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Binary hard-sphere fluids near a hard wall
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By using the Rosenfeld density functional, we determine the number density profiles of both components of
binary hard-sphere fluids close to a planar hard wall as well as the corresponding excess coverage and surface
tension. The comparison with published simulation data demonstrates that the Rosenfeld functional, both its
original version and sophistications thereof, is superior to previous approaches, and exhibits the same excellent
accuracy as known from studies of the corresponding one-component system.

PACS numbegps): 61.20—p, 68.45-v

I. INTRODUCTION fluids. This opens the door to investigate rich new physical
phenomena as particles of different size compete for interfa-
A variety of experimental techniques has emerged whicttial positiong 6]. Even for the simplest multicomponent sys-
allow one to resolve the inhomogeneous density distributiontgem, the binary hard-sphere fluid, there are relatively few
of fluids at interfaces, a subject which enjoys broad scientifi¢heoretical studies which determine their structural properties
interest. In this context the ability to manufacture highly near a planar hard wall, using Monte Carlo simulations
monodisperse colloidal suspensions has turned out to be pdr?—10], integral equation theorig®], and various kinds of
ticularly useful, as these provide the possibility to tune thedensity functional theory8-15|, as well as in spherical
effective interactions in these systems such that, e.g., theores[16]. Here we analyze this problem by using the cor-
colloidal particles closely resemble hard-sphere fllitfs  responding Rosenfeld functional both in its original version
Since many of these experimental probes are indirect scatteld] as well as for sophistications therddf7,18. By compar-
ing techniques, there is a substantial demand to guide theing these results with published simulation dgta], we as-
theoretically. Computer simulations and integral theofds  sess to what extent the quantitative reliability of the Rosen-
are important tools of statistical physics to address these ideld functional for the one-component hard-sphere fluid
sues. Density functional theofldFT) [3] has emerged as an remains valid for the corresponding binary system. Moreover
additional approach which is capable of capturing interfacialve determine concentration profiles, the excess coverage,
phase transitions and sweeping the thermodynamic and integnd the surface tension of the binary hard-sphere fluids at a
action parameter space of the system under consideratiohard wall. We describe the DFT in Sec. Il, and report our
The potential to combine these two possibilities poses a maesults in Sec. lll, followed by a summary and our conclu-
jor challenge for other techniques. If DFT also acquires thesions in Sec. IV. The Appendix contains important technical
same accuracy as the other two techniques, it could gain @details.
clear competitive edge.
Although there is no recipe for systematically construct- Il. DENSITY FUNCTIONAL THEORY

ing a reliable DFT in spatial dimensiomks=2, the constant
flux of developments over many years has led to a rather The Rosenfeld functional for the exce&sver the ideal
high level of sophistication. Among these theories for hard-gas Helmholtz free energy of a mixture of hard spheres with
sphere fluids, which act as paradigmatic systems and stepumber density profilefp;(r)}, i=1,... N, can be written
ping stones for more complicated models, the Rosenfel@s[4]
functional has emerged as a particular powerful theory which
resorts to fundamental geometrical measures of the indi-
vidual spherd4]. For the standard test case of the highly
inhomogeneous density distribution of a one-component
hard-sphere fluid near a planar hard wall, the predictions ofvhich is a functional of the four scalar weighted densities
the Rosenfeld functional are very close to those of numericah,(r) for the N-component mixture
simulations serving as benchmarks. For this case the mean

pruling1= | & adn.mp. &

square deviationgsee, e.g., Eq22)] of Rosenfeld DFT re- N .

sults from the simulation data from Rdb] are at most 1 na(f)=_zl &Erip(rHel(r=r’), «=0,....3,

% 10 2 at high packing fractions, and otherwise less than 3 = )
X104

Another virtue of the Rosenfeld functional is that is easilyWith 4N scalar weight functionse!® and two three-
|

lends itself to generalization to multicomponent hard—spher%Omponent vector weighted densitieS(r),

