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Classical density functional theory �DFT� of fluids is a valuable tool to analyze inhomogeneous
fluids. However, few numerical solution algorithms for three-dimensional systems exist. Here we
present an efficient numerical scheme for fluids of charged, hard spheres that uses O�N log N�
operations and O�N� memory, where N is the number of grid points. This system-size scaling is
significant because of the very large N required for three-dimensional systems. The algorithm uses
fast Fourier transforms �FFTs� to evaluate the convolutions of the DFT Euler–Lagrange equations
and Picard �iterative substitution� iteration with line search to solve the equations. The pros and cons
of this FFT/Picard technique are compared to those of alternative solution methods that use
real-space integration of the convolutions instead of FFTs and Newton iteration instead of Picard.
For the hard-sphere DFT, we use fundamental measure theory. For the electrostatic DFT, we present
two algorithms. One is for the “bulk-fluid” functional of Rosenfeld �Y. Rosenfeld, J. Chem. Phys.
98, 8126 �1993�� that uses O�N log N� operations. The other is for the “reference fluid density”
�RFD� functional �D. Gillespie et al., J. Phys.: Condens. Matter 14, 12129 �2002��. This functional
is significantly more accurate than the bulk-fluid functional, but the RFD algorithm requires O�N2�
operations. © 2010 American Institute of Physics. �doi:10.1063/1.3357981�

I. INTRODUCTION

Since its inception 30 years ago, classical density func-
tional theory �DFT� of fluids has developed into a fast and
accurate theoretical tool to understand the fundamental phys-
ics of inhomogeneous fluids. A review of this derivation is
given by Evans.1 To determine the structure of a fluid, DFT
minimizes a free energy functional ����k�x���� by solving the
Euler–Lagrange equations �� /��k=0 for the inhomoge-
neous density profiles �k�x�� of all the particle species k.
When solving on a computer, the density can be discretized
�called free minimization� or a parameterized function form
such as Gaussians can be assumed �called parameterized
minimization�. This approach has been used to model freez-
ing, electrolytes, colloids, and charged polymers in confining
geometries and at liquid-vapor interfaces �reviewed by Wu2�.
Our group has applied one-dimensional �1D� DFT to biologi-
cal problems involving ion channel permeation, successfully
matching and predicting experimental data.3,4

DFT is different from direct particle simulations where
the trajectories of many particles are followed over long
times to compute averaged quantities of interest �e.g., density
profiles�. DFT computes these ensemble-averaged quantities

directly. However, developing an accurate DFT is difficult
and not straightforward. In fact, new, more accurate DFTs
are still being developed for such fundamental systems as
hard-sphere fluids,5–7 electrolytes,8,9 and polymers.10

When a functional does exist, DFT calculations are, in
principle, much faster than particle simulations because DFT
requires solving only a small set of Euler–Lagrange equa-
tions. This is especially true for systems with planar, spheri-
cal, or cylindrical symmetry because in many cases the
Euler–Lagrange equations can be integrated analytically over
the extra dimensions. The resulting equations have only one
space variable, while particle simulations are always per-
formed in three dimensions.

In systems with little or no symmetry, however, the situ-
ation is different. Many of the DFTs for important systems
such as hard spheres,5–7,11,12 Lennard-Jones dispersion
forces,13 and electrostatic interactions8,9,12 require computing
a significant number of convolutions. This increased compu-
tational complexity quickly increases computational time.
Moreover, commonly used numerical techniques scale
poorly with system size, requiring O�N2� operations �where
N is the number of grid points�. For a complex system �e.g.,
in biology� that requires N�106 for sufficient spatial reso-
lution, this can, in our experience, mean the difference be-
tween 1 week of computer time for an O�N2� algorithm ver-
sus 1 h for an O�N log N� algorithm. For this reason, the vast
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majority of DFT calculations are performed in one dimen-
sion, although there are software packages for three-
dimensional �3D� system. For example, TRAMONTO software
for nanostructured fluids in materials and biology has been
freely available since 2007.14

For 3D DFT equations, several different methods are
available to iteratively solve the equations and to evaluate
the convolution integrals. Each choice offers different trade-
offs in programing difficulty, computation time, memory us-
age, and system size scalability. For example, Newton itera-
tion requires very few iteration steps compared to Picard
�iterative substitution� iteration, but each Newton step gener-
ally takes significantly longer than a Picard step. For the
convolution integrals, either fast Fourier transforms �FFTs�
or real-space methods can be used. FFTs require a regular,
evenly spaced grid and O�N log N� operations. On the other
hand, real-space methods can �in principle� use an unevenly
spaced grid �giving a smaller N than required by the FFTs�,
but require O�N2� operations. The TRAMONTO software used
Newton iteration with real-space convolution evaluation.

In this paper, we describe a FFT-based Picard iteration
method. We chose this approach for several reasons. First,
our numerical experiments showed that Picard iteration was
generally faster than Newton and that in systems with liquid-
like concentrations Newton did not always converge. Sec-
ond, we found that real-space methods are impractical for
DFT because of the specific kernels of the convolution inte-
grals used in DFT. These convolutions integrate the densities
�k�x�� over the interiors and surfaces of spheres �described in
detail in Sec. II�. Neither the sphere interior nor surface can
be represented with sufficient accuracy using real-space
methods; however, they can be represented exactly using
Fourier transforms. Lastly, our solution method requires
O�N log N� operations and O�N� memory for hard-sphere
fluids. Therefore, it scales optimally with system size.

