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Binary hard-sphere fluids near a hard wall

R. Roth* and S. Dietrich
Fachbereich Physik, Bergische Universita¨t Wuppertal, D-42097 Wuppertal, Germany

~Received 16 March 2000!

By using the Rosenfeld density functional, we determine the number density profiles of both components of
binary hard-sphere fluids close to a planar hard wall as well as the corresponding excess coverage and surface
tension. The comparison with published simulation data demonstrates that the Rosenfeld functional, both its
original version and sophistications thereof, is superior to previous approaches, and exhibits the same excellent
accuracy as known from studies of the corresponding one-component system.

PACS number~s!: 61.20.2p, 68.45.2v
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I. INTRODUCTION

A variety of experimental techniques has emerged wh
allow one to resolve the inhomogeneous density distributi
of fluids at interfaces, a subject which enjoys broad scien
interest. In this context the ability to manufacture high
monodisperse colloidal suspensions has turned out to be
ticularly useful, as these provide the possibility to tune
effective interactions in these systems such that, e.g.,
colloidal particles closely resemble hard-sphere fluids@1#.
Since many of these experimental probes are indirect sca
ing techniques, there is a substantial demand to guide t
theoretically. Computer simulations and integral theories@2#
are important tools of statistical physics to address these
sues. Density functional theory~DFT! @3# has emerged as a
additional approach which is capable of capturing interfac
phase transitions and sweeping the thermodynamic and i
action parameter space of the system under considera
The potential to combine these two possibilities poses a
jor challenge for other techniques. If DFT also acquires
same accuracy as the other two techniques, it could ga
clear competitive edge.

Although there is no recipe for systematically constru
ing a reliable DFT in spatial dimensionsd>2, the constant
flux of developments over many years has led to a ra
high level of sophistication. Among these theories for ha
sphere fluids, which act as paradigmatic systems and s
ping stones for more complicated models, the Rosen
functional has emerged as a particular powerful theory wh
resorts to fundamental geometrical measures of the i
vidual sphere@4#. For the standard test case of the high
inhomogeneous density distribution of a one-compon
hard-sphere fluid near a planar hard wall, the predictions
the Rosenfeld functional are very close to those of numer
simulations serving as benchmarks. For this case the m
square deviations@see, e.g., Eq.~22!# of Rosenfeld DFT re-
sults from the simulation data from Ref.@5# are at most 1
31023 at high packing fractions, and otherwise less than
31024.

Another virtue of the Rosenfeld functional is that is eas
lends itself to generalization to multicomponent hard-sph
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fluids. This opens the door to investigate rich new physi
phenomena as particles of different size compete for inte
cial positions@6#. Even for the simplest multicomponent sy
tem, the binary hard-sphere fluid, there are relatively f
theoretical studies which determine their structural proper
near a planar hard wall, using Monte Carlo simulatio
@7–10#, integral equation theories@9#, and various kinds of
density functional theory@8–15#, as well as in spherica
pores@16#. Here we analyze this problem by using the co
responding Rosenfeld functional both in its original versi
@4# as well as for sophistications thereof@17,18#. By compar-
ing these results with published simulation data@10#, we as-
sess to what extent the quantitative reliability of the Ros
feld functional for the one-component hard-sphere flu
remains valid for the corresponding binary system. Moreo
we determine concentration profiles, the excess cover
and the surface tension of the binary hard-sphere fluids
hard wall. We describe the DFT in Sec. II, and report o
results in Sec. III, followed by a summary and our conc
sions in Sec. IV. The Appendix contains important techni
details.

II. DENSITY FUNCTIONAL THEORY

The Rosenfeld functional for the excess~over the ideal
gas! Helmholtz free energy of a mixture of hard spheres w
number density profiles$r i(r )%, i 51, . . . ,N, can be written
as @4#

bFex@$na%#5E d3r F„$na~r !%…, ~1!

which is a functional of the four scalar weighted densit
na(r ) for the N-component mixture

na~r !5(
i 51

N E d3r 8r i~r 8!v i
(a)~r2r 8!, a50, . . . ,3,

~2!

with 4N scalar weight functionsv i
(a) and two three-

component vector weighted densitiesna(r ),

na~r !5(
i 51

N E d3r 8r i~r 8!vi
(a)~r2r 8!, a51,2, ~3!f
6926 ©2000 The American Physical Society
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PRE 62 6927BINARY HARD-SPHERE FLUIDS NEAR A HARD WALL
with 2N vector weight functionsvi
(a). The weight functions

containonly information about the fundamental geometric
measures of a single sphere of speciesi, namely, its volume,
surface area, and radiusRi , i.e., in particular they are inde
pendent of the density profiles. The explicit expressions
the weight functions are given in the Appendix.F($na%)
5F11F21F3 is a function of the weighted densities, wit
@4#

F152n0 log~12n3!, ~4!