N
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with 2N vector weight functionss{®). The weight functions not describe the hard-sphere fluid as accurately as the origi-
containonly information about the fundamental geometrical nal Rosenfeld functional. We note that the difference be-
measures of a single sphere of spetjemmely, its volume, tweend; of the original Rosenfeld functional and both
surface area, and radi®, i.e., in particular they are inde- with =3 and®s,, is of the order ofO(&%). Therefore, we
pendent of the density profiles. The explicit expressions foexpect the largest differences between the various versions of
the weight functions are given in the Appendi®({n,}) the Rosenfeld DFT to occur close to the wall wheras
=®d,+d,+ D4 is a function of the weighted densities, with largest.
[4] Both the original Rosenfeld functional and the modifica-
tions corresponding to Eq$7) and (8), i.e., the functionals
®;=—nglog(1—-nj), (4)  that share common bulk properties, are very successful and
accurate for the one-component fluid. But far less is known
®) for binary mixtures. In this latter respect, very good agree-
1-n; ment between the density profiles obtained from the Rosen-
feld functional and those obtained by simulatipfi] was
and found in Ref.[20]. In a recent study10], however, signifi-
cant deviations between the Rosenfeld DFT results and
%ng—nznz- n, n§ 5 simulations were found. In this latter study a density func-
3= Sm(1—n)? = 24m(1—n )2(1_35 ), (6)  tional due to Kierlik and Rosinberg was appliggiL], which
s s has proven in general terms to be equivalent to the original
whereg&(r)=|n,(r)|/n,(r), which is the ratio of the modulus Rosenfeld functional for any type of ;patial inhomogeneity
of the vector weighted density,(r) and the scalar weighted [_22]. In ord«_ar_ to demon_strate the equalenpe of these func-
densityn,(r). We note that(r)=0 in the bulk, and is small tionals explicitly for a binary hard-spherg mlxtu_re close to a
for small inhomogeneities. While this original Rosenfeld 1ard wall, we have performed calculations with both ver-
functional very successfully describes the fluid phase of £0NS- The successful comparison of the corresponding re-
one-component hard-sphere systf], it fails to predict sults prov_ldes vyglcome reassurance in the general argument
the freezing transition. This failure was studied in detail in[22] @nd, in addition, serves as a valuable test of the reliabil-
Refs.[17] and[18]. For the freezing transition it turns out 'ty Of our numerical procedures. _ _
that the zero-dimensional limit of the functional, in which a  Here we are interested in the equilibrium density profiles
small cavity can accommodate only a single sphere, plays gs.0(r) andpy, o(r) of both the small and big components of
key role. In a crystal the thermal vibrations around a lattice?!n@ry hard-sphere mixtures close to a planar hard wall. To
site can be interpreted as the motions in such a cavity formel{lis €nd we freely minimize the functional
by the neighboring spheres. Only if the statistical mechanics _
in such a cavity is described properly by the density func- OLps(1),po(N)]=FLps()po(1)]
tional can the freezing transition be predicted correctly. This

NiN—Ng-Ny
Gy=—"—F"—

is not the case for the original Rosenfeld functional. This +i=§;b a3 i (1) (Veedr') = mi),
problem can be fixed by slightly modifying the contribution '
®, [see Eq(6)], such that the freezing transition is predicted (10

by the modified functional while, at the same time, for lower
packing fractions the accuracy of the original functional in

describing the inhomogeneous fluid is kept. The following FLpo(1),pp(D) 1= Fial p(1),p6(N 1+ For p(1),p6(0)],
modifications have been suggestéd,18: 1

which is written in terms of the functional

3

©n - n; 1- g2y @ with the exactly known ideal gas contributicfyy ,
9 24m(1—n )2( €%
— 13
BFa= 2 J &’ pi (1IN Fpi(r))-11, (12
with g=2, and i=s,b

n3 with \; the thermal wavelength of specied-or the equilib-
q)s,int:—zz(l_ 3824288, 8 rium density profileg; o(r), i =s,b, the functionalsF and{)
24m(1—n3) reduce to the Helmholtz free energy and the grand canonical

' . . . , ) potential of the mixture, respectivelyis and w, are the
The first suggestionpsq, is an antisymmetrized version of cpemical potentials of the two species. The external poten-

@3 in Eq. (6), and the secondbg;, interpolates between iais entering into Eq(10) model the planar hard wall at
®; of Eq. (6) and®; o in the exact zero-dimensional limit _ .

3
ns; : ®, z<R
Dyp=—T 197 9 Vi (2)= ' 1
3 24m(1—ng)? ex(?) 0 otherwise. (13
While the modified Rosenfeld function witl; on success- i=s,b, with zthe normal distance from the wall. The exter-

fully predicts the freezing transition of the one-componentnal potentials prevent the centers of spheres of spedies
system, it leads to modified bulk properties, and hence carapproach the wall, located at=0, closer tharR; in which
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case they are in contact. In the absence of spontaneous syimy a free minimization of the functional given in E¢L0)
metry breaking due to freezing, which we do not considemusing a conjugate gradient algorithm. The numerical accu-

here, the profilep; o(z), i=s,b, depend only on the normal

racy of the resulting density profiles was affirmed by the fact

coordinatez which simplifies the minimization of the func- that the functional derivativéQ/ 5p;(r), i=s,b, was always

tional.

Far away from the wall, i.e., in the bulk system, the
vector-weighted densities; and n, and thus¢ vanish. In
this limit both the original Rosenfeld functional and the two
modifications corresponding to Eq¥) and(8) reduce to the
same bulk expression given by
n3
247(1—n3)?

nin,

Gpyi=—NpIn(1—nz)+ i-n,

(14

and hence they share the same bulk properties. We want to

emphasize that as a consequence of this featilingersions

of the Rosenfeld functional predict density profiles which
show thesameasymptotic decay toward the bulk vall2S].
The weighted densities in the bulk limit are obtained by in-
serting the bulk densitiep; py:=p; o(z=) into Eq. (2),
yielding

4

n3=32 Rispi,bmkz_z 7i (15
i=s,b i=s,b
np=47 > Ripipuik: (16)
nl:_Z Ripi bulks (17)
i=s,b
and
No= X Pibulk- (18
i=s,b
The equation of state following from E{L4),
No nin, 1 n3
Bp , (19

= -|- +_—
1=n3  (1-ny)? 127 (1-ny)3

found to be zero within machine precision. We use the origi-

nal Rosenfeld functional as well as the modified versions
corresponding to Eqs8) and (7) with g=2 and 3. The
systems considered here have two different size ratios,
Ry :Rs=5:3 andR, :Rs=3:1, andvarious packing fractions