Currently, this optimal scalability is for uncharged hard
spheres. Electrostatics is more complicated. There are two
kinds of electrostatic DFTs in general use, both based upon a
perturbation technique. In the “bulk-fluid” �BF� method, the
electrostatic component of the free energy functional is ex-
panded around a BF,12 while the “reference fluid density”
�RFD� method updates the reference fluid with information
from the ionic densities �k�x��.8,9 The BF method is the most
commonly used �in TRAMONTO, for example� and we show
how to implement it with the optimal O�N log N� operations
and O�N� memory scaling. The BF electrostatic technique
can, however, be qualitatively incorrect15 �as shown later in
Figs. 2–4�. As we describe in Sec. IV C, the mathematical
structure of the RFD equations is fundamentally different
from the convolution-based DFTs of hard spheres and the BF
electrostatics method. In this paper, we also describe an
O�N2� operations and O�N� memory implementation of the
RFD electrostatics method. Reducing the number of opera-
tions for the RFD electrostatics method is the subject of fu-
ture work.

II. THEORY

The DFT Euler–Lagrange equations determine the den-
sities �i�x�� in equilibrium in the grand canonical ensemble

which is defined by the electrochemical potential for each
ion species i in the bath, �i

bath. The �i
bath, in turn, are deter-

mined by the bath concentrations �i
bath, detailed in Appendix

A. In equilibrium, the flux density for each ion species is
identically zero, so that

��i = 0, �1�

constraining the electrochemical potential for each ion spe-
cies �i to be a constant, �i

bath.
Here the total electrochemical potential �i�x� is a func-

tional of the densities �i�x��, which is divided into three parts,
an external �ext� potential, an ideal gas portion, and an ex-
cess �ex� chemical potential,

�i�x� = �i
ext�x�� + �i

ideal�x�� + �i
ex�x�� . �2�

The ideal gas part is given by

�i
ideal�x�� = kT ln �i�x�� , �3�

where �i represents the number density of species i, k is
Boltzmann’s constant, and T is the Kelvin temperature.
Moreover, �i

ext is the concentration-independent part of the
electrochemical potential arising from an external field. We
use this to define the problem geometry, such as a hard wall.
Lastly, �i

ex comes from particle interactions. Thus, in equi-
librium we have

�i�x�� = exp��i
bath − �i

ext�x�� − �i
ex�x��

kT
� . �4�

This paper outlines an algorithm for Eq. �4� for charged, hard
spheres.

For a system of charged hard spheres, DFT decomposes
the excess chemical potential into two components, the hard-
sphere �HS� and electrostatic �ES� interactions,

�i
ex = �i

HS�x�� + �i
ES�x�� = �i

HS�x�� + �i
SC�x�� + zie��x�� �5�

where the electrostatic component is further decomposed
into a mean field contribution, arising from interactions be-
tween uncorrelated ions, and a screening �SC� term arising
from electrostatic correlations. We define zi to be the valence
of species i and e the elementary charge. The mean electro-
static potential � satisfies Poisson’s equation,

− ��� = e	
i

zi�i�x�� , �6�

where the dielectric coefficient � is a constant throughout the
entire system. The definition of the hard-sphere and the
screening components of �i in terms of �i constitute the heart
of the DFT approach and are discussed in detail in the sub-
sequent sections.

III. HARD-SPHERE INTERACTION

The essential DFT-specific modeling of particle interac-
tions is contained in the definition of the chemical potentials
�i

HS and �i
ES. In order to model the interaction of hard

spheres, which defines �i
HS, we use the fundamental measure

theory �FMT� developed by Rosenfeld.11 In FMT, a suitable
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basis is produced which best captures the dependence of the
potential on the densities. These basis functions, n	, are ob-
tained from averages of the densities

n	�x�� = 	
i

 �i�x���
i

	�x�� − x��d3x�, �7�

where the integral is taken over all space and 	
� �0,1 ,2 ,3 ,V1,V2�. The weighting functions 
i

	 are given
by


i
0�r�� =


i
2�r��

4�Ri
2 
i

1�r�� =

i

2�r��
4�Ri

,


i
2�r�� = ���r�� − Ri� 
i

3�r�� = ���r�� − Ri� ,


� i
V1�r�� =


� i
V2�r��

4�Ri

� i

V2�r�� =
r�

�r��
���r�� − Ri� , �8�

where r� is the spherical radial vector. Note that the V1 and
V2 functions are vectors, as are the associated nV1 and nV2

functions. If constant concentrations are used in Eq. �7�, the
“fundamental geometric measures” of the hard spheres �sur-
face area, volume� are recovered.