F25
n1n22n1•n2

12n3
, ~5!

and

F35

1
3 n2

32n2n2•n2

8p~12n3!2
5

n2
3

24p~12n3!2
~123j2!, ~6!

wherej(r )[un2(r )u/n2(r ), which is the ratio of the modulus
of the vector weighted densityn2(r ) and the scalar weighte
densityn2(r ). We note thatj(r )[0 in the bulk, and is smal
for small inhomogeneities. While this original Rosenfe
functional very successfully describes the fluid phase o
one-component hard-sphere system@19#, it fails to predict
the freezing transition. This failure was studied in detail
Refs. @17# and @18#. For the freezing transition it turns ou
that the zero-dimensional limit of the functional, in which
small cavity can accommodate only a single sphere, pla
key role. In a crystal the thermal vibrations around a latt
site can be interpreted as the motions in such a cavity form
by the neighboring spheres. Only if the statistical mechan
in such a cavity is described properly by the density fu
tional can the freezing transition be predicted correctly. T
is not the case for the original Rosenfeld functional. T
problem can be fixed by slightly modifying the contributio
F3 @see Eq.~6!#, such that the freezing transition is predict
by the modified functional while, at the same time, for low
packing fractions the accuracy of the original functional
describing the inhomogeneous fluid is kept. The followi
modifications have been suggested@17,18#:

F3,q5
n2

3

24p~12n3!2
~12j2!q, ~7!

with q>2, and

F3,int5
n2

3

24p~12n3!2
~123j212j3!. ~8!

The first suggestion,F3,q , is an antisymmetrized version o
F3 in Eq. ~6!, and the second,F3,int , interpolates between
F3 of Eq. ~6! andF3,0D in the exact zero-dimensional lim

F3,0D5
n2

3

24p~12n3!2
j~12j!2. ~9!

While the modified Rosenfeld function withF3,0D success-
fully predicts the freezing transition of the one-compone
system, it leads to modified bulk properties, and hence c
l

r

a
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e
d
s
-
s
s

r

t
n-

not describe the hard-sphere fluid as accurately as the o
nal Rosenfeld functional. We note that the difference b
tweenF3 of the original Rosenfeld functional and bothF3,q
with q53 andF3,int is of the order ofO(j3). Therefore, we
expect the largest differences between the various version
the Rosenfeld DFT to occur close to the wall wherej is
largest.

Both the original Rosenfeld functional and the modific
tions corresponding to Eqs.~7! and ~8!, i.e., the functionals
that share common bulk properties, are very successful
accurate for the one-component fluid. But far less is kno
for binary mixtures. In this latter respect, very good agre
ment between the density profiles obtained from the Ros
feld functional and those obtained by simulation@7# was
found in Ref.@20#. In a recent study@10#, however, signifi-
cant deviations between the Rosenfeld DFT results
simulations were found. In this latter study a density fun
tional due to Kierlik and Rosinberg was applied@21#, which
has proven in general terms to be equivalent to the orig
Rosenfeld functional for any type of spatial inhomogene
@22#. In order to demonstrate the equivalence of these fu
tionals explicitly for a binary hard-sphere mixture close to
hard wall, we have performed calculations with both ve
sions. The successful comparison of the corresponding
sults provides welcome reassurance in the general argum
@22# and, in addition, serves as a valuable test of the relia
ity of our numerical procedures.

Here we are interested in the equilibrium density profi
rs,0(r ) andrb,0(r ) of both the small and big components
binary hard-sphere mixtures close to a planar hard wall.
this end we freely minimize the functional

V@rs~r !,rb~r !#5F@rs~r !,rb~r !#

1 (
i 5s,b

E d3r 8r i~r 8!„Vext
i ~r 8!2m i…,

~10!

which is written in terms of the functional

F@rs~r !,rb~r !#5Fid@rs~r !,rb~r !#1Fex@rs~r !,rb~r !#,
~11!

with the exactly known ideal gas contributionFid ,

bFid5 (
i 5s,b

E d3r 8r i~r 8!@ ln„l i
3r i~r 8!…21#, ~12!

with l i the thermal wavelength of speciesi. For the equilib-
rium density profilesr i ,0(r ), i 5s,b, the functionalsF andV
reduce to the Helmholtz free energy and the grand canon
potential of the mixture, respectively;ms and mb are the
chemical potentials of the two species. The external pot
tials entering into Eq.~10! model the planar hard wall atz
50:

Vext
i ~z!5H `, z,Ri

0 otherwise.
~13!

i 5s,b, with z the normal distance from the wall. The exte
nal potentials prevent the centers of spheres of speciesi to
approach the wall, located atz50, closer thanRi in which
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6928 PRE 62R. ROTH AND S. DIETRICH
case they are in contact. In the absence of spontaneous
metry breaking due to freezing, which we do not consid
here, the profilesr i ,0(z), i 5s,b, depend only on the norma
coordinatez which simplifies the minimization of the func
tional.

Far away from the wall, i.e., in the bulk system, th
vector-weighted densitiesn1 and n2 and thusj vanish. In
this limit both the original Rosenfeld functional and the tw
modifications corresponding to Eqs.~7! and~8! reduce to the
same bulk expression given by

Fbulk52n0 ln~12n3!1
n1n2

12n3
1

n2
3

24p~12n3!2
~14!

and hence they share the same bulk properties. We wa
emphasize that as a consequence of this featureall versions
of the Rosenfeld functional predict density profiles whi
show thesameasymptotic decay toward the bulk value@23#.
The weighted densities in the bulk limit are obtained by
serting the bulk densitiesr i ,bulkªr i ,0(z5`) into Eq. ~2!,
yielding

n35
4p

3 (
i 5s,b

Ri
3r i ,bulk[ (

i 5s,b
h i , ~15!

n254p (
i 5s,b

Ri
2r i ,bulk , ~16!

n15 (
i 5s,b

Rir i ,bulk , ~17!

and

n05 (
i 5s,b

r i ,bulk . ~18!