7 and 7, for small and big spherd27], respectively. The
resulting density profiles are compared with simulation data
published in Ref[10]. In addition we calculate the local
concentrations®4(z) and ®,(z) of the small and large
spheres, respectively, defined as

pi(2)

P oD

i=s,b. (21

We find excellent agreement between the density profiles
of both components obtained by density functional theory
and the simulation data for all systems under consideration.
This holds for all versions of the Rosenfeld functional ana-
lyzed here. While at low total packing fractions= s+ 7,
the density functional theory results for all versions of the
Rosenfeld functional are practically equivalent, small devia-
tions among the results from different versions of the func-
tional appear at larger values gf i.e., for =0.3. We quan-
tify the degree of agreement between our DFT density
profiles pi(z) and the simulation data from RdfL0], avail-
able as data point&z; ,p;'"(zj)), j=1...N;'" andi=s,b,
by determining the mean square deviatidfs i =s,b, de-
fined as

) 2

We find thatE andE,, are at most X104 and 6x10 3,
respectively, for all versions of the Rosenfeld functional.
However, since the statistical errors in the simulation data
are comparable with or even larger than the differences be-
tween the density profiles obtained by different versions of

1 p_sim
Ei = T I

(z)) = pi(Z)
Pi bulk

(22

|

is the Percus-Yevick compressibility equation of state of thehe Rosenfeld DFT, this approach does not enable us to de-
mixture[24]. This expression is related to the contact valuegermine which of the various versions is the most accurate

of the density profiles according to the sum r[@&)]

>

=s,

Bp:i bPi(Z:Ri+O)- (20

one.
To illustrate the agreement between the DFT and the
simulation data, in Fig. 1 we show the density profiles of the
small spherega) and the big spherdd) for »,=0.0607 and
7,=0.3105 and a size ratiR, :Rs=5:3. Thesymbols (1)

This sum rule is respected by the Rosenfeld functional as byenote the simulation data from Ré10] and the solid line

any weighted-density DF26] and therefore provides a test

of the numerical accuracy of the calculations. In the follow-
m

ing we suppress the subscript 0, which indicates equilibriu
profiles as opposed to variational functions.

Ill. STRUCTURAL AND THERMODYNAMIC

PROPERTIES
A. Density profiles

is obtained by the original Rosenfeld functional. The dotted
lines denote coarse grained densitﬁé), i=s,b and j

fzi(ﬁl)dz pi(2)
2N Pibulk’

with Z9=0 and z(~? the position of thejth minimum

=0,1, defined as

_(i):;
Zi(1+l)_zi(1)

Pi (23)

The number density profiles of both components of binaryf28]. All details of the density profiles found in the simula-
hard-sphere mixtures close to a planar hard wall are obtainetibns are reproduced very accurately by the density func-
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. FIG. 2. The concentration profilegs(z) and®(z) of the small
§ o Monte Carlo gnd_big spheres, respe_ctively, corresponding t_o the d?nsity profiles
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’% 41 : — original RF in Flg. 1. For geometric reasong(z R,). 0 with Rg=305 and
N ! Rp= g0y, . Therefore,ds and @, are defined only foz=o4 and
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FIG. 1. The density profiles of the small sphetasand the big
spheregb) of a binary hard-sphere mixture with size rafg: R,
=5:3, andpacking fractionsp,=0.0607 andy,=0.3105 close to a
planar hard walldashed ling o,=2R; is the diameter of the small
spheres. The solid lines correspond to results obtained by a free
minimization of the original Rosenfeld functional, and the symbols
(O) denote simulation data from RdfL0]. The full dots indicate
the values at contact. The positions of the extremaf) and
pp(2) are very close to each other if they are measured from the
corresponding position of contact, i.z=Rs=30, and z=R,
:(%os, respectively. The dotted lines correspond to the coarse z/ 0o
grained density profiles defined in E@®3). They indicate that in
spite of the high contact values the wall actually leads to a slight net 1.4
depletion for both species in the first layer.

ps(z)/ps,bulk

26 28 3 32 34 36 38 4 42 44

o Monte Carlo (b)

— orginal RF
tional theory. The oscillatory behavior, i.e., the amplitudes, P int RF
phases, and decay of the oscillations as obtained by DFT, --- g=2 RF

agree excellently with the simulations. The total packing
fraction of the systeny= 75+ 1,=0.3712 is already rather
high, giving rise to the pronounced structure of the density
profiles. The corresponding concentration profidegz) and
®,(2) of the small and big spheres, respectively, are shown ettt
in Fig. 2. These concentration profiles demonstrate that, apart 26 28 3 32 34 36 38 4 42 44
from the purely geometrical constraints, near the wall the big
particles are enriched and the small particles depleted. This is
in line with the expectation based on the attractive depletion £ 3. |n order to resolve the small differences in the density
potential near a hard wall of a single big sphere immersed iRy files of the smalia) and big(b) spheres between the DFT results
a fluid of small spheref30]. Correlation effects reverse this gptained by the various versions of the Rosenfeld functional, parts
relative distribution in the second layer, and restore it in thesf the density profiles shown in Fig. 1 are magnified here. The solid
third. lines correspond to the original functional, whereas the dotted,
As mentioned above, small differences between the DFHashed, and dash-dotted lines correspond to the interpolated version
results corresponding to the various versions of the Rosenint RF) and the antisymmetrized modification with=2 and 3,
feld functional can be found for these valuesipfin orderto  respectively. The parameters are the same as in Fig. 1.

