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Abstract
Ion transport between two baths of fixed ionic concentrations and applied
electrostatic (ES) potential is analysed using a one-dimensional drift-diffusion
(Poisson–Nernst–Planck, PNP) transport system designed to model biological
ion channels. The ions are described as charged, hard spheres with excess
chemical potentials computed from equilibrium density functional theory
(DFT). The method of Rosenfeld (Rosenfeld Y 1993 J. Chem. Phys. 98
8126) is generalized to calculate the ES excess chemical potential in channels.
A numerical algorithm for solving the set of integral–differential PNP/DFT
equations is described and used to calculate flux through a calcium-selective
ion channel.

1. Introduction

The movement of ions through open ion channels is one of the many interesting physical
chemistry problems presented by living cells. In this paper we describe a system to model
such transport, using it as an example of a theory that may be applied to other problems of ion
flux.

Cells and cell organelles are enveloped by lipid membranes that are nearly impermeable
to physiological ions (mostly Na+, K+, Ca2+ and Cl−). One mechanism for ions to move across
these membranes is through open ion channels, proteins embedded in the membrane that form
ion-selective pores. This type of charge movement is used to conduct electrical signals down
nerves and initiate muscle contraction, to list just two of the many physiological functions of
ion channels [1].

Ion channels are proteins with functional groups that often are the side chains (residues)
of charged amino acids. Enough data on these functional groups and even crystallographic
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Figure 1. Example of a geometry used to model transport through an ion channel. The three-
dimensional system is rotationally symmetric about the x-axis (dashed line). Axial cross-sections
are shown at two different length scales. A lipid membrane (dark-grey area) contains a protein
(black area) that provides a pore that connects the baths on the left and the right. The pore itself
involves a short, narrow cylinder (the ‘selectivity filter’) flanked by conical atria (b). For the
discretized problem (section 6), the three-dimensional geometry is represented by a stack of flat
discs in the selectivity filter and spherical shells in the atria and baths whose axial interval is
increased in proportion to the area of the shells. Panel (a) represents some shells in their actual
geometric locations and spacing for the grid used in the simulations of section 7; further shells
extend to a radius of 1 µm. Panel (b) shows a subset of inner shells (the actual spacing is smaller).
In total, the one-dimensional grid involves a stack of 110 discs and shells, with an increment of
0.02 nm between discs. This mapping of a three-dimensional geometry into one dimension would
be exact for each of the cylindrical, spherical cone or hemispherical regions alone, but becomes
approximate when these regions are joined. The purpose of the nonuniform grid is to represent the
selectivity filter in high spatial resolution while connecting this region to reservoirs of maintained
concentrations and ES potential a macroscopic distance away.

channel structures are now available to apply specific theories of permeation and selectivity.
With such information and theories it is possible to reverse engineer the devices that biologists
observe, not only with the goal of understanding their natural function, but also of controlling
their function beyond biology.

In this paper we describe an engineering approach to selective ion conduction through ion
channels. Specifically, we develop a one-dimensional model of the movement of ions between
two baths of fixed ionic concentrations and applied electrostatic (ES) potentials. The baths
are connected by a single open ion channel whose functional groups are represented as ions
confined to the channel. In this model (unlike some we have studied [2–4]) ions are charged,
hard spheres immersed in a hard-sphere (HS) solvent and uniform, continuum dielectric.
Particle transport is described as friction-limited drift-diffusion with all excess chemical
potentials described by the density functional theory (DFT) of Rosenfeld and colleagues [5–
9]. As an example, we present flux calculations for a simple model of a biological calcium
channel. Although our specific goal is to model ion channels, the system is generally applicable
to one-dimensional modelling of ion transport.

2. Geometry

The geometry of two baths connected by a single ion channel embedded in a membrane is
shown in figure 1. This is the geometry of the most direct experiments [10, 11]. One inherent
difficulty in modelling ion channels is the different length scales, with the nanometer-scale
channel connected to the millimeter-scale baths where boundary conditions essential for the
transport are maintained. Because the flux is controlled in the channel, the resolution must be
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high there. However, the boundary conditions of the problem must be applied far away from the
channel to model the problem correctly. This problem is three-dimensional, but a reasonable
one-dimensional approximation can be developed that still includes the effects of the finite
volume of ions and functional groups of the channel protein. In this section we derive an
approximation that is fine grained in the flux-limiting region (the channel) and coarse grained
in the baths. This approximation allows the problem to be solved on a desktop computer.

Starting in the baths, consider spherical shells that terminate at the lipid and are
perpendicular to the lipid as well as the x-axis (figure 1). The flux of particles is perpendicular
to these surfaces and therefore flux densities scale inversely with the area A(x) of these shells.
(The shells are indexed by their intersection with the x-axis.) This spherical geometry is exact
for each bath alone: ions travelling to and from the channel must converge to a hemisphere
given by the capture radius of the channel. As we move from the baths into the channel,
we continue to assume that particles travel perpendicular to these spherical shells. Below we
shall argue that this is an appropriate approximation inside the channel where the spherical
shells become flat, cross-sectional discs. In the transition regions this approximation is also
valid. For example, in the calculation of the electric field in these transition regions, use of the
spherical shells is equivalent to approximating a flat-bottomed cone by a spherical cone [12].