The equation of state following from Eq.~14!,

bp5
n0

12n3
1

n1n2

~12n3!2
1

1

12p

n2
3

~12n3!3
, ~19!

is the Percus-Yevick compressibility equation of state of
mixture @24#. This expression is related to the contact valu
of the density profiles according to the sum rule@25#

bp5 (
i 5s,b

r i~z5Ri10!. ~20!

This sum rule is respected by the Rosenfeld functional as
any weighted-density DFT@26# and therefore provides a te
of the numerical accuracy of the calculations. In the follo
ing we suppress the subscript 0, which indicates equilibri
profiles as opposed to variational functions.

III. STRUCTURAL AND THERMODYNAMIC
PROPERTIES

A. Density profiles

The number density profiles of both components of bin
hard-sphere mixtures close to a planar hard wall are obta
m-
r

to

-

e
s

y
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y
ed

by a free minimization of the functional given in Eq.~10!
using a conjugate gradient algorithm. The numerical ac
racy of the resulting density profiles was affirmed by the f
that the functional derivativedV/dr i(r ), i 5s,b, was always
found to be zero within machine precision. We use the or
nal Rosenfeld functional as well as the modified versio
corresponding to Eqs.~8! and ~7! with q52 and 3. The
systems considered here have two different size rat
Rb :Rs55:3 andRb :Rs53:1, andvarious packing fractions
hs andhb for small and big spheres@27#, respectively. The
resulting density profiles are compared with simulation d
published in Ref.@10#. In addition we calculate the loca
concentrationsFs(z) and Fb(z) of the small and large
spheres, respectively, defined as

F i~z!5
r i~z!

rs~z!1rb~z!
, i 5s,b. ~21!

We find excellent agreement between the density profi
of both components obtained by density functional the
and the simulation data for all systems under considerat
This holds for all versions of the Rosenfeld functional an
lyzed here. While at low total packing fractionsh5hs1hb
the density functional theory results for all versions of t
Rosenfeld functional are practically equivalent, small dev
tions among the results from different versions of the fun
tional appear at larger values ofh, i.e., forh*0.3. We quan-
tify the degree of agreement between our DFT dens
profilesr i(z) and the simulation data from Ref.@10#, avail-
able as data points„zj ,r i

sim(zj )…, j 51 . . .Ni
sim and i 5s,b,

by determining the mean square deviationsĒi , i 5s,b, de-
fined as

Ēi5
1

Ni
sim (

j 51

Ni
sim

S r i
sim~zj !2r i~zj !

r i ,bulk
D 2

. ~22!

We find thatĒs and Ēb are at most 531024 and 631023,
respectively, for all versions of the Rosenfeld function
However, since the statistical errors in the simulation d
are comparable with or even larger than the differences
tween the density profiles obtained by different versions
the Rosenfeld DFT, this approach does not enable us to
termine which of the various versions is the most accur
one.

To illustrate the agreement between the DFT and
simulation data, in Fig. 1 we show the density profiles of t
small spheres~a! and the big spheres~b! for hs50.0607 and
hb50.3105 and a size ratioRb :Rs55:3. Thesymbols (h)
denote the simulation data from Ref.@10# and the solid line
is obtained by the original Rosenfeld functional. The dott
lines denote coarse grained densitiesr̄ i

( j ) , i 5s,b and j
50,1, defined as

r̄ i
( j )5

1

zi
( j 11)2zi

( j )Ezi
( j )

zi
( j 11)

dz
r i~z!

r i ,bulk
, ~23!

with zi
(0)[0 and zi

( j .0) the position of thej th minimum
@28#. All details of the density profiles found in the simula
tions are reproduced very accurately by the density fu
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PRE 62 6929BINARY HARD-SPHERE FLUIDS NEAR A HARD WALL
tional theory. The oscillatory behavior, i.e., the amplitud
phases, and decay of the oscillations as obtained by D
agree excellently with the simulations. The total packi
fraction of the systemh5hs1hb50.3712 is already rathe
high, giving rise to the pronounced structure of the dens
profiles. The corresponding concentration profilesFs(z) and
Fb(z) of the small and big spheres, respectively, are sho
in Fig. 2. These concentration profiles demonstrate that, a
from the purely geometrical constraints, near the wall the
particles are enriched and the small particles depleted. Th
in line with the expectation based on the attractive deple
potential near a hard wall of a single big sphere immerse
a fluid of small spheres@30#. Correlation effects reverse thi
relative distribution in the second layer, and restore it in
third.

As mentioned above, small differences between the D
results corresponding to the various versions of the Ros
feld functional can be found for these values ofh. In order to

FIG. 1. The density profiles of the small spheres~a! and the big
spheres~b! of a binary hard-sphere mixture with size ratioRb :Rs

55:3, andpacking fractionshs50.0607 andhb50.3105 close to a
planar hard wall~dashed line!. ss52Rs is the diameter of the smal
spheres. The solid lines correspond to results obtained by a
minimization of the original Rosenfeld functional, and the symb
(h) denote simulation data from Ref.@10#. The full dots indicate
the values at contact. The positions of the extrema ofrs(z) and
rb(z) are very close to each other if they are measured from
corresponding position of contact, i.e.,z5Rs5

1
2 ss and z5Rb

5
5
6 ss , respectively. The dotted lines correspond to the coa

grained density profiles defined in Eq.~23!. They indicate that in
spite of the high contact values the wall actually leads to a slight
depletion for both species in the first layer.
,
T,

y

n
art
g
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n
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T
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FIG. 2. The concentration profilesFs(z) andFb(z) of the small
and big spheres, respectively, corresponding to the density pro
in Fig. 1. For geometric reasonsr i(z<Ri)50 with Rs5

1
2 ss and

Rb5
5
6 sb . Therefore,Fs and Fb are defined only forz>ss and

Fb(Rs,z,Rb)50 andFb(Rs,z,Rb)51.

