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Preface 

Around 1960 Joe Hirschfelder wrote an essay outlining what he felt were 
the three unsolved problems in theoretical chemistry. I think that he called 
them bottlenecks. One of the bottlenecks was the lack of a satisfactory 
theory of liquids. If a theoretical physicist were to have made in 1960 a 
similar list of bottlenecks in theoretical physics, the list would undoubt
edly have been different. However, it is quite likely that the need for a 
satisfactory theory of liquids would have appeared on this list also. 

In any case, the past quarter century has seen a dramatic increase in 
our understanding of homogeneous or bulk liquids. However, our un
derstanding of inhomogeneous liquids (liquids near interfaces or confined 
liquids) is less satisfactory. Since the feature that distinguishes a liquid 
from a dense gas is the presence of an interface, one might argue that 
even our understanding of homogeneous liquids is incomplete without an 
understanding of inhomogeneous fluids. It is for this reason that many of 
us who worked earlier on the theory of homogeneous liquids have turned 
our attention to inhomogeneous liquids. Indeed, van der Waals, after 
developing his theory of liquids, almost immediately turned his attention 
to interfaces. 

A further reason for an interest in inhomogeneous liquids is that many 
of the technological processes that involve liquids occur at interfaces. A 

ill 
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few examples that come to mind are corrosion, oil recovery, and colloidal 
stability. 

I have used the term inhomogeneous fluids rather than inhomogeneous 
liquids in the title so as to include such interesting and important topics 
as the wetting of a surface by a gas. Furthermore, the distinction between 
a liquid and a dense gas is somewhat artificial. Also, in lattice models, 
there is a reciprocity between the liquid and vapor phases. This reciprocity 
is mirrored, at least approximately, in the real world. 

There has been considerable progress in the past decade in the de
velopment of the theory of inhomogeneous fluids. Thus, it seems timely 
to bring out a book outlining this progress. The emphasis here is on theory, 
although experimental work is referred to in the book. In fact, one chapter 
is devoted to wetting experiments. 

The book is divided into thirteen chapters, each written by a recognized 
expert. Rowlinson begins with a historical introduction written with the 
insight that only he can provide. Jim Henderson discusses exact sum rules 
for inhomogeneous fluids, many of which he derived. Evans and I outline 
the two main theoretical tools in the theory of inhomogeneous fluids, 
density functional, and integral equation techniques, respectively. Jan
covici discusses his exact solutions for two-dimensional homogeneous 
plasmas, and Blum and I discuss the recent progress, mostly based on 
integral equations, in the theory of interfacial electrochemistry. 

Franck discusses wetting experiments-the viewpoint of an experi
mentalist is complementary and of interest. The theory of wetting (the 
modern theory of adsorption) is also described in some of the other chap
ters (see the chapters of Jim Henderson and Evans, in particular). Lozada
Cassou describes confined liquids, mostly electrolytes, largely using the 
integral equations he has obtained. 

Next, phase transitions (mostly first-order) are considered. Haymet 
discusses freezing with an emphasis on quantum systems. His view is 
that a solid is a highly inhomogeneous fluid. Although this likely would 
not be a useful basis for solid-state theory, it seems useful as a description 
of solids in equilibrium with a liquid and provides the first really useful 
theory of freezing. Oxtoby discusses homogeneous nucleation in liquid
vapor and solid-liquid transitions. Marko completes this trilogy with a 
discussion of liquid crystal transitions. The treatment of these three chap
ters uses the density functional approach discussed by Evans. 

The final two chapters are those of Dawson and Mundy on self-organ
izing liquids and of Davis on kinetic phenomena in inhomogeneous fluids 
using a modified Enskog theory. Unfortunately an author who was invited 
to write a chapter on computer simulations did not submit his manuscript. 
Its lack is compensated for by the fact that many of the authors in this 
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volume make references to and comparisons with computer simulations 
in their own chapters. 

I want to thank the chapter authors, who made many suggestions that 
improved this volume. I hesitate to single out any of them, but Tony 
Haymet and Jim Henderson were especially helpful. Much of the orga
nization of the book was done while I was a visiting professor at the Scuola 
Normale Superiore in Pisa, Italy, in the spring of 1989. I am grateful to 
this institution and to Dr. Alessandro Tani for many kindnesses. 

Lastly I want to thank my wife, Rose-Marie. The production of a book 
goes through three phases: initial excitement at the enterprise, frustration 
with the delays and necessary drudgeries, and finally relief that the busi
ness is finished. I am grateful for her bemused tolerance as I passed 
through these phases. 

Douglas Henderson 
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Development of Theories of 
Inhomogeneous Fluids 

J. S. Rowlinson 
Oxford University 
Oxford, Great Britain 

I. INTRODUCTION: LAPLACE'S THEORY OF THE 
SHARP INTERFACE 

From the earliest days of physical science it must have been clear that 
matter in thin films and at surfaces differed in its properties from the same 
matter in bulk. The "natural philosophers" of the seventeenth and eigh
teenth centuries were curious about both the optical and mechanical prop
erties of surface films, as, for example, the interference colors of New
ton's rings and the damping of the waves on the sea by a film of oil, a 
subject that interested Benjamin Franklin, among others. The first of these 
effects to be tackled quantitatively was that of capillarity-the rise of 
water (and the depression of mercury) in narrow tubes or, in its more 
practical aspect, the rise of sap in trees. This apparent defiance of the 
laws of gravity was correctly perceived to arise from cohesive forces 
between the ultimate constituents of matter that were not gravitational in 
origin. Francis Hauksbee, Newton's assistant at the Royal Society, 
showed this convincingly by observing that the capillary rise of water 
depended only on the internal diameter of the tube and was independent 
of the thickness of its walls. The force responsible must therefore be of 
short range and act essentially only between the layers of liquid and solid 
that are in contact. As well as this cohesive force it was realized that 

1 
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there were other, presumably weaker, forces that acted within the body 
of the liquid since, as James Jurin (1719) and A. C. Clairaut (1743) ob
served, drops of liquid that are too small for their shape to be influenced 
by gravity are spherical. J. A. Segner ( 1751) synthesized these and similar 
observations into the concept of surface tension. 

The nature of the cohesive forces was, of course, unknown and was 
to remain so until this century, but speculation was not lacking. John 
Keith (1709) proposed an attractive force that varied as r- n, where n 
exceeded the Newtonian value of 2. More complex schemes were devised 
by John Rowning (1735) and Rudjer Boskovic, or Roger Boscovich (1758), 
who suggested alternating zones of attraction and repulsion around each 
particle, arranged in such a way that the separations at which the force 
is zero, corresponded to the densities of the material in its solid, liquid, 
and gaseous forms. Such speculation had outrun the evidence, for there 
was no theory to link these hypothetical forces with their physical or 
macroscopic consequences. It was probably because of this lack that the 
second half of the eighteenth century saw little further advance. At the 
beginning of the nineteenth century two men independently rescued the 
subject from its stagnation, Thomas Young [1] in London and Pierre 
Simon Laplace [2] in Paris. Many of their conclusions were the same, but 
those of Young are less accessible since in his early papers, he expressed 
his results in words rather than in symbols and equations, and in his later 
papers he was still using old methods of handling the calculus which makes 
his work hard to follow. This short account is, therefore, based substan
tially on that of Laplace and, indeed, it was his work which, for the same 
reasons, was more influential later in the century. 

Laplace calculated the force between two bodies of liquid with planar 
parallel walls and separated by vapor of negligible density. He knew that 
the forces between the molecules must be short-ranged on a human scale 
but he assumed, nevertheless, that their range was long compared with 
the mean separation of the molecules. This assumption has now become 
a formal requirement in some molecular theories of matter and has been 
given the name of the mean-field approximation. It has played an im
portant, and often controversial, role in physics for nearly 200 years. 

With this approximation he did not have to worry about the actual 
distribution of the molecules in the liquid but could assume that it was 
uniform, that is, that they were distributed at random. His result for the 
attractive force per unit area between two surfaces in contact, K, is most 
easily expressed in modern form in terms of the potential energy, <p(r), 
of a pair of molecules at a separation r. This potential energy is related 
to the force between the pair, J(r), by - f(r) = d;:p(r)ldr. If <f>au(r) < 0 
and <f>att(oo) = 0, then f(r) < 0; that is, the force is attractive. Laplace's 
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result for the attractive force per unit area of two slabs of liquid in contact 
can be expressed as 

(I) 

where p is the number of molecules per unit volume, d the range of the 
intermolecular potential, and O" a cutoff distance for the attractive poten
tial. He showed also that the work done per unit area to separate the two 
slabs of liquid to a separation d (or greater) is given by 

H (2) 

Since two surfaces have been created, this quantity is twice the excess 
energy per unit area of the liquid surface and hence twice the liquid-gas 
surface tension; H 2·/R. The cohesive energy density of the liquid, or 
energy per unit volume. is - 2K, and the "internal pressure" inside a 
spherical drop of radius R is K + (H/R), a quantity that is not directly 
accessible to experiment. The difference of the observed pressure inside 
and outside the drop is accessible and is given by what we now call La
place's equation, 

p' (3) 

If a liquid touches a solid, similar arguments can be used to obtain 
expressions for the two surface tensions, -ysR and "( 51

• These are related 
to the angle e between the liquid-gas and the liquid-solid surface by 
Young's equation, 

(4) 

These two equations, of Laplace and Young, suffice to solve all common 
problems of capillarity, such as the rise (or fall) of liquids in narrow tubes, 
the shapes of liquid surfaces in contact with solid surfaces, the shapes of 
systems of bubbles, and so on. 

This achievement was an important success in the Laplacian (or New
tonian) program of obtaining the physical properties of matter from the 
microscopic interparticle forces. The very success of the theory provoked 
a more detailed examination from which several difficulties emerged. The 
first was the nature of the repulsive forces that are needed to balance the 
postulated attractive forces in a system at equilibrium. Laplace, a believer 
in the caloric theory, at first ascribed the necessary repulsion to heat, a 
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view that received some support from the observation that most liquids 
expand on heating. In his later work (1819 onward) he came around to 
the view that the strength of these caloric-induced repulsions must fall 
off more rapidly with distance than the attractive forces, as Boskovic and 
others had deduced earlier. The second mechanical difficulty was the 
structure of the supposed equilibrium array of stationary particles. It was 
not difficult to envisage how a crystal might be constructed by packing 
together in a regular way a large number of molecules of simple shape, 
but there could be no such geometrical picture of a liquid. This, again, 
was a problem that could not be tackled within the essentially static model 
of Laplace, and its solution had to await the development of a kinetic 
theory of matter later in the century. 

A third and more subtle problem concerned the size of the postulated 
molecules and the range of the forces between them. Young observed 
that since the integral H has a factor of r 3 and the integral K, a factor of 
r 2

, the ratio 2HIK is a measure of the effective range of the potential, 
'Pau(r). We have seen that H is twice the surface tension, so is easily 
measured, but that K, the cohesive energy density, is not directly mea
surable. Young estimated it for water at 25 kbar (in modern units), prob
ably by an argument based on the compressibility of the liquid. He de
duced that the effective range of 'Pau(r) is therefore about 1 X l0- 10 m, 
a figure that we now know to be low only by a factor of about 5. He then 
went on, wrongly, to identify this distance with the mean molecular sep
aration in steam on the point of condensation, since he thought that this 
was the distance at which the attractive forces must start to act if they 
were to bring about condensation. Since liquid water is more than lOOO 
times denser than steam at its normal boiling point, he was able to con
vince himself that the mean molecular separation in liquid water is many 
times smaller than the range of the cohesive forces, and so justify the use 
of the mean-field approximation. 

We have seen how the early enthusiasm for Newton's physics in the 
first half of the eighteenth century led to many attempts to explain the 
properties of gases and liquids in terms of interparticle forces, and how 
this enthusiasm faded in the second half of the century when the program 
failed to produce quantitative results. The work of Laplace and the Arceuil 
school in France gave the field a renewed vigor that lasted for about 25 
years. From about 1830 onward, however, the effort faltered again for 
the same reason-no significant new results were forthcoming. It was not 
until the creation of the mechanical theory of heat and of kinetic theory 
and the development of thermodynamics that the next round in the theory 
of liquids and their surfaces could be opened. 
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II. VANDER WAALS' THEORY OF THE DIFFUSE 
INTERFACE 

5 

In 1869, Dupre [3] recalculated the internal energy density, -K, of La
place's theory. He called this quantity le travail de desagregation totale, 
a name that reflected the way in which it was calculated-by calculating 
the force needed to remove the particles in the surface layer of a liquid, 
one by one. A particle that is within a distanced of the surface experiences 
a net inward attraction because of the lack of spherical symmetry in its 
surroundings. Although his result was correct (within the mean-field ap
proximation), his argument is flawed since a system that contains particles 
on which there are unbalanced forces cannot be at equilibrium, so the 
liquid cannot have the sharp surface that he and Laplace had supposed. 
This flaw was, in fact, pointed out by Poisson [4], a follower of Laplace. 
in 1831, but he had then gone on to deduce, incorrectly, that if a sharp 
surface were replaced by a diffuse one. of thickness comparable with the 
range d, the surface tension would vanish. His fault lay in an implicit 
assumption that it is possible to define unambiguously the local values of 
a thermodynamic function in terms of the local values of other functions, 
as in a homogeneous system. A systematic application of this argument 
does, indeed, lead to the vanishing of the surface tension, but the argument 
itself is correct only if the attractive forces are of zero range, and it is 
this circumstance that is responsible for the vanishing of the surface ten
sion, as is seen from Eq. (2) in the limit of d ~cr. A less restrictive view 
of the local thermodynamics of inhomogeneous systems was needed be
fore an interface of nonzero thickness and forces of nonzero range could 
be reconciled with a nonzero value of the surface tension. 

Three men, apparently independently, found the natural way of gen
eralizing this restricted view to a more general or nonlocal thermody
namics of an inhomogeneous system. They were Karl Fuchs [5} at Press
burg (now Bratislava, in Czechoslovakia), Lord Rayleigh [6], who worked 
mainly in his laboratory at his home at Terling in Essex in Britain, and 
J. D. van der Waals [7] in Amsterdam. The theory put forward by Fuchs 
and by Rayleigh was still in the tradition of Laplace in that it was purely 
a mechanical treatment of the problem; it ignored the motions of the 
molecules or, in thermodynamic terms, it used an energy where a free 
energy was more appropriate. Vander Waals was the first to realize the 
importance of this distinction. 

Fuchs observed that since the attractive force has a nonzero range, 
molecules in a surface layer will influence, and be influenced by, other 
molecules that are in a fluid of quite different local density. Hence the 
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average energy at a given point, r, so also the average value of the local 
pressure, will depend not only on the density p(r) but on its gradient and 
higher derivatives. If we have a flat surface in the xy-plane, these deriv
atives can be written p'(z), p"(z), and so on. For obvious reasons of 
symmetry, there cannot be a term linear in p'(z), and Fuchs was the first 
to show that the excess of the tangential or horizontal component of the 
pressure over the vertical component at height z can therefore be ex
pressed as 

llp(z) = - fh{p(z)p"(z) - [p'(z)F}l (5) 

where 

I = - J r 3 f ( r) dr (6) 

and where f(r) < 0 is the force between two molecules at separation r. 
He took this result no further. but a simple integration over z gives for 
the surface tension, 

f
+= 

-= llp(z) dz (7) 

This last step was taken by van der Waals in a short communication to 
the Academy of Sciences that was published in 1889 and in his definitive 
paper of 1893 [7], and, in 1892, by Rayleigh [6). 

Vander Waals opens his treatment by introducing at once the condition 
that the free energy is a minimum in a system of fixed mass, volume, and 
temperature. He makes free use of the hypothetical continuous isotherm 
that passes smoothly through the two-phase region. The usefulness of this 
curve had been guessed first by James Thomson in 1871 [8) after the 
publication of Andrews's classic experiments on the critical point of car
bon dioxide, and it had become accepted as a useful construct after its 
use in van der Waals' thesis in 1873 [9]. The results of van der Waals can 
be expressed simply by introducing first the Gibbs dividing surface of 
zero adsorption. This divides the liquid from the gas at an arbitrary height 
zo defined by 

J:, [p(z) - p1·1?J dz = 0 (8) 

where p1
•8 is p1 for z < zo and pg for z > zo. A local excess free-energy 

density 'l'(z) can then be defined as the sum of two terms, 

'l'(z) = ll$[p(z)J + !m[p'(z)f (9) 

where A$ is the amount by which the free-energy density on the contin-
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uous (Thomson-van der Waals) isotherm exceeds that of the two bulk 
phases at the same overall density, which is 

\j!t p(z) - Pg + \jig P1 
- p(z) 

PI pg p' - pg 

He showed that the coefficient m is the fourth moment of the attractive 
part of the intermolecular potential, 

m 21r I 4 3 r 'Pau(r) dr (10) 

and so differs only by a numerical factor of 30 from Fuchs's integral/ of 
Eq. (6). Vander Waals obtained the surface tension from the integral of 
the excess free-energy density defined with respect to the Gibbs dividing 
surface of zero adsorption: 

(11) 

The two terms in Eq. contribute equally to the surface tension. 
This "square-gradient" theory of van der Waals was wholly within the 

mean-field approximation. all tluctuations are ignored, and it gives rise 
to a classical critical index: 

-y ( T' ~ T)!k (12) 

It was, however, the most satisfactory theory of the surface layer between 
gas and liquid to be put forward until modern times. Its impact was limited 
by the general loss of vitality of the field of liquid state physics after I9I4 
[10], so that its results were rediscovered independently many years later, 
as will be discussed below. 

Ill. INTERFACES BETWEEN SOLUTIONS OF 
ELECTROLYTES 

At the end of the nineteenth century the word solution usually meant an 
aqueous solution of an electrolyte, that is, an acid, a base, or a salt. At 
the same time as Fuchs, Rayleigh, and van der Waals were developing a 
theory of the liquid-gas interface, Nernst [I I] and Planck [12} were taking 
up the problem of the junction between two aqueous solutions of elec
trolytes, which could be either solutions of different substances or of the 
same substance at different compositions. Such an interface differs fun
damentally from the liquid-gas interface, for it cannot be at equilibrium; 
diffusion of the electrolyte must slowly bring about complete mixing and 
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the junction will disappear. Nevertheless, diffusion in liquids is slow com
pared with the time needed to establish an almost stationary distribution 
of ions, so Nernst and Planck were justified in using quasi-thermodynamic 
arguments. Their work was contemporary with that of Fuchs and of van 
der Waals' first note, but there is no evidence that either set of workers 
knew of or was influenced by the other. Nernst and Planck phrased their 
argument in terms of the force generated by a gradient of osmotic pressure 
which is balanced by that of the electric field. A modern route to the same 
result (e.g., that of Macinnes [13}) considers the flow of ions into and out 
of an infinitesimal layer of the interface. The potential of the liquid junc
tion, EL> between two phases. a and ~- is given by 

RT lex t-EL = -- :l::~dlna; 
F iJ '"' 

(l3) 

where t1, z1, and a1 are the transport number. number of electronic charges, 
and activity of the ion of species i. 

