forê )
10 when compared toê ) 4.2. For higher concentrations
(Figures 4b and 4c) the DFT predicts strong inversion effects,
i.e., the counterion-polyiong(x) goes through a deep minimum
at x ≈ 3.5d with a corresponding maximum in the coion-
polyiong(x). At larger distances both correlation functions decay

monotonically to 1. The strength of the inversion effect is
stronger as the concentration is increased. Although the qualita-
tive behavior of the 2:1 and 2:2 salts is similar, in all cases the
correlation effects are stronger for the 2:2 salts.

Figure 5 depicts DFT predictions for the mean electrostatic
potential for 2:1 salts for the same concentrations as in Figure
4. In all cases, increasingê causes theψ(x) to increase
significantly at short distances, as expected. In some cases

Figure 4. Effect of polyion linear charge density on the polyion small ion pair correlation function. Density functional theory predictions for 2:1
(s) and 2:2 (- - -) salts for concentrations of (a) 16 mM, (b) 239 mM, and (c) 478 mM for two values of the ratio of the Bjerrum length to the
average separation between adjacent charges,ê. Curves withgpR(x) > 1 for x f 2.5d represent to counterion-polyion pair correlation functions and
other curves represent coion-polyion pair correlation functions.

Figure 5. Mean electrostatic potential from the DFT for 2:1 salts for
various concentrations (as marked) and forê ) 4.2 (s) and 10 (- - -).
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ψ(x) becomes strongly positive, corresponding to significant
charge inversion due to correlation effects.

The differences between the DFT and PB theories are
significant at high axial charge densities. The PB theory predicts
electrostatic potentials and pair correlation functions forê )
10 that are similar to those forê ) 4.2 and predicts no charge
inversion effects at all. Figure 6 depicts the pair correlation
functions from the PB theory for 2:1 and 2:2 salts for a
concentration of 478 mM to show that the PB predictions are
qualitatively different from those of the DFT (see Figure 4c).

IV. Concluding Remarks

We present a density functional approach for the distributions
of small ions around a cylindrical polyion. The hard-sphere
contribution to the free energy is obtained via a weighted density
approximation, and the electrical contribution is calculated
through a perturbation with respect to the uniform fluid. The
theory is in good agreement with computer simulations for
monovalent, divalent, and mixed salts (all with monovalent co-
ions). We also compare the theory to predictions of the nonlinear
Poisson-Boltzmann approach (PB) and the hypernetted chain
(HNC) integral equation theory.

All of the theories are in good agreement with the computer
simulation data for axial charge densities corresponding to DNA
(ê ) 4.2) and pure monovalent salts or high overall salt
concentrations. For divalent salts, e.g., MgCl2, the DFT is more
quantitatively accurate than the other approaches, especially at
low salt concentrations. The qualitative behavior of all theories
is similar; however, and all of them provide acceptable
predictions of the concentration profiles.

The predictions of the density functional theory are qualita-
tively different from those of the PB approach for divalent salts
(either 2:1 or 2:2) at high concentrations or high polyion charge
densities. In this case the DFT predicts charge inversion effects
that may be explained in terms of liquid state correlations that
are, of course, completely absent from the PB theory. Although
these effects are not important in DNA solutions, they could
play a significant role in the structure of salt in colloidal systems
such as tobacco mosaic virus (TMV) solutions.

The extension of this approach to study the distribution of
counterions around realistic double helix DNA is, in principle,
straightforward. The basic formulation of the theory will be
similar except that one cannot use cylindrical coordinates to
simplify the integrals. Similarly, the theory can also be used to
investigate two-body and three-body interactions in DNA
solutions. Extensions of this nature will be interesting applica-

tions and should provide considerable insight into the structure
of DNA and TMV solutions.

In summary we have presented a theory that is quantitatively
accurate when compared to computer simulations, as easy to
implement as the PB approach, and provides a consistent route
to the free energy of the system. The theory may be used to
calculate, from first principles, the free energy of the ion-
polyion system and thus the colligative properties like the
activity coefficients and the osmotic coefficients, which are used
to characterize the nonideality of polyelectrolyte solutions in
presence of salt. This could be important in the study the effect
of salt on the nonspecific binding of proteins to DNA.
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