The HS chemical potential is given by11

�i
HS�x�� = kT	

	

 �HS

�n	

�n	�x����
i
	�x� − x���d3x�. �9�

A number of different HS�n	� functions have been
developed,5–7,11,12 which have different consequences, most
notably the equation of state for a hard-sphere fluid modeled
with the DFT formalism. We have used the antisymmetrized
version developed by Rosenfeld et al.,16

HS�n	� = − n0 ln�1 − n3� +
n1n2 − n�V1 · n�V2

1 − n3

+
n2

3

24��1 − n3�2�1 −
n�V2 · n�V2

n2
2 �3

. �10�

However, other choices for HS�n	� do not change the nu-
merical scheme we describe below.

It is also important to note that the n	 integrals �7� are,
up to the sign of the argument of the weight function, con-
volutions. Since the weight functions 
	 are either even or
odd, we can always convert the integral to a proper convo-
lution. Therefore, they may be evaluated using the Fourier
transform and the convolution theorem,

n	�x�� = 	
i

 �i�x���
i

	�x�� − x��d3x�

= F−1�F��i� · F�
i
	�� = F−1��̂i · 
̂i

	� , �11�

where F is the Fourier transform operator and the hat de-
notes the Fourier image of the function. The chemical poten-
tial �i

HS can be calculated in exactly the same way, with �i

replaced by �HS /�n	.
In order to evaluate Eq. �11�, we use the FFT for both the

transformation of �i and the inverse transform of the product
�̂i · 
̂i

	. However, the 
i
	 are distributions and are not easily

represented on the rectangular grid required by the FFT.
Even a very fine discretization introduces unacceptably large
errors and destroys conservation properties of the basis �e.g.,
conservation of total mass�. Thus, if constant concentrations
are used in Eq. �7�, the geometric measures of the sphere are
not recovered with straightforward real space methods. In
three dimensions, unlike in one dimension, in our numerical
experiments, these errors persist no matter how fine a grid is
used. This is a severe problem for real space methods, such
as those used in TRAMONTO. This problem might be re-
solved through a specialized quadrature, however, the au-
thors know of no solution yet proposed.

Rather than attempt to discretize the weight functions on
a grid, we compute the Fourier transform of each weight
function analytically, and then evaluate them on the same
mesh in Fourier space as used by the FFT. The calculations
of the analytic Fourier transforms of 
	 are given in detail in
Appendix B. This strategy allows us to calculate machine
precision convolutions with arbitrary density fields, whereas
the naive discretization of the weight functions produce sub-
stantial errors, often in excess of the field value itself. For
example, using the convolution theorem, Eq. �11�, we re-
cover the geometric measures for a constant density field
only when using analytic Fourier transforms of the weight
functions.

IV. ELECTROSTATICS

A. Mean field

In order to obtain �, we solve the Poisson Eq. �6�, for
which the source is the charge density 	izi�i. Since we have
access to �̂i from the calculation of n	, we may solve Eq. �6�
in the Fourier domain, in which the Laplacian is diagonal.
Then the mean electrostatic potential � can be calculated by
dividing by the eigenvalues of the discrete Fourier transform.
At grid vertex j�, we have

�̂�j�� =
e	izi�̂i�j��

2��1 − cos kx

hx
2 +

1 − cos ky

hy
2 +

1 − cos kz

hz
2 � , �12�

where hx, hy, and hz are the grid spacings in each direction
and kx, ky, and kz are calculated as described in Appendix B.
In order to fully specify the potential in Eq. �12�, we must
choose a constant for the ground since �̂ is defined only for
k�0. We do this by setting �̂�0�=0, a common boundary
condition for the periodic Poisson problem that is equivalent
to setting the constant Fourier mode to zero. However, this
does not guarantee that ��x�L�=�bath=0 at some point x�L far
from the wall since we have a finite bath. Thus, we add the
constant C=−��x�L� to � for some x�L on the boundary to
enforce this condition.

B. BF method

The �i
SC component of Eq. �5� attempts to account for

electrostatic screening interactions. In the BF model, it is
calculated as an expansion around the bath concentration.
From Ref. 8, we have
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�i
SC = �i

ES,bath − 	
j



�x�−x����Rij

�cij
�2��x�,x���

+ �ij�x�,x������ j�x���d3x�, �13�

where Rij =Ri+Rj, Ri is the radius of ions of species i, �� j

=� j −� j
bath, cij

�2��x� ,x��� is the two-particle direct correlation
function �DCF�, and �ij�x� ,x��� is the interaction potential of
two point particles of charges zie and zje located at x� and x��,
so that17

cij
�2��x�,x��� + �ij�x�,x��� =

zizje
2

8��
� �x� − x���

2�i� j
−

�i + � j

�i� j

+
1

�x� − x���
� ��i − � j�2

2�i� j
+ 2�� , �14�

where �k=Rk+s with s=1 / �2��, the screening length of the
bath.18,19 The mean spherical approximation �MSA� screen-
ing parameter � is derived in Ref. 19 �see also Appendix A�.

The integral in the expansion for �i
SC is a convolution,

which we also evaluate in the Fourier domain. This requires
F��� j�, calculated using the FFT, and the transform of Eq.
�14� which is calculated analytically below. It should be
noted that in this model of electrostatics, transformations of
the cij

�2�+�ij need only be calculated once since they are fixed
by the problem parameters. Additionally,

F��� j� = F�� j − �bath� = F�� j� − F��bath� , �15�

where we have already calculated F�� j� for the n	 calcula-
tion in Eq. �11�, and F��bath� is a constant. Thus, the only
necessary Fourier transform each iteration is the inverse
transformation.