FIG. 3. In order to resolve the small differences in the dens
profiles of the small~a! and big~b! spheres between the DFT resul
obtained by the various versions of the Rosenfeld functional, p
of the density profiles shown in Fig. 1 are magnified here. The s
lines correspond to the original functional, whereas the dot
dashed, and dash-dotted lines correspond to the interpolated ve
~int RF! and the antisymmetrized modification withq52 and 3,
respectively. The parameters are the same as in Fig. 1.
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6930 PRE 62R. ROTH AND S. DIETRICH
be able to resolve these small differences magnified part
the density profiles from Fig. 1 are shown in Fig. 3 togeth
with the simulation data from Ref.@10# (h). The solid lines
in Fig. 3 correspond to the original Rosenfeld functional,
dotted lines correspond to the interpolated version@Eq. ~8!#
and the dashed and dash-dotted lines correspond to the
symmetrized version@Eq. ~7!# with q52 and 3, respectively
All DFT results are very close to the simulation data. Ho
ever, the deviations between the simulations and the a
symmetrized functional withq52 seem to be systematicall
the largest.

In Figs. 4 and 5 we show the density profiles of a bina
mixture with size ratioRb :Rs53:1. Thepacking fraction of
the small spheres ishs50.0047 and that of the big spheres
hb50.3859, so that the total packing fractionh5hs1hb
50.3906 is again rather high. Therefore, there is a str
spatial variation of the density profiles. The agreement
tween DFT~solid line! and simulations (h) is again found
to be excellent for both the density profile of the sm
spheres~a! and the big spheres~b!. The dotted lines denote
the coarse grained densities as defined in Eq.~23! @29#. The

FIG. 4. The density profiles of the small spheres~a! and the big
spheres~b! of a binary hard-sphere mixture with size ratioRb :Rs

53:1 and packing fractionshs50.0047 andhb50.3859 close to a
planar hard wall. The solid lines correspond to results obtained
free minimization of the original Rosenfeld functional. The simu
tion data (h) are taken from Ref.@10#. As in Fig. 1 the positions of
the extrema ofrs(z) andrb(z) are very close to each other if the
are measured from the corresponding position of contact, i.ez
5Rs5

1
2 ss andz5Rb5

3
2 ss , respectively. The dotted lines corre

spond to the coarse grained density profiles defined in Eq.~23!.
Different from Fig. 1, here the net density of both species is clea
enhanced near the wall.
of
r

e

nti-

-
ti-

y

g
-

l

concentrations profiles of the small and big spheres, co
sponding to these density profiles, are shown in Fig. 6.
this larger size ratio the anticorrelated behavior ofFs(z) and
Fb(z) is even more pronounced than for the smaller ra
discussed in Fig. 2, and strongly locked in without addition
fine structure such as the double peak appearing in Fig.

a

y

FIG. 5. In order to highlight the small differences of the DF
results obtained by different versions of the Rosenfeld function
here small parts of the density profiles shown in Fig. 4 are mag
fied.

FIG. 6. The concentration profilesFs(z) andFb(z) of the small
and big spheres, respectively, corresponding to the density pro
of Fig. 4. Rs5

1
2 ss and Rb5

3
2 ss , so that, due to geometric con

straints,Fb(Rs,z,Rb)50 andFs(Rs,z,Rb)51. The anticor-
related behavior of the two profiles is strongly locked in.
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TABLE I. Contact values at a planar hard wall of a binary hard-sphere mixture with size ratioRb :Rs

55:3 for packing fractionshs andhb . The comparison of the sum of the contact values with the Per
Yevick compressibility equation of state, which underlies the Rosenfeld functional, tests the accuracy
numerical procedures. For small total packing fractionsh5hs1hb this equation of state is in good agre
ment with the more accurate equation of statebpMCSL established by Mansooriet al. @31#. However, for
larger values ofh, there are deviations.

h hs hb Rs
3( ir i(Ri10) Rs

3bpPY
c Rs

3bpMCSL

0.1246 0.0246 0.1000 0.01804 0.01804 0.01801
0.1252 0.0880 0.0372 0.03809 0.03809 0.03805
0.1309 0.0026 0.1283 0.01256 0.01256 0.01253
0.1850 0.0990 0.0890 0.06116 0.06116 0.06089
0.2005 0.0356 0.1649 0.03901 0.03901 0.03877
0.2247 0.0126 0.2121 0.03697 0.03698 0.03670
0.2278 0.1812 0.0466 0.12304 0.12306 0.12202
0.2670 0.1953 0.0717 0.16351 0.16354 0.16132
0.2749 0.0545 0.2204 0.07985 0.07987 0.07878
0.3477 0.0257 0.3220 0.11401 0.11405 0.11097
0.3712 0.0607 0.3105 0.16908 0.16916 0.16372
0.3906 0.0058 0.2984 0.06845 0.06847 0.06713
0.3968 0.0120 0.3848 0.15642 0.15652 0.15018
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In addition we test the numerical accuracy of our calc
lations by means of the sum rule given in Eq.~20!. In Table
I the sum of the contact values of the binary mixture w
size ratioRb :Rs55:3 for various packing fractions is com
pared with two equations of state.bpPY

c denotes the Percus
Yevick compressibility equation of state@Eq. ~19!#, to which
the Rosenfeld functional reduces in the bulk limit, a
bpMCSL corresponds to the more accurate Mansoo
Carnahan-Starling-Leland equation of state@31#, which rep-
resents a generalization to a mixture of the very accu
Carnahan-Starling equation of state@32# for the one-
component fluid. The very good agreement between the c
tact values andbpPY

c demonstrates the high accuracy of o
numerical procedure. However, at higher packing fractio
bpPY

c deviates from the more accurate equation of st
bpMCSL. The same analysis of our results for a binary m
ture with size ratioRb :Rs53:1 is summarized in Table II.