In the channel itself, it is important to consider the nature of the boundary between the
pore (permeation pathway) and the channel protein that surrounds it. If the protein is described
as a solid by a smooth, rigid wall at the protein/pore interface, then large radial packing effects
are found inside the pore [13] and no mechanical effects extend into the protein. However,
real proteins are not smooth or rigid, and therefore we take a different view of the protein/pore
interface: the atoms of the channel protein are more like a liquid, forming a statistical boundary
with the liquid in the pore. Such a boundary fluctuates around an average and therefore is not
described by a geometric surface at a specific location, but rather by an average cross-sectional
area or pore volume that may be constant or vary with local conditions depending on the
compressibility of the protein [14]. In general, packing in the pore affects the interior of the
protein by changing the local mechanical forces (pressure) inside the channel protein. Here we
consider the case that the protein maintains a constant average cross-section for the pore fluid.

With this model of the protein/pore interface, both the input variables (the dielectric
coefficient and diffusion coefficients) and the output variables (the densities and ES potential)
become approximately constant in the plane perpendicular to the axis of the channel for the
following reasons.

(1) From the HS perspective, the protein spreads the radial influence of the ions in the pore
beyond the cross-section actually filled by the permeating particles in the pore. Any radial
space demands made by the particles in the pore will affect (radially) not only the contents
of the pore, but also the atoms of the protein, which compete for space with the particles in
the pore; atoms inside the protein feel the mechanical effect of the packing of ions in the
pore because mechanical forces inside the pore spread across the interface into the protein.
Seen as only an HS liquid, the combination of the pore and protein is approximately one
continuous liquid.

(2) In our geometric approximation, each cross-sectional disc is an equipotential surface and
therefore there is no electric flux out of the pore; this is formally equivalent to the situation
where the exterior of the pore has a dielectric coefficient of zero. The electric polarizability
of the pore contents and the protein are not known, in particular on the timescale of
ion conduction; in our description it is parametrized. However, because the lipid has a
dielectric coefficient of approximately 2, as we move from the pore through the protein
to the lipid, the zero-dielectric-coefficient approximation becomes better and better.
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(3) In the calcium channel described in section 7 and other channels we shall consider in
future work, there are such large densities of structural and permeating ions inside the
pore that the screening length becomes less than half the average radius of the pore.
Brownian dynamics studies have shown that under this condition the induced charge at
the protein/pore interface does not introduce a significant ES energy penalty for ion entry
into the pore [15], supporting the geometric approximation used here.

Our representation of the protein/pore interface is not just a means to obtain a one-
dimensional approximation. We suggest that in future two- or three-dimensional calculations
the protein should be modelled to include the two basic features discussed above: the HS
interactions extend from the pore into the interior of the protein whereas the ES interactions are
essentially confined to the pore. The definition of the pore boundary follows the electrostatics.

3. Modelling ion flux

We describe steady-state flux by the constitutive law

−Ji = 1

kT
Di (x)A(x)ρi(x)

dµi

dx
(1)

and the continuity equation

d Ji

dx
= 0; (2)

that is, for particle species i , the (constant) flux Ji is proportional to the particle density ρi (x)

and the gradient of the electrochemical potential µi(x). A(x) is the area of the spherical shells
described in the previous section. This model was recently derived from a Poisson–Langevin
system [16].

The electrochemical potential consists of the ideal component µid
i (x), the excess

component µex
i (x) from particle interactions and the concentration-independent component

µ0
i (x):

µi (x) = µ0
i (x) + µid

i (x) + µex
i (x) (3)

with

µid
i (x) = zi eφ(x) + kT ln

(
ρi (x)

ρscale

)
(4)

where φ(x) is the local ES potential, zi is the valence of species i and ρscale is some
characteristic number density. µ0

i (x) is, for example, a hard-wall potential. With these
definitions, equation (1) can be rewritten as a Poisson–drift-diffusion (Poisson–Nernst–Planck,
PNP) system:

−Ji = Di (x)A(x)

[
dρi

dx
+

1

kT
ρi (x)

(
zi e

dφ

dx
+

dµ0
i

dx
+

dµex
i

dx

)]
(5)

d Ji

dx
= 0 (6)

− 1

A(x)

d

dx

(
ε(x)A(x)

dφ

dx

)
= e

∑
i

ziρi(x) (7)

where ε(x) is the local dielectric coefficient. In this paper we consider the special case

ε(x) = constant (8)
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so the Poisson equation we use is

− ε

A(x)

d

dx

(
A(x)

dφ

dx

)
= e

∑
i

ziρi (x). (9)

Position-dependent dielectric coefficients will be considered in future work.