This expression is not without its problems. There is the question of 
the meaning to be attached to single-ion activities since these cannot be 
measured-a restriction that was not fully appreciated until this century. 
A characteristically forthright expression of our inability to determine 
single-ion chemical potentials and electrode potentials was given by Gug
genheim in 1929 [14). The restriction arises from the need to preserve 
electrical neutrality. If, however, the junction is between two solutions 
of the same electrolyte, for example a uni-univalent electrolyte in a cell 
in which the electrodes are reversible to the anion, then, since t + + t 
= l, we have 

RTJ~' RTJ~' 
EL = F a dIn a- - 2 F « t + dIn a"' (14) 

where a~ = a+ a_ , the square of the mean ionic activity, which is mea
surable. The first term is the contribution to the emf of the cell from the 
two electrodes, so the last term is the electromotive force (emf) of the 
whole cell. 

Matters are less simple if we have a junction between two different 
electrolytes. Even if we are willing to make an assumption about single
ion activities (e.g., that a+ = a_ = a=), we still cannot integrate Eq. 
(13) without knowing more about the concentration gradients of the ions 
in the interface and how ti depends on the local concentration. The last 
problem can be solved by auxiliary experiments, but the problem of the 
gradients of ionic concentration requires a further ad hoc assumption. 
Planck took this assumption to be what we now call a boundary zone of 
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constrained diffusion, which can be envisaged as the zone established by 
diffusion in the pores of a plug, the two faces of which are washed by the 
two homogeneous phases sufficiently rapidly for the concentration at each 
face to be constrained to be that of the appropriate bulk phase. The form 
of equations to which this gives rise are set out in an appendix in 
Macinnes's book [13]. 

A simpler assumption, made later by Henderson [15], seems to agree 
as well with experiment. He assumed that the composition of each point 
in the boundary zone was that of a fraction of y of phase a and fraction 
(l - y) of phase !). He assumed further that y is a linear function of 
distance from either of the faces of the zone, although it was later found 
that this assumption was redundant. (It is a curiosity that many years 
later, and in ignorance of Henderson's work, I made exactly the same 
assumptions about the composition profile of the boundary Ia yer between 
a binary liquid mixture and its vapor in order to calculate the surface 
tension [16].) 

IV. ELECTRICAL DOUBLE LAYER 

The surface between an electrode and a solution of an electrolyte is an 
inhomogeneous system that can be at true equilibrium and so can be 
treated with more precision than the liquid-liquid junction between two 
solutions in a common solvent. The treatment of an interface at true equi
librium might, at first sight, be expected to owe something to the earlier 
work of Laplace or of van der Waals on the liquid-gas surface, but the 
long range of ionic forces means that the dominant structures are quite 
different and, at first, the theoretical treatments had nothing in common. 
It is only in recent times that the theoretical methods have converged, as 
both have been grounded more thoroughly in modern statistical mechan
tcs. 

Helmholtz [ 17] was the first to realize that a charged metal plate im
mersed in a solution of an electrolyte would have as its neighbor a zone 
in which the ions were predominantly of the opposite charge, thus forming 
a double layer. He defined the moment of this layer as the product of its 
thickness D and the density of positive (or negative) electricity within it, 
e. He envisaged, however, that D was of molecular dimensions, so that 
the electrolytic part of his double layer comprised more an adsorbed layer 
of ions than a diffuse zone that is thick by comparison with the size of 
any one ion. Billiter [18] realized that the double layer need not be con
fined to one layer, or even few layers, but would spread out into the bulk 
of the liquid phase. He spoke of "a dissociation of the double layer" (19] 
but did not develop a theory for calculating its thickness and structure. 
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That task was undertaken independently by Gouy in Lyon in 1910 [20] 
and by Chapman in Oxford in I 913 [21]. Each treated the problem in the 
same way and their two papers are remarkable, even by the standards of 
the day, in that neither of them has a single reference. 

The diffuseness of the layer arises from the opposing effects of the 
electric force from the electrode, which tends to make the layer thin, and 
the combination of the repulsive forces between the ions and of their own 
diffusive motion from places of high density to those of low density (then 
generally called the osmotic force), which tends to make the layer thick. 
If the layer is sufficiently thick, we can, as a first approximation, assume 
that the ions are of negligible size. 

Their method of tackling the problem is to assume that the concentra
tion profile of the ions satisfies two equations. The first of these is Pois
son's equation of electrostatics, 

div grad V{r) 
p(r) 

=- (15) 
E 

where p is the density of charge at position r, E the permittivity of the 
solution (taken to be independent of r), and V the electric potential. The 
second equation is Boltzmann's distribution for ions in an external po
tential V: 

, [- Z;e V(r)J 
n;(r) = n; exp kT (16) 

where n;(r) is the concentration at r of ions of species i which carry a 
charge of z;e, and nt' is the concentration at infinite distance from the 
electrode where V is zero. Since 

p(r) = ,L n;(r)z;e (17) 

we have 

I [-z·eV(r)J V2 V(r) = -; ~ nt'z;e exp ~T (18) 

which is the Poisson-Boltzmann equation, the most used equation in the 
theory of inhomogeneous electrolytic solutions. It is not exact because 
the Boltzmann distribution is correct only for ions of zero size and with 
no forces between them other than the Coulomb forces. Moreover, the 
solvent is treated as a continuous dielectric medium, not as a collection 
of discrete molecules that exert forces on the ions and on each other. 
Nevertheless, the Poisson-Boltzmann equation embodies much of the 
essential physics of the problem, at least for dilute solutions. 
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It is convenient to depart from strict historical order and consider first 
the linearized equation obtained by assuming that V is small and hence 
that the exponential can be expanded to give 

(19) 

where 

K 
e (2: z/nt) 112 

i EkT 
(20) 

The parameter K 
1 has the dimensions of length and is a measure of the 

thickness of the double layer. This equation was used in 1923 by Debye 
and Hiickel [22] to determine the potential and the concentration of ions 
around a chosen ion in a dilute solution. The problem is one of spherical 
symmetry for which the operator has the form 

\7 2 = !f_ + (2/r)d 
dr 2 dr 

(2l) 

so V(r) has the form that is now usually called a Yukawa potential [23]: 

zeK 1 
V(r) =-- e Kr (22) 

E Kr 

where z is the charge on the central ion and where the constants of in
tegration have been chosen so that V(r) approaches its Coulomb valuef "~ 
as r becomes infinite. /£ ~$ ..._ao<.J 

For a flat surface, as considered by Gouy and Chapman, it is not nec
essary to linearize the Poisson-Boltzmann equation. The operator \7 2 now 
takes the simple form d 2 I dx 2

, where x is the distance perpendicular to the 
planar electrode. For a single symmetrical electrolyte, z1 = Z+ = z_ = 
z, we have the equation 

d 2 V(x) = 2zenoo sinh zeV(x) (23) 
dx

2 
E kT -"~-!"""".' 

of which the integral with the appropriate boundary conditions is 
J,j· "~('-,. 

zeV(x) zeVo 
tanh -w = tanh 

4
kT e KX (24) 

where vo is the potential at the surface of the electrode (x = 0). Gouy 
wrote this as 

uoi/2 uol/2 + 1 
KX = In --'=;-1-:::

12
-- - In _cc.-=---

u - u 1n + 1 
(25) 
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where u n +In+"", that is, the relative excess of cations, and u0 is the 
value at x = 0. Clearly, u0 < I if the plate carries a positive charge ( V 
> 0), and u 0 > I if it is negative, and vice versa for the anions since n + n 

X 2 =n+n- n. 
The Gouy-Chapman theory and Poisson-Boltzmann equation on 

which it is based, like many simplest approximations, have virtues that 
can easily be lost when attempts are made to improve them. Equations 
(23) to (25) satisfy, for example, the conditions of mechanical equilibrium 
at all points in the diffuse layer. Nevertheless, the imperfections of the 
Gouy-Chapman theory and, more particularly, of its linearized version, 
the Debye-Huckel theory, have been recognized from the earliest days. 
The best known formal analyses of the Debye-Hiickel theory were those 
of Fowler [24], Onsager [25], and Kirkwood [26]. 

The first significant attempt to improve the Gouy-Chapman theory was 
based on the recognition by Stern [27] that the nonzero size of the ions 
prevented their centers from reaching the actual surface of the electrode, 
and so prevented the surface concentration of counterions reaching the 
impossibly high figures that could result from the Gouy-Chapman equa
tion. He assumed that there would be an adsorbed layer of counterions 
whose density he calculated from arguments similar to those used earlier 
by Langmuir [28] for calculating the extent of adsorption of molecules at 
uncharged surfaces. This adsorbed layer of counterions is now usually 
known as the Stern layer. Much later, Bikerman [29) proposed a correc
tion for the nonzero size of the ions in the diffuse layer by introducing a 
co-volume, b, but did not attempt to calculate the consequences of his 
proposal. Since the two assumptions of a linearized Boltzmann distri
bution and a co-volume are reminiscent of the two assumptions behind 
the van der Waals equation of state of homogeneous fluids, it is of interest 
to see what is the corresponding result for an inhomogeneous electrolyte 
solution. This point is explored briefly in an appendix to this chapter. 
Dutta and Baggchi [30] and, independently, Eigen and Wicke [31] pro
posed similar modifications of the Debye-Huckel equation. 

These attempts at improvement are, however, all without formal theo
retical foundation. Modern work has developed in two directions. The 
first is based on the critical work of Kirkwood and others and led in 1951 
to the so-called modified Poisson-Boltzmann equation of Loeb [32], 
which has been developed further by Levine and Outhwaite [33]. The 
second has been the introduction into these fields of the integral equations 
used first for homogeneous and uncharged liquids, such as the Yvon
Born-Green and hypernetted chain integral equations. With these de
velopments we reach the modern era, and so subjects of later chapters 
of this book. 
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One field of application of the theory of the diffuse layer should, how
ever, not go unnoticed. This is the theory of the forces between colloidal 
particles, which is based, in part, on the behavior of two interacting double 
layers. Earlier work on this subject, such as that of Langmuir [34], Der
jaguin and Kussakov [35], and Levine [36], was, as has been said, "con
flicting on some essential points, even on the important question of 
whether the double layer interaction produces attraction or repulsion'' 
[37]. The matter was due to have been thrashed out at the Faraday Society 
Discussion in Cambridge in September 1939, but that meeting was never 
held, although many of the papers and a little of the discussion by cor
respondence were published [38]. The classic work on this problem, which 
resolved many of these difficulties and paved the way for more recent 
work that is firmly grounded in statistical mechanics, was that carried out 
in the Netherlands during World War II by Verwey and Overbeek and 
published by them as a monograph in 1948 entitled Theory of the Stability 
of Lyophobic Colloids [37]. 

V. VIRIAL EXPRESSIONS AND FUNCTIONAL 
EXPANSIONS: THE MODERN ERA 

From its earliest development in the 1880s up to World War II the prop
erties of solutions of electrolytes were at the center of what had become 
known as physical chemistry. The field has developed continuously since 
the war, although it has never regained the leading position it had in that 
subject during the 1920s and 1930s. In contrast, the theory of uncharged 
liquids and solutions, which was a flourishing branch of physics until 
World War I, became something of a backwater until after World War II 
[10]. In consequence, the theory of inhomogeneous liquids did not make 
any significant advance beyond the square-gradient theory of the liquid
gas interface of van der Waals for nearly 60 years. This theory itself was 
reinvented by Landau and Lifshitz in 1935 [39] to treat the formally similar 
problem of the interface between two magnetic domains, and by Mitsui 
and Furuichi in 1953 [40] for that between two ferroelectric domains. In 
1958, Cahn and Hilliard [41] independently derived the results again for 
the liquid-gas surface in a treatment of nucleation, but although they 
quote, in a different context, results from the relevant papers of Rayleigh 
and van der Waals, they did not recognize at first that their results were 
essentially those of van der Waals. 

The foundations of the modem treatment of interfaces can be seen in 
two developments that it is not too farfetched to regard as the completion 
of the programs of Laplace and van der Waals. The first was the devel
opment of an exact virial expression for the surface tension. It had long 
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been recognized that the tension depended on a difference in the interface 
between the normal and the tangential components of the pressure tensor. 
For a plane interface, 

(26) 

The use of this expression requires an exact statistical mechanical expres
sion for the components of the pressure tensor. This was given first in 
1949 by Kirkwood and Buff [42] and, in a different form, by Irving and 
Kirkwood [43]. There is more than one way of tackling this problem, so 
PT(z) is not a unique function, although the integral (26) is invariant to 
this lack of uniqueness. One of the versions of PT(Z) is now usually as
sociated with the name of Harasima [44]. The normal component, p N(Z), 
is, by the condition of mechanical equilibrium, a constant at a planar 
interface and equal to both p 1 and pg, the pressures in the liquid and 
gaseous phases. The result obtained by substituting these statistical me
chanical expressions for the pressure tensor into the integral in (26) is the 
so-called virial expression for the surface tension. It can be regarded as 
the exact result to which the treatment initiated by Laplace led, even if 
the path to this result took over 140 years to accomplish. 

A natural corollary of this result is the Yvon-Born-Green (YBG) equa
tion, which is obtained by differentiating with respect to the position of 
particle 1 the statistical mechanical expression for p(rJ) in an inhomo
geneous system: 

(27) 

where V(r 1) is the external potential at r 1 , and p<2l(r 1 ,r2 ) is the two-body 
distribution function. In a homogeneous fluid each term vanishes (the 
integral by symmetry) and the first nontrivial YBG equation is the second 
member of the hierarchy in which the left-hand side is kTV 1p(2l(r 1 h) 
and the integral is over the three-body distribution function p<3l(r1 ,rz, r3). 
For obvious reasons, early users of these equations paid more attention 
to this equation than to Eq. (27), the one-body equation. 

Yvon [45] was the first, in 1935, to use such equations, although Kirk
wood [46] obtained an equivalent two-body equation the same year. There 
were later independent derivations in 1946 by Born and Green [47] and 
by Bogoliubov [48]. Because of these many independent works the hi
erarchy of equations is sometimes known as the YBG and sometimes as 
the BBGKY hierarchy. 
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The second foundation of the modern treatment of interfaces has been 
the method of functional expansions of the distribution functions. It is 
this approach that was described above as the natural end of the line of 
development opened by Fuchs, Rayleigh, and van der Waals with the 
square-gradient approximation. It is a necessary feature of this early work 
that it postulates the existence of thermodynamic functions of states of 
the fluid that have no independent equilibrium existence, such as a ho
mogeneous fluid state of a density between that of the orthobaric gas and 
liquid states. A similar freedom in statistical mechanical theory to suppose 
the existence of functionals of distribution functions of states not at equi
librium came much later, but has proved to be equally fruitful. Such func
tionals were introduced in 1960 by Lee and Yang [49] and by Green [50], 
and were soon applied to the statistical mechanics of inhomogeneous 
systems by Morita and Hiroike [5 I], De Dominicis [52], Stillinger and 
Buff [53], Lebowitz and Percus [54], Mermin [55], and Ebner and Saam 
[56]. 

Such functionals are at extrema when their arguments, the distribution 
functions, take their equilibrium values, and the values of the functionals 
then correspond to the equilibrium value of a thermodynamic potential 
such as For 11. If p<Nl(rN) denotes an arbitrary N-body distribution func
tion in the canonical ensemble which is normalized so that 

J p<N>(rN) drN = N! (28) 

thus we can define a functional of p<NJ that becomes the free energy when 
p(Nl becomes p<Nl, the equilibrium distribution function; this functional 
is 

The first two functional derivatives of '!J' can be obtained by using two 
equations obtained by Yvon in 1958 [57]. The equations are 

(30) 

and its inverse, 

(31) 

where h<2> and c<2> are the total and direct correlation functions between 
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points r1 and r2 • The functional derivatives of '!F are 

(32) 

(33) 

where fL is the chemical potential. The derivatives are taken in the equi
librium state, so these results can be used to expand '!F about its value 
for a uniform system in powers of llp(r) = p(r) - Pu· A first approxi
mation to the excess free energy per unit area of a liquid-gas interface 
follows from this expansion [58,59] and leads again to the square-gradient 
approximation to the surface tension of Eq. (II) but with the coefficient 
m now given not by Eq. (10) but by 

m(p) 
2
; kT J r 4 c<2>(r;pu) dr (34) 

where c<2>(r;p") is the direct correlation function in a uniform fluid of 
density Pu. This result is the modern justification for the square-gradient 
approximation. It differs from the original version in that m becomes a 
function of density, and, moreover, one that is not well defined, for two 
reasons. The first is that c<2>(r;p) is an unknown function if p is a hy
pothetical uniform density between p1 and pg, and second, because (34) 
diverges at the critical point. The two results, old and recent, are, in fact, 
close in their predictions for the surface tension since a well-known es
timate for c<2>(r), 

at larger (35) 

is familiar as the mean-spherical approximation [60]. 
In view of these uncertainties it is fortunate that there are other lines 

of argument that lead to an exact expression for the surface tension in 
terms of the direct correlation function of the real inhomogeneous fluid. 
This expression can be obtained in several ways, such as the change in 
the grand potential n that arises from an increase in surface area caused 
by a fluctuation in density, or from the change of pressure in the liquid 
needed to transform a planar interface into a spherically curved one. This 
last method uses Eq. (31), the second ofYvon's two equations. The result 
is 

'Y = ~kT J:"" p'(zt) dzt J (x~ + yDp'(z2)c<2>(r 1,r2 ) dr2 (36) 

This result was obtained first by Yvon in 1948 and reported by him at a 
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meeting in Brussels that year but was never formally published. It was 
obtained independently by Triezenburg and Zwanzig in 1972 [61] and 
again by Lovett et al. in 1973 [62]. Like most exact equations it suffers 
from the disadvantage that the essential function c<2l(r1 ,r2) is generally 
not known, and attempts to guess it are apt to lead to a result close to 
the approximate equation, (ll) with (34). 

The two expressions for the surface tension, Eq. (26) with the appro
priate expression for the pressure tensor, and Eq. (36), are very different. 
The first is not restricted to a sharp interface, although it is easy to show 
that for such an interface and with the mean-field approximation for the 
liquid the virial expression of Kirkwood and Buff reduces to that of La
place. The second obviously takes into account explicitly the diffuseness 
of the interface, but its relation to the virial expression is not obvious. 
Schofield [63] was the first to show the equivalence of the two expres
sions; Waldor and Wolf [64] have recently rederived the same result by 
a different method. 

It is, perhaps, appropriate to close this chapter by noting that the es
sential feature of a theory of inhomogeneous fluids is the need to account 
explicitly for the "nonlocal" character of all properties. By this is meant 
that the property of the fluid at any point r is determined not only by the 
local density at r, p(r), and by the local temperature T and the local 
chemical potential f.L (the last two being constant throughout a system at 
equilibrium) but also by the properties of the fluid near but not at r. We 
can distinguish three levels of accuracy. First the nonlocal character is 
ignored, so that the free-energy density 'I' (for example) is held to be a 
function only of the two independent variables T and p(r): 

'l'(r) 'l'[p(r); T] (37) 

This was the assumption made by Poisson which led him to conclude that 
a diffuse interface has a vanishing surface tension. It was made again in 
modern times by Tolman [65] and by Ono and Kondo [66]. 