The accuracy of the transform of Eq. �14� is key to the
convergence of the nonlinear iteration for the equilibrium
condition. In fact, we were unable to obtain convergence
when evaluating these transforms numerically using the FFT
and were forced to develop analytical expressions. In order

to calculate each piece of ĉij
�2�+ �̂ij, we must take the Fourier

transform of powers of r. The generic term has the form



B�R�

rneik�·v� =
4�

k



0

R

drrn+1 sin�kr� =
4�

k
In, �16�

where k is the magnitude of k�. We derive a recursive defini-
tion for the integral In using integration by parts,

In = 

0

R

drrn+1 sin�kr�

= �−
rn+1

k
cos�kr��

0

R

+
n + 1

k
Jn, n � − 1,

0, n � − 1,
� �17�

Jn = 

0

R

drrn cos�kr�

= � rn+1

k
sin�kr��

0

R

−
n

k
Jn−2, n � 0,

0, n � 0.
� �18�

For Eq. �14�, we need the terms

I−1 =
1

k
�1 − cos�kR�� , �19�

I0 = −
R

k
cos�kR� +

1

k2sin�kR� , �20�

I1 = −
R2

k
cos�kR� + 2

R

k2sin�kR� −
2

k3 �1 − cos�kR�� . �21�

We also need their limits as k tends to 0,

lim
k→0

4�

k
I−1 = 2�R2, �22�

lim
k→0

4�

k
I0 =

4�R3

3
, �23�

lim
k→0

4�

k
I1 = �R4. �24�

Then we have

ĉij
�2� + �̂ij =

zizje
2

��k��
� 1

2�i� j
I1 −

�i + � j

�i� j
I0

+ � ��i − � j�2

2�i� j
+ 2�I−1� . �25�

C. RFD method

The RFD method is an alternative to the BF method to
compute �i

SC. As shown in Ref. 15 and Figs. 2–4 below, it is
more accurate than the BF method. The RFD electrostatic
functional is detailed in Refs. 8 and 9 and briefly summa-
rized here. This perturbation method approximates
�i

SC���k�y���� with a functional Taylor series, truncated after
the quadratic term, expanded around a reference fluid,

�i
SC���k�y���� � �i

SC���k
ref�y����

− kT	
i

 ci

�1����k
ref�y���;x����i�x��d3x

−
kT

2 	
i,j

 
 cij

�2����k
ref�y���;x�,x���

���i�x���� j�x���d3xd3x�, �26�

with

��i�x�� = �i�x�� − �i
ref�x�� , �27�

where �i
ref�x�� is a given �and possibly inhomogeneous� refer-

ence density profile. By defining RFD densities to be the
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bulk densities, we recover the BF perturbation method. The
RFD approach makes the reference fluid densities function-
als of the particle densities �i�x��,9

�k
ref�y�� = �̄k���i�x���;y�� , �28�

where �̄k is the RFD functional. In Ref. 9, it is shown that the
first-order DCF is given by

ci
�1��x�� = −

1

kT

��i
SC

��i�x��
, �29�

� c̄i
�1��x�� + 	

j

 c̄ij

�2��x�,x����� j�x���d3x�, �30�

where

��k�x�� = �k�x�� − �̄k�x�� , �31�

c̄i
�1��x�� = ci

�1����̄k�y���;x�� , �32�

c̄ij
�2��x�,x��� = cij

�2����̄k�y���;x�,x��� . �33�

For the RFD functional, the densities �̄k�x�� must be cho-
sen so that both the first- and second-order DCFs c̄i

�1� and c̄ij
�2�

can be estimated. This is possible because the densities
��̄k�x��� are a mathematical construct and do not represent a
physical fluid. The particular choice of the RFD functional
we use here is that of Ref. 8, which is also discussed in Ref.
9,

�̄i���k�x����;x�� =
3

4�RSC
3 �x��
�x��−x���RSC�x��

	i�x����i�x���d3x�,

�34�

where the �	k� are chosen so that the fluid with densities
�	k�x���k�x��� is charge neutral and has the same ionic strength
as the fluid with densities ��k�x��� at every point x�. The radius
of the sphere RSC�x�� over which we average is the local
electrostatic length scale. Specific formulas for 	k�x�� and
RSC�x�� are given in Refs. 8 and 9. In order to estimate the
electrostatic DCFs c̄i

�1��x�� and c̄ij
�2��x� ,x��� at each point, we use

a bulk formulation �specifically the MSA� at each point x�
with densities �̄k�x��, detailed in Appendix A.

The RFD reference density �ref�x�� can be rewritten as the
following smoothing operation:

�ref�x�� =
 ��x���
���x�� − x�� − RSC�x���

4�

3
RSC

3 �x��
dx�, �35�

where ��x�=1−H�x� and H is the Heaviside function20

H�x� = �0, x � 0,

1, x � 0.
� �36�

Equation �35� resembles a convolution, but unfortunately the
screening radius RSC�x�� is nonconstant, and thus the convo-
lution theorem is inapplicable. We compute RSC using �Eq.
�42� in Ref. 8�

RSC�x�� =
	i�̃i�x��Ri

	i�̃i�x��
+

1

2��x��
, �37�

where �̃i�x�� indicates the density of species i after we have
forced the mixture be locally electroneutral and have the
same ionic strength.