4. Density functional theory

To calculate the excess chemical potentials µex
i we use the DFT of Rosenfeld [6, 7]. We start

by separating the grand potential into ideal (id), HS and ES components:

�({ρk(x)}) = �id({ρk(x)}) + �HS({ρk(x)}) + �ES({ρk(x)}) (10)

with

�id({ρk(x)}) = kT
∑

i

∫
ρi (x)

[
ln

(
ρi (x)

ρscale

)
− 1 +

zi e

kT
φ(x) +

1

kT
[µ0

i (x) − µi (x)]

]
dx.

(11)

The excess chemical potential µex
i (equation (3)) is then the sum of the HS and ES components

µex
i = µHS

i + µES
i (12)

where

µHS
i (x) = δ�HS({ρk(x

′)})
δρi (x)

(13)

and

µES
i (x) = δ�ES({ρk(x

′)})
δρi(x)

. (14)

The DFT describes equilibrium systems and thus our use of it in a steady-state transport
system requires the approximation of local equilibrium. This approximation was validated by
Frink et al [17] who compared such a DFT-based description of diffusion in a HS fluid with
grand canonical molecular dynamics simulations.

4.1. Hard-sphere component

For the HS component, we use the ‘antisymmetrized’ excess free energy density [8,
equation (27)] because it is the best currently available for particles in confined geometries:

�HS({nα(x)}) = −n0 ln(1 − n3) +
n1n2 − nV 1nV 2

1 − n3
+

n3
2

24π(1 − n3)2

(
1 − nV 2nV 2

n2
2

)3

(15)

with

�HS({ρk(x)}) =
∫

�HS({nα(x
′)}) dx′ (16)

where

nα(x) =
∑

i

∫
ρi(x

′)ω(α)

i (x′ − x) dx′ (α = 0, 1, 2, 3, V 1, V 2) (17)

ω
(2)

i (r) = δ(|r| − Ri) (18)

ω
(3)
i (r) = θ(|r| − Ri ) (19)

ω
(V 2)
i (r) = r

|r|δ(|r| − Ri ) (20)

4π R2
i ω

(0)
i (r) = 4π Riω

(1)
i (r) = ω

(2)
i (r) (21)

4π Riω
(V 1)
i (r) = ω

(V 2)
i (r) (22)
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and Ri is the radius of species i . δ is the Dirac delta function and θ is the unit step function,
θ(x > 0) = 0 and θ(x � 0) = 1. Then the HS component µHS

i of µex
i is given by [6, 7]

µHS
i (x) = kT

∑
α

∫
∂�HS

∂nα

(x′)ω(α)

i (x − x′) dx′. (23)

The integrals in equations (17) and (23) simplify in the slab geometry. By analytically
integrating over two components of the three-dimensional vector x and assuming that the
functions ρi (x) and ∂�HS/∂nα(x) are constant over these two components, these integrals
become [7]

nα(x) =
∑

i

∫ x+Ri

x−Ri

ρi (x ′)W (α)
i (x ′ − x) dx ′ (24)

µHS
i (x) = kT

∑
α

∫ x+Ri

x−Ri

∂�HS

∂nα

(x ′)W (α)
i (x − x ′) dx ′ (25)

where

W (2)
i (r) = 2π Ri (26)

W (3)

i (r) = π(R2
i − r2) (27)

W (V 2)
i (r) = 2πr(1, 0, 0) (28)

4π R2
i W (0)

i (r) = 4π Ri W
(1)
i (r) = W (2)

i (r) (29)

4π Ri W
(V 1)

i (r) = W (V 2)

i (r). (30)

4.2. Electrostatic component

For the ES component µES
i of µex

i we use a generalization of Rosenfeld’s method [7] of
expanding �ES in a functional Taylor series in powers of

�ρi (x) = ρi (x) − ρref
i (x) (31)

where ρref
i (x) is a given, nonuniform reference density profile. Then, up to second order,

�ES({ρk(x)}) ≈ �ES({ρref
k (x)}) +

∑
i

∫
µES

i ({ρref
k (x)})�ρi(x) dx

− kT

2

∑
i, j

∫ ∫
c(2),ES

i j (x,x′)�ρi (x)�ρ j(x
′) dx dx′

−
∑

i

zi e
∫

ρi (x)φ(x) dx (32)

where c(2),ES
i j is the ES component of the second-order direct correlation function of the

reference fluid [7]. Equation (14) gives [7, 9]

µES
i (x) = µES

i ({ρref
k (x)}) − kT

∑
j

∫
c(2),ES

i j (x,x′)�ρ j (x
′) dx′ − zi eφ(x). (33)

4.2.1. Reference fluid component. In Rosenfeld’s implementation [7] the reference fluid was
the bulk (homogeneous) fluid that was in equilibrium with the inhomogeneous fluid. In the
study of ion channels this will not suffice, however, as the regions of the system are very
diverse. Channels are embedded in a membrane that separates two bulk fluids whose ionic
concentrations are different, experimentally controlled, and can range from <1 µM to 2 M.
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More importantly, inside the channel there is a very high density of charges from the amino acid
residues of the channel protein. These attract equally high concentrations of counter-charge
with the total concentration of tens of molar. Thus, each section of the geometry has a different
‘intrinsic’ reference fluid composition.