The next level of accuracy is that of Fuchs, Rayleigh, and van der 
Waals, in which 

'l'(r) 'l'[p(r), Vp(r); T] (38) 

This leads to the square-gradient approximation and is still a useful ap
proximation for some purposes. 

Finally, we have the formally exact results, exemplified by Eq. (36), 
in which the free-energy density is a function of the properties of the fluid 
at two points and the correlation between these points: 

(39) 
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The range over which the nonlocality must be considered is the so
called correlation length in the fluid, which is generally a measure of the 
range of the intermolecular forces. Near the critical point, however, it 
grows to macroscopic size, so a classical treatment that does not account 
accurately for the extent of this growth leads to a significant error in its 
description of how the surface tension vanishes at that point. 

APPENDIX 

Bikerman [29] proposed that Eq. (16) be replaced by 

n;(r) * 
_ bn(r) = n; exp[- z;e V(r)lkT] (Al) 

where 

(A2) 

and ni is a constant which, for a single symmetrical electrolyte, can be 
written 

n: = n* = ~ n""(l - bn"") 1 

The charge density is given by 

p(r) = ze[n+(r)- n_(r)] 

zen= sinh(y(r)] 
1 + 2bnoo sinh2[y(r)/2] 

1 X 
zn (A3) 

(A4) 

(A5) 

where y(r) (or y, for simplicity) is ze V(r)lkT. In the Gouy-Chapman treat
ment, p0 , the charge density at the plate rises exponentially with I V0 I, 
the surface potential, but here it is restricted by the sizes of the ions to 
maximum value of I zelb 1- One integration of the Poisson-Boltzmann 
equation gives 

( dy)
2 

= 2K~ In (t + 2bn"" sinh2 ~) 
~ . bn 2 

(A6) 

The total charge in the diffuse layer is proportional to the potential gra
dient at the electrode: 

a = ekT (dy) 
ze dx o 

= [2~T In ( l J 
1/2 

+ 2bn"' sinh2 ~) 
(A7) 
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Since x- 1 ln(l + x) 5 1, this charge is lower than that predicted by the 
Gouy-Chapman treatment. There seems, however, to be no way of in
tegrating (A6) analytically to obtain V(x). On linearization, as in the 
Debye-Hiickel regime, the leading term is independent of b. 
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I. INTRODUCTION 

The theory of inhomogeneous fluid phenomena has been transformed dur
ing the last decade by an explosive input from physicists. into what had 
previously been a long-established branch of physical chemistry (Delja
guin, 1940). Particularly striking are new conceptual frameworks obtained 
from rigorously based models (Nakanishi and Fisher, 1982) and a high
lighting of the significance of fluctuations to intert"acial phenomena (Li
powsky, 1987). For example, in just one subject known as wetting (Sul
livan and Telo da Gama, 1986) we now possess a unified theory of all 
equilibrium behavior associated with adsorption at interfaces. We are 
likely to see an increasing emphasis on complex fluids (Chapters I 1 and 
12) and in dynamic phenomena such as intert"acial motion (spreading and 
film growth) and transport at surfaces and in confined media (Chapter 
13). 

The interest by physicists was driven by the consequences of inho
mogeneity rather than a desire to study fluids; in particular, excitement 
centered on newly understood phase transitions (Cahn, 1977; Ebner and 
Saam, 1977). In fact, as explained in Section II.B, the physics of interfacial 
phenomena has opened up a new world inhabited by a myriad of phase 
transitions, including new classes of critical phenomena. Here the pi
oneering work has come from phenomenological physics, such as Landau 
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dau or van der Waals theories (Sullivan, 1981) and interfacial Hamilto
nians (Lipowsky, 1984), and also from rigorously based lattice models 
(Pandit et al., 1982), including some exact results (Abraham, 1980) and 
Monte Carlo simulations (Binder et al., 1986). However, liquid-state the
ory based on molecular Hamiltonians has much to offer that complements 
the foregoing work (van Swol and Henderson, 1984), thanks in particular 
to the availability of powerful techniques borrowed from functional cal
culus. In this chapter we are concerned with contributions to the fun
damental understanding of equilibrium interfacial phenomena obtainable 
from liquid-state theory founded on realistic many-body Hamiltonians. 

Much of what is discussed below can be traced back to seminal work 
in the 1950s and 1960s that was focused toward an understanding of liquid
vapor interfaces in simple atomic fluids. In the event, the so-called simple 
liquid-vapor interface turned out to be an extremely difficult problem 
from a fundamental point of view, due to the essential role that external 
fields play in broken symmetry systems (Section Il.A). Reviews of this 
work can be found in Evans (1979), Percus (1982), Rawlinson and Widom 
(1982), and Henderson (l986c). Here it is convenient to avoid repetition 
of the painful gestation by presenting a unified discussion of fluids in the 
presence of external fields. In particular, let us seek to establish a general 
context appropriate to the many varied problems that have recently been 
tackled from within this single mathematical framework. 

In this chapter the term statistical mechanical sum rule, hereafter 
shortened to sum rule, refers to an equilibrium identity between a statis
tical thermodynamic property and an integral over correlation functions. 
The former are macroscopic physical quantities such as a free energy, a 
generalized thermodynamic field, or derivatives of a free energy with 
respect to thermodynamic fields. To be a sum rule a relationship must be 
exact (i.e., derivable from a partition function defined by a microscopic 
Hamiltonian). The significance of sum rules lies in the direct links they 
create between microscopic correlations and physical properties. Thus 
sum rules provide a framework for interpreting molecular models of phys
ical phenomena. Of special importance is the fact that all macroscopic 
phenomena appropriate to a given Hamiltonian must be compatible with 
any sum rule derived from that Hamiltonian. Hence dramatic collective 
behavior, such as associated with phase transitions or the appearance of 
structural order, is often highlighted by deceptively simple sum rules (see 
Section IV.A). Computer simulation studies benefit from sum rules, both 
as a framework with which to analyze masses of computer-generated data 
and as checks on equilibration and incorrect procedures. Density func
tional theories (Chapter 3), especially those constructed to possess full 
internal statistical mechanical consistency, are similarly enhanced by a 
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close attention paid to sum rules (see Section III.D). In contrast, ap
proximate integral equation theories invariably violate key sum rules, 
pointing the way to future improvements. 

It is not our purpose in this chapter to attempt a complete survey of 
specific applications of sum rule analyses applied to inhomogeneous 
fluids, but rather, to present a general introduction illustrated by selected 
examples; the reader might also like to note a recent review by Evans 
and Parry (1990). In Section II we present an overview of a collection of 
important concepts known as broken symmetry, as relevant to inhomo
geneous fluids. It is important to review these concepts because they form 
the context in which theoreticians derive and use sum rules applied to 
interfacial systems. Perhaps the greatest thrill of theoretical science is to 
be able to see such deep physical understanding emerge miraculously, 
yet inevitably, from the dry logic of statistical mechanical sum rules. In 
Section Ill we present key sum rules of particular importance to the study 
of inhomogeneous fluids and review their derivation from statistical me
chanical theory. In Sections IV and V we discuss examples of sum rule 
analyses of wall-fluid interfaces and confined fluids. reflecting the tastes 
of the present author. Such powerful methods are always available for 
the study of equilibrium properties of inhomogeneous molecular systems. 
thanks in particular to the utility of functional calculus. 

II. BROKEN SYMMETRY 

A. Importance of External Fields 

Equilibrium states of a translationally invariant Hamiltonian must them
selves be translationally invariant. This is particularly significant for fluid 
states because fluid interfaces lack rigidity and thus readily develop fluc
tuations that lead to instability in the absence of stabilizing boundaries 
or surface fields. Thus the presence of an external field term in the Ham
iltonian is essential to theories of inhomogeneous fluids. A formal proof 
of this statement is provided by a theorem due to Mermin (1965), reviewed 
in Chapter 3, which implies that the one-body density profile p(r) is 
uniquely determined by the one-body external field v(r), and vice versa. 

An external field can play up to three direct roles in controlling the 
behavior of inhomogeneous fluids. First, the symmetry of v(r) will in
variably define the interfacial geometry. This includes the important case 
of confined fluids, where a pore width or radius is defined by a parameter 
contained in the wall-fluid potential. Second, v(r) will often be defined 
by a set of parameters that act as surface fields controliing the microscopic 
structure of wall-fluid interfaces and in special circumstances the mac-
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roscopic behavior as well. The repulsive part of v(r) will induce oscillatory 
layering structure in fluids packed against walls by moderate to high pres
sure. An attractive contribution to v(r) will always contain at least two 
important parameters: a well depth and a range parameter, which play 
key roles in determining adsorption phenomena (wetting). Third. an ex
ternal field can be used to stabilize an interface against instabilities arising 
from collective fluctuations. For example, a weak gravitational field is 
sufficient to stabilize a liquid-vapor interface from the wandering induced 
by capillary-wave fluctuations (see Section II.E). 

An important class of indirect external field effects arises because 
boundary conditions cannot be ignored when considering phase transi
tions and when comparing results from different choices of ensemble. 
Often these macroscopic phenomena run counter to intuition obtained 
from work based on the strict thermodynamic limit. For example, con
sider the consequences of planar interfacial symmetry on wetting tran
sitions at wall-vapor interfaces. Namely, if one induces a wetting tran
sition (first order or continuous) by varying temperature or a surface field, 
the final outcome is a system with an infinitely thick film of liquid sep
arating the wall from bulk vapor (which constitutes the far boundary con
dition). Clearly, this interfacial phase transition cannot be reversed; in
stead, to dry the wall one would now have to induce a drying transition, 
thereby creating an infinitely thick layer of vapor between the wall and 
the infinitely thick liquid film. Similar comments apply to finite systems 
as used in computer simulation studies. Related to these effects is the 
significance of boundary conditions to collective dynamics. Thus a planar 
liquid film does not have the same collective modes available to it as does 
a curved meniscus, which can spread out along a boundary wall. One 
should therefore bear in mind that a particular choice of geometry may 
induce extremely high metastable barriers preventing passage to true equi
librium states. Interesting examples of boundary effects have also been 
highlighted in studies of confined fluids. For example, models of capillary 
condensation based on pores of infinite length possess metastable barriers 
to pore filling (a drop must nucleate inside the pore) and to pore emptying 
(a bubble must nucleate inside the pore), whereas a finite open pore can 
empty from the pore ends without encountering significant metastability 
(provided that the system is not immersed in a bath of liquid) (Saam and 
Cole, 1975; Marini Bettolo Marconi and van Swol, 1989). Similarly, very 
strongly confined fluids exhibit extreme sensitivity to the choice of en
semble; for example, modeling a planar slit of width Lin the canonical 
ensemble (fixed N, closed pore) will yield a true two-dimensional system 
as L tends to zero, whereas in this limit an open pore at finite chemical 
potential (grand canonical ensemble) can only approach a two-dimen-
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sional weak gas, due to fluid being squeezed out from the pore ends 
(Henderson, l986b). 

B. Phase Diagrams and Surface Phase 
Transitions 

Experimental science tends to restrict physical understanding to that 
available from the use of variables that are readily to hand in the labo
ratory. This leads to a limited view of phenomena that are better under
stood as part of a larger reality-like the ant confined to a two-dimensional 
table top. The most important collection of physical knowledge is sum
marized in phase diagrams, which plot the points, lines, and surfaces that 
separate distinct phases of matter distinguishable via their macroscopic 
properties. Passage across such a boundary in phase space is known as 
a phase transition. Describing and understanding phase transitions. a fa
vorite pastime of physicists. is of special significance because here one 
controls large changes in physical behavior through small changes in ther
modynamic variables. 

A proper understanding of phase behavior is based on the identification 
of thermodynamic fields (Griffiths and Wheeler. !970). Fields are those 
thermodynamic variables that always yield identical values in two or more 
phases that lie in thermodynamic equilibrium. Thus all-field phase dia
grams are the most succinct way to represent phase behavior. Further
more, each thermodynamic field acts as a degree of freedom relevant to 
the Gibbs phase rule. In general, thermodynamics proceeds by construct
ing a thermodynamic potential to be a concave function of all relevant 
fields (and thus the potential itself can be regarded as a field). Taking 
partial derivatives of the potential with respect to each field generates a 
set of conjugate densities (defined to be intensive variables by appropriate 
division with respect to volume or area, as necessary). One then chooses 
spaces from within this collection of fields and densities in which to de
scribe physical phenomena under study. The topology of such a phase 
space is controlled by the number of densities used. In the following 
section an explicit version of such a theory is given for inhomogeneous 
fluids, and Section ll.D introduces the development of statistical me
chanical models that are mathematically exact realizations of this struc
ture. 

From the above it follows that a failure to identify thermodynamic fields 
relevant to a class of phenomena will severely cripple attempts at a rig
orous understanding, particularly with regard to conceptual meaning. This 
lesson has been highlighted more than once during the recent expansion 
of theories of inhomogeneous fluids. Here, the problem can be broken 
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down into two questions. First, what bulk thermodynamic fields remain 
applicable in inhomogeneous systems? In general, the answer is temper
ature (D and chemical potential (f.l) but not pressure, because interfacial 
stress must be described by pressure tensor component profiles (Section 
ll.D). Both T and f.l can be defined at any point within an inhomogeneous 
system such that each take on a constant value everywhere throughout 
an equilibrium state; T is given by the average molecular kinetic energy 
(in classical systems) and f.l by a statistical mechanical sum rule known 
as potential distribution theory (Section ll.D). Second, do interfacial sys
tems possess additional thermodynamic fields arising from the presence 
of surfaces? It was the latter question that remained largely unrecognized 
until the 1980s. 

For example, consider wetting phenomena in the context of fluid ad
sorbed at a wall. Can a wall-fluid interface exhibit two or more states of 
adsorption at the same grand potential? If so, varying the temperature 
will be one route to induce interfacial phase transitions, but are there field 
variables present with more direct impact? In particular, note that a 
mathematical description of the wall-fluid interaction will introduce at 
least two new parameters; a well depth (E..,) and a range (aw) of the wall
fluid attractive potential energy. Since we are asking whether two equi
librium states of adsorption correspond to the same values of ( T,fL,Ew,a w), 
it follows that Ew and aw act as generalized thermodynamic fields. One 
realizes immediately that if the fluid is held at bulk liquid-vapor coex
istence at a given temperature, a sufficiently high value of Ew will induce 
complete wetting of a wall-vapor interface (liquid prefers to lie next to 
the wall). At the other extreme, too little attraction will ensure that a 
wall-liquid interface can lower its free energy by interposing an infinite 
film of vapor between the wall and bulk liquid (a drying transition). Thus 
the key phase diagram for understanding wetting phenomena lies in the 
space (T,f.l,Ew); usually, one subtracts from f.l its value at bulk liquid
vapor coexistence, 1-lsat(D, so that wetting transitions are confined to the 
plane f.l - 1-lsat(D = 0. In general, Nakanishi and Fisher (1982) argue 
that for wall-fluid systems one expects to find a tricritical point on the 
wetting transition line separating first-order transitions at lower T from 
second-order behavior (called critical wetting). Adding the field a w will 
tum such a tricritical point into a tricritical line; thus the key phase dia
gram for recording the separatrix between first-order and critical wetting 
lies in the field space (Ew,aw). It is perhaps worth noting that Ew has a 
direct magnetic analog: namely, Ew translates to a surface magnetic field 
strength and its conjugate density to the surface magnetization [see (56)]. 
Experimental progress in studying wall-fluid wetting phenomena has 
been severely hampered by a lack of control over the fields (Ew,aw), in 
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complete contrast to statistical mechanical theory and computer simu
lation studies, although pioneering work by Durian and Franck (1987) has 
shown the way to the development of early approaches toward laboratory 
control. The future will surely see such work gaining enormous techno
logical significance. 

Another example of the significance of statistical physics to inhomo
geneous fluid phenomena concerns the subject of fluids absorbed in po
rous media (confined fluids). The basic parameter of a pore is its width 
(L) or radius (R) (i.e., the extent along the confining direction). Two
phase coexistence of fluid within an open pore (equilibrated with an out
side reservoir via exchange of particles through the ends of the pore) is 
known as capillary condensation or evaporation and has long been ob
served as a shift in the bulk liquid-vapor coexistence curve.* A full con
ceptual understanding of this phenomena requires the realization that L 
(orR) plays the role of yet another thermodynamic field. Thus capillary 
condensation takes place in the space (T,j.L,L). The density conjugate to 
L is known as the solvation force (or disjoining pressure) (Evans and 
Marini Bettolo Marconi, 1987). The field Ew is also important, since cap
illary condensation will interact strongly with any nearby instability to
ward wetting at a pore wall. Also. it is thermodynamically possible for 
layering transitions at the pore wall(s) to precede capillary condensation. 

The foregoing considerations constitute a qualitative explanation of the 
striking richness of the phase behavior of inhomogeneous fluids. Each 
new relevant field increases phase space by an extra dimension and in
troduces additional potential phase transitions, following the Gibbs phase 
rule. Recent work on theories of single-component atomic fluids adsorbed 
at walls and in pores has identified examples of layering transition se
quences, prewetting transitions between thin and thick films, various 
classes of wetting transitions. and capillary condensation transitions. Gen
eralizations to molecular fluids or fluid mixtures would greatly enhance 
this complexity (Section Il.C). Furthermore, the full mathematical tech
nology of thermodynamics is immediately applicable to these extended 
phase spaces (i.e., Maxwell relations, Clapeyron equations, Cp-C,. re
lations, etc.). This includes standard approaches to phase transitions, such 
as mean-field van der Waals loops and renormalization group critical phe
nomena but now involving the newly identified thermodynamic variables. 
Surface critical phenomena have excited particular theoretical interest 

• Strictly speaking, one should limit this use of the phrase two-phase coexistence to systems 
in which the fluid remains unconfined in at least two dimensions (slit pores). However, the 
effects of finite-size rounding of phase transitions are usually exponentially small and thus 
will rarely be seen (Evans, 1990). 
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because of the association with exponent relations, scaling theories, and 
dramatic collective fluctuations (soft modes). In some cases these modes 
are familiar from bulk statistical mechanics, but here they possess the 
character of a lower dimensionality (the dimensionality of the interface), 
while other surface critical phenomena concern interfacial modes such as 
capillary waves. 

Explicit examples of the foregoing conclusions are discussed below; 
here, let us end by noting that phase diagrams of inhomogeneous fluid 
phenomena are not always restricted to spaces belonging to the set of 
fields and densities discussed above, where one can be assured of the 
usual rules. Instead. some workers have found it useful to introduce hy
brid surface-bulk diagrams, in which surface thermodynamic variables 
are mixed with purely bulk variables. For example, in discussing wetting 
transitions it has been common to plot, at fixed (E ... ,a,,), the transition 
point and any associated prewetting transition line, superimposed on the 
bulk liquid-vapor coexistence curve drawn in ( T,p) space. T is a valid 
surface field, but p is merely the bulk fluid density in equilibrium with 
the interface. Given the bulk equation of state, ( T,p) can be transformed 
into ( T,f-1.). which are both true surface fields. Similar comments can be 
made about adsorption isotherms for confined fluids plotted versus a bulk 
pressure p belonging to a reservoir with which the pore fluid is defined 
to be in thermodynamic equilibrium; in particular, pis not related to any 
pressure tensor component describing the inhomogeneous fluid. 