q=3 RF

Po(Z)/Popuik

-

z/ o
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FIG. 5. In order to highlight the small differences of the DFT
FIG. 4. The density profiles of the small sphefasand the big  results obtained by different versions of the Rosenfeld functional,

spheregb) of a binary hard-sphere mixture with size raB3:Rs  here small parts of the density profiles shown in Fig. 4 are magni-
=3:1 and packing fractiongs=0.0047 andp,=0.3859 close to a fie(.

planar hard wall. The solid lines correspond to results obtained by a
f_ree minimization of the original Rosenfgld f_unctlonal. Thg simula- concentrations profiles of the small and big spheres, corre-
tion data (O) are taken from Ref.10]. As in Fig. 1 the p05|t|ons of sponding to these density profiles, are shown in Fig. 6. For
the extrema ops(2) andpy,(2) are very close to each other if they i o oer size ratio the anticorrelated behaviofigfz) and
are measured from the corresponding position of contact,7.e., ®,(2) is even more pronounced than for the smaller ratio
=R,= 10, andz=R,= 30, respectively. The dotted lines corre- .” g P A o

s 27s 27s: discussed in Fig. 2, and strongly locked in without additional

spond to the coarse grained density profiles defined in(E8). . ST
Different from Fig. 1, here the net density of both species is (:Iearly]clne structure such as the double peak appearing in Fig. 2.

enhanced near the wall.

be able to resolve these small differences magnified parts of
the density profiles from Fig. 1 are shown in Fig. 3 together
with the simulation data from Ref10] (CJ). The solid lines 08 ¢
in Fig. 3 correspond to the original Rosenfeld functional, the
dotted lines correspond to the interpolated versigg. (8)] 06 1
and the dashed and dash-dotted lines correspond to the anti-
symmetrized versiofEq. (7)] with g=2 and 3, respectively.

All DFT results are very close to the simulation data. How- 04 1
ever, the deviations between the simulations and the anti-
symmetrized functional witlq=2 seem to be systematically o2 1
the largest.

In Figs. 4 and 5 we show the density profiles of a binary
mixture with size ratidR, : Rg=3:1. Thepacking fraction of ' ' '
the small spheres ig;=0.0047 and that of the big spheres is 0 2 4 6 8
7,=0.3859, so that the total packing fractioj= s+ 7y z/c
=0.3906 is again rather high. Therefore, there is a strong s
spatial variation of the density profiles. The agreement be- FIG. 6. The concentration profileb,(z) and®,(z) of the small
tween DFT(solid line) and simulations[(J) is again found and big spheres, respectively, corresponding to the density profiles
to be excellent for both the density profile of the smallof Fig. 4. R;=3%0, andR,= 30, so that, due to geometric con-
spherega) and the big sphered). The dotted lines denote straints,®,(R<z<R,)=0 and®((R,<z<R,)=1. The anticor-
the coarse grained densities as defined in(B§).[29]. The  related behavior of the two profiles is strongly locked in.

D, .(2)
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TABLE |. Contact values at a planar hard wall of a binary hard-sphere mixture with sizeRjatieg
=5:3 for packing fractions)s and »,,. The comparison of the sum of the contact values with the Percus-
Yevick compressibility equation of state, which underlies the Rosenfeld functional, tests the accuracy of our
numerical procedures. For small total packing fractiens ns+ 7, this equation of state is in good agree-
ment with the more accurate equation of stgm,cs, established by Mansoost al. [31]. However, for
larger values ofy, there are deviations.

Ui 7s Mo R3Zipi(Ri+0) R3BPEy RSBPumcsL
0.1246 0.0246 0.1000 0.01804 0.01804 0.01801
0.1252 0.0880 0.0372 0.03809 0.03809 0.03805
0.1309 0.0026 0.1283 0.01256 0.01256 0.01253
0.1850 0.0990 0.0890 0.06116 0.06116 0.06089
0.2005 0.0356 0.1649 0.03901 0.03901 0.03877
0.2247 0.0126 0.2121 0.03697 0.03698 0.03670
0.2278 0.1812 0.0466 0.12304 0.12306 0.12202
0.2670 0.1953 0.0717 0.16351 0.16354 0.16132
0.2749 0.0545 0.2204 0.07985 0.07987 0.07878
0.3477 0.0257 0.3220 0.11401 0.11405 0.11097
0.3712 0.0607 0.3105 0.16908 0.16916 0.16372
0.3906 0.0058 0.2984 0.06845 0.06847 0.06713
0.3968 0.0120 0.3848 0.15642 0.15652 0.15018