We can express Eq. �35� in the compact notation

�ref�x�� =
 Kx��x�����x���dx�, �38�

where the kernel Kx��x��� is given by

Kx��x��� =
���x�� − x�� − RSC�x���

4�

3
RSC

3 �x��
. �39�

Since the Fourier transform is an L2 isometry, this expression
is equivalent to

�ref�x�� =
 �K̂x��k�����̂�k��dk , �40�

where we use the hat to indicate the Fourier transform and
star to indicate complex conjugation. Furthermore, we can
calculate the Fourier transform of our kernel analytically. We
have

K̂x��k�� =
 Kx��x���e−ik�·x��dx�, �41�

=
 ���x�� − x�� − R�
4�

3
R3

e−ik�·x��dx�, �42�

=
 ���x��� − R�
4�

3
R3

e−ik�·�x��+x��dx�, �43�

=
3

4�R3e−ik�·x�

0

2�

d�

0

�

d� sin �

0

R

drr2e−ik�·x��,

�44�

=
3

4�R3e−ik�·x�

0

2�

d�

0

�

d� sin �

0

R

drr2

�e−ik�·�r cos �, r sin � cos �, r sin � sin ��, �45�

where R=RSC�x��. This integral has been evaluated above in
Sec. IV B, so that

K̂x��k�� = 3eik�·x��−
1

k2R2cos kR +
1

k3R3sin kR� . �46�

Thus we can calculate the action of the screening operator by
performing the dot product in Eq. �38� at each vertex of the
real space grid. This algorithm has overall complexity
O�N2�, however it is accurate to machine precision. Alterna-
tive schemes to accelerate the operator application will be
discussed in Sec. VII.
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In order for this formulation to be consistent, we demand
that the screening radius used to construct the RFD �ref is
identical to that given by the local MSA closure. Thus, we
augment our system of equations with

�SC����x�� = �MSA��ref�����x�� . �47�

Here, the left hand side of Eq. �47� indicates the value of �
used to determine the RFD using Eq. �35�, whereas the right
hand side is calculated using Eq. �A6�, with �ref replacing
�bath as the local equilibrium value. This equation is added to
our global system at each vertex, producing the same number
of additional equations as another ion species.

V. DISCRETIZATION AND SOLUTION IN EQUILIBRIUM

Problem �4� is solved on a rectangular prism domain,
supporting a different system size in each Cartesian direc-
tion. This geometry is well supported by the PETSc DA
abstraction,21 which also allows for easy parallelization. The
grid is uniform in each direction, which allows one to com-
pute the convolutions using Fourier transform techniques.
PETSc supports the FFTW package22 automatically. Periodic
boundary conditions are naturally enforced by the FFT.

The bath potential, �i
bath, and external potential, �i

ext, are
calculated just once during the problem setup. The geometry
is defined using external potentials, �i

ext. The excess chemi-
cal potential is dependent on the concentration, as is the elec-
trostatic potential, so these are recalculated at each residual
evaluation. Moreover, the evaluation of the ten �HS /�n	

and the n	 at each grid point must be done at each residual
evaluation since they are also dependent upon �i.

A. Nonlinear solver

Equation �4� is a fixed point problem for each ion spe-
cies i,

�i�x�� = G���k�x����� . �48�

The problem is solved using a Picard iteration since in our
experiments Newton’s method was both less robust, in that it
did not always converge, and less efficient, since it took
more time when it did converge. Each new iterate ��1� is
generated from an initial guess ��0� using

��1� = G���0�� , �49�

where � is understood as a vector of densities over ion spe-
cies. However, with higher bath densities, it is necessary to
use a line search during the Picard update rather than just
successive substitution. Thus, our new guess �� is given by

�� = �1 − 	���1� + 	��0�, �50�

where 	 is the line search parameter. We determine 	 by
sampling the function G at several densities, fitting the re-
sidual values, ��−G����, to a polynomial in 	, and choosing
	min corresponding to the minimum residual value. We cur-
rently have a quadratic line search, suggested to us by
Roth,23 which fits the squared L2 norms of the residuals from
Eq. �49� as this seemed to better match curves in the search
parameter we sampled for testing.

In addition, because n3�x�� is the local packing fraction, it
should never exceed unity. We bound it by 0.9 which allows
us to bound the maximum allowable search parameter 	
since n3 is a linear function,

�n3��1 − 	���0�� + n3�	��1����

� ��1 − 	�n3���0���� + �	n3���1����

= �1 − 	��n3���0���� + 	�n3���1���� � 0.9.