C. Statistical Thermodynamics of Broken 
Symmetry 

Gibbs (1906) has shown how to construct thermodynamic theories of in
terfacial properties that remain consistent with rigorous models without 
the need for explicit statistical mechanical solutions of inhomogeneous 
systems. The trick is to introduce mathematically defined dividing sur
faces, equivalent to factoring the partition function into a bulk term (here
after assumed to be known or defined) and surface terms; the latter are 
simply the parts left over. For model wall-fluid interfaces the natural 
choice of dividing surface lies on the equipotential of infinite wall-fluid 
repulsion. This choice has the benefit that at fixed geometry the dividing 
surface is independent of all relevant thermodynamic fields. The statistical 
thermodynamics of inhomogeneous fluids is invariably most conveniently 
based on n, the grand-canonical potential (often shortened to grand po
tential). This is because most fluid interfaces exchange molecules with 
neighboring bulk fluids; consider, for example, a wall-liquid interface 
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modeled in semi-infinite geometry, or liquid confined to an open pore 
immersed in a reservoir of gas. 

Thus, following Gibbs, let us define the surface excess grand potential 
with respect to a choice of dividing surface as 

(l) 

where subscript b denotes the usual bulk term. Then the second law of 
thermodynamics applied to a planar wall-fluid interface of area A, such 
as discussed in Section II. B, will read 

(
nex) dnex = -sex dT - Af dJL + A dA - Ae dE.w - A 'I' daw (2a) 

where sex is the surface excess entropy defined analogous to {I), and r 
denotes adsorption (i.e., Nex Af, where N is the total number of fluid 
molecules). If the system was bounded by two planar walls of separation 
L (a slit pore), then. in addition to doubling the single wall terms appearing 
on the right side of one would need to add the term 

Af dL (2b) 

where f is known as the sofl·ation.force. 
Underlying (2) is the fact that the thermodynamic potential can be 

expressed as a function of all relevant field variables [i.e .. n"'x( T,JL,A. 
E.w,aw,L)]. The coefficients of each term on the right side of Eq. (2) are 
the thermodynamic densities conjugate to each field: 

a(nex/A) -sex 
(3a) =--

aT A 

a(nex/A) 
-r (3b) 

Cl!J-

an ex nex 
(3c) 

a A A 

1 an 

A ClEw 
e (3d) 

1 an 
-'I' (3e) 

A aaw 

a(ne"/A) 
= -f (3f) 

aL 

where n has appeared in (3d) and (3e) tO highlight the fact that Ew and 



32 Henderson 

aw are strictly surface fields. In Section II.D we explain how statistical 
mechanics leads to sum rule expressions for the densities above; in par
ticular, r, e, '1', and fare all defined by simple integrals over the one
body density profile and thus act as order parameters for interfacial struc
ture. It follows that further differentiation of these densities with respect 
to the fields (J.L,E..,,a,..,L) generates surface compressibilities. 

Equations (2) and (3) admit many generalizations. One example would 
be the addition of external electric field terms; see Chapters 5 and 6 for 
explicit results concerning inhomogeneous plasmas and electrolytes. Gen
eralizations to molecular fluids and fluid mixtures are straightforward and 
will be touched on briefly later in this chapter. Here, let us confine our 
remarks to noting the rapid increase in complexity that such generali
zations must bring (i.e., the large growth in the number of relevant field 
variables). For example, a molecular fluid interacts with a wall not just 
through center of mass fields (Ew,aw) but also through fields that act on 
orientational degrees of freedom. Thus molecular fluids exist within an 
extended space that allows for such phenomena as orientational wetting. 
The situation with mixtures is particularly complex in general, since each 
additional fluid component will involve not just one extra chemical po
tential field but will also add a new member to every class of surface field; 
the latter fields directly control phenomena such as selective adsorption. 
In this way, (2) enables us to truly appreciate the scale of the complexity 
of phase behavior belonging to the natural world. 

An important paper by Evans and Marini Bettolo Marconi (I 987) has 
emphasized that the standard mathematical procedures of bulk thermo
dynamics are equally applicable to inhomogeneous fluid problems, such 
as defined by (2). For example, a plethora of surface Maxwell relations 
follow directly from (2) and (3), such as 

ar ae 
OEw d!J. 

(4a) 

ar af 
aL al-L 

(4b) 

and defining additional functions (e.g., Z nex + Nexi-L) yields many 
more of these relations: 

( :~) r = - ( ~~) €w 

G~)r = -(!{)L 

(4c) 

(4d) 
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Further standard manipulations lead to results mathematically equivalent 
to the well-known Cp-Cv relation; for example, at ftxed {T .A.aw} we ob
tain from e(J.L,Ew) and e(f ,E w) a result of particular significance tO critical 
wetting transitions (Evans and Parry, 1989): 

(5a) 

(5b) 

where the second version follows from (4a) and f{J.L,E..,). 
Phase coexistence in inhomogeneous fluids can be analyzed similarly. 

In particular, consider all the Clapeyron equations that follow from in
serting (2) into 

dfl';: dflf 

Thus the slope of phase coexistence at fixed (A,E,...aw,L) is determined 
by 

(6a) 

where cc denotes coexistence curve. Similarly, at fixed (T,A,Ew,a..,), 

(6b) 

and so on. Evans and Marini Bettolo Marconi (1987) point out that mean
field theories of first -order transitions will yield van der Waals loops in 
isotherms of order parameters such as r, e, 'It, and f when plotted versus 
their conjugate fields. Furthermore, it follows from (3b) and (3d) to (3f), 
respectively, that the coexisting values of these order parameters are 
determined by applying equal-area constructions to the loops. The van
ishing of such loops yields standard criteria for criticality, but now in 
unfamiliar variables. 

D. Grand-Canonical Ensemble 

Explicit statistical mechanical realizations of the thermodynamic struc
ture discussed in Section II.C follow from introduction of the grand par
tition function a: 

fl = -kTln a 
oc A- 3N J N (-H + N) 

a = N~o -r:.i! ~~ di exp NkT J.L 

(7a) 

(7b) 
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where A = (h2/2m7Tkn 112 is the translational de Broglie wavelength (i.e., 
let us assume classical dynamics) and HN denotes anN-body potential. 
For models of inhomogeneous fluids we write 

N 

HN = <l>(l···N) + 2: v(i) (7c) 
i=l 

where <I> is a fluid-fluid many-body potential and v is the external field. 
Note that HN does not depend on the fields T and~. while all the remaining 
fields appearing on the right side of (2) can be introduced exclusively in 
terms of the one-body potential. For example, at fixed aw a basic model 
of a planar wall-fluid interface is 

(8) 

and a simple model of confined fluids is given by a symmetric planar slit 
of width L, at fixed (E., .. a,..): 

v(z,L) = v""(z) + v"'(L - z) (9) 

where the superscript x denotes the potential of a single planar wall sit
uated at z = 0. It follows that it is not necessary to specify the inter
molecular potential <I> in order to take derivatives of the grand potential 
with respect to field variables. In fact, at fixed temperature the effects of 
<I> can be entirely subsumed within the distribution functions. Thus iso
thermal statistical mechanics generates theories of inhomogeneous fluids 
that are completely general with respect to fluid-fluid intermolecular 
forces. 

A formal statement of this statistical mechanical approach is given by 
the following hierarchy of functional derivatives, which follow immedi
ately from (7): 

( on ) =-p(l) 
0(~- v(l)] T 

(lOa) 

( o2n ) 1 o[~- v(l)]o[~- v(2)] T = - kT [piZ)(l 2)- p(l)p(2) + p(l)o(l 2)] (lOb) 

and so on; that is, the sth functional derivative generates the s-body dis
tribution function p<sl(l·· ·S). Note that (lOa) constitutes a general sum 
rule expression for all of the field derivatives listed in (3), apart from (3a) 
and (3c) (van Swot and Henderson, 1986): 

(an) = - J dl p(l~ [~ - v(l)] 
a>.; r.{x1,.,J a>.; 
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Further differentiation and (lOb) yields sum rules for a set of compres
sibilities: 

( 
a

2
n ) 1 J a J a ax,aA; T.{x ..... ,J} = - kT dl p(l>at [!L v(l)] d2 p(2~ [!L v(2)J 

[ 
o(12)J J a2 

X h(l2) + -(l) dl p(l)--(!L- v(l)] 'A;,AjE {j.L,E..,,a..,,L} 
p ax;a'Aj 

(12) 

where we have introduced the total correlation function h(l2) :5 [p<2>(12) 
p(l)p(2)]/p(l)p(2).1n recognition of the importance of(l2), the statistical 

mechanical theory above is referred to as the compressibility route. The 
compressibility route to the statistical mechanics of inhomogeneous fluids 
is of special significance because it focuses directly on the thermodynamic 
fields and densities of relevance, apart from the temperature and entropy. 
Thus (ll) generates single integral sum rules for the densities f, e, 'I', 
and f, and (l2) highlights the microscopic nature of collective modes 
responsible for interfacial critical phenomena. The surface excess grand 
potential itself is a special case that is treated separately in Section III. C. 

Other important results also follow from the hierarchy (lO). In partic
ular, consider the consequences of translational symmetry (i.e .. applied 
to the entire system, including boundaries): 

8p(r) = [p(r + 6.) p(r)] ~ ..:1.·\i'p(r) + Ct.\ 2 

8v(r) = [v(r + ..:1.) v(r)] ~ .:l·Vv(r) + Ct.\ 2 (13) 

Combining (13) with (lOa) just confirms that finite pressure and finite 
volume go together [see (23b)]. However, (13) and (lOb) yield a key in
tegrodifferential equation for the density profile (Lovett et al., 1976; 
Wertheim, 1976): 

v"'p(l) = :r [p(l)v"v(l) + p(l) J d2 p(2)h(l2)V'"v(2) J (14) 

Note that integrating equations such as (14) across an interface generates 
potentially useful sum rules. Even in cases where v(r) contains discon
tinuities it is straightforward to make use of the integral equations and 
sum rules above; one simply introduces the one-body y-function n(r), 
defined by 

[ 
v(r)J p(r) = n(r) exp -u (15) 

and uses the fact that graphical analysis will always prove that n(r) is a 
continuous function, even across a hard wall boundary [see also (17) and 
(29)]. 
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The statistical mechanical hierarchy (10) treats the grand potential as 
a functional of the one-body field, {l[f1 v]. It is equally permissible to 
regard 0 as a functional of the one-body density, O[p], because at fixed 
(T,f1) we know that p(r) is uniquely defined by v(r) and vice versa (Mer
min, 1965). This inversion of (10) generates a complementary hierarchy 
of correlation functions. called direct correlation functions. Since this 
approach forms the basis of density functional theory (Chapter 3), let me 
restrict the discussion here to listing a few key results: 

O[p] = ~[p] - J dl p(l)[!-1 - v(l)] 

~[p] = ~ex[P] + kT J dl p(l) {ln[A3p(l)] 

ss~ex[P] = -krc<sl (l···S) 
op(l)· · ·8p(S) 

(16a) 

I} (l6b) 

(16c) 

The first two of these results decompose the grand potential into one
body terms plus the many-body free energy, ~ex; here, the subscript refers 
to the excess over ideal free energy. The hierarchy (16c) is the analog of 
(10), with c<sl(l··· S) denoting the s-body direct correlation function. At 
equilibrium, the first member of this hierarchy can be rewritten as 

(17) 

that is, kTc<D(l) is the excess (over ideal) chemical potential. Applying 
(13} to the second member of (16c) and inserting this into the gradient of 
(17) yields the inverse of (14): 

V'"p(l) = -kiT p(l)V'"v(l) + p(l) J d2 c<2l(l2)V'"p(2) (18} 

The general statement of this functional inversion between density and 
external field, known as the Ornstein-Zernike equation, can be written 
compactly as 

J d3 G(l3)G- 1(32) = 8(12) (19a) 

where I have used (lOb) and (l6c) and (17} to define 

G(l2) = kT 
8
p(l) p<2l(l2) p(l)p(2) + p(l)8(12) (l9b) 

8[1-1 - v(2)] 

a-t(l2) = _1 8[!-1 - v(l)) = 8(12) - <2>(12) 
kT 8p(2) p(l) c 

(19c) 
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Macroscopic symmetry will considerably simplify (l9a); for example, in 
planar symmetry we have 

(20a) 

where I have introduced the transverse Fourier transform 

G(zt ,Z2:Q) f cr-•Rl2eiQ·R 12 G(zt .z:.Rd (20b) 

and similarly for its inverse; R 12 lies in the plane of the surface and d 
denotes the overall dimensionality (e.g., in d = 3, Rt2 = xT2 + YT2). Pro
vided that G and G- 1 can be expanded up to order Q 2

, 

G(Z~>Z2;Q) Go(z~.zz) + Q 2G2(Z1 ,Zz) + (20c) 

one can equate terms up to order Q2 in (20a) to derive 

This result is important for an understanding of surface critical phenomena 
because it enables singular contributions to ,;::2 ) to be deduced from 
divergences in G0 • given that - 1 is sufficiently well behaved (Evans 
and Parry, 1989). Of course. the above relies on the assumption that the 
decay of G(zt ,z2 ,Rn) along the interface is not such as to render the 
integral 

(20e) 

ill defined. In Section III.C we shall see that G2(Z1 ,z2) determines the 
interfacial tension; thus planar surface critical phenomena at which the 
interface remains intact (neither zero nor infinite surface tension) should 
always be described by (20) up to and including order Q2

• This is in 
contrast to Ornstein-Zernike theory of bulk critical phenomena, which 
breaks down in d ~ 4; that is, below some upper-critical dimension the 
disappearance of interfacial structure is associated with a nonzero value 
of the exponent 11. 

Compressibility route analyses of interfacial fluid phenomena are car
ried out without explicit reference to fluid-fluid intermolecular forces; 
instead, one proceeds via increasing familiarity with the behavior of the 
distribution functions p(l) and p(2 l(l2). Alternatively, one can introduce 
specific molecular models of fluids 

<P(l···N) (21) 
i<j i<j<k 
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and generate the distribution function hierarchy by taking functional de
rivatives with respect to 'P<sl. This is the formal basis of the virial route 
to statistical mechanics; in particular, introducing a displacement field 
e(r), it follows that the leading-order change in free energy is given by 

(ofi)r.~-~- = (-kT":iV·e1 + ":ie1·Y'v1 +"Ze;·V,4>) (22) 

which is the general expression for a virial equation of state; hereinafter 
( ) denotes a statistical mechanical average defined by a partition function. 
It is convenient to introduce a pressure tensor p"13 : 

Vl3p"'l3(r) kTV"p(r) + (L o (r - r;)V';"'<P) (23a) 

= - p(r)V"'v(r) (23b) 

(where the usual summation convention over Greek indices applies) so 
that (22) reduces to the usual stress-strain form le.g., Henderson, l986c)): 

-J p"f'>Vf3e" + J pe"v"v (24) 

The step from the right side of {23a) to (23b) follows directly from the 
statistical mechanical definition of p(r) leq. (26c)]. The hierarchy of equa
tions obtained from direct differentiation of the distribution functions is 
usually referred to as the YBG hierarchy (Yvon, 1935). Equation (23b) 
shows that formally the two terms on the right side of (24) cancel (i.e., 
the force exerted on the walls by the fluid balances the force exerted on 
the fluid by the walls). Thus (23b) expresses mechanical equilibrium. 
When applying the virial theorem to inhomogeneous fluids, one notes that 
it is the first term on the right side of (24) that concerns the work done 
on the fluid. For example, in planar symmetry it follows that [e.g., Hen
derson and van Swol (1984)] 

n J= - = - dz PT(Z) 
A -= 

(25a) 

where PT denotes the transverse component of the pressure tensor: 

(

PT(Z) 0 0 ) 
p"13(z) = 0 Pr(z) 0 

0 0 PN(Z) 

(25b) 

However, only the normal component is determined by (23) in planar 
symmetry: 

p/v (z) = - p(z)v'(z) (25c) 
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More generally, (23) follows from consideration of the rate of change of 
momentum density: 

and the conservation of linear momentum (i.e., (ja) 
with 

p(r) == (2:; o (r - r;)) 

(26a) 

(26b) 

0) implies (23), 

(26c) 

Equation (26) does not uniquely define the many-body contribution to the 
pressure tensor: 

(27) 

In particular, for pair potential fluids, Schofield and Henderson (1982) 
have shown that (27) is consistent with an infinite class of pressure ten
sors. with the nonuniqueness expressed in terms of an arbitrary path 
integral representing lines of intermolecular stress. The result (25a) is 
invariant with respect to such a choice of pressure tensor, but not higher
order moments of Pr(z). For computer simulation studies of pair potential 
models of inhomogeneous fluids a convenient choice is to adopt the pres
sure tensor of Irving and Kirkwood (1950): 

p'{~(r) 

but one must beware of using this result to calculate expressions which, 
in contrast to (25a), are ill defined by (27). 

In general, it is notoriously difficult to transform explicitly between 
complementary integral equations and sum rules generated by the com
pressibility route and the virial route, respectively [see, e.g., eqs. (14), 
(18), and (23)]. Thus it is of some interest to note that a specific corre
spondence between the two routes can be made (Henderson, 1983). The 
link is via a sum rule for the configurational chemical potential (i.e., the 
one-body direct correlation function), known as potential distribution the
ory (Widom, 1963): 

/ [ <l>'(r)J) c<l)(r) = In \ exp - kT (29a) 
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where <t>'(r) denotes the potential field due to a hypothetical test molecule 
fixed at position r: 

q:,Nr(r) == <f>(l .. ·N + OrN~t == r <P(l···N) (29b) 

The proof of (29) follows immediately from consideration of the partition 
function 2'(r) defined by a molecular system (7c) in the presence of the 
many-body external field defined by (29b ): 

2 1(r) exp[ _1.1. ~;(r) J A 3p(r)2 (30a) 

That is, the configurational chemical potential at position r is given by 
the work done, at constant (T,IJ.), to insert a test molecule at that position 
[see (17)]: 

!V(r,T,~J.) .f!(T,IJ.) kT In S~r) 

- kTc(ll(r) 

Direct differentiation of (29a) yields (Henderson, 1983) 

\~ 8 (r r;)V,"<t>) 

V"c(ll (r)= --------
kTp(r) 

(30b) 

(3la) 

or, using (17) together with V"'~.t. = 0, 

I 
V"p(r) == - kT [p(r)V"v(r) + (2: o(r r!}V;"<P)] (3lb) 

I 

Thus, for a pure field, Eqs. (14), (18), and (23) are all equivalent expres
sions of mechanical equilibrium (hydrostatic stability). One can also use 
potential distribution theory to derive various statistical mechanical hier
archies based on alternative formulations of configurational chemical po
tential, such as Kirkwood-Hill scaling (Hill, 1959) and scaled particle 
theory (Reiss et al., 1960). Namely, if t.. is any parameter that one chooses 
to introduce into the test particle field <P', then acm!at.. follows immediately 
from (29a), or alternatively, from the functional derivative o.f!lfO<t>r (Hen
derson, 1983). Note that for pair potential fluids ¢ 1 is a one-body field 
and pr(r'), in the presence of a test molecule at r, is just p<2l(r,r')/p(r) in 
the real system (defined by unfreezing the test molecule); in this case by 
transforming to a frozen test-molecule system one can immediately make 
use of the compressibility route hierarchy (10). Thus, for pair potential 
fluids Kirkwood-Hill scaling and scaled particle theory are just specific 
versions of the general sum rule (11). 
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The test-molecule approach is easily generalized to encompass the en
tire distribution function hierarchy; in particular, (30a) generalizes to 

art···t·(rl· .. rs) = (A3e-j.t.lkTY exp Lt ~~>] p(s)(rt••·rs)S (32a) 

and (30b) generalizes to 
s 

fl(T,j.t) - 2: [fl'(r~,T,j.t) - fl(T,j.t)] 

= - kT In [g<s>(rc··rs)] (32b) 

where denotes the s-body correlation function p<sJ(r1• .. r 5 )/ 

p(rJ)·· ·p(r s). The right side of (32b) is referred to as a potential of mean 
force, that is, the work done to inserts test molecules at positions r 1 ···rs 
minus the work required to insert them singly at these same positions. In 
homogeneous fluids a potential of mean force is just the work required 
to bring test molecules together from infinity. Note that the partition func
tion (32a) includes direct interactions between the test molecules; alter
natively, one can leave this contribution out and then (32b) would yield 
the s-body y-function. Note also that the left sides of (30b) and (32b) are 
surface excess grand potentials, belonging to test-molecule systems. For 
homogeneous pair potential fluids (32) implies that 

a a 
kT- In [g(r 12 )} = - fl' 1

'
2 (r12 ) 

arl2 arl2 
(33) 

Here the potential of mean force is a type of solvation force similar to 
(3f). 