In addition we test the numerical accuracy of our calcu-that for all versions of the Rosenfeld functional under con-
lations by means of the sum rule given in ERQ). In Table  sideration here, the sum rule is respected equally well. How-
| the sum of the contact values of the binary mixture withever, the individual contact values may differ. This statement
size ratioR, :Rs=5:3 for various packing fractions is com- is in line with the expectation that the greatest differences
pared with two equations of statgp}, denotes the Percus- between the various versions of the Rosenfeld functional oc-
Yevick compressibility equation of staf&g. (19)], to which  cur in a region wheré is large, i.e., close to the wall, and is
the Rosenfeld functional reduces in the bulk limit, andsubstantiated in Table Il for the binary mixture with size
BPumcsL corresponds to the more accurate Mansooridatio R,:Rs=5:3 and in Table IV for the size ratiRy:Rg
Carnahan-Starling-Leland equation of stg@&], which rep-  =3:1.
resents a generalization to a mixture of the very accurate Vested with this confidence in our numerical procedures
Carnahan-Starling equation of staf82] for the one- and the excellent agreement in all details between our DFT
component fluid. The very good agreement between the cordensity profiles and the simulation data from Réf0], we
tact values angspp, demonstrates the high accuracy of our are now able to draw the conclusion that the Rosenfeld func-
numerical procedure. However, at higher packing fractionstional predicts the structure of the density profiles of a binary
Bpsy deviates from the more accurate equation of statdlard-sphere mixture near a planar wall with quantitative re-
BPumcsL. The same analysis of our results for a binary mix-liability; it exhibits the same high accuracy as in the case of
ture with size ratioR, :Ry=3:1 is summarized in Table II. the one-component hard-sphere fluid. This holds for all ver-

Equation(20) represents a sum rule which must be ful- Sions of the functional considered here, including the DFT
filled by the density profiles as obtained by any of the densitydue to Kierlik and Rosinberg, which was applied in Ref.
functionals considered here. However, no correspondingl0l, and is demonstrated by Figs. 1 and 3-5 and the very
rules are available for the individual contact values. We findsmall values of the mean square deviatiéhsand Ey, [Eq.

TABLE II. Results for the same quantities as in Table | for a binary hard-sphere mixture with size ratio

Rp:Rs=3:1.

Ui 7s 7o R3Zipi(R;+0) R3BPEy R3BPumcsL
0.1209 0.0188 0.1021 0.00778 0.00778 0.00776
0.1288 0.0037 0.1251 0.00313 0.00313 0.00313
0.1456 0.0283 0.1173 0.01219 0.01219 0.01219
0.2230 0.0026 0.2204 0.00643 0.00643 0.00637
0.2471 0.0199 0.2272 0.01590 0.01590 0.01578
0.2513 0.0089 0.2424 0.01104 0.01104 0.01094
0.3021 0.0016 0.3005 0.01180 0.01180 0.01159
0.3257 0.0136 0.3121 0.02166 0.02166 0.02124
0.3775 0.0099 0.3676 0.02837 0.02837 0.02747

0.3906 0.0047 0.3859 0.02718 0.02719 0.02620
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TABLE Ill. Individual contact values of the density profiles for a binary mixture with size RfjoR;
=5:3 as obtained by the original Rosenfeld functionafp?'%(z=R;+0)], the antisymmetrized modifica-
tion with q=3 [¢?p9=3(z=R;+0)], and the interpolating modificatiopr>p!"'(z=R;+0)] with i=s,b.
o;=2R; is the diameter of speciésWhile all versions of the functional respect the sum rule in(&2Q), the
individual contact values differ slightly for the different versions of the DR 7+ 7, is the total packing
fraction.

7 opIUR+)  oipdTRet)  0pM(Re+)  oppp(Ret)  oppl T (Ryt)  opph(Ry+)

0.1246 0.07051 0.07058 0.07059 0.34182 0.34150 0.34144
0.1252 0.27332 0.27340 0.27343 0.14522 0.14487 0.14478
0.1309 0.00745 0.00746 0.00746 0.43082 0.43077 0.43077
0.1850 0.38587 0.38639 0.38657 0.47860 0.47619 0.47550
0.2005 0.13385 0.13432 0.13444 0.82502 0.82284 0.82229
0.2247 0.05002 0.05036 0.05043 1.13782 1.13628 1.13594
0.2278 0.90612 0.90702 0.90727 0.36210 0.35787 0.35677
0.2670 1.15640 1.15871 1.15943 0.70205 0.69099 0.68829
0.2749 0.27715 0.27944 0.28026 1.67448 1.66398 1.65994
0.3477 0.17094 0.17520 0.17709 3.43107 3.41124 3.40174
0.3712 0.47247 0.48279 0.48746 4.07483 4.02673 4.00460
0.3906 0.03099 0.03160 0.03181 2.39204 2.38927 2.38826
0.3968 0.10016 0.10471 0.10703 5.33002 5.30870 5.29677
(22)]. Our calculations clearly confirm the equivalence of the B. Excess adsorption and surface tension

original Rosenfeld functional and the DFT due to Kierlik and  one of the virtues of DET is that based on the knowledge

Rosinberg, which was proven in R¢R2] in general terms. ¢ the local structural properties;(z), i=s,b, it is also

ability of our numerical procedures. as the excess adsorptioAsand the surface tensiop Here
Therefore, the doubts raised in REE0] about the perfor- e determine these quantities near a hard wall for a binary

mance of the Rosenfeld DFT for binary hard-sphere mixturesard-sphere fluid whose components exhibit a size ratio

are not justified. In contrast to our results, the density profile®, :R,=3:1. Ouranalysis is confined to the fluid phase of

of the small spheres shown in R¢fL0] display breaks in the mixture; the phase boundary for freezing is estimated

slope and are out of phase compared with the simulation datom the bulk phase diagrams presented in REF8].