Equation~20! represents a sum rule which must be fu
filled by the density profiles as obtained by any of the den
functionals considered here. However, no correspond
rules are available for the individual contact values. We fi
-

i-

te

n-

s,
e
-

y
g

d

that for all versions of the Rosenfeld functional under co
sideration here, the sum rule is respected equally well. H
ever, the individual contact values may differ. This statem
is in line with the expectation that the greatest differenc
between the various versions of the Rosenfeld functional
cur in a region wherej is large, i.e., close to the wall, and i
substantiated in Table III for the binary mixture with siz
ratio Rb :Rs55:3 and in Table IV for the size ratioRb :Rs
53:1.

Vested with this confidence in our numerical procedu
and the excellent agreement in all details between our D
density profiles and the simulation data from Ref.@10#, we
are now able to draw the conclusion that the Rosenfeld fu
tional predicts the structure of the density profiles of a bin
hard-sphere mixture near a planar wall with quantitative
liability; it exhibits the same high accuracy as in the case
the one-component hard-sphere fluid. This holds for all v
sions of the functional considered here, including the D
due to Kierlik and Rosinberg, which was applied in Re
@10#, and is demonstrated by Figs. 1 and 3–5 and the v
small values of the mean square deviationsĒs and Ēb @Eq.
ratio
TABLE II. Results for the same quantities as in Table I for a binary hard-sphere mixture with size
Rb :Rs53:1.

h hs hb Rs
3( ir i(Ri10) Rs

3bpPY
c Rs

3bpMCSL

0.1209 0.0188 0.1021 0.00778 0.00778 0.00776
0.1288 0.0037 0.1251 0.00313 0.00313 0.00313
0.1456 0.0283 0.1173 0.01219 0.01219 0.01219
0.2230 0.0026 0.2204 0.00643 0.00643 0.00637
0.2471 0.0199 0.2272 0.01590 0.01590 0.01578
0.2513 0.0089 0.2424 0.01104 0.01104 0.01094
0.3021 0.0016 0.3005 0.01180 0.01180 0.01159
0.3257 0.0136 0.3121 0.02166 0.02166 0.02124
0.3775 0.0099 0.3676 0.02837 0.02837 0.02747
0.3906 0.0047 0.3859 0.02718 0.02719 0.02620
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6932 PRE 62R. ROTH AND S. DIETRICH
TABLE III. Individual contact values of the density profiles for a binary mixture with size ratioRb :Rs

55:3 as obtained by the original Rosenfeld functional@s i
3r i

org(z5Ri10)#, the antisymmetrized modifica
tion with q53 @s i

3r i
q53(z5Ri10)#, and the interpolating modification@s i

3r i
int(z5Ri10)# with i 5s,b.

s i52Ri is the diameter of speciesi. While all versions of the functional respect the sum rule in Eq.~20!, the
individual contact values differ slightly for the different versions of the DFT.h5hs1hb is the total packing
fraction.

h ss
3rs

org(Rs1) ss
3rs

q53(Rs1) ss
3rs

int(Rs1) sb
3rb

org(Rb1) sb
3rb

q53(Rb1) sb
3rb

int(Rb1)

0.1246 0.07051 0.07058 0.07059 0.34182 0.34150 0.3414
0.1252 0.27332 0.27340 0.27343 0.14522 0.14487 0.1447
0.1309 0.00745 0.00746 0.00746 0.43082 0.43077 0.4307
0.1850 0.38587 0.38639 0.38657 0.47860 0.47619 0.4755
0.2005 0.13385 0.13432 0.13444 0.82502 0.82284 0.8222
0.2247 0.05002 0.05036 0.05043 1.13782 1.13628 1.1359
0.2278 0.90612 0.90702 0.90727 0.36210 0.35787 0.3567
0.2670 1.15640 1.15871 1.15943 0.70205 0.69099 0.6882
0.2749 0.27715 0.27944 0.28026 1.67448 1.66398 1.6599
0.3477 0.17094 0.17520 0.17709 3.43107 3.41124 3.4017
0.3712 0.47247 0.48279 0.48746 4.07483 4.02673 4.0046
0.3906 0.03099 0.03160 0.03181 2.39204 2.38927 2.3882
0.3968 0.10016 0.10471 0.10703 5.33002 5.30870 5.2967
he
nd
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~22!#. Our calculations clearly confirm the equivalence of t
original Rosenfeld functional and the DFT due to Kierlik a
Rosinberg, which was proven in Ref.@22# in general terms.
This observation provides additional confidence in the r
ability of our numerical procedures.