To conclude this survey of the grand ensemble applied to inhomoge
neous fluids, let me indicate the nature of generalizations to mixtures and 
to molecular fluids. If the fluid has v components, the partition function 
(7b} is extended to include a sum over j.lv and in general, vv(r) (i.e., each 
type of molecule is associated with a particular one-body field). Func
tional derivatives of n with respect to these one-body fields generates 
Pv0) and p~~,(12), directly analogous to (10). Thus (11) to (15) are straight
forwardly generalized to the case of mixtures. Similar remarks apply to 
the density functional formalism [Eqs. (16) to (20)] (i.e., one considers 
functional derivatives with respect to ?>pv) (Lebowitz, 1964). The only 
point that requires some care is to note that whereas the correlation func
tions are defined by partial functional derivatives (all remaining variations 
set to zero), results such as the generalizations of (14), (18), and (19a) 
concern full variations and thus contain a sum over v (i.e., each Pv is a 
functional of all the external fields and each vv is a functional of all the 
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density profiles). The virial route is generalized to mixtures by extending 
(21) to include all the various classes of intermolecular potentials. The 
pressure tensor gradient, defined as (26), now involves a sum over com
ponents v; however, the YBG hierarchy splits into separate equations 
(one for each component): 

1 
V"pv(r) = - kT [pv(r)V"vv(r) + (:2: ()(r 

lv 

(34) 

From the obvious generalization of potential distribution theory [i.e., (29a) 
with <I>v'(r)] it follows that for any given v, (34) is equivalent to Vf.Lv = 0 
(Henderson, 1983). Thus in mixtures the condition for diffusive equilib
rium applies to each component separately, but not mechanical equilib
rium [i.e., the latter requires all members of the set (34) to hold]. 

A conceptually straightforward generalization to molecular fluids fol
lows from decomposing all the forces into center-of-mass interactions 
(involving r) and angular interactions (involving a set of angles w). Thus 
the external field is now v(r,w). Note that this form applies even in simple 
cases such as planar boundary, since the center of mass of, say, a rod
shaped molecule can approach more closely to the wall when the molecule 
is oriented along the wall than when it points perpendicular to the wall. 
In this formalism all of the statistical mechanics above is immediately 
applicable, with positions and gradients referring to center-of-mass co
ordinates and integrations over angular variables included to remove de
pendences on ro. For example, since linear momentum is concerned with 
center-of-mass motion, (26) carrys over essentially as before, apart from 
the addition of a simple integral over angles; for example, (23b) now reads 

V13P"13(r) = -(:2: S (r - r1)V~, v(r1,ro1)} 

i 

-I dro <:2: S (r r 1) S (w 
l 

-I dro p(r,ro)Vro.v(r,w) 

W;)V;:', v(r1,w1)) (35) 

Integral equations such as (14) and (18), sum rules for free-energy deriv
atives carried over from the atomic fluid case, sum rules for surface ten
sion (Section III.C), and explicit formulas for pressure tensors such as 
(28) are similarly modified only by the inclusion of trivial integrals over 
angular degrees of freedom (see, e.g., Walton and Gubbins (1985)]. This 
is because up to now only center-of-mass coordinates have been directly 
involved (i.e., no new physics associated with the extension to molecular 
systems has so far been discussed). However, this situation changes as 
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soon as one focuses on the angular degrees of freedom. In particular, the 
hierarchy (10) is equally applicable to differentiation with respect to an
gular field variables. It follows that (II) and (12) generate a set of sum 
rules determining order parameters and interfacial compressibilities that 
are directly concerned with orientational order, in addition to sum rules 
concerned with positional order. Similarly, the presence of angular co
ordinates means that applying rotational invariance to the hierarchies (10) 
and (16c), analogous to the derivation of (14) and (18), will lead to new 
physics: namely, integral equations for (r x Vr + V .,..)p(r ,ut ). For explicit 
derivations, see Percus (1980) and Tarazona and Evans (1983). In addi
tion, one has a hierarchy of orientational YBG equations, involving an
gular derivatives of the many-body potential: generated by direct differ
entiation of the distribution functions and presumably also by potential 
distribution theory analogous to the derivation of (31). To date, little ap
plication has been made of this powerful statistical mechanical approach 
to orientational phenomena at fluid interfaces. 

E. Fluctuations and Instabilities of Fluid 
Interfaces 

Light-scattering experiments demonstrate that fluid-fluid interfaces are 
constantly in motion, due to the thermal excitation of long-wavelength 
capillary-wave (cw) modes [see, e.g., Katyl and Ingard (1967, 1968)]. In 
addition, computer simulation studies have confirmed that this picture 
remains down to microscopic wavelengths (Kalos eta!., 1977). The longer 
the wavelength of a collective mode, the longer is its oscillatory period. 
Thus in the long-wavelength limit it should be correct to treat the capillary
wave modes of a fluid interface as hydrodynamic fluctuations (e.g., con
sidering distortions from planar symmetry) (Buffet al., 1965): 

[(R,t) = I + 2.: ~Q(t)eiQ·R (f) (36a) 
Q 

Hew=!~ mQ <I tQ 1
2 + WQ

2
1 ~Q 12 ) Q~ 0 (36b) 

where l denotes the position of the midpoint of the fluctuating interface. 
The probability P(i) that any point in the interface lies at height i is de
termined by the free-energy contribution to (36b): 

Few = ! 2.: mQWQ
1

1 ~Q 1
2 

Q 

' (-Few) P(l) = X exp J;T (36c) 

where X is a normalization factor. Few is often referred to as an interface 
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Hamiltonian. In general, the interface Hamiltonian takes the form 

Few -yLlA + o V(l) (37a) 

where -y is the interfacial tension and o V(l) denotes the modification of 
the capillary-wave contribution due to damping from external fields. It is 
straightforward to show that up to order Q2 the change in interfacial area 
due to the distortions (36a) is 

LlA = !A 2: Q2 
I ~Q 1

2 

Q 

(37b) 

where A denotes the planar interfacial area. The leading-order contri
bution from the damping term is 

S V(l) I (o/)2 [a2 V~l)J 
2 at l~leq 

A- I I cP- I R(/ - [)2 = 2: I ~Q 12 
Q 

(37c) 

(37d) 

where leq denotes the equilibrium position of the interface. Thus (37) is 
of the form (36), with 

(38a) 

and 

w = (Akn-, [a2v;l)J 
at 1=/eq 

(38b) 

Since we have ignored any contribution from the damping at order Q2 it 
follows that (38) is relevant to the weak damping regime. For a specific 
example, consider a liquid-vapor interface in the presence of the earth's 
gravitational field: 

V(l) = ! mg .cl p Afl + c 

W = mg.clp 
kT 

(39a) 

(39b) 

where .clp is the number density difference between liquid and vapor. 
Applying equipartition to (36) and (38), 

kT = mQwQ
2 (I ~Q 12 ) = AkT ( W + ~;) <I ~Q 12) (40a) 

it follows that the capillary-wave correlation length for correlations per
pendicular to the interface diverges as W tends to zero in dimensions d 
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~ 3 [see, e.g., Bedeaux and Weeks (1985)]: 

~.Lz = 2: <I~ lz> = _!_ 2: (w + Q2-y) -t 
Q A Q kT (40b) 

- {~~~)~ ~:; 
finite d > 3 

So in d ~ 3 capillary-wave wandering of a fluid interface will increase 
progressively as the external damping is reduced. Note also that the three
dimensional world is the borderline dimension for this singular, or critical, 
capillary-wave phenomena. 

Capillary-wave correlations will be strongest in the plane of the inter-
face: ~ 11 • For the interface Hamiltonian (36) we can define 

G(zt ,Z2,Rt2)cw = (op(l)op(2)) 

op(r,t) -p'(z){i(r,t) I] Q-+0 (4Ia) 

where the subscript cw reminds us that only capillary-wave correlations 
are present in a system defined by an interface Hamiltonian. It therefore 
follows that 

G(z! .zz;Q)cw = A(/ ~Q j=')p'(zdp' 

p'(z.)p'(z2) 

W(J + Q2~n2) 

where we have defined 

= 
Go(Zt ,Z2)cw kTW 

(4Ib) 

(4lc) 

Thus long-wavelength correlations in the plane of the interface are uni
versally divergent in the zero damping limit. Furthermore, we see that 
interface Hamiltonians lead to Ornstein-Zernike behavior [i.e., Eq. 
(4lb)]. This is a consequence of the fact that -y is defined in (37a) to be 
a constant and thus cannot introduce additional singular behavior. Com
bining (37) to (41), we can identify the form of the singular part of the 
free energy as 

Fsing _ (~.L )2 

~II 
(42a) 

Substituting (40b), it follows that below the upper critical dimension cap
illary-wave phenomena obey a universal hyperscaling relation: 

Fsing~ 11 d-I = constant d<3 (42b) 
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Mathematically rigorous versions of interface Hamiltonian theory may 
be based on column models, as introduced by Weeks (1977). Here, one 
divides the planar interface into columns and treats capillary-wave modes 
as inducing correlations between different columns. The probability that 
the instantaneous position of the interface lies at height l within any col
umn is P(/) defined by (36c). Evaluating the Fourier transform of (36c) 
[i.e., (exp(iQ[))] implies that P(i) is a Gaussian [see, e.g., Evans (1979)]: 

A (-/2) P(l) = (21Ti;j_ 2)- 112 exp 2i;.L 2 (43a) 

where i;.J_ is defined by ( 40b). Similarly, the joint fluctuation probability 
P(/(1), /(2)), defining intercolumn correlations, follows from evaluating 
the quantity (exp(iQi(l) + iQ,i(2)]) given the normal mode probability 
(36c) [see, e.g., Rao et al. (1979)]. The long-wavelength expansion of this 
"transform" is consistent with the following "inversion" to order I ~Q 12 

(Rao et al., 1979; Percus, 1981): 

P(/(1), [(2)) P(L(l))P(L(2)) 

+ P' (l( l))P' (/(2)) 2: (j ~Q 12)eiQ·RI2 

Q 

Q--'>0 (43b) 

From (43) we identify the long-wavelength contribution to the surface 
structure factor as shown in (4lb). 

Let us now consider the relationship of the capillary-wave theory above 
to molecular models of inhomogeneous fluids. Following Weeks (1977), 
it is natural to inquire if one may treat the fluctuating interface (the so
called bare profile) as being qualitatively defined by including all corre
lations up to a length of order of the bulk correlation length, i;b (and hence 
i;b defines the column width). If so, the full profile is obtained by including 
capillary waves of wavelengths larger than ~; in particular, from (43a) 
we have 

p,(z) (21TL 2
)-

112 J:'>' df Po
1
(Z f) exp c£~:) (44) 

where subscript 0 denotes the bare profile. The central portion of the full 
interfacial profile gradient receives contributions from both the bare pro
file gradient and the capillary-wave term, each of which is a strongly 
peaked factor. However, in the tails (or asymptotic wings) of the density 
profile the right side of (44) is dominated by only one of the factors ap
pearing in the integrand, depending on the behavior of i;.L [i.e., (40b) 
implies a crossover in the nature of the profile tails, at the upper critical 
dimension (d>) for interfacial fluctuations]. Ford> d> the capillary-wave 
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fluctuations do not broaden the tails of the profile because in comparison 
with the rest of the integrand, the Gaussian factor on the right side of (44) 
acts as a delta function: 

p'(z)- pb(z) I z 1- oo, d > d> (45) 

This is precisely what is found in mean-field theories (i.e., from van der 
Waals-like approximations to integral equation theories or density func
tional theories. in any dimension), where Lis always a finite microscopic 
length and the mean-field profile gradient decays no faster than an ex
ponential. It follows that for the purpose of evaluating the asymptotic 
behavior of the full profile it is appropriate to calculate the bare profile 
from mean-field theory. For example, consider the case of strictly finite
range interactions, or exponentially decaying interactions, for which the 
mean-field liquid-vapor profile is readily shown to have the following 
asymptotic behavior [see, e.g .. Henderson (!987b)J: 

be 2":~; + ··· PI (46) 

where in general the liquid and vapor tails will have different values of 
the temperature-dependent parameters 'A. a. and b. Close to the mean
field critical point. (46) becomes symmetric and 1/.\ reduces to the bulk 
correlation length (Fisk and Widom. 1969). Identifying (46) with p0 (z). 
as discussed above, we see that in d 3 we obtain (45) because a Gaussian 
decays faster than an exponential. However, ford ~ 3, one must take 
into account the divergent behavior of ~.L. In particular, substituting (46) 
into (44), as Po (z), we see that the behavior of the tails of p(z) is determined 
by the integral 

/(A.,j Z I) = (21T~.L 2) 112 i?C dl e'-<z-he-i2f2t;"2 z- -oc 
(47a) 

This integral is readily evaluated in terms of a standard error function, 
giving the following asymptotic behavior: 

For large enough I z I and at nonzero damping, the value of (47) is dom
inated by the i = 0 contribution (i.e., the profile eventually decays ex-
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ponentially). However at I z I < '-b. 2 the leading-order part of (47) arises 
from the region i = z. In the latter case, we must include the contribution 
to (44) arising from l < z [i.e., now it is the p0(z l) factor in the integrand 
of ( 44) that acts as a delta function]: 

p'(z) ~ ±ap(21Tt.L2
) 

112 exp (~~:) t ~ " I z I ~ "2
t.L 

2 
< 48) 

The physical interpretation of the origin of (48) is that it arises from cap
illary-wave fluctuations that move the central portion of the bare profile 
across the height z. Below the upper critical dimension, which for short
range forces is clearly d = 3, such fluctuations will always arise in the 
limit of infinitesimal damping ( W ~ 0 + ), regardless of the value of z [i.e., 
(48) dominates the asymptotic decay of p(z) as ~..l ~ oo]. For this reason, 
d ~ d> is known as the fluctuation regime. In the borderline case for 
short-range interactions, d 3, one should add a warning concerning the 
extremely slow divergence of L; namely, note the logarithmic behavior 
of (40b) in d 3 and the fact that (40b) arises only if one is permitted to 
include arbitrarily small values of Q [this involves the requirement that 
one must be able to perform statistical averages over arbitrarily large 
times (Henderson, 1987b)]. 

With regard to capillary-wave correlations in the plane of the interface, 
the link between interface Hamiltonians and molecular-based theories is 
described in a seminal paper by Wertheim (1976). In particular, Wertheim 
(1976) noted that in the weak damping limit the single eigenfunction result 
(41) for Go(z~.z2) is more or less implied by the integral equation (14), 
giving (Rao et al., 1979): 

W = - k~ J dz p'(z)v'(z) w~o (49) 

and note, for example, that (49) rederives (39b) in the case v(z) = mgz. 

Furthermore, substituting Go(ZJ,Z2)cw = p'(zdp'(z2)/W into (20d) and 
using sum rule (77b) implies that 

Gz(ZI,Z2) = - kT~2 p'(z1)p'{z2) w~o (50) 

This result explains the mysterious surface tension sum rule (77a), given 
(49). Thus in a few short lines the statistical mechanical theory of inho
mogeneous fluids is able to confirm the general significance of the Orn
stein-Zernike behavior of interfacial fluctuations in the weak damping 
regime [Eq. (4lb)]. Some workers have attempted to cast doubt on this 
conclusion in the special but physically relevant case of d = 3. In par-
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ticular, Robert (1985), Ciach (1987), and Requardtand Wagner(1989) have 
suggested that capillary-wave correlations might be so divergent as to make 
the right sides of sum rules (77a) and (77b) ill defined, thus invalidating 
(50); room for such doubt is provided by the nonscaling nature of capillary
wave correlations in the borderline dimension d = 3. However, all such 
arguments to date have relied on explicit results concerning the strict W 
= 0 limit (i.e., the thermodynamic limit). Here, one does not have a well
defined interface ('y 0), so one should not anticipate any link with the 
W- 0+ limit of a nondiffuse interface [see the remark following (20e)]. 
Weeks et al. (1989) have provided the strongest rebuff to date of doubts 
concerning the validity of Omstein-Zemike interfacial behavior in d = 
3; if such arguments are ultimately proved to be incorrect, interface Ham
iltonians of the class (36) would not be applicable to d = 3 and none of 
the critical wetting phenomena that have been derived from such theories 
would be relevant to molecular Hamiltonians (Section IV). 

To conclude this section, let me highlight the significance of soft in
terfacial modes to fluid interfacial phenomena such as wetting. As dis
cussed above, all fluid interfaces are inherently unstable to capillary-wave 
contributions to ~b and in d ::s; 3 this further involves a divergent ~J... For 
example, consider the growth of a liquid film at a substrate-vapor inter
face. At finite film thickness the capillary-wave modes are damped by 
the wall~fluid potential (e.g., capillary waves cannot penetrate the sub
strate). However, the thicker the film, the smaller the damping, and thus 
we see that the continuous growth of a liquid film is an example of the 
W- 0 + limit discussed above. Similar remarks apply to continuous melt
ing of a solid-gas interface (i.e., surface melting) (Lipowsky, 1986). Soft 
modes also play significant roles in first-order interfacial transitions. For 
example, consider the growth of liquid films at the walls of a planar slit 
pore of width L. As soon as the film thicknesses are large enough to 
support capillary-wave modes, the size of ~J.. will determine the likelihood 
of collisions between interfacial fluctuations spanning the gap L, thereby 
nucleating capillary condensation. 