(see Figs. 5-8 in Ref10]). There is strong evidence thatin  The excess adsorption of species=s,b, is defined as

particular the density profiles for the size raRg:R;=3:1

shown in Ref[10] violate the sum rule given by Eq20). ("

Both deficiencies are most likely due to numerical problems. I'i= fo dz(pi(2) =~ pi buik),

Unfortunately, the numerical accuracy of the results pub-

lished in Ref.[10] is not documented. Finally we want to . o

mention that garller studies of blna}ry hard-sphere mixture :f dz(pi(2) = pi pui) — ?Ipi,bulk- (24)

[8,9,11-1% using DFT approaches different from the Rosen- 2

feld functional yield only qualitatively correct density pro-

files. This definition of the excess adsorption differs from the defi-

Ti

TABLE IV. Results for the same quantities as in Table Il for a binary mixture with size R{idRg
=3:1.

3 3 g=3 3 3 3 q=3 3 |
7 opdURst)  opdT3Re+)  opM(Rt)  appp(Ryt)  oppl *(Rot)  oppy(Ryt)

0.1209 0.04862 0.04864 0.04864 0.36808 0.36769 0.36761
0.1288 0.00932 0.00933 0.00932 0.42401 0.42387 0.42389
0.1456 0.07891 0.07895 0.07895 0.50360 0.50248 0.50231
0.2230 0.00839 0.00842 0.00841 1.16319 1.16241 1.16248
0.2471 0.07074 0.07101 0.07104 1.52497 1.51744 1.51686
0.2513 0.03121 0.03136 0.03136 1.54220 1.53814 1.53814
0.3021 0.00626 0.00633 0.00633 2.37903 2.37714 2.37714
0.3257 0.05996 0.06072 0.06078 3.05954 3.03862 3.03744
0.3775 0.05168 0.05289 0.05299 4.73342 4.69975 4.69719

0.3906 0.02540 0.02612 0.02617 5.18598 5.16579 5.16450
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FIG. 7. The excess adsorptidhy of the small spheres near a  FIG. 8. The excess adsorptidh, of the big spheres near a
planar hard wall as a function of the packing fractionsand 7, in ~ planar hard wall as a function of the packing fractionsand », in
the fluid phasé¢37]. The dots @) denote turning points. the fluid phase[37]. The dots @) denote turning points. The

square symbols[{) denote simulation results for the excess ad-

nition used in Ref[34], as well as from that used in Ref. sorption of a one-component hard-sphere fluid taken from[R6}.
[35]. To recover the results for the excess adsorption of a
one-component hard-sphere fluid in R¢f] and[35], one  lation data for the excess adsorption of a one-component
has to subtract from and add to our results, respectively, theard-sphere fluid near a hard wall at packing fractions
constant ¢i/2)p; puik- These differences originate from dif- =0.3680, 0.4103, 0.4364, and 0.4719, respectively, taken
ferent choices for the position of the wall. While for the from Ref. [35]. Whereas the simulation data for the two
one-component fluid there is no preference for any of thesemaller packing fractions agree very well with our DFT re-
definitions, our choice used here appears to be particularlyults, those for the higher values ¢f clearly deviate from
suited for a mixture because, independent of the diamsgter the DFT prediction. We note that neither the modified DFT
of specied, the integrals in Eq(24) start at the same lower nor the original Rosenfeld DFT predicts the pronounced
bound for all species, namely, at the position of the physicaminimum close to freezing in the excess adsorption of the
wall. We use the same definition for the position of the wallone-component fluid, as predicted by a fit to the simulation
to determine the surface tension. Because the excess adsotfata of Ref[35] [see Eq(50) in Ref.[35]] or by the excess
tions follow from integrating over oscillatory functions, they adsorption calculated by using the quasiexact surface tension
depend very sensitively on the precise structure of the dergiven in Ref.[36]. The origin of this difference is not yet
sity profiles and require very accurate calculations. More<clear. It might reflect the fact that the bulk thermodynamics
over, near the phase boundary for freezing the originalinderlying the Rosenfeld functional is the Percus-Yevick
Rosenfeld functional yields values fbiy andI'y which dif-  theory with its known deficits near freezing. However, one
fer significantly from those obtained from the modifications should keep in mind that the error bars of the simulations are
of the Rosenfeld functional. Thus, unless stated otherwisdarge enough to allow for the absence of this minimum.
we have determined the excess adsorption by using a modi- In order to illustrate the large differences between the
fied Rosenfeld functional corresponding to E8), which is  excess adsorptions calculated from different functionals, in
known to capture the freezing transition of the one-Fig. 9 we show the excess adsorptidhsandl',, calculated
component hard-sphere fluid. from the original Rosenfeld functional together with those