Therefore, the doubts raised in Ref.@10# about the perfor-
mance of the Rosenfeld DFT for binary hard-sphere mixtu
are not justified. In contrast to our results, the density profi
of the small spheres shown in Ref.@10# display breaks in
slope and are out of phase compared with the simulation
~see Figs. 5–8 in Ref.@10#!. There is strong evidence that i
particular the density profiles for the size ratioRb :Rs53:1
shown in Ref.@10# violate the sum rule given by Eq.~20!.
Both deficiencies are most likely due to numerical problem
Unfortunately, the numerical accuracy of the results p
lished in Ref.@10# is not documented. Finally we want t
mention that earlier studies of binary hard-sphere mixt
@8,9,11–15# using DFT approaches different from the Rose
feld functional yield only qualitatively correct density pro
files.
i-

s
s

ta

.
-

e
-

B. Excess adsorption and surface tension

One of the virtues of DFT is that based on the knowled
of the local structural propertiesr i(z), i 5s,b, it is also
straightforward to calculate thermodynamic properties s
as the excess adsorptionsG i and the surface tensiong. Here
we determine these quantities near a hard wall for a bin
hard-sphere fluid whose components exhibit a size r
Rb :Rs53:1. Ouranalysis is confined to the fluid phase
the mixture; the phase boundary for freezing is estima
from the bulk phase diagrams presented in Refs.@33#.

The excess adsorption of speciesi, i 5s,b, is defined as

G i5E
0

`

dz„r i~z!2r i ,bulk…,

5E
s i /2

`

dz„r i~z!2r i ,bulk…2
s i

2
r i ,bulk . ~24!

This definition of the excess adsorption differs from the de
1
9
1
8
6
4
4
4
9
0

TABLE IV. Results for the same quantities as in Table III for a binary mixture with size ratioRb :Rs

53:1.

h ss
3rs

org(Rs1) ss
3rs

q53(Rs1) ss
3rs

int(Rs1) sb
3rb

org(Rb1) sb
3rb

q53(Rb1) sb
3rb

int(Rb1)

0.1209 0.04862 0.04864 0.04864 0.36808 0.36769 0.3676
0.1288 0.00932 0.00933 0.00932 0.42401 0.42387 0.4238
0.1456 0.07891 0.07895 0.07895 0.50360 0.50248 0.5023
0.2230 0.00839 0.00842 0.00841 1.16319 1.16241 1.1624
0.2471 0.07074 0.07101 0.07104 1.52497 1.51744 1.5168
0.2513 0.03121 0.03136 0.03136 1.54220 1.53814 1.5381
0.3021 0.00626 0.00633 0.00633 2.37903 2.37714 2.3771
0.3257 0.05996 0.06072 0.06078 3.05954 3.03862 3.0374
0.3775 0.05168 0.05289 0.05299 4.73342 4.69975 4.6971
0.3906 0.02540 0.02612 0.02617 5.18598 5.16579 5.1645
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nition used in Ref.@34#, as well as from that used in Re
@35#. To recover the results for the excess adsorption o
one-component hard-sphere fluid in Refs.@34# and@35#, one
has to subtract from and add to our results, respectively,
constant (s i /2)r i ,bulk . These differences originate from di
ferent choices for the position of the wall. While for th
one-component fluid there is no preference for any of th
definitions, our choice used here appears to be particul
suited for a mixture because, independent of the diametes i
of speciesi, the integrals in Eq.~24! start at the same lowe
bound for all species, namely, at the position of the phys
wall. We use the same definition for the position of the w
to determine the surface tension. Because the excess ad
tions follow from integrating over oscillatory functions, the
depend very sensitively on the precise structure of the d
sity profiles and require very accurate calculations. Mo
over, near the phase boundary for freezing the origi
Rosenfeld functional yields values forGs andGb which dif-
fer significantly from those obtained from the modificatio
of the Rosenfeld functional. Thus, unless stated otherw
we have determined the excess adsorption by using a m
fied Rosenfeld functional corresponding to Eq.~8!, which is
known to capture the freezing transition of the on
component hard-sphere fluid.

In Fig. 7 we show the excess adsorptionsGs of the small
spheres as function of the packing fractionshs andhb ; note
that Gs(hs50,hb)[0. For a fixed packing fraction of the
small sphereshs , the excess adsorption of the small sphe
increases upon increasinghb . The reason for this is that th
increasing packing effects of the big spheres associated
large values ofhb enforces also the packing of the sma
spheres, giving rise to a strongly enhanced contact value
very pronounced structures in the density profile of the sm
spheres. For very smallhs , i.e., hs<0.1, and largehb we
find that Gs can become positive. As a function ofhb , Gs
exhibits a turning point for any fixed value ofhs .

The excess adsorptionGb of the big spheres is shown i
Fig. 8. For constanths and increasinghb , Gb decreases. Bu
due to the same mechanism as described above,Gb increases
upon increasinghs for constant packing fractions of the bi
sphereshb . The square symbols (h) in Fig. 8 denote simu-

FIG. 7. The excess adsorptionGs of the small spheres near
planar hard wall as a function of the packing fractionshs andhb in
the fluid phase@37#. The dots (d) denote turning points.
a
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lation data for the excess adsorption of a one-compon
hard-sphere fluid near a hard wall at packing fractionshs
50.3680, 0.4103, 0.4364, and 0.4719, respectively, ta
from Ref. @35#. Whereas the simulation data for the tw
smaller packing fractions agree very well with our DFT r
sults, those for the higher values ofhs clearly deviate from
the DFT prediction. We note that neither the modified DF
nor the original Rosenfeld DFT predicts the pronounc
minimum close to freezing in the excess adsorption of
one-component fluid, as predicted by a fit to the simulat
data of Ref.@35# †see Eq.~50! in Ref. @35#‡ or by the excess
adsorption calculated by using the quasiexact surface ten
given in Ref. @36#. The origin of this difference is not ye
clear. It might reflect the fact that the bulk thermodynam
underlying the Rosenfeld functional is the Percus-Yev
theory with its known deficits near freezing. However, o
should keep in mind that the error bars of the simulations
large enough to allow for the absence of this minimum.