F. Intermolecular Forces and 
Nonuniversality in Interfacial Systems 

The conclusions of the preceding section imply that below the upper crit
ical dimension for interfacial fluctuations (d < d>) the details of inter
molecular forces are irrelevant to the qualitative nature of fluid interfacial 
phenomena in the weak damping regime. That is, in this situation capil
lary-wave fluctuations will dominate the properties of fluid interfaces and 
interfacial critical phenomena will belong to universal scaling regimes 
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described by (40b), (41c), and (42b). However, this universality cannot 
be expected to be generally applicable to the physical world because d> 
~ 3. Thus it is necessary to inquire whether or not the details of inter
molecular forces play a qualitative role in interfacial critical phenomena. 
In particular, the ubiquitous presence of dispersion forces in molecular 
systems means that the asymptotic decay of intermolecular interactions 
is invariably a power law: 

<p(2)(r) _ r-(3+ml (51 a) 

where m = 3 at intermediate range (i.e., until retardation effects take 
over and enforce the macroscopic limit m = 4). Thus in planar symmetry 
the wall-fluid potential arising from a semi-infinite solid will decay as 

v._(z)- z (m+3-d) + oz-(m+4-d) z~ oc (51 b) 

where (as usual) d denotes the overall dimensionality. 
For an example of the significance of (51), consider a wall-gas interface 

with dz) defined by (51b). From (15) and (17) it follows that in the low
density limit of the bulk gas, the density profile falls off as 

v(z)) 
kT 

(52) 

That is, a power-law decay of v(z) induces a power-law decay of p(z) and 
so in molecular systems one cannot treat a wall-fluid interface as being 
of finite range. The crucial significance of this fact to fluid adsorption and 
wetting phenomena has long been apparent to the Soviet school [see, e.g., 
Derjaguin (1940)] but has only been generally appreciated in the West 
since the early 1980s (de Gennes, 1981). 

The asymptotic wings of a liquid-vapor or a fluid-fluid profile are 
similarly affected by the presence of power -law interactions. Naively, 
one can construct an analogy with (52) by treating the liquid phase as the 
wall, and then on the liquid side of the interface it follows that the same 
effect must arise from the absence of intermolecular interactions; for an 
explicit theory, see Barker and Henderson (1982). Thus, in molecular 
systems we should replace (46) with 

PMF(Z)- a! AZ I (m+ 4 -d) + bl AZ ,-(m+S-d) + ... (53) 

Here, the relevant integral replacing (47) is 

(54) 

where a is a microscopic length of order 1/A. or perhaps 10/A.. The mean
field region of the profile is now given by the condition I z l[ln(l z I! a )J 112 
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)> t.t., and comparing with (47b) we see that at a fixed value of the 
capillary-wave damping, power-law interactions are much more dominant 
over the fluctuation contribution than are short-range interactions. For 
the case of a liquid-vapor interface in a gravitational field, these remarks 
are of little significance, except to experiments that specially probe the 
asymptotic region, because the amplitude of these profile tails is so in
significant in comparison with Ap (Barker and Henderson, 1982). In con
trast, the study of continuous wetting phenomena is concerned directly 
with the behavior of the profile wings, which are the means by which a 
liquid-vapor surface interacts with the short-range field of a distant sub
strate. In particular, Lipowsky (1984) noted that power-law interactions 
imply a lowering of the upper-critical dimension for interfacial critical 
phenomena; 2 < d> < 3. So in the absence of bulk critical phenomena, 
mean-field theory is qualitatively correct in d = 3 (but not d = 2), except 
for models restricted to finite-range or exponentially decaying interac
tions. 

It follows from the above that interfacial critical phenomena is non
universal in d = 3, with free-energy scaling functions and associated 
exponents that depend explicitly on the power-law interaction parameter 
m (Dietrich and Schick, 1985; Ebner et al., 1985). In fact. even exponential 
forces cannot always be treated as short ranged. since an exponential wall 
field can compete with the exponential decay of a mean-field profile de
termined by strictly finite-ranged fluid-fluid interactions or by exponen
tial interactions [i.e., Eq. (46)]. Furthermore. because d 3 is the upper
critical dimension for capillary-wave fluctuations in the absence of power
law forces, these competing exponential effects can in turn compete with 
capillary-wave broadening (Hauge and Olaussen, 1985). It follows that 
models· of inhomogeneous fluids without power-law forces possess par
ticularly complex nonuniversal behavior in the special case of d = 3. 
Physically, one must get used to the fact that distant surfaces will always 
interact via the tails of their density profiles, even if the only effect present 
is exponential decay; for example, exponential decay is associated with 
logarithmic film growth. For inhomogeneous fluids the qualitative details 
of molecular models have qualitative consequences and one cannot get 
away with pretending that intermolecular forces are strictly short ranged. 

Ill. SUM RULES 

A. Compressibility Route 

For the sake of definitiveness I restrict this discussion of explicit examples 
to the models defined by external fields (8) and (9). These two models 
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are simplified prototypes that highlight two important aspects of inter
facial physics, associated with the fields Ew and L, respectively. Ob
viously, many generalizations could readily be incorporated; for example, 
(8) could represent just part of the external field (say, the short-range 
repulsive part or a power-law attraction), or a range parameter aw could 
be introduced into (8), and (9) could be modified to discuss nonplanar 
geometry (Section V .B) or generalized to nonsymmetric walls (e.g., an
tagonistic walls). Thus the potential breadth of physics that could be stud
ied by the following methods is very large indeed. 

Substituting (8) and (9) into the general sum rule (11) leads to explicit 
results for the densities conjugate to the field variables f.L, Ew, and L: 

I aoex l"" f = --- = dz[p(z) - Pb] 
A Of.L o 

(55) 

1 an 1 1= e = --- = -- dz p(z)v(z) 
A OEw Ew 0 

(56) 

I aoex J= f = -A oL = - -= dz p(z)voc'(z) - Pb (57) 

where in sum rules (55) and (56) and hereafter (wherever specifically 
required) the equipotential of infinite wall-fluid repulsion is located at 
the plane z = 0. Note also that hereafter, unless otherwise stated, all 
partial derivatives denote fixed field variables. 

Equation (12) enables us to introduce the following interfacial com
pressibilities, among others: 

(58) 

(Evans et al., 1983) 

ar ae 
X1 =- =- = 

oEw Of.L 

1 f"" f"" - kTEw -= dz1 -= dz2 v(zz)Go(ZJ ,zz) (59) 

(Henderson, 1986a) 

1 J"" J"' kTew 2 -co dzt _,., dz2 v(zt)v(Z2)G0 (z1 ,z2) (60) 

(Henderson, 1986a) 

XL= !i = klT J~,. dz1 J~"" dzz v"'"(zJ)v""'(L - Z2)G0 (z1 ,Z2) (61) 

(Henderson, 1986b) 

where in (61) and elsewhere .a dash denotes derivative with respect to the 
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stated argument, and note that since (57) has made use of the symmetry 
of p(z) and v(z) about z = L/2, it is best to derive sum rule (61) via direct 
differentiation of (57). 

It is also worth pointing out that sum rules (58) to (61) are associated 
with the following integral equations for partial derivatives of the one
body density: 

kT ap(zd 
aL 

and :o this collection one should add Eq. (14): 

kTp'(zl) = - J~"' dz2 v'(zz)Go(Zl 

(62) 

(63) 

(64) 

(65) 

which is equally applicable to models (8) and (9) (i.e., single wall and slit) 
(Henderson, 1986b). 

In cases where the external field is discontinuous it is important to 
introduce (15). Similarly. the connection between capillary-wave theory 
and molecular Hamiltonians is most rigorously handled by going to the 
trouble of removing the o(z 12 ) term in Go(ZJ ,z2 ) via introduction of (15) 
(Henderson and van Swol, 1985: Henderson, 1986a). For example, one 
can generate an interesting sum rule by integration of Eq. (65) across a 
wall-fluid interface: 

where ho(ZI ,zz) is defined analogous to (20) and Pb has been introduced 
via the virial route expression for mechanical stability [Eq. (25c)]. In the 
case of slit pores, one can integrate (62), (64), and any appropriately 
generalized version of (63) to obtain sum rules for the change in total 
absorption within the pore; for example, from (64) (Kjellander and Sar
man, 1990): 

kToN(L) 

A aL 
(67) 

In addition, one can invoke the Ornstein-Zernike equation (20a) at Q 
= 0 to invert the results (62) to (65), thereby generating a complementary 
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set of equations involving the two-body direct correlation function; thus 
(58) to (61) and (66) and (67) can all be reexpressed as direct correlation 
function sum rules. The Q2 Ornstein-Zernike inversion, Eq. (20d), is 
particularly important in conjuncture with sum rules for the interfacial 
free energy (see Section III.C). 

B. Virial Route 

The significance of the virial route lies in its direct connection with me
chanical stability. Thus integration of (25c) across a planar wall-fluid 
interface generates a sum rule for the bulk pressure in terrns of a balance 
with the force exerted by the wall: 

Pb J0

' d [ v(z)J kT = -x dz n(z) dz exp --;;:r- (68a) 

and note that (68a) can be rewritten in the language of the compressibility 
route by introducing the one-body direct correlation function via (17): 

(68b) 

In narrow slits. mechanical equilibrium is no longer associated with a bulk 
pressure (defined by T and !J.) but with the normal component of the 
pressure tensor inside the slit: in particular, for a symmetric slit of width 
L. 

PN(L/2) 

kT 
v"'(z)] 
kT 

2 l"" + kT Ln dz p(z)v"''(z) (69) 

In the absence of direct overlap between the two wall fields, the last term 
on the right side of (69) is zero and the solvation force (57) reduces to the 
pressure difference [pN(L/2) Pb] (Henderson, 1986b). In molecular 
dynamics simulation studies of pair potential models of inhomogeneous 
fluids with planar symmetry, it is now routine practice to calculate pres
sure tensor profiles directly from (28). 

An alternative but equivalent expression of mechanical force balance 
is provided by the first YBG equation (31b) [i.e., one now avoids explicit 
introduction of the pressure tensor (23a)]. Thus mechanical stability is 
also expressed by sum rules generated from integration of (3lb). For ex
ample, Lekner and Henderson (1980) introduced the following set of equa
tions expressing integrated force balance across a liquid-vapor interface 
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of a pair potential fluid: 

(I -1)( s s) P ( s-1 .... Pvs-1) - S PL - Pv - - PL -
kT 

1T f"' f"' = kT _, dz1 _, dz2 [p(z2Y- 1 
- p(z.Y- 1

] 

X (z, - Z2) {"' dr12P(2)(r12 .Zt ,Z2)q;'(ru) 
Jiz,z! 
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(70) 

where the first term on the left-hand side reduces to -ln(pdpv) in the 
limits = 0. Analogous sum rules for the compressibility route are gen
erated via (18). Of course, to understand how sum rules obtained from 
(!4) apply to liquid-vapor interfaces, one must make the explicit con
nection with capillary-wave theory, as described in Section II. E. 

C. Surface Free Energy 

Superficially, the straightforward route to sum rules for surface excess 
grand potential is via the virial theorem (24). In particular. in planar ge
ometry we can write, from (25a), 

A 
(7!) 

where 8c(Z) defines a choice of Gibbs dividing surface [i.e., 8c(z) = 0 
for all z lying outside any boundary surface and is unity otherwise]. 
Expressions such as (71) can be evaluated from pressure tensors like (28), 
or equivalently, one can work directly with specific examples of equation 
(22) (Kirkwood and Buff, 1949). However, surface free energy is depen
dent on the geometry of an interface and outside planar symmetry the 
analog of (25a) is in general ill defined by pressure tensors of the class 
(23a) [see, e.g., Henderson (l986c)]. Accordingly, beyond planar sym
metry the virial route to surface free energy in molecular systems becomes 
problematical. The compressibility route to sum rules for oex is more 
technically demanding because it requires one to evaluate second-order 
changes in free energy, in contrast to the first-order virial result (22). 
However, the compressibility route is relatively free of boundary con
dition problems that plague the vi rial route applied to nonplanar geometry; 
thus, below and in Section V.B it is the compressibility route that is 
invoked to generate rigorous results for spherical or cylindrical symmetry. 

In the case of a planar wall-fluid interface [model (8)], it is instructive 
to note that (71) splits into an external field term plus a many-body fluid
fluid term; the latter is conveniently termed the surface tension (-y). That 
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is, inserting PN(Z) defined by (25c) into (71) yields 

oex {"" 
A = -y Jo dz zp(z)v'(z) (72a) 

-y = L"" dz[pN(z) p-r(z)] (72b) 

For a symmetric planar slit [model (9)] we can similarly rewrite (71) as 

oex {L 
A = Jo dz[pb - p-r(z)] 

= z[ 'Y - LL dz zp(z)v"'"(z) J - Lf (73a) 

-y = Lu2 

dz[pN(Z) - p-r(z)] (73b) 

where f is the solvation force (57) and to obtain (73a) I have made use 
of (69); note that in (73), -y, p(z), and fare all dependent on the slit width 
L. 

Compressibility route sum rules for the surface tension of a planar 
interface in a general external field v(z) can be obtained from the virial 
route expression (72b) via the derivation of Schofield (1979); for a review 
that explains why Schofield's proof is limited neither to pair potential 
fluids nor to fluctuating liquid-vapor interfaces, see Appendix A of Hen
derson (1983). However, this approach involves lengthy algebraic ma
nipulation, the use of complex correlation functions, and an integration 
by parts that requires a careful consideration of boundary conditions. 
Accordingly, I shall review a direct method introduced by Henderson 
(1983), based exclusively on a straightforward use of the compressibility 
route hierarchy (10). 

The trick is first to transform to d-dimensional spherical symmetry and 
then take the planar limit. For the sake of definitiveness I shall consider 
radial external fields of the class 

v(r;RG) = v(r - RG) (74) 

where RG denotes a choice of dividing surface. For any planar v(z) one 
can always introduce a radial external field of the class (74) that reduces 
to v(z) in the limit RG- oo; z = (r - RG). I shall also require that v'(r 
- RG) vanish at r > Rw for some Rw ~ RG. The latter condition could 
be achieved in various ways; for example, if one is interested in wall
fluid systems, the fluid could be placed inside a cavity (say, of radius 
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Rc), or alternatively, one could consider fluid surrounding a spherical 
wall (at Rc), with Rw denoting a far boundary. Weak stabilizing fields 
(analogous to the earth's gravity) can equally well be considered, provided 
that one truncates or smoothly heals the potential at r > Rw, directly 
analogous to the planar case, where again one prefers to use models that 
possess true bulk phases (Weeks, 1984). The important point here is that 
by extracting the planar result from the limit Rc - oo one avoids the 
difficulties of defining rigorous boundary conditions for infinite planar 
interfaces such as those associated with integrating by parts along a planar 
interface possessing long-range capillary-wave correlations. Provided 
only that the excess grand potential following subtraction of bulk terms 
[e.g., proportional to Red and (Rw - Rc)d] varies strictly as Red 1 at 
leading order, the limit Rc- oo will yield a well-defined surface tension. 
Thus, in the absence of pathological behavior such as the presence of a 
Rcd-I ln(Rc) term in f!(Rc), it follows that planar interfacial correlations 
must be consistent with a finite surface tension in the limit Rc- x. 

For any choice of T, IL· Rc let us consider an infinitesimal variation 
of Rc at fixed (T,j.L), as defined by the compressibility route (10): 

I dr p(r;Rc)r'(r Rc) 

-kiT I dl I d2 v'(rJ - Rc)v'(r2 - Rc) 

X (1 - rt"f·2)G(l2) 

- (d - 1) I dr r- 1 p(r;Rc)v'(r - Rc) 

(75a) 

(75b) 

The leading-order area dependence can be extracted from the combination 

_1_ (-a-_~~) f!(R) _ 1 
Rcd- 2 aRc d - 1 aRc2 G - (d - l)kTRcd- 3 

x I dl I d2 v'(r1 - Rc)v'(r2 - Rc)(I - r 1·r2)G(l2) (76) 

- Rc:_ 1 I dr ~c (r - Rc)p(r;Rc)v'(r Rc) 

Taking the planar limit [z = (r - Rc); Rc- oo) of (76) we regain the 
form (72a) except that here -y is defined by a compressibility route sum 
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rule: 

'Y = Z(d ~ l)kT J~, dz, v'(z,) J~"" dzz v'(zz) J dRnR'f2 G(R 12 ,z 1 ,z2) 

1 J"' J"" = - kT -oc dz, v'(z,) -oo dz2 v'(z2)G2(z 1 ,Zz) 

(77a) 

In addition, one can insert Eq. (20d) and then use of Eq. (65) immediately 
transforms sum rule (77a) into the inverted form 

"Y = kT J~, dz, p'(zt) J~= dz1 p'(z2)Gz- 1(Zt.Z2) (77b) 

The results (77a) and (77b) were first derived from fluctuation theory 
of liquid-vapor interfaces [Wertheim (1976) and Triezenberg and Zwanzig 
(1972), respectively]. However, the derivation above holds regardless of 
the strength of the external field and is equally appropriate in the absence 
of capillary-wave modes. Note that the Schofield (1979) proof of equiv
alence between (77) and the virial route expression (72b) concerns the 
many-body contribution to nex; in general, the total surface excess grand 
potential contains a one-body term, the last term on the right sides of 
(72a) and (76). Finally, in the light of the derivation above, let me recon
sider the doubts concerning the validity of sum rules (77) in the case of 
d = 3, as reviewed briefly toward the end of Section II.E. Namely, the 
derivation above would naturally associate any singular behavior in the 
planar limit (77) with a failure of the leading-order radius expansion of 
the free energy in spherical symmetry [e.g., the presence of an Rad 1 In 
(Ra) term in fi(Ra)]. Thus in any model in which the surface free energy 
per unit area of a spherical cluster can be proven to remain finite and 
non-zero as Ra- oo, it follows that sum rules (77) should be well defined. 

D. Sum Rules and Approximate or 
Phenomenological Theories 

Integral equation theories based on equations such as (62) to (65) will 
invariably violate the statistical mechanical consistency that links these 
equations to each other and to the rest of statistical mechanics. That is, 
only very special sets of correlation functions are capable of maintaining 
strict compatibility between one integral equation and another. For ex
ample, an approximate Go(zt.z2 ) inserted into, say, (65) will not usually 
yield a density profile that satisfies mechanical stability sum rules such 
as (66) and (68). However, if one enforces such compatibility, it is rea-
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sonable to expect that the quality of the approximate solution should be 
enhanced. Thus an obvious approach to integral equation theory is to 
develop correlation function approximations that can be optimized by 
enforcing agreement with sum rules. This use of sum rules also has the 
benefit that the resulting integral equation theory can be said to satisfy 
the underlying physics of the sum rules, such as integrated mechanical 
stability or compressibility fluctuation phenomena. A related approach is 
to enforce agreement between corresponding pairs of virial route and 
compressibility route equations. In fact, Lovett (1988) has argued on for
mal grounds that approximate integral equation theories will probably 
possess no solutions at all unless additional consistency requirements are 
included. 