In Fig. 7 we show the excess adsorptidhsof the small  calculated by using the modified functional corresponding to
spheres as function of the packing fractiopsand 7, ; note  Eg. (8). The packing fraction of the small spheres sg
that I'g(7s=0,7,)=0. For a fixed packing fraction of the =0.15. Only for small packing fractions of the big spheres,
small spheresys, the excess adsorption of the small spheres.e., far away from freezing, do we find good agreement be-
increases upon increasing,. The reason for this is that the tween the results obtained from the different functionals.
increasing packing effects of the big spheres associated witBlose to the phase boundarigg7] the differences become
large values ofyp, enforces also the packing of the small large, which is indeed surprising at first glance. However, the
spheres, giving rise to a strongly enhanced contact value andain contribution of the excess adsorption stems from the
very pronounced structures in the density profile of the smalVicinity of the wall where¢ is large, and the different ver-
spheres. For very smals, i.e., ns<0.1, and largep, we  sions of the Rosenfeld functional are expected to differ.
find thatI'y can become positive. As a function af,, I'g  These differences were already indicated in Sec. Il A by the
exhibits a turning point for any fixed value af;. behavior of the individual contact values?pi(RiJrO), i

The excess adsorptidn, of the big spheres is shown in =s, b, of the density profiles of the small and big spheres,
Fig. 8. For constany and increasingyy,, I', decreases. But respectively. For large distances from the wall the density
due to the same mechanism as described allgymcreases profiles exhibit decaying oscillations, and therefore are not
upon increasingy, for constant packing fractions of the big expected to contribute essentially to the excess adsorption.
spheresy,,. The square symboldY() in Fig. 8 denote simu- Moreover,all versions of the Rosenfeld functional display a
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FIG. 9. Excess adsorptiodg andI', calculated with the origi- ) )
nal Rosenfeld functional compared with those obtained from its FIG. 10. The surface tensioBy(7s,7,) of a binary hard-

modification corresponding to E¢8). The packing fraction of the ~SPhere mixture in the fluid phag&7] with size ratioR, :Rs=3:1 as
small spheres ig;=0.15. function of the packing fractions)s and 7, , calculated from the

original Rosenfeld functionallines). For »,=0 the hard-sphere
common characteristic decay because they share the sarfidd freezes aty,=0.494. The square symbol§]) denote simu-
bulk propertieg23], so that the contributions to the excess Iat!on results from Ref[39] for the one-component hard-sphere
adsorption far away from the wall are very similar for the fluid:
original Rosenfeld functional and its modifications.

The grand potential) of a system in contact with a wall, By BQ+ BpV
A
Q=Qpypt Qsurss (25 .
decomposes into a bulk contributiéh, = —pV, given by :L”an[ﬁpl-+ JO dz( Pps(2),pu(2)]

the bulk pressur@ in the system times the volumé occu-
pied by fluid particles, and a surface contributiély,, i

= yA, which is the surface tensioptimes the surface area + zb pi(2) Vexd(2) — mi)
of the wall. Scaled particle theor(SPT) provides an ap- ’

proximate expression foy for a one-component hard-sphere | ¢onirast to the strong dependence of the results of the

fluid [38] as well as a generalization to hard-sphere mixtureg,, cess adsorption on the choice of functional, we find that
[24] close to a planar hard Wal.l' The_surface_ tension of &he original Rosenfeld functional as well as its modifications
one-component hard-sphere fluid within SPT is well testedp e ict very similar results for the surface tension in the

and turns out to provide reliable results as compared withy\qje range of packing fractions studied here. Our results for
both DFT calculation$34] and simulation$39). In Ref.[36]  he gyrface tension of a binary hard-sphere mixture with size

a fit to simulation results of the surface tension of a one- ;i R, :R.=3:1, calculated within the original Rosenfeld
. . -M\g =y
component hard-sphere fluid at a planar hard wall is pregnctional, are shown in Fig. 10. The deviation between

sented, which gives quasiexact results, and closely resemblgg,qe resuits and those obtained by the modifications of the

the SPT expression. . » Rosenfeld functional are at most 3%, and deviate from the
~ In terms of the weighted bulk dens!tler@_, ...,n3, de- predictions of the SPT at most by 10%.
fined in Egs.(15)—(18), the SPT approximation for the sur-

face tension of a hard-sphere mixture close to a planar hard

. (27)

wall [24] can be written as IV. SUMMARY AND CONCLUSIONS
) Based on the Rosenfeld density functional we have ana-
M 1 m 26) lyzed structural and thermodynamic properties of binary
Byspr= 1-n; 87 (1—ny)?’ hard-sphere mixtures near a hard wall, with the following
main results.