Here, �x��� is the L� norm, which picks the maximum value
of x� in the finite dimensional case. This bound was also
suggest by Roth.23 Finally, we have

	 �
0.9 − �n3���0����

�n3���1���� − �n3���0����

. �51�

We have also experimented with Newton’s method,
forming the action of the Jacobian operator using finite dif-
ferences. The linear systems are solved with GMRES.24 Both
fixed linear system tolerances and those chosen according to
the Eisenstat–Walker scheme were used. However, the New-
ton method was not competitive with Picard due to linear
convergence through most Newton steps and the large cost of
computing the Jacobian action.

B. Numerical stability

With a coarse grid, there is a potential for serious round-
off error when calculating both the average over an ion sur-
face, n2, and the directional average, nV2. From the definition
�7� we have

n2�x�� = 	
i

 �i�x���
i

2�x� − x���d3x�, �52�

=	
i

 �i�x������x� − x��� − Ri�d3x�, �53�

=	
i



S�Ri�
�i�x + r��d� . �54�

Here r�=Ri�sin � cos � , sin � sin � , cos �� and S�Ri� is the
surface of a sphere of radius Ri. Likewise,

nV2�x�� = 	
i

 �i�x���
i

V2�x� − x���d3x�, �55�

=	
i

 �i�x���

r�

r
���x� − x��� − Ri� , �56�

=	
i



S�Ri�
�i�x� + r��

��sin � cos �,sin � sin �,cos ��d� . �57�

Appendix C shows that
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�n2�
�nV2�

� 1. �58�

However, discretization errors in the computation of the last
term of Eq. �10�, or its derivative � /�n	, can combine to
produce large values of this ratio, stalling the nonlinear solve
and leading to unphysical artifacts. These artifacts produce
large density oscillations at sharp corners along the geomet-
ric boundary. These oscillations eventually cause divergence
of the nonlinear iteration and prevent accurate solution of the
equations. We alleviate this problem by enforcing the bound
explicitly.

VI. VERIFICATION

At several points in the calculation, we perform consis-
tency checks of the results. Moreover, we compare our re-
sults to known thermodynamic solutions, in the limit of very
fine meshes. We first check that we recover the fundamental
measures, which are easily computed analytically, when we
compute n	��� with a constant unit density. We also check
that in the bath, n3 is equal to the combined volume fraction
of the ion bath concentrations.

Moreover, we can verify that in symmetric situations,
such as near a hard wall, the solution must be homogeneous
over each plane parallel to the wall. As described earlier,
these consistency checks are satisfied when analytic Fourier
transforms of the weight functions 
i are used, but not using
the FFT or real space methods. We can solve an effectively
1D problem with a wall at z=0 and periodic in each dimen-
sion in order to compare with thermodynamic results. With
purely hard-sphere interactions, we have another consistency
check, namely a relation between the pressure P �Eq. �A5��
in the bath and the density of each species at its distance of
closest approach to the wall �its radius Ri�,

15,25

�P = 	
i

�i�Ri� . �59�

The FMT DFT of hard spheres is known to satisfy Eq. �59�,
but this relation holds only approximately for electrostatic
functionals described here.15

A. Hard-sphere fluids

A very sensitive test for calculations of ionic solutions is
the thermodynamic sum rules, such as Eq. �59�. We use the
relative error in Eq. �59� as the figure of merit to assess the
thermodynamic consistency of our hard-sphere calculations.

A notable advantage of the DFT formulation over par-
ticle simulations, such as a Monte Carlo �MC� for hard
spheres, is that both very low and very high densities can be
handled efficiently with no algorithmic changes. Low densi-
ties are difficult for canonical ensembles, such as canonical
MC or molecular dynamics, because very large systems are
required for accurate statistics. A grand canonical formula-
tion of MC can mitigate the problems for low densities, how-
ever, high densities still result in jamming and high rejection
rates, requiring very long run times. This can sometimes be

repaired using very specialized techniques,26,27 however, cur-
rently these cannot be applied to general systems of the type
we present below.

In order to demonstrate the performance of our algo-
rithm across a range of densities, we simulate a hard-sphere
liquid against a hard wall. The particles have radius 0.1 nm.
In Fig. 1, we show both the simulation time and accuracy
over volume fractions ranging from 10−5 to 0.4. By accuracy,
here we mean the residual with respect to tests of thermody-
namic self-consistency from Eq. �59�. Our results are quite
accurate, and even at liquid densities the calculations done
on a laptop take less than 1.5 h. Note that, although this is an
effectively 1D problem to facilitate verification, the compu-
tation was performed in a full 3D geometry. While special-
ized simulation techniques for hard spheres may compute
this result more rapidly, the purpose of Fig. 1 is to show the
precision and thermodynamic consistency of our code and
also the O�N log N� scaling of compute time with density.
Our goal is to maintain this scaling, even with the addition of
electrostatics.