In general, phenomenological density functional theories (see Chapter 
3) yield correlation function hierarchies that are fully consistent with sta
tistical mechanics. However, by approximating the grand potential func
tional ( 16) it is no longer possible to claim any clear link with a Hamiltonian 
of the class (7c). The significance of sum rules to density functional theory 
involves two aspects. First, the use of sum rules can enhance the nu
merical analysis of a density functional by providing criteria for numerical 
stability and through the direct correspondence between correlation func
tions and physical phenomena expressed by sum rules [see. e.g .. van Swol 
and Henderson (1989)]. The second aspect is associated with a need to 
understand those special cases in which statistical mechanical consistency 
breaks down. In particular, careful consideration should always be given 
to ensuring that physically sensible realizations of ( 15) and ( 17) arise from 
the one-body direct correlation function that any density functional theory 
will define. 

Two classes of violations of statistical mechanical consistency by den
sity functional theory have been noted in the literature. 

1. Those simple density functionals that do not make use of coarse
grained density profiles (i.e., attempt delta function smoothing) cannot 
satisfy the fundamental requirement that c<n(r) be a continuous function 
across a hard-wall boundary [i.e., note that c<l)(r) determines the one
body y-function n(r) via (15) and (17)]. Thus such crude density functional 
theories applied to wall-fluid interfaces in the presence of discontinuous 
external fields will violate any sum rule that involves integrated force 
across a discontinuous boundary. However, this effect is fairly benign 
because all that happens is that each such integration picks up a spurious 
factor associated with the discontinuity in n(r) (Parry and Evans, 1988). 

2. From a careful consideration of (17) it follows that one should avoid 
density functionals that include a logarithmic term in the excess chemical 
potential (i.e., the one-body direct correlation function). This is because, 
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formally, such a term can induce a violation of the positivity of p(r) that 
would otherwise be guaranteed by (17) or its exponentiated form. Thus 
density functional theories using a one-dimensional hard-rod contribution 
to the equation of state can lead to spurious negative density profiles if 
(17) is not treated with special care (Vanderlick et al., 1986). 

Given that the one-body direct correlation function defined by a density 
functional satisfies basic physical requirements, it follows that functional 
differentiation of the grand potential functional will generate all of the 
compressibility route sum rules above, in complete consistency with one 
another. Furthermore, mechanical stability and compatibility with the 
virial route is ensured via the links (3la), (68b), and so on. It follows that 
modern density functional theories, based on coarse-grained density pro
files, are fully consistent with the structure of statistical mechanics (Tar
azona, 1985; Curtin and Ashcroft, 1985). In particular, defining c<l)(r) in 
terms of a coarse-grained profile guarantees smooth behavior at all times 
and so avoids violations of class 1 above, as shown explicitly with regard 
to the mechanical stability sum rule (68) by van Swol and Henderson 
(1989). However, note that even this extreme internal consistency with 
statistical mechanics can still be associated with violations of physical 
behavior, such as failures inherent in all mean-field theories, presumably 
indicating an unphysical underlying Hamiltonian. 

Inverting the emphasis of the discussion above, it should be stressed 
that density functional theory can contribute much to the interpretation 
of sum-rule analyses (Evans, 1981; Parry and Evans, 1988). Namely, den
sity functional theories provide explicit realizations of correlation func
tions that satisfy statistical mechanical sum rules. It follows that sum-rule 
analyses, such as presented in Section IV, had better not be mathemati
cally incompatible with density functional theory, even if one is suspicious 
of the physics underlying a given functional. 

IV. SUM-RULE ANALYSES OF PLANAR WALL
FLUID INTERFACES 

A. Fluids at a Hard Wall 

For the sake of clarity it is convenient to begin a discussion of wall-fluid 
interfaces by focusing on the special case of a hard-wall boundary. 
Clearly, this model cannot display phenomena associated with the field 
e,...; this topic is left for Section IV.B. But in other respects the hard-wall 
limit acts as a prototype of models of wall-fluid interfaces that do not 
involve power-law interactions (i.e., all the derivations presented in this 
section have extensions to models with finite-range wall-fluid forces). At 
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the end of this section I shall discuss how the inclusion of power-law 
interactions can lead to qualitatively new physics. 

Some of the equations derived in Section III acquire a remarkable but 
occasionally deceptive simplicity when applied to the hard-wall model. 
In particular, sum rules (68a), (66) and (77a) reduce to, respectively: 

(78) 

Pb - :; = Pw J: dz p(z)ho(z,O) (79) 

kT 
Pw2h2(0,0) (80) 

and (65) yields 

p(z) 
p,ho(z,O) z>O (81) 

Multiplying (81) by p(zY and integrating from z = 0 out into the bulk fluid 
generates an infinite set of sum rules, of which (79) is the s = 1 version: 

(82) 

where the left side reduces to ln(pbiPw) in the limit s __,. 0. 
Sum rule (78) links the structure at the wall with the bulk equation of 

state. Thus moderate to high pressure corresponds to Pw<Td ;p I (where 
cr denotes a molecular diameter), which implies a wall-liquid profile with 
strong oscillatory layering structure. The prototype system for studying 
this packing structure is hard-sphere fluid at .a hard wall; for example, 
Henderson and van Swol (1984) have used molecular dynamics simulation 
to confirm (81) in the limit z ---7 0, and Henderson and Plischke (1987) 
have solved integral equation theories based on (81) and (62). It is equally 
clear from (78) and (81) that oscillatory interfacial structure will disappear 
at sufficiently low pressure (i.e., the hard wall will become dry at low 
Pb). In particular, consider an interface between a hard wall and a bulk 
liquid at values of (T,f.L) close to saturation (i.e., close to bulk liquid
vapor coexistence). Here, Pb approaches the vapor pressure, which will 
always be lower than kTpv (where Pv denotes the vapor density) because 
the second virial coefficient has to be negative at temperatures below the 
liquid-vapor critical point (Tc). It follows from (78) that Pw < pv and from 
(81) that p'(z) will be very small near the wall. So the equilibrium state 
of an interface between a hard wall and a saturated liquid is completely 
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dry (i.e., a macroscopic region of vapor lies between the wall and the 
liquid). 

Since the previous argument applies at all T < Tc it follows that we do 
not expect to'find partial drying at any temperature along the bulk liquid
vapor coexistence curve and with no drying transition there should be no 
region of prewetting transitions in the approach to saturation, either. So 
for T < Tc the adsorption isotherms of liquid at a hard wall should all 
show a continuous growth of adsorbed gas that becomes divergent in the 
approach to bulk liquid-vapor coexistence (van Swol and Henderson, 
1984). Furthermore, this behavior is clearly associated with the diver
gence of at least one correlation length: the ~ n capillary-wave correlation 
length belonging to the liquid-vapor interface that moves out from the 
wall as the layer of adsorbed gas increases in thickness. So an approach 
to complete drying is a type of critical phenomena, with the liquid-vapor 
coexistence curve acting as a line of critical points, associated with a 
divergent order parameter (the adsorption r or the film thickness t) and 
a divergent correlation length (~ 11 ): 

If! (PL Pv)t-!&1-L!- 13 

~II -I &1-1 ~-vII 

(83a) 

(83b) 

where Of.L denotes the distance from saturation in terms of the field chem
ical potential and I have introduced the complete drying (or wetting) ex
ponents !3, v 11 . Below the upper critical dimension for capillary-wave 
phenomena (Section Il.E) we should also include a second divergent cor
relation length: 

3-d 
2 

wIn [(A.~ 11 )Z] 

d<3 (83c) 

kTA.2 

w=--
41T')'Lv 

d = 3 (83d) 

where the value of~ follows from (40b) and (41c) and the inverse length 
A. has been introduced from (46) to define the high-Q capillary-wave cutoff, 
which plays an important role in d = 3. Lipowsky and Fisher (l986a) 
have argued that (83) is immediately generalizable to discussions of wet
ting phenomena in the presence of random fields; one simply alters the 
value of the exponent ~ to take account of the fact that the presence of 
random fields will increase the value of d>. As in all critical phenomena, 
the divergences above will manifest themselves as a singular contribution 
to the interfacial free energy [see (42)]: 

fiex - I &~J-12-a (83e) 



Statistical Mechanical Sum Rules 63 

where hereafter a tilde denotes the "singular part of' whenever neces
sary. 

Let us now focus attention on the startling consequences that are im
plied by attempts to reconcile (83) with sum rule (80) and Eq. (81). For 
example, note that h2(0,0) contains the liquid-vapor contribution to the 
interfacial excess grand potential (')'Lv ), even in the limit t -+ ();). Less 
mysteriously, (81) is highly suggestive of the capillary-wave correlation 
phenomena discussed in Section II.E. That is, inside the liquid-vapor 
part of the profile we anticipate 

p(t)p(t)ho(t,t) - p'(t) pl(t) 
w {W,&f.L}-+ 0 

Furthermore, substituting (84a) into (20d) implies that 

with ~ 11 identified from sum rule as 

We can now use (20d) in conjunction with (81) and (84) to derive 

(84a) 

(84b) 

(84c) 

(85) 

That is, the wall and the liquid-vapor interface communicate with each 
other through the presence of long-wavelength capillary-wave correla
tions, even in the limit t-+ x. 

Since G 2(t,O) is singular it is natural to conclude that Go(t,O) will also 
contain a singular capillary-wave contribution. But note from (81) that 
this contribution is finite; that is, the wall-liquid correlation length, 
[- G2 ( t ,0)/G0 (t ,O}P12

, is identical to the fluctuating interface correlation 
length, [ -G2(t,t)/Go(t,t)]ll2. 

Henderson (l986a) introduced a single-eigenfunction ansatz that con
tains the behavior (84) and (85): 

- E(Z! )E(Z2) 
G(z1 ,z2;Q) = W(l + Q2~ 2) 

- II 
(86) 

with Wand~ 11 linked by (84c). To solve for the exponents J3 and v 11 one 
can try to identify the behavior of W. When z1 and Z2 both lie inside the 
fluctuating part of the interface it follows from (84) that E(Z) ~ p'(z). Now, 
fix Z1 at t and let z2 -+ 0 in (86); if (81) or (85) are to hold, we identify 

W ~ p'(O) (87a) 
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From (87a), (84c), and the results of Section Il.E, one concludes 

~ -2 - {l(A,t) 
ll e-~-.r (87b) 

where A is defined by (46) and l(A,t) by (47). At and below the upper 
critical dimension d>, the argument leading to (87b) is simply to use (44) 
with capillary-wave fluctuations truncated at the wall (Percus, 1981; Hen
derson, 1987b); It is believed that this procedure is equivalent to a linear 
renormalization-group analysis of fluctuating surfaces in the presence of 
a hard-wall boundary (see Forgacs et al., 1991, Appendix A). 

We are now in a position to present a full sum-rule analysis of the 
approach to complete drying at a hard wall. First, from sum rule (58) and 
Eq. (86) at (z1 = t, Z2 = t), 

(88) 

From this result and from sum rule (55) follow exponent relations linking 
the critical exponents defined in (83): 

1 + 13 = 2v 11 

I -a= -13 
and combining these results, we have 

2 - a = 2v 11 - 213 

(89a) 

(89b) 

(89c) 

The rest of the analysis is provided by taking the logarithm of (87b) and 
combining with (88). Thus in mean field we have 

(90a) 

with v 11 = !, 13 = O(ln), and a = I. In d < d>, (87b) reduces to 

(A~ 11 )
2

- A~j_ exp ( 2:: 2 ) (90b) 

so provided that ~ 11 varies as some power oft, it follows that t - ~j_ to 
within a logarithmic factor; that is, 

d<d> (90c) 

In the special case d = d>, (47b) and (87b) imply the existence of two 
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regimes: 

(90d) 

In the absence of random fields, we can combine the logarithm of this 
result with (83d) (Henderson, l987b): 

Xt {(1 + i) In ((A~!If] 
(2w) 112 (ln[(A~Il )2

] ~ ln{ln[(t-~u )2
]}) 

w<2 

d 3 
w>2 

(90e) 

The results above have all been confirmed from specific mean-field 
models and from renormalization-group analyses of interface Hamilto
nians. It is therefore tempting to conclude that ansatz (86) combined with 

the true many-body correlations present in an approach 
to drying. It is interesting, however, that none of the analysis 
above has relied on sum rule (80); namely, the physics of complete drying 
does not require (86) to hold at = 0, z2 0), although we can readily 
see that such an ansatz is a mathematical solution to (80) [i.e., -
G2(0.0) ~ (p'(O)/W)2 --+ ''ILvlkT]. Despite this, Parry and Evans (1988) 
have used a specific mean-field theory to provide a counterexample show
ing that the simplest ansatz for an approach to complete drying (or wetting) 
is not correct in mean field. That is, they find that (84) and (85) can be 
associated with the absence of any singular contribution to G2 (0,0). * It 
is not known if this applies to fluctuation regimes; if so, it could suggest 
a breakdown of interface Hamiltonian theory applied to complete wetting 
correlations along the surface of a wall. Note, however, from (80) and 
(81) that a finite correlation length along the wall will still be dramatically 
large in the case of complete drying: 

(91) 

where p:V belongs to a wall-vapor interface, while -y is dominated by the 
liquid-vapor contribution. In fact, Henderson and van Swol (1985) have 

• Note in proof: this statement has recently been withdrawn; namely, a reanalysis of their 
original results has yielded~ 1;"'- ~ 11 (A. 0. Parry, 1991, private communication). See also, 
Mikheev and Weeks (1991), Parry (1992). 
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used molecular dynamics simulation to verify the presence of dramatic 
long-range correlations along a hard-wall system close to complete drying; 
note that these correlations stand out against the virtually weak-gas con
tribution appropriate to a wall-vapor profile. 

Henderson (1986a) extended the foregoing treatment to encompass 
complete drying or complete wetting at a general wall-fluid interface by 
invoking (65) in place of the hard-wall result (81) [i.e., now W- ~ 11 

2 is 
given by the result (49)]. For finite-range interactions (87) continues to 
follow from (49). However, this is not necessarily the case when power
law interactions are included. In particular, if v(z) varies as (51 b), then 
in mean field (49) will be dominated by a power-law term coming from 
the liquid-vapor interface: 

~II 2 _ l (m + 4 d) (92a) 

The value of d> follows from equating (92a) with (83c} at ~_L t (Li-
powsky, 1984): S> 2/(m + 4 - d>) and note that in the absence of 
random fields d 3 is a mean-field regime. Combining (92a) with (89) 
implies that 

d 

d) 
~=----

m + 3 d 

2 
m + 2- d 

(92b) C\'. = -----
3 d m 

This result is equally relevant to mean-field regimes of models that include 
power-law contributions to the fluid-fluid interactions, even if v(z) is 
finite range. That is, now (53) applies in the tails of the liquid-vapor 
profile, so (87a) will also imply (92a), for d > d>. Interestingly, wall
fluid and fluid-fluid power-law contributions could conceivably cancel at 
leading order (at a particular temperature), thereby inducing higher-order 
critical regimes (as in Section IV.B). 

B. Critical Wetting 

Introduction of the field Ew, as in model (8), enables us to control wetting 
phenomena at bulk liquid-vapor coexistence without having to vary tem
perature, as discussed in Section II.B. The most dramatic consequences 
of this degree of freedom is the appearance of wetting transitions at bulk 
liquid-vapor coexistence, between partial wetting and complete wetting 
(increasing Ew) or complete drying (decreasing Ew). If a wetting (or drying) 
transition is second order, it is termed critical wetting (drying). Here, one 
has a set of exponents directly analogous to (83) but not necessarily taking 
the same values, with Of.L replaced by OEw. In fact, complete wetting and 
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critical wetting may be combined witbin a single scaling ansatz [except 
at d = d>, which can involve complications leading to a breakdown of 
simple scaling (Parry and Evans, 1989)]: 

(93a) 

where hereafter superscript I denotes critical wetting, and the crossover 
exponent .:1 links the two sets of exponents: 

2-o.l vnl ~~ 
.:1= =-=-

2- ac va c w (93b) 

with superscript c denoting an approach to the critical wetting point from 
off two-phase coexistence (a special case of complete wetting). The scal
ing form (93) is equally applicable to fixed E.., with OE..., replaced by oT; 
that is. away from any tricritical point associated with a change from first
order wetting to critical wetting, the fields E" and T play equivalent roles. 
This point is significant to proposed comparisons with experiment (Hen
derson, l987a). 

The sum rules of Section III have much to say concerning critical 
wetting, whenever it occurs (Henderson, 1986a). For example. if the ex
ternal field is strictly finite range [I'(.::) = 0 . .:: then (59) and 
(60) imply, introducing a length a < a", 

XI- Go(t,a) 

XII - Go(a,a) 

more precisely, Go(t.a)- p'(t)Xt 

and substituting (94a) into (20d) gives 

(94a) 

(94b) 

(94c) 

Thus critical wetting in finite-range models must be associated with a 
divergent correlation length along the wall: 

(c w)2 _ -G2(a,a) Xt
2 1~:: ~-(2-o'+2"'; (t 1)2 

<,II = - - --- - Utw ,_. - <, 11 
Go(a,a) Xtt 

(95) 

where the very last proportionality follows from the scaling ansatz (93b) 
together with the generalized hyperscaling relation (89c) [i.e., the expo
nent relation (89c) is equally valid for critical wetting]. Thus at critical 
wetting not only do the capillary-wave correlations manifest themselves 
at the wall, they do so with a correlation length that diverges just as 
strongly along the wall as it does inside the detaching liquid-vapor in
terface. Parry and Evans (1990a) have made an important connection 
between the conclusion above and the exact "Cp-Cv" relation (5), which 
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can be rewritten in terms of the compressibilities (58) to (60) as 

(96) 

In particular, note that if one can neglect any singular contribution to (a8/ 
iJEw),, it follows that 

2 

(
1: 1)2 "/LV XI 
':>II -+ -

(pL - Pv)2 XII 
(97a) 

where ~ 11 
1 has been defined from (88); that is, (88) holds below complete 

wetting as well, given only that (86) be appropriate inside a fluctuating 
interface (z 1 t, zz = t). So (95), and hence scaling, arises because (a8/ 
aew), is no more singular than Xt~> as would seem eminently reasonable. 

The obvious solution of (95) is ansatz (86) (i.e., to assume that there 
is only one capillary-wave correlation length ~ 11 at all values of Zt and 
z2 ). If the single-eigenfunction ansatz (86) is inserted into sum rules (58) 
to (60), one finds that (Henderson, 1986a) 

- 2 XXII- Xt (97b) 

Comparing (96) and (97) it is natural to associate any singular contribution 
to (a8/ae..,), with a renormalized capillary-wave correlation length along 
the wall (Parry and Evans, 1990a): 

K 1 = (~ 11 7) 2 = 1 _ (ae!aew), (9Sa) 
~II Xn 

XXn-+ Kxt 2 (98b) 

In fact, Parry and Evans (1990a) show that when d < d> hyperscaling 
implies that K # 1. Thus, at the least, ansatz (86) cannot be completely 
correct in the strong fluctuation regime of critical wetting. 