To define the reference densities ρref
k (x) for all species (permeating and confined) assume

that some densities ρ∗
k (x) and an estimate of the screening length at every point s∗(x) are given.

(These will later be determined by a self-consistency iteration.) From these given densities
we shall construct a reference fluid that is charge neutral and described by average, non-local
densities.

To determine the ρref
k (x), we start by defining

ρ̄k(x) = Aρ∗
k (x) (zk � 0) (34)

and

ρ̄k(x) = ABρ∗
k (x) (zk < 0) (35)

with the constants A and B determined by requiring the {ρ̄k(x)} to be charge neutral and to
have the same ionic strength at each location x as the {ρ∗

k (x)}; that is, we require that

0 =
∑

k

zk ρ̄k(x) (36)

and ∑
k

z2
k ρ̄k(x) =

∑
k

z2
kρ

∗
k (x). (37)

These conditions give

A =
∑

k z2
kρ

∗
k (x)∑

zk�0 z2
kρ

∗
k (x) + B

∑
zk<0 z2

kρ
∗
k (x)

(38)

and

B =
∑

zk�0 zkρ
∗
k (x)∑

zk<0 |zk |ρ∗
k (x)

. (39)

The ρref
k (x) are then defined as spatially averaged ρ̄k(x):

ρref
k (x) =

∫
ρ̄k(x

′)w(x′,x) dx′ (40)

where the weight function w is a normalized form of the volume weight ω
(3)

i (equation (19)):

w(x′,x) = θ(|x′ − x| − Rfilter(x))
4π
3 R3

filter(x)
. (41)

The radius of the sphere over which we average is an approximation of the ES length scale,
namely the capacitance radius (that is, the ion radius plus the screening length):

Rfilter(x) =
∑

k ρ̄k(x)Rk∑
k ρ̄k(x)

+ s∗(x). (42)

The averaging produces a kind of non-local reference density, removing discontinuities that
may have been in the {ρ̄k(x)}. Furthermore, because we use the same filter and filter length
for each species k, the resulting {ρref

k (x)} are charge neutral at every point since the {ρ̄k(x)}
are.
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To calculate the ES excess chemical potential of the reference fluid, we apply the MSA
for bulk fluids at every point [18]. This not only results in values for µES

i ({ρref
k (x)}), but also

for the screening length, which we now redefine as

s(x) = 1

2(x)
(43)

where (x) is the MSA parameter  that has been calculated at every point x. This then
defines the capacitance length of each ion species:

λk(x) = Rk + s(x). (44)

In this procedure, the approximate screening length s∗(x) is used to calculate the reference
densities {ρref

k (x)}, and from these densities the corrected screening length s(x) is calculated.
At each point this screening length can be substantially different from the original s∗(x) and
therefore we iterate the screening length to self-consistency with the following method.

(1) Starting with {ρ∗
k (x)} and s∗(x), calculate the starting (zeroth) values {ρref

k (x)0} and s(x)0

as described.
(2) Using the original {ρ∗

k (x)} but the mth screening length s(x)m , calculate {ρref
k (x)} as

described.
(3) Define the (m + 1)th reference fluid densities {ρref

k (x)m+1} as

ρref
k (x)m+1 = ρref

k (x)m + αρref
k (x)

1 + α
. (45)

We found α = 1 to work well.
(4) If

max
x

|s(x)m − s(x)m−1| � 10−5 nm, (46)

then the iteration is stopped.

At the end of the iteration, we obtain the reference fluid densities {ρref
k (x)} and the

screening length s(x) that is consistent with those densities as well as µES
i ({ρref

k (x)}). These
values are then used in the PNP/DFT calculations. We have not, however, specified how to
choose the input densities {ρ∗

k (x)} from which the reference fluid densities are calculated. This
will be done in section 4.3 where we describe an algorithm to iterate the solution of the entire
PNP/DFT system to self-consistency by choosing the {ρ∗

k (x)} to calculate better and better
reference fluid densities {ρref

k (x)} by the method described in this section. For flux problems
we found that to have the PNP/DFT iterate to self-consistency (section 4.3), it was necessary
to use screening lengths consistent with the reference fluid.

4.2.2. Non-reference fluid component. Calculating the second term of equation (33) requires
the correlation function of the reference fluid c(2),ES

i j (x,x′). We start by approximating the
direct correlation function with the MSA [19]:

c(2),ES
i j (x,x′) = − 1

kT
ψi j (x,x′) (47)

if

|x − x′| > Ri j = Ri + R j (48)

where ψi j(x,x′) is the interaction potential of two point particles with charge zi e and z j e
located at x and x′, respectively. In the case of uniform dielectric coefficient,

ψi j (x,x′) = zi z j e2

4πεε0

1

|x − x′| . (49)
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Since [9] ∑
j

∫
ψi j (x,x′)ρ j (x

′) dx′ = zi eφ(x), (50)

we have

µES
i (x) = µES

i ({ρref
k (x)})