B. Ionic fluids

Calculation of ionic densities near a hard wall also pro-
vides a sensitive test for the consistency of the DFT method.
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FIG. 1. Both relative accuracy and simulation time are shown for a hard-
sphere liquid of particles with radius R=0.1 nm, where accuracy is for the
thermodynamic self-consistency sum rule of Eq. �59� with pressure calcu-
lated using Eq. �A5�. The domain is divided into cubes which are 0.05
�0.05� .00625 nm3.
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FIG. 2. Comparing 1D and 3D DFT cation concentrations to MC simula-
tions. The wall is uncharged, the cation concentration is 1M, and the ions
are univalent. The 1D RFD DFT is shown with the blue squares, 3D RFD
DFT with blue circles, and MC with green squares.
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In Ref. 15, it is demonstrated that the BF version of DFT
�Eqs. �13� and �14�� provides qualitatively incorrect densities
when the surface charge is low, when compared with the
RFD functional �Eqs. �27�–�34�� and high resolution MC
simulation. We have successfully reproduced the 1D DFT
and MC results with the 3D code, attesting to the correctness
of our approach. Below, we discuss a representative simula-
tion.

For our trial calculation, we examine a salt solution of
univalent ions. The cation has radius 0.1 nm, the anion
0.2125 nm. Each species has a 1M bath concentration. The
simulation cell, 2�2�6 nm3, is periodic in each direction.
A hard, uncharged wall is placed a z=0. We discretize the
density on a 21�21�161 grid. The results are insensitive to
the resolution in the transverse �x−y� directions, but very
sensitive in the normal �z� direction. We verify the homoge-
neity of the solution across x−y planes to machine precision.
In Figs. 2 and 3, we show the excellent match between 1D
and 3D DFT results, with MC results shown for comparison.
The mean electrostatic potential is shown in Fig. 4, also with
good agreement.

The BF calculations are currently much more efficient
than the RFD calculations, needing only 1.5 min compared

to more than a day to run since BF scales as O�N log N�,
whereas the RFD method scales as O�N2� and additional
iterates are needed to obtain a converged reference density.
However, the extra investment of time for RFD computations
is necessary because the BF solution is qualitatively incor-
rect compared to MC simulations.

VII. CONCLUSIONS AND FUTURE WORK

We have presented a full numerical strategy for solving
the 3D equilibrium DFT system. The hard-sphere calculation
accurately reproduces thermodynamic sum rules and agrees
with prior MC simulation. Moreover, using the improved
RFD electrostatic formulation due to Gillespie et al.,8 we can
accurately reproduce electrostatic behavior near a hard wall
for species of differing radii. Thus, the DFT can now become
a powerful tool for full 3D chemical simulation, accurately
capturing both the energetic and entropic contributions to the
solution.

There are also several avenues for improvement of the
RFD algorithm and extension of the capabilities of the cur-
rent code. The dominant cost of this algorithm is the calcu-
lation of the reference density used to describe electrostatic
screening. The current algorithm is very accurate, but re-
quires O�N2� work. Since the Fourier kernel is smooth and
has rapid decay, it should be possible to construct a multi-
resolution analysis of it, resulting in a fast method for appli-
cation. Moreover, the many FFTs performed at each Picard
step could be replaced by unequally spaced FFTs or wavelet
decompositions, which would allow adaptive refinement and
increase the size of problems we can efficiently compute.
The FFT and fast wavelet transform lend themselves readily
to a scalable parallel implementations. In fact, it should also
be possible to offload these transforms onto a multicore co-
processor, such as the Tesla 1060C GPU.28 This will make
large scale simulations of charged hard spheres accessible to
working scientists even on a laptop or desktop computer.
These algorithmic improvements are the focus of current re-
search.
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APPENDIX A: CALCULATION OF THE BATH
CHEMICAL POTENTIAL

Here we describe the formulas for the electrochemical
potential in a homogeneous fluid. Here the DFT for hard
spheres uses a Percus–Yevick equation of state,29 and the
electrostatics is described using MSA.18,19 We follow the
treatment in Ref. 30. The bath chemical potential �i

bath has
two components, hard sphere and electrostatic,
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FIG. 3. Comparing 1D and 3D DFT anion concentrations to MC simula-
tions. The wall is uncharged, the cation concentration is 1M, and the ions
are univalent. The 1D RFD DFT is shown with the blue squares, 3D RFD
DFT with blue circles, and MC with green squares.
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RFD DFT with blue circles, and MC with green squares.

124101-8 Knepley et al. J. Chem. Phys. 132, 124101 �2010�

Downloaded 24 Mar 2010 to 128.187.207.75. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



�i
bath = �i

HS,bath + �i
ES,bath, �A1�

which are calculated thermodynamically,31

�i
HS,bath = kT�− ln � +

3�2�i + 3�1�i
2

�
+

9�2
2�i

2

2�2

+
�Pbath

HS �i
3

6kT
� �A2�

based upon the auxiliary variables, where �i is the ion diam-
eter of species i,

�n =
�

6 	
j

� j
bath� j

n n � �0, . . . ,3� , �A3�

� = 1 − �3, �A4�

and the pressure due to hard-sphere interaction in the bath,

Pbath
HS =

6kT

�
� �0

�
+

3�1�2

�2 +
3�2

3

�3 � . �A5�

The calculation of �i
HS,bath as given above is straightforward,

but �i
ES,bath, on the other hand, is dependent on an implicitly

defined parameter �, the MSA inverse screening length,

4�2 =
e2

kT��0
	

j

� j
bath� zj − �� j

2

1 + �� j
�2

, �A6�

where � represents the effects of nonuniform ionic diameters

� =
1

�

�

2�
	

j

� j
bath� jzj

1 + �� j
�A7�

and � is determined by

� = 1 +
�

2�
	

j

� j
bath� j

3

1 + �� j
. �A8�

This implicit relationship is a quartic equation in �, which
we solve using Newton’s method. We may then calculate the
bath potential

�i
ES,bath = −

e2

4���0
 �zi

2

1 + ��i
+ ��i�2zi − ��i

2

1 + ��i
+

��i
2

3
�� .