In order to illustrate the large differences between
excess adsorptions calculated from different functionals
Fig. 9 we show the excess adsorptionsGs andGb calculated
from the original Rosenfeld functional together with tho
calculated by using the modified functional corresponding
Eq. ~8!. The packing fraction of the small spheres ishs
50.15. Only for small packing fractions of the big sphere
i.e., far away from freezing, do we find good agreement
tween the results obtained from the different functiona
Close to the phase boundaries@37# the differences become
large, which is indeed surprising at first glance. However,
main contribution of the excess adsorption stems from
vicinity of the wall wherej is large, and the different ver
sions of the Rosenfeld functional are expected to diff
These differences were already indicated in Sec. III A by
behavior of the individual contact valuess i

3r i(Ri10), i
5s,b, of the density profiles of the small and big spher
respectively. For large distances from the wall the dens
profiles exhibit decaying oscillations, and therefore are
expected to contribute essentially to the excess adsorp
Moreover,all versions of the Rosenfeld functional display

FIG. 8. The excess adsorptionGb of the big spheres near
planar hard wall as a function of the packing fractionshs andhb in
the fluid phase@37#. The dots (d) denote turning points. The
square symbols (h) denote simulation results for the excess a
sorption of a one-component hard-sphere fluid taken from Ref.@35#.
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common characteristic decay because they share the
bulk properties@23#, so that the contributions to the exce
adsorption far away from the wall are very similar for th
original Rosenfeld functional and its modifications.

The grand potentialV of a system in contact with a wall

V5Vbulk1Vsur f , ~25!

decomposes into a bulk contributionVbulk52pV, given by
the bulk pressurep in the system times the volumeV occu-
pied by fluid particles, and a surface contributionVsur f
5gA, which is the surface tensiong times the surface areaA
of the wall. Scaled particle theory~SPT! provides an ap-
proximate expression forg for a one-component hard-sphe
fluid @38# as well as a generalization to hard-sphere mixtu
@24# close to a planar hard wall. The surface tension o
one-component hard-sphere fluid within SPT is well test
and turns out to provide reliable results as compared w
both DFT calculations@34# and simulations@39#. In Ref.@36#
a fit to simulation results of the surface tension of a o
component hard-sphere fluid at a planar hard wall is p
sented, which gives quasiexact results, and closely resem
the SPT expression.

In terms of the weighted bulk densitiesn0 , . . . ,n3, de-
fined in Eqs.~15!–~18!, the SPT approximation for the su
face tension of a hard-sphere mixture close to a planar h
wall @24# can be written as

bgSPT5
n1

12n3
1

1

8p

n2
2

~12n3!2
. ~26!

This expression reduces to the one-component SPT app
mation of the surface tension when it is evaluated for
one-component bulk weighted densities. In this latter c
the surface tension can be expressed solely in terms o
packing fractionh of this single component.

Within the Rosenfeld functional the surface tensiong of a
binary hard-sphere mixture at a planar hard wall follo
from the equilibrium density profilesr i(z), i 5s,b, as ob-
tained in Sec. III A:

FIG. 9. Excess adsorptionsGs andGb calculated with the origi-
nal Rosenfeld functional compared with those obtained from
modification corresponding to Eq.~8!. The packing fraction of the
small spheres ishs50.15.
me

s
a
,
h

-
-

les

rd

xi-
e
e
he

bg5
bV1bpV

A

5 lim
L→`

FbpL1E
0

L

dzH F@rs~z!,rb~z!#

1 (
i 5s,b

r i~z!„Vext
i ~z!2m i…J G . ~27!

In contrast to the strong dependence of the results of
excess adsorption on the choice of functional, we find t
the original Rosenfeld functional as well as its modificatio
predict very similar results for the surface tension in t
whole range of packing fractions studied here. Our results
the surface tension of a binary hard-sphere mixture with s
ratio Rb :Rs53:1, calculated within the original Rosenfel
functional, are shown in Fig. 10. The deviation betwe
these results and those obtained by the modifications of
Rosenfeld functional are at most 3%, and deviate from
predictions of the SPT at most by 10%.

IV. SUMMARY AND CONCLUSIONS

Based on the Rosenfeld density functional we have a
lyzed structural and thermodynamic properties of bina
hard-sphere mixtures near a hard wall, with the followi
main results.

~1! Figures 1 and 4 demonstrate that the structures of b
density profilesr i(z), i 5s,b, of a binary hard-sphere mix
ture close to a planar hard wall, as obtained by the origi
Rosenfeld functional, are in excellent agreement with sim
lation results for size ratiosRb :Rs55:3 andRb :Rs53:1,
respectively. The high level of agreement between our D
results and the simulation data from Ref.@10# is confirmed
quantitatively by small mean square deviationsĒs and Ēb
defined in Eq.~22!. In terms of these quantities all version

s FIG. 10. The surface tensionbg(hs ,hb) of a binary hard-
sphere mixture in the fluid phase@37# with size ratioRb :Rs53:1 as
function of the packing fractionshs and hb , calculated from the
original Rosenfeld functional~lines!. For hs50 the hard-sphere
fluid freezes athb50.494. The square symbols (h) denote simu-
lation results from Ref.@39# for the one-component hard-sphe
fluid.
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of the Rosenfeld functional are practically of the same qu
ity. Only at high packing fractions do rather small diffe
ences between the results obtained by different version
the Rosenfeld DFT become visible, like those shown in F
3 and 5.