−
∑

j

∫
|x−x′|�Ri j

(c(2),ES
i j (x,x′) + ψi j (x,x′))�ρ j (x

′) dx′ (51)

where the core-overlap ES correlations remain to be determined. Our choice for this ES
correlation function is an approximation of the analytic bulk MSA ES correlation function [20]
given by Blum and Rosenfeld [21, equation (56)] that the ES correlation function c(2),ES

i j is the
negative of the interaction potential of two spherical shells �i and � j with each �k having
uniformly smeared charge equal and opposite that of the ion species k and radius λk , the
capacitance radius of ion species k defined by equation (44). With this ansatz,

kT c(2),ES
i j + ψi j(x,x′)

= − zi z j e2

8πεε0

1

|x − x′|
(

|x − x′|λi + λ j

λiλ j
− |x − x′|2

2λiλ j
− (λi − λ j )

2

2λiλ j

)
. (52)

In the slab geometry, equation (51) then becomes

µES
i (x) = µES

i ({ρref
k (x)}) −

∑
j

zi z j e2

8εε0

1

λiλ j

∫ x+Ri j

x−Ri j

ci (x ′)( 1
3 R3

i j + λ2
i j Ri j − λi j R2

i j

+ λi j(x ′ − x)2 − 1
3 |x ′ − x |3 − λ2

i j |x ′ − x |) dx ′

(53)

where

λi j = λi + λ j . (54)

4.3. Iterating to self-consistency

The choice of reference fluid is particularly important because it must be close enough to
the final solution of the system that �ρk(x) is small so that the expansion of the ES grand
potential (32) is valid. We achieve this by iteration on the choice of reference fluid. A guess at
the solution serves as the initial set of {ρ∗

k (x)} from which the reference densities are calculated
as described in section 4.2.1. The initial screening length s∗(x) is set to zero everywhere. The
system of equations is solved using this reference fluid and the screening and capacitance
lengths defined in equations (43) and (44), respectively. The densities from this solution then
become the {ρ∗

k (x)} for the next iteration cycle. After two iterations we observe no significant
differences in the solutions. For the results shown in this paper we used three iterations.

4.4. Tests of the solution method

To ensure that our DFT method is valid, we compare our results for an equilibrium problem
with Monte Carlo (MC) simulations [22, 23]. In the simulations, two compartments of different
ionic compositions are equilibrated in the primitive model. In the left bath is a 24 M solution
of half-charged oxygen ions that is confined to that compartment by a hard-wall potential. In
the right bath is a 0.1 M ionic solution. We conducted three separate tests with CaCl2, NaCl
or KCl in the right compartment.
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Figure 2. Test of the DFT for a two-compartment equilibrium problem. In the left compartment
(x < 0) was a 24 M fluid of half-charged oxygen ions. In the right compartment (x > 0) was 0.1 M
of CaCl2. The diameters are Ca2+ 0.198 nm, Cl− 0.362 nm and O1/2− 0.28 nm. The concentrations
after equilibration for O1/2−, Ca2+ and Cl− are shown in panels (a), (b) and (c), respectively. In
each panel is shown the reference concentration of the ion (dashed curve) used in the final iteration
loop (section 4.3). The + symbols represent the results of MC simulations.

For these test simulations, the equations are solved as described below (section 6) except
that because the test is an equilibrium problem we do not solve the Nernst–Planck equations (5),
but rather

µk(x) = µk (55)

where the total electrochemical potential µk was given for each ion species k. The results of
the simulations (shown in figures 2 and 3) are quite good. In order to achieve this close match,
it was essential that the ES correlation function (equation (52)) and the spatial averaging of
the reference densities (equation (40)) accounted for the substantial variations of the screening
length between the two compartments (in the case of NaCl, 0.167 nm in the left compartment
and 1.08 nm in the right compartment); otherwise the density variations in the boundary layer
were poorly reproduced.

The particular ions and concentrations are chosen to approximate the calcium channel for
which we later calculate current/voltage curves (section 7). We vary the cation species so that
the accuracy we obtain bears directly on our ability to model ion selectivity.
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Figure 3. Tests of the DFT for a two-compartment equilibrium problem. (a) The same simulation
as in figure 2 except with 0.1 M NaCl in the right compartment with Na+ given a diameter of
0.19 nm. (b) The same simulation as in figure 2 except with 22.8 M O1/2− in the left compartment
and 0.1 M KCl in the right compartment with K+ given a diameter of 0.266 nm.

Although we do not show them here, in separate tests, we also compared our
equilibrium DFT calculations using a uniform reference fluid with previously published MC
simulations [23, 24]. The comparisons were excellent.