�A9�

APPENDIX B: EVALUATION OF THE FOURIER
TRANSFORM OF THE WEIGHTING FUNCTIONS

We must be careful to evaluate our analytic transforms at
the same k� values, in the same order, as those computed
using the particular implementation of FFT we use. Given a
D dimensional grid, the vector �kd� which corresponds to the
vertex �jd� of our Cartesian grid is given by

kd = �
2�jd

Ndhd
, jd �

Nd

2
,

− 2��Nd − jd�
Ndhd

, jd �
Nd

2
,� �B1�

where Nd is the number of grid points in dimension d
� �x ,y ,z� and hd is the grid spacing Ld / �Nd−1�.

We begin with the calculation of 
̂i
2,


̂i
2 = 


0

2�

d�

0

�

d� sin �

0

�

drr2���r� − Ri�e−ık�·x� , �B2�

=

0

2�

d�

0

�

d� sin �Ri
2e−ıRik�·x̂. �B3�

We now choose a rotated coordinate system �the prime sys-
tem� in which k� points purely in the z� direction, in order to
take advantage of the rotational symmetry of the problem. In
the new coordinate system,


̂i
2 = 


0

2�

d��

0

�

d�� sin ��Ri
2e−ıRikz� cos ��, �B4�

=2�Ri
2


0

�

d�� sin ���cos�Rikz� cos ���

− ı sin�Rikz� cos ���� , �B5�

=
4�Ri sin�Rikz��

kz�
, �B6�

which, in the original coordinate system, is


̂i
2 =

4�Ri sin�Ri�k���

�k��
. �B7�

From Eq. �8�, we also have


̂i
0 =

sin�Ri�k���

Ri�k��

̂i

1 =
sin�Ri�k���

�k��
. �B8�

Recognizing that the theta function can be obtained as the
integral of a delta function, we have


̂i
3 = 


0

Ri

dr
̂i
2�Ri=r, �B9�

=
4�

�k��



0

Ri

drr sin�r�k��� , �B10�

=
4�

�k��3
�sin�Ri�k��� − Ri�k��cos�Ri�k���� . �B11�

Following a similar procedure as in the 
̂i
2 calculation, but

keeping track of the vector nature of 
V1 and 
V2,


̂i
V2 = 


0

2�

d��

0

�

d�� sin ��Ri
2e−ıRikz� cos �x̂, �B12�

=− 2�ıRi

0

�

d�� sin �� cos �� sin�Rikz� cos ���k̂z�,

�B13�
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=
− 4�ı

�k��2
�sin�Ri�k��� − Ri�k��cos�Ri�k����k̂ . �B14�

The preceding expressions for 
̂i
	 may be evaluated at �k��

=0, but care must be taken when calculating the limit.

lim
�k��→0


̂i
0 = lim

�k��→0

sin�Ri�k���

Ri�k��
= 1,

lim
�k��→0


̂i
1 = Ri,

lim
�k��→0


̂i
2 = 4�Ri

2,

lim
�k��→0


̂i
3 = lim

�k��→0

4�

�k��3
��Ri�k�� −

�Ri�k���3

6
�

− Ri�k���1 −
�Ri�k���2

2
�� ,

=
4

3
�Ri

3,

lim
�k��→0


̂i
V1 = 0,

lim
�k��→0


̂i
V2 = 0.

It should be noted these are the limits one would expect since
in the �k��=0 case we are simply integrating either a spherical
delta or step function over all space, thereby recovering sur-
face area and volume expressions for a sphere.

APPENDIX C: DIRECTIONAL AVERAGE BOUND

We can bound the directional average of the density over
a sphere in terms of the unweighted average, and thus we can
bound the ratio

�nV2�x��2

�n2�x��2
�C1�

in the calculation of �n� from Eq. �10�. We let ��� ,�� be
the unit vector at the surface of the sphere in the �� ,��
direction. Using Fubini’s theorem and the Cauchy–Schwarz
inequality, we have

nV2
2 �x� = 	

ij



S2
���,���i�x + r�d�

· 

S2

����,���� j�x + r��d��, �C2�

=	
ij



S2�S2
���,�� · ����,���

��i�x + r�� j�x + r��d�d��, �C3�

�	
ij



S2�S2
����,�� · ����,������i�x + r�

�� j�x + r���d�d��, �C4�

�	
ij



S2�S2
����,��������,�����i�x + r�

�� j�x + r��d�d��, �C5�

�	
ij



S2�S2
�i�x + r�� j�x + r��d�d��, �C6�

=	
ij



S2
�i�x + r�d�


S2
� j�x + r��d��, �C7�

=n2
2�x� , �C8�

so that

�nV2�x��2

�n2�x��2
� 1. �C9�
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