This expression reduces to the one-component SPT approxi- (1) Figures 1 and 4 demonstrate that the structures of both
mation of the surface tension when it is evaluated for thedensity profilesp;(z), i=s,b, of a binary hard-sphere mix-
one-component bulk weighted densities. In this latter caséure close to a planar hard wall, as obtained by the original
the surface tension can be expressed solely in terms of tHgosenfeld functional, are in excellent agreement with simu-
packing fractionn of this sing|e component. lation results for size ratioRb:RS=5:3 and Ry:Rs=3:1,
Within the Rosenfeld functional the surface tensjonf a ~ respectively. The high level of agreement between our DFT
binary hard-sphere mixture at a planar hard wall followsresults and the simulation data from REL0] is confirmed
from the equilibrium density profileg;(z), i=s,b, as ob- quantitatively by small mean square deviatidas and E,,
tained in Sec. Il A: defined in Eq(22). In terms of these quantities all versions



PRE 62 BINARY HARD-SPHERE FLUIDS NEAR A HARD WALL 6935

of the Rosenfeld functional are practically of the same qual- The weight functions of the Rosenfeld functional are
ity. Only at high packing fractions do rather small differ- given by
ences between the results obtained by different versions of

the Rosenfeld DFT become visible, like those shown in Figs. 0@ =0(r|-Ry), (A1)
3 and 5.
(2) The concentration profilessee Figs. 2 and)6calcu- 0®(r)=8(|r|-R), (A2)

lated from the density profiles confirm the depletion picture:
the small spheres are depleted from regions close to the waknd
while the big spheres are enriched.

(3) The numerical accuracy of our calculations is demon-
strated in Tables | and Il by the high degree at which the sum
rule Eq.(20), which relates the sum of the contact values of
both density profiles with the equation of state, is respectedwith the Heaviside functio® and the Dirac delta function
The sum rule, however, makes no prediction for the indi-5. The remaining scalar weight functions are proportional to
vidual contact values and we find in Tables Il and IV that »,(2): (V= 2/ (47R;) and w(¥=w{®/(47R?). The first
each version of the Rosenfeld functional takes a differenfector weight function is collinear with o®: e
route to satisfy the sum rule. =w-(2)/(47rRi).

(4) Using the modified Rosenfeld functional correspond- Ir|1 order to calculate the weighted densities integrfeﬂé
ing to Eq.(8), we have calculated the excess adsorption ofOf the type '
the small sphere$’s(7s,7p) (see Fig. 7 and of the big
sphered (75, 7,) (see Fig. 8 as functions of the packing
fractions 55 and 7, for a binary hard-sphere mixture with a Ii(“):j d3rpi(N e (r—r") (A4)
size ratioR, :Rs=3:1. We findthat these quantities depend

very sensitively on the accuracy of the numerical calculangye to be evaluated. For these convolution type integrals
tions and, as can be seen in Fig. 9, they differ significantlyy,e can exploit the symmetry properties of the density pro-

from the excess adsorption calculated by the original Rosenyjes, For the present geometry the weighted densities can be
feld functional. written as

(5) The surface tension of a binary hard-sphere mixture
with size ratioR,:Rs=3:1 close to a planar hard wall is Ri
shown in Fig. 10. We find that all versions of the Rosenfeld NW(2)= 2, J dz'pi(z+2)0{™(z'),  (A5)
functional give results which are in good agreement with the 1=sb SR,
prediction of scaled particle theofq. (26)]. with s and b for small and big, respectively, and witte-
From these results we conclude that the class of Rosen- . @) . i
feld functionals yields quantitatively reliable descriptions ofducedwelght functionsw;™ which are functions ot only:
interfacial structures in binary hard-sphere fluids. We expect

o)1)= a0t R, (A3)

that the same level of reliability also holds for multicompo- o®(2)=m(R?~2?), (A6)
nent hard-sphere fluids. o
The excess adsorptiods and I',, of the small and big w®(z)=27R;, (A7)

spheres emphasize the differences between the various ver-
sions of the Rosenfeld functional most. In order to decideand
whether the original Rosenfeld functional or whether its

modifications predict these quantities more accurately, addi- Jiz)(z):27rzez, (A8)
tional simulation data of the excess adsorption in a binary
hard-sphere fluid are needed. with the unit vectore, in the z direction. The relations be-

tween these and the remaining weight functions are the same

as for the original weight functions. The integrals in E&S)

are one-dimensional convolutions which can be calculated
It is a pleasure to thank Bob Evans for many stimulatingfaster and more accurately in Fourier space than in real

discussions. We want to thank J. P. Noworyta for providingspace. By introducing the Fourier transforms of the density

us with his simulation data and J. R. Henderson for stimuprofiles,
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and those of the weight functions,
APPENDIX: CALCULATION OF THE WEIGHTED

DENSITIES (:)i(a)(k):ﬁ_(;i(a)(Z)), (Alo)
Within the minimization procedure of the Rosenfeld func- ] -
tional the weighted densities, andn,, have to be calculated the weighted densities can be expressed as
repeatedly. Therefore, it is necessary to optimize these cal-
culations with respect to both computational speed and nu- na(Z):ﬁl(i—Esb pi(K) (k)

) . (Al1)
merical accuracy.
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This route of calculation offers the important advantage thations. To overcome this problem in real space a sophisticated
the numerical calculation of these convolutions can be spethtegration scheme would have to be applied or a very small

up significantly by applying fast-Fourier-transfor(&FT) grid size would have to be chosen. Both remedies addition-

methods. Moreover it turns out that calculations of convolu-ally slow down the numerical calculation in real space.

tions in real space depend more sensitively on the grid size The results presented in this appendix are applicable if the
Az to be used for discretization than those in Fourier spacedensity profiles depend on tleecoordinate only. However,
We expect that the reason for this is that the FFT algorithnsimilar results can be obtained if the density profiles have
interpolates between data points with trigonometrical funcradial symmetry.
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