5. Modelling the selectivity filter

Ion channels are proteins that can control permeation by placing some of their amino acid
residues into the pore where their groups interact as tethered but otherwise mobile particles
with the permeating particles (both ions and solvent). It is these residues (many of which
are charged) that confer the selectivity properties of the channel. For example, in the L-
type calcium channel, there are four highly conserved glutamate (E) residues (the ‘EEEE’
locus) in the ‘selectivity filter’ that produce the large physiological selectivity of calcium over
sodium and potassium [25–27]. Voltage-gated sodium channels, on the other hand, have
other conserved amino acids, namely aspartate (D), glutamate, lysine (K) and alanine (A) (the
‘DEKA’ locus). Furthermore, if these are mutated to DEEE, then the channel becomes calcium
selective under physiological conditions [28, 29].

In equilibrium studies, these essential ‘structural charges’ have been modelled as ions
that are allowed to move freely inside the selectivity filter, but are confined there; they cannot
partition into the baths on each side of the channel [14, 29–32]. We use the same approach
here. Because these ions never reach the electrodes in the bath, they do not contribute to the
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measured current; each confined species j is in equilibrium:

∇µ j = 0. (56)

It is not a priori known what the value of the chemical potential µ j is. What is known,
however, is that the number of particles of each confined species j (N j ) is fixed. Therefore,
in conjunction with equation (56), for each confined species we solve the equation∫

ρ j (x) dx = N j (57)

where the integral is over the region of confinement. In our geometry, this becomes∫ xR

xL

A(x)ρ j(x) dx = N j ; (58)

the range of confinement is from xL to xR (the range of the selectivity filter).
Structural particles that are ions contribute to the electric field and therefore are also

included in the Poisson equation (9) that calculates the ES potential experienced by the
permeating ions. However, because there is a small number of confined particles, if the
mean ES potential from equation (9) were used to calculate the electrochemical potential of
the confined particles, then each confined particle would interact with a field that includes a
contribution from the particle itself. This is a problem inherent to the mean-field approach,
but one that is significant only when there are a finite number of ions of one species. The
problem is best seen if one species consists of a single particle; if that ion is included in the
mean electric field that acts on that single ion, then the calculation is incorrect because the
ion acts directly on itself. In calculations without a correction, the density of a single charge
repels itself and assumes an obviously artifactual spatial distribution.

We alleviate the error introduced by such self-interaction by calculating the
electrochemical potential of the confined particles with a different ES potential for each
confined species that applies only to that confined particle species. Specifically, in the
calculation of µ j , the ES potential φ j for confined species j is calculated from the modified
Poisson equation

− ε

A(x)

d

dx

(
A(x)

dφ j

dx
(x)

)
= e

∑
k �= j

zkρk(x) + ez j
N j − 1

N j
ρ j (x) (59)

where the density of confined species j is reduced by ρ j(x)/N j to approximately eliminate
the self-interaction.

6. Numerical implementation

The inputs to the problem are the left and right far-bath concentrations of the permeating
particles (ions and solvent), the applied ES potential and the number of structural (confined)
ions, as well as the radii and diffusion coefficients of all particles and the dielectric coefficient.
The outputs are the densities of all particles (permeating and structural) and the ES potential,
both as functions of location. These are found by simultaneously solving equations (5), (6),
(9), (25), (53), (56), (57) and (59). After these have been solved, fluxes are computed from an
integrated Nernst–Planck equation (5):

Ji = exp
(

µi (L)

kT

) − exp
(

µi (R)

kT

)
∫

exp
(

µi (x)

kT

)
[ρi (x)Di(x)A(x)]−1 dx

(60)

where the integral is over the entire system and µi (L/R) are the given left (L) and right (R)
bath chemical potentials.



Coupling Poisson–Nernst–Planck and density functional theory to calculate ion flux 12141

6.1. Discretization

The grid we choose is nonuniform because the baths are necessarily much longer than the
channel to which the structural charges are confined and, because the baths are of fixed
concentration far from the channel, do not require the high density of grid points that the
channel does where the functions are changing rapidly. In the channel we choose a grid with
uniform spacing of 0.02 nm. (Numerical tests showed no significant differences when smaller
spacings were used.) The spacing of the nonuniform grid outside the channel is chosen to be
proportional to A(x), the area available for flux (figure 1) [4].

The differential equations (5), (6), (9) and (59) are rewritten as follows before they are
discretized:

0 = d

dx

[
Fi (x)

d

dx

(
ui +

zi e

kT
φ(x) +

1

kT
µ0

i (x) +
1

kT
µex

i (x)

)]
(61)

ui (x) = ln[ρi(x)] (62)

Fi (x) = Di (x)A(x)

minx{Di(x)A(x)} exp[ui(x)] (63)

− εε0kT

e2d2ρscale

1

A(x)

d

dx

(
A(x)

dφ

dx

)
=

∑
i

zi exp[ui(x)] (64)

where all densities have been scaled by Avogadro’s number (NA) per litre (1 M) with

ρscale = 1000NA (65)

and all lengths have been scaled by the system length d . (Equation (59) may be rewritten in a
similar form as equation (64).)