~2! The concentration profiles~see Figs. 2 and 6! calcu-
lated from the density profiles confirm the depletion pictu
the small spheres are depleted from regions close to the w
while the big spheres are enriched.

~3! The numerical accuracy of our calculations is demo
strated in Tables I and II by the high degree at which the s
rule Eq.~20!, which relates the sum of the contact values
both density profiles with the equation of state, is respec
The sum rule, however, makes no prediction for the in
vidual contact values and we find in Tables III and IV th
each version of the Rosenfeld functional takes a differ
route to satisfy the sum rule.

~4! Using the modified Rosenfeld functional correspon
ing to Eq. ~8!, we have calculated the excess adsorption
the small spheresGs(hs ,hb) ~see Fig. 7! and of the big
spheresGb(hs ,hb) ~see Fig. 8! as functions of the packing
fractionshs andhb for a binary hard-sphere mixture with
size ratioRb :Rs53:1. We findthat these quantities depen
very sensitively on the accuracy of the numerical calcu
tions and, as can be seen in Fig. 9, they differ significan
from the excess adsorption calculated by the original Ros
feld functional.

~5! The surface tension of a binary hard-sphere mixt
with size ratioRb :Rs53:1 close to a planar hard wall i
shown in Fig. 10. We find that all versions of the Rosenf
functional give results which are in good agreement with
prediction of scaled particle theory@Eq. ~26!#.

From these results we conclude that the class of Ro
feld functionals yields quantitatively reliable descriptions
interfacial structures in binary hard-sphere fluids. We exp
that the same level of reliability also holds for multicomp
nent hard-sphere fluids.

The excess adsorptionsGs and Gb of the small and big
spheres emphasize the differences between the various
sions of the Rosenfeld functional most. In order to dec
whether the original Rosenfeld functional or whether
modifications predict these quantities more accurately, a
tional simulation data of the excess adsorption in a bin
hard-sphere fluid are needed.
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APPENDIX: CALCULATION OF THE WEIGHTED
DENSITIES

Within the minimization procedure of the Rosenfeld fun
tional the weighted densitiesna andna have to be calculated
repeatedly. Therefore, it is necessary to optimize these
culations with respect to both computational speed and
merical accuracy.
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The weight functions of the Rosenfeld functional a
given by

v i
(3)~r !5Q~ ur u2Ri !, ~A1!

v i
(2)~r !5d~ ur u2Ri !, ~A2!

and

vi
(2)~r !5

r

ur u
d~ ur u2Ri !, ~A3!

with the Heaviside functionQ and the Dirac delta function
d. The remaining scalar weight functions are proportiona
v i

(2) :v i
(1)5v i

(2)/(4pRi) and v i
(0)5v i

(2)/(4pRi
2). The first

vector weight function is collinear with vi
(2) :vi

(1)

5vi
(2)/(4pRi).

In order to calculate the weighted densities, integralsI i
(a)

of the type

I i
(a)5E d3r 8r i~r !v i

a~r2r 8! ~A4!

have to be evaluated. For these convolution type integ
one can exploit the symmetry properties of the density p
files. For the present geometry the weighted densities ca
written as

na~z!5 (
i 5s,b

E
2Ri

Ri
dz8r i~z1z8!v̄ i

(a)~z8!, ~A5!

with s and b for small and big, respectively, and withre-

ducedweight functionsv̄ i
(a) which are functions ofz only:

v̄ i
(3)~z!5p~Ri

22z2!, ~A6!

v̄ i
(2)~z!52pRi , ~A7!

and

v̄i
(2)~z!52pzez , ~A8!

with the unit vectorez in the z direction. The relations be
tween these and the remaining weight functions are the s
as for the original weight functions. The integrals in Eq.~A5!
are one-dimensional convolutions which can be calcula
faster and more accurately in Fourier space than in
space. By introducing the Fourier transforms of the dens
profiles,

r̂ i~k!5FT„r i~z!…, ~A9!

and those of the weight functions,

v̂ i
(a)~k!5FT„v̄ i

(a)~z!…, ~A10!

the weighted densities can be expressed as

na~z!5FT 21S (
i 5s,b

r̂ i~k!v̂ i
a~k! D . ~A11!
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This route of calculation offers the important advantage t
the numerical calculation of these convolutions can be s
up significantly by applying fast-Fourier-transform~FFT!
methods. Moreover it turns out that calculations of convo
tions in real space depend more sensitively on the grid
Dz to be used for discretization than those in Fourier spa
We expect that the reason for this is that the FFT algorit
interpolates between data points with trigonometrical fu
n
st
d

ys

e

J.
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te
te
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t
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tions. To overcome this problem in real space a sophistica
integration scheme would have to be applied or a very sm
grid size would have to be chosen. Both remedies additi
ally slow down the numerical calculation in real space.

The results presented in this appendix are applicable if
density profiles depend on thez coordinate only. However
similar results can be obtained if the density profiles ha
radial symmetry.
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