Both the recast Nernst–Planck equation (61) and the recast Poisson equation (64) have
the same form for the derivatives:

d

dx

(
f (x)

dy

dx

)
. (66)

We discretize this derivative on the interior points of the grid {x0 = 0, x1, x2, . . . , xN−1,
xN = 1} by

d

dx

(
f (x)

dy

dx

)
≈ 2

hm + hm+1

[
fm+ 1

2

dy

dx
(xm+ 1

2
) − fm− 1

2

dy

dx
(xm− 1

2
)

]
(67)

≈ 2

hm + hm+1

[
fm + fm+1

2

ym+1 − ym

hm+1
− fm−1 + fm

2

ym − ym−1

hm

]
(68)

= ( fm + fm+1)(ym+1 − ym)β1,m − ( fm−1 + fm)(ym − ym−1)β−1,m (69)

where

fm = f (xm) (70)

ym = y(xm) (71)

βm,−1 = 1

hm(hm+1 + hm)
βm,1 = 1

hm+1(hm+1 + hm)
(72)

hm = xm − xm−1. (73)

This is finally rewritten as

d

dx

(
f (x)

dy

dx

)
≈ β−1,m( fm−1 + fm)ym−1 − [β−1,m( fm−1 + fm)

+ β1,m( fm + fm+1)]ym + β1,m( fm + fm+1)ym+1. (74)
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All functions are specified on the boundary nodes x0 and xN , either because the function
has been specified for all grid points (the diffusion coefficients, for example) or because of
boundary conditions for the problem (the densities, for example). Thus these derivatives are
defined on the interior grid points, x1, . . . , xN−1.

The integrals in equations (24), (25) and (53) have a similar structure and thus the
integration scheme we choose is the same for all three. These integrals are over the range
x − r to x + r with different r for each integral. x is always a grid point, but r is a radius and
because of the nonuniform grid and different ion sizes, it not generally true that x − r or x + r
are grid points. Thus it is necessary to be able to evaluate these integrals at points between
two grid nodes. We do this by dividing the integral into a sum of integrals, with each new
integral ranging over two consecutive grid points or the last grid point to the endpoint of the
original integral. Since in equations (24), (25) and (53) one of the functions can be written
as a polynomial in the integration variable x ′, each new integral in the sum can be evaluated
analytically by assuming that the other function in the integral (ρi (x ′) or ∂�HS/∂nα(x ′)) is a
linear function in x ′ between consecutive grid nodes.

The remaining equations to be discretized are equations (56) and (57) for the confined
particles. Let xML and xMR be the left and right grid nodes, respectively, on and between which
the structural particles are confined. Then equation (56) is discretized as

0 = µ j (xm) − µ j (xm+1) (75)

for ML � m � MR − 1. For the last grid node of confinement xMR , we apply equation (57).
Because this integral is always evaluated only in the region where the grid spacing is uniform
and small, we discretize this with the trapezoidal rule.

6.2. Solving the discretized system

After the system of equations is discretized, the values of ui(xm) = ln[ρi(xm)] for all permeant
species i and φ(xm) remain to be determined at all interior grid points (m = 1, . . . , N − 2), as
well as u j (xm) = ln[ρi (xm)] and φ j(xm) for all confined species j at all grid points to which they
are confined (m = ML , . . . , MR). We solve the system of discretized equations using Newton’s
method [33] because of its square-convergenceproperties, because it is possible to analytically
evaluate the Jacobian (derivative) matrix of the discretized equations, and, most importantly,
because iterative methods that did not update all variables at every iteration did not converge, or
required a very large number of iterations. Using Newton’s method with a poor initial guess, 30
iterations are typical with a total calculation time of one to two minutes on a desktop machine,
depending on the number ion species. Many fewer iterations (four to ten) are necessary when
a better initial guess is available, for example when calculating a current/voltage curve. Then
a good initial guess is a previous solution of the system with a different applied voltage.

Because of the specific functional dependence of the equations, it is possible to write the
Jacobian matrix as a band matrix. Furthermore, without the discretized version of equation (57)
the band becomes significantly more narrow. Because equation (57) is a solution condition
for equation (56) and is only used once for each confined species, it is more efficient to solve
the Jacobian matrix equation for each Newton iteration in two steps, first solving the narrow
band matrix without equation (57) using an LU decomposition for band matrices [33] and
finally solving the complete Newton matrix equation with the Sherman–Morrison–Woodbury
method [33]. The Newton iteration was stopped when the absolute value of the largest
difference between the same variable from two consecutive iterations was <10−8.
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Figure 4. For these simulations of a calcium-selective channel the structural particles are eight
half-charged oxygen ions confined to the selectivity filter as described in the text. The diffusion
coefficient profiles of the permeating particles (Ca2+, Na+, Cl− and H2O) are piecewise constant
profiles that are filtered using a 0.2 nm Gauss filter to produce a smooth profile. In the bath
and pore, the piecewise constant diffusion coefficients are Ca2+ 7.9 × 10−10 and 10−13 m2 s−1,
Na+ 1.33 × 10−9 and 3.25 × 10−12 m2 s−1, Cl− 2.03 × 10−9 and 3.25 × 10−12 m2 s−1, H2O
2.13× 10−9 and 2.13 × 10−11 m2 s−2. The particle diameters are Ca2+ 0.2 nm, Na+ 0.2 nm, Cl−
0.362 nm, O1/2− 0.28 nm and H2O 0.28 nm. The dielectric coefficient is 78.4 everywhere. In the
experiment, there is 0.1 M NaCl in both baths and CaCl2 is added to the right bath. The results at
[Ca2+] = 10−7 M (dotted curves), 10−5 M (short-dashed curves), 10−3 M (long-dashed curves)
and 10−1 M (solid curves) are shown for a −50 mV applied ES potential. (a) The ES potential.
(b) Water concentrations. (c) Oxygen concentrations. (d) Calcium concentrations. (e) Sodium
concentrations. (f) Chloride concentrations. Only the concentrations of the permeating ions vary
substantially as Ca2+ is added, which is also reflected in the changing ES potential. The grey-
shaded zone marks the cylindrical part of the channel (1 nm). The profiles 1 nm outside the grey
zone were compressed, resulting in apparent discontinuities in some profiles.

7. Example: a calcium channel

To give an example of a flux system, we model a calcium-selective channel. In this channel, the
structural particles are four fully charged glutamate residues such as those found in the L-type
calcium channel [4, 14]. We model each glutamate residue by the carboxyl group at its
end. Each of these carboxyls we describe as two unbonded, half-charged oxygen ions that are
confined with a hard-wall potential to the cylindrical selectivity filter (channel) of radius 0.4 nm
and length 1 nm. In the outer quarters of the filter, an extra linear repulsive potential (µ0

Ox(x)) is
applied to further confine the oxygens to the middle of the filter, withµ0

Ox changing 1 kT/0.1 nm.
Throughout the system we assume that the dielectric coefficient is uniform with ε = 78.4,

the value for pure water. Previous studies have estimated that inside the channel an dielectric
coefficient of approximately 10 is needed to have the channel select calcium in the micromolar
range as the real protein does [14]; the choice of a uniform dielectric coefficient will cause
our simulated channel to be less selective than the real channel. Furthermore, these studies
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Figure 5. The current/voltage relations for the ionic conditions used in figure 4. The logarithms
of the Ca2+ concentration in the right bath are indicated near the curves.

showed that including water as uncharged, hard spheres gives significantly different results
than using the primitive model, and therefore in the current simulations we also include water
in this way. The values of the other external parameters are listed in the legend of figure 4.

For this channel we simulate the classic selectivity experiment of the L-type calcium
channel in which the left and right baths contain 100 mM NaCl and CaCl2 is added to the right
(extracellular) bath [34–36]. In figure 4 are shown the ES potential and concentration profiles
of H2O, O1/2−, Ca2+, Na+ and Cl− for different CaCl2 concentrations in the right bath. As
CaCl2 is added, Na+ is displaced from the channel, with 1 mM of Ca2+ displacing most of the
Na+. The model channel is calcium selective over sodium.

The exchange of the cations is accompanied by small redistributions of the oxygen ions
and substantial changes in the ES potential. The potential in the pore is much less negative
with Ca2+ than with Na+ as the dominant counterion. Since the mean ES potential in the pore
reflects both the applied potential (−50 mV in the case shown in figure 4) and the screening of
the oxygens by the two counterions, Na+ and Ca2+, this indicates that screening by Ca2+ in the
pore is stronger than screening by Na+. The other permeating particles, Cl− and water, play
smaller roles in the selectivity; Cl− is excluded by the channel in the presence of either cation
while the water density in the channel is complementary to that of the oxygen ions (which
occupy much of the volume).

Figure 5 shows current/voltage relations for the four Ca2+ bath concentrations used in
figure 4. The currents for the two smallest Ca2+ concentrations (10−7 and 10−5 M) are almost
linear, whereas those found in larger calcium concentrations (10−3 and 10−1 M) are nonlinear.
The nonlinearity is due to a varying occupancy of the filter by Ca2+; more Ca2+ enters the pore
when a negative potential is applied to the left (intracellular) bath and attracts Ca2+ from the right
(extracellular) bath into the pore. Ca2+ in this example has been assigned a smaller diffusion co-
efficient than Na+ in the pore; thus currents carried by Ca2+ are smaller than currents carried by
Na+. The pattern of currents shown in figure 5 corresponds qualitatively to that seen in biolog-
ical calcium channels, but Na+ is displaced at higher Ca2+ bath concentrations than in the bio-
logical channel. Our model as described gives substantial calcium selectivity, but other aspects
(such as a low dielectric coefficient in the pore) are needed to fully model the natural channel.
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8. Conclusion

We have developed a model to calculate ion flux through ion channels (although the model is
more general) and an algorithm to solve it. The model is computationally inexpensive while
at the same time representing essential features of both the ions (charge and excluded volume)
and the channel protein (charged residues that interact with the permeating particles while
not maintaining a fixed, hard structure around the pore). An application to a simple model
of a calcium-selective channel shows that the charge/space competition created by ions in a
confined geometry results in significant selectivity of Ca2+ over Na+.
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