In the presence of a power-law external field, (51b), sum rule (56) 
implies that e contains a power-law singular contribution: 

(99a) 

In regimes in which (99a) dominates over the capillary-wave contribution 
to 6, it follows immediately that (a8/aew),-+ 0 at leading order. Thus, 
in such power-law regimes, K = l [i.e., (97b) is the relevant solution]. 
In fact, it is trivial to show that e- 6(t) is a general solution to (97b), 
as required by the Cp-Cv relation (96). This is important because (99a) 
is a first-order partial differential equation for the singular part of the free 
energy and is thus readily solved by standard methods. In particular, by 
substituting the scaling form (93) into (99a), Henderson (l987a) obtained 
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a parametric solution to the scaling function f(l OJL II&:., 1-A); more re
vealing is the resulting equation of state: 

(99b) 

A full sum-rule analysis shows that (99) is appropriate to two regimes of 
critical wetting {Henderson, 1986a). First, one has, from (99a), 

o: 1 = (m + 2 - d)l3 1 (99c) 

and from (97), 

(99d) 

So it only remains to determine one of the exponents. say 13 1
. If ansatz 

(86), which should apply when K I, is insened into sum rule (59), x 1 

reduces to the ratio of two terms of the form v(t)/(49), assuming that 
e(z) - p'(z) at all z. Thus ansatz (86) forces us to associate the critical 
wetting point with W 0 at leading order: in fact mean-field theories 
associate critical wetting with a leading-order cancellation of terms in the 
free energy (Dietrich and Schick. 1985; Ebner et al. I and this effect 
should also appear in W because of the general relation (38b). It follows 
that the mean-field regime of noncritical complete wetting, (92). is as
sociated with two regimes of critical wetting: that is. a mean-field regime 
(MF) determined by a higher-order power-law term in W, and a so-called 
weak fluctuation regime (WFL) when the term that takes over after W 
= 0 at leading order is the capillary-wave term (90b). That is, 

W ~a OEw t (m-, 4 dl + br(m+ -d) + cl('A,t) (99e) 

where the analysis of Henderson (I986a) holds because the first term on 
the right side of (99e) is never more singular than the dominant remaining 
term (A. 0. Parry, 1989, private communication). In both cases one finds 
that a = l + (m + 3 - d)l3 1

, so the two regimes are distinguished by 
their values of 13 1 (Henderson, I986a): 

MF: 13' = 1 
2 

~<---
m + 5 d 

WFL: 13' = ----=-----
2- (m + 4- d)~ 

2 2 
----< ~ <---
m+5-d m+4 d 

(99f) 

Note that the equation of state (99b) is equally applicable to an approach 
to complete wetting (or drying) states lying above the critical wetting 
(drying) point (i.e., [(1/W) - (I/13 1

)) = (a - l)/J3 1 = m + 3 - d as 
appropriate to MF complete wetting). Furthermore, this remarkably com
plete solution contains the regime directly relevant to experiments on 
critical wetting in d = 3. Oddly, no experimental tests of the results 



70 Henderson 

summarized in Henderson (1987a) have been announced; note, for ex
ample, that the theoretical equation of state (99b) is equally applicable to 
fixed Ew with OEw -- & T and thus (99b) could be used to locate a critical 
wetting point from adsorption data collected along sets of complete wet
ting isotherms. 

A similar level of success has been achieved with a sum rule analysis 
of critical wetting in models without power-law forces (Henderson, 
1987b). Following Aukrust and Hauge (1985), it is convenient to consider 
an exponential external field model: 

{

00 
v{z) = 

-E.,. exp(- A.,.Z) 
z<O 
z > 0. A < A,.. ,;; 2A 

(100) 

where A.,. 2A would be mathematically equivalent to finite range forces 
[see (46)] and Aw <A always corresponds to first-order wetting transitions. 
The sum rules of Section Ill are especially revealing for model (100); 
namely, combining with (65) it is straightforward to derive the following 
exact results: 

e kT (p .. Po) 
Ewf...w kT 

( 10 I a) 

XI E.,.A.,. 
[ L~ dz GoC::.O ~) Pol (!Olb) 

X11 
kT [ 1 {"' Pol kT )o dz v(z)Go(z,O+) + p.., - kT 

E: kT [ p~. - p;;,ho(O,O) + A,.(p"' ~;) l (I Ole) 

Note in particular that ;X 11 ~ [p;, - G0 (0,0)] is inescapable from (!Ole). 
Combining (lOla) and (lOic), we have 

Ew _!!_(Ewe) = Pw
2
ho(O,o; p;,. (lOld) 

kT aEw . Aw 

which is perhaps the most precise way of highlighting the fact that in 
models with short-range interactions critical wetting correlations con
tributing to the singular part of the free energy must show up at the wall. 
The only source of such correlations is presumably capillary-wave phe
nomena. The analysis of Henderson ( 1987b) proceeds as before via ( 10 I b): 

~ 11 -l ~ W ~ (102) {
aOE.we At+ be->.wt d>d> 

a OEw /(A,t) + bi(Aw.t) d = 3 

In d = 3 one again has two regimes (renormalized mean-field (RMF) and 
WFL) depending on which form of (47b) is determining the value of 
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l(A.w,t); in both regimes the parameter w appears in the exponents, as 
with complete wetting in d = 3 [see (90e)]. In MF and RMF regimes the 
ratio A.,.)A. enters the exponents; this nonuniversality is directly analogous 
to the power-law case because once again it results from a term dominated 
by v'(t). So, in certain circumstances even an exponential force need not 
always be a short-range effect. 

The sum-rule analysis described above generates all the singular be
havior appropriate to complete wetting and critical wetting phenomena, 
apart from strong fluctuation regimes (SFL) of critical wetting. Thus many 
of the results known from phenomenological mean field and interface 
Hamiltonian studies have been shown to apply to molecular Hamiltonians 
and explicit connections with microscopic correlations have been made 
via ansatz (86). This success is especially striking in those cases of direct 
relevance to experiment. SFL regimes of critical wetting constitute an 

difficult case because the cancellation argument employed by 
Henderson (1986a) is no longer helpful and may not even be correct. That 

in a SFL all terms in Ware now dominated by capillary-wave 
and further of critical wetting is impossible without 

knowing how all these terms combine at the critical wetting point; the 
sentence following (!Ole) is possibly the key here. Furthermore, the Cp

of Parry and Evans (1990a) that leads to K ¥ I in (98b) for 
. shows that ansatz (86) cannot be the full story behind SFL critical 

wetting. Nevertheless, Evans and Parry (1989) have gone some way to 
providing a sum-rule analysis of the SFL regime in d 3, based on 
identifying e from capillary-wave theory; for this case they even suggest 
that (86) could be applicable provided that the singular behavior of the 
eigenfunction is generalized beyond €(z) ~ p'(z) as z ~ 0. However, in 
d < d> even (47)-(48) is in doubt, since it apparently leads to incorrect 
exponents previously associated with a linear renorrnalization group anal
ysis of interface Hamiltonian theory (Parry and Evans, l990a). Here it 
would be helpful to know what the structure of G(z1 ,z2;Q) is in interface 
Hamiltonian theory, since this should be directly relevant to molecular 
models of a SFL regime; in particular, see the numerical nonlinear re
normalization-group technique introduced by Lipowsky and Fisher 
(l986b) and the recent analytical treatment given by David and Leibler 
(1990), and for explicit results in d = 2 see Parry (1992). 

V. SUM-RULE ANALYSES OF THE EFFECTS OF 
GEOMETRY 

A. Confinement 
Let me turn attention to model (9), the basic model of confinement, to 
discuss how sum rules lead to an understanding of the significance of the 
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field L. Once more, it is revealing to begin with a discussion of the limit 
of hard-wall boundary conditions. In particular, (64) and (65) reduce to 
(Henderson, l986b): 

iJp(z) = G0 (z,L-) 0 < z < L- (103a) 
aL 

p'(z) = Go(z,O+) - Go(z,L_) 0 < z < L (103b) 

and sum rules (57), (61), (67), (73), and (77a) give 

f = kT(pw - Pw =) 

I aN(L) L= dz. Go(z,L 
A ilL 

nex 
A 

2-y Lf 

kT 
- p,}[h2(0,0) 

kT ap ... 
ilf-L 

h2 (0,L)] 

(103c) 
(Henderson, 1986b) 

(!03d) 
(Henderson, 1986b) 

at 
+ Ph ( 103e) 

ilf-L 

(103[) 

(103g) 

The final result requires only a trivial generalization of the proof leading 
to (77). Namely, replace (74} by 

v(r;Rc) v(r Rc) + v(Rc + L - r) 

and repeat the derivation finishing with Rc ~ oo at fixed L; that is, the 
-Red- 1 Lp b volume term and the two external field contributions to fl 
yield the last two terms on the right side of (73a), while the many-body 
contribution shows that (77) is equally applicable to the slit problem, 
except that as L ~ oo it is now the sum of two many-body interfacial free 
energies. 

Sum rule (l 03c) explains most of the physics behind oscillatory sol
vation force structure, as arising from a competition between repulsive 
wall-fluid and repulsive fluid-fluid interactions. Here, one should also 
note that for hard-wall slits kTp"' is just the normal component of the 
pressure tensor in the slit; p N is constant throughout the slit because the 
external field gradient is zero except at the walls, and see, for example, 
(69). Sum rule (103d) is particularly striking in the presence of two-di
mensional critical phenomena (Evans and Parry, 1990); I shall return to 
this below. In addition, it is worth pointing out that further compressibility 
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sum rules are readily added to follow (61}, by combining isothermal de
rivatives among the full set (~,Ew,aw,L); for example, 

at 1 aN(L) 
-= ---pb 
a~ A aL 

(l04a) 

where I have substituted (67). For a hard-wall slit (l04a) reduces to (103e) 
(Evans and Parry, 1990): 

= kToPw - Pb 
a~ a~ 

(104b) 

Furthermore, as pointed out at the end of Section III. A, all of the results 
above are readily transformed into direct correlation function integral 
equations and sum rules [see also (68b)]. 

Henderson (l986b) has used (65) to argue that a good approximation 
to the density profile of the general symmetric slit model (9) is a product 
of single-wall solutions (L ~ cc) multiplied by an exponential amplitude 
factor that oscillates with the solvation force. Interestingly, it has recently 
been demonstrated that in the absence of phase transitions equations (64) 
and ( 65) provide numerically stable routes to integral equation theories 
of confined fluids; both in the case of hard-wall slits [with (I 03b) combined 
with (103a) at z = 0 (Kjellander and Sarman, 1988)] and in continuous 
force models [combining (65) with (67) (Kjellander and Sarman, 1990)]. 
Here the idea is to integrate in from the large L regime. Henderson (1986b) 
obtained a limiting solution to (103b) as L ~ 0. Recently, this result has 
been generalized to arbitrary potentials of the class (9), including confined 
fluid mixtures (Adams et al., 1989). The solution reduces to a universal 
form for the one-body y-function: 

p(z) ~ n (~) exp[ a(z- ~) 
2

] exp[ -:iz)] (105) 

valid to a remarkably high degree of accuracy throughout the quasi two
dimensional regime; that is, for L small enough such that p(2)(1 Zt2l.zt ,z2) 
is everywhere negligible (molecules cannot pass directly over one another 
when moving parallel to the slit walls). 

Henderson (1986b) also discussed the significance of potential distri
bution theory, (29), to highly confined fluids. In particular, in open pores 
(the grand ensemble) fluid is squeezed out the ends of the pore as L ~ 
0, so that at finite chemical potential the system must reduce to a two
dimensional weak gas at L = 0: 

[ ~ - v(z)J p(z) ~A - 3 exp kT (106a) 



74 Henderson 

For example, note the explicit solution of Robledo and Rowlinson (1986) 
for a grand ensemble of hard rods on a line of finite length, which confirms 
that the density profile approaches a finite limit as L ~ 0; in a three
dimensional system it thus follows that the effective two-dimensional den
sity f dz p(z) tends to zero as L ~ 0. The potential distribution theorem 
can also be used to extract the leading-order small L dependence of the 
density profile and the solvation force (Henderson, 1986b). Not surpris
ingly, it is determined by the two-dimensional second virial coefficient. 
However, these results can be obtained more directly from (64) and sum 
rule (61) [e.g., Henderson (1986b)]: 

kTxL ~ J~x dz p(z)v"'"(z)v""'(L z) 

zs2 [f~= dz p(z)v"''<z> r L ~ 0 (106b) 

where B2 denotes the two-dimensional second virial coefficient [see also 
Wertheim et al. (1989)]. 

The discussion above concerning the limit L ~ 0 has ignored one sig
nificant point. Namely, as three-dimensional systems pass through a quasi 
two-dimensional regime, one will often expect to observe phase transi
tions of a two-dimensional character. Thus at temperatures below the two
dimensional critical temperature, a slit filled with liquid must undergo 
capillary evaporation at some sufficiently small value of L. At any T, 
sufficiently high f.L will lead to capillary freezing, so freezing transitions 
will sometimes be induced by a decrease in L at fixed (T,f.L). At temper
atures lying between the two- and three-dimensional critical points, liq
uid-vapor coexistence will end at a capillary critical point somewhere 
before L ~ 0. A capillary critical point is a shifted bulk critical point, as 
obtained from the scaling theory of Fisher and Nakanishi (1981). At a 
capillary critical point in slit geometry the correlation length diverges 
along the slit and the system displays critical phenomena of a two-di
mensional universality class. As pointed out by Evans and Parry (1990), 
a sum rule analysis of capillary criticality would show striking behavior 
in the compressibility route correlation functions. For example, since f L 

- fv is an order parameter, both XL and aj/df.L are divergent at a capillary 
critical point; once again, hard-wall boundary conditions are particularly 
revealing [see sum rules (103d) and (103e)]. 

Finally, let me emphasize that sum-rule analyses should be equally 
revealing of confined fluid phenomena outside the realm of model (9). 
For example, by introducing left- and right-hand attractive field strengths 
(ewL, EwR), one could investigate the consequences of antagonistic walls. 
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Here one should note the seminal work of Parry and Evans (1990b), who 
have shown that liquid-vapor coexistence in an asymmetric slit (ewL = 
-ewR) is governed by the wetting transition and drying transition tem
peratures of the two walls (i.e., the two semi-infinite systems), not by a 
bulk critical temperature as in the symmetric slit case discussed above. 

B. Nonplanar Geometry 

The symmetry of inhomogeneous fluid systems can be controlled through 
an external field and hence through the compressibility route hierarchy 
(10). In nonplanar geometry one will often expect to be able to write the 
grand potential as a function of curvature variables. For example. con
sider fluid confined to a cylindrical pore or a spherical cavity and intro
duce a dividing surface at radius RG: 

{

27rRGL' rr(RG) == fl + 7rRG
2 Lpb nex 

. 47f ~ 
47rRG-u(Rd fl -r --::;- RG-Ph 

J 

cylinder (I 07a) 

sphere (107b) 

where in the limit RG _,. X we expect rr(Rd _,. (J"x nex!A belonging to 
a planar wall-fluid system. Analogous to the planar solvation force (57). 
we can introduce a disjoining pressure: 

Introducing one-body external fields of the form 

v(R RG) 

v(r RG) 

cylinder 

sphere 

and using (lOa) gives sum rules analogous to (57): 

{loo R 
dR- p(R)v'(R RG) 

0 RG 

f ~ J," d' (L)' p(,)v'(, - RG) 

cylinder 

sphere 

cylinder 

sphere 

(I07c) 

(108a) 

(108b) 

(109a) 

(109b) 

The choice (108) has the property that it possesses a well-defined planar 
limit, as can be seen by comparison of (109) with (57). The virial route 
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can be expressed in terms of pressure tensors defined by (23) in the ap
propriate symmetry: 

PN'(R) + ~ [pN(R)- PT(R)] = -p(R)v'(R- Rc) cylinder (llOa) 

PN'(r) + 
2 

[pN(r)- pr(r)] = -p(r)v'(r- Rc) 
r 

sphere (llOb) 

Thus we can rewrite ( l 09) in the form 

rr cylinder R dR[pb8(Rc - R) - pr(R)] (llla) 

f 
G 0 

2 "' r 
sphere -J dr- [pb8(Rc - r) PT(r)] (lllb) 

Rc o Rc 

where 8(x) = {0, x < 0; l. x > 0} is Heaviside's step function. Note, for 
example in the latter case. that it is the first moment of py(r) that is well 
defined by (23b) in spherical symmetry, not the second moment. 

We can equally well use (108) to discuss fluids surrounding a cylinder 
or a sphere. A special case of the latter is provided by the test-particle 
route to the statistical mechanics of pair potential fluids, discussed pre
viously in conjunction with potential distribution theory (Section II.D). 
When the frozen test particle acts as a hard sphere, the statistical me
chanics above is known as scaled particle theory; a detailed discussion 
of this connection is given by Henderson (1983). In Section III.C, I in
troduced the compressibility route to spherical geometry as a means of 
deriving a"' from the Rc -+ oo limit. Given suitably behaved interfacial 
correlations, one expects to be able to define a radius term in the grand 
potential for three-dimensional spherical systems: 

a(Rc)-+ a"' ( l - 2 :c) sphere (112) 

where from the case of liquid drops o is known as Tolman's length. Let 
us now consider the compressibility route to Tolman's length. Beyond 
(112) it is not realistic to expect a curvature expansion of a(Ra) to be of 
much physical relevance; for example, there could well be a In Rc term 
in 0 and anyway, a constant term in the grand potential cannot be studied 
by the compressibility route. For these reasons one does not introduce 
a Tolman length in two dimensions or in cylindrical symmetry. Thus I 
shall restrict the following discussion to spherical symmetry in d = 3; the 
cylindrical geometry version of the derivation leading to (76) has been 
given by Henderson and Rowlinson (1984). 
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From (76) it is apparent that & is defmed in general by a third-order 
derivative of 0 (i.e., derivatives up to and including a30/Rc3

) and thus 
will involve the three-body density-density distribution function: 

( O[JL - v(l)]o[t-t o~Ov(2)]o[JL v(3)]) T = CIT r G(l23) (113) 

which follows on from (lOb). Again, let us control Rc through the external 
field (74). Then we need to evaluate 

_ 1 
2 

a 
o = 2<:r"" Rc aRc u (Rc) Rc-'~>oo (114a) 

I " a 
8 

x Rc~ -R (76)d=3 
'ii<r a c 

Rc---> x (ll4b) 

Inserting (76) into (I J4b) and making use of(113), one finds, after a certain 
amount of algebra. the following general expression for Tolman's length: 

kT [ 
3') X ._a 

8c1
T) 

X 

I I"' ~ 16 kT -oc dz(z 

where u"" is given by (77a): 

J d2 J d3v' 

zcfp(z)v'(z) J 

a= I (I )2 J= J kT = 4 kT -= dz1 d2v'(zdv'(zz)RhG(l2) 

I J= - kT -= dzzp(z)v'(z) 

(114c) 

(ll4d) 

and all the distribution functions now refer to the planar limit with fluid 
occupying the space z > 0. The last two terms on the right side of (I I4c) 
depend explicitly on the choice of Rc and are thus external field terms. 
For the case of a hard-wall boundary [i.e., a hard-sphere (HS) cavity] 
both these terms disappear: 

0) 

(1 15) 
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where subscript w denotes all coordinates lying on the wall. Stecki and 
Toxvaerd (1990) have used molecular dynamics simulation in an attempt 
to extract &Hs from a curvature expansion of the grand potential of Leo
nard-Jones liquid surrounding a hard-sphere cavity, via (109b). Perhaps 
not surprisingly, given the expression (115), Stecki and Toxvaerd (1990) 
find that the magnitude of &Hs is very small. 

To apply (114) to a liquid-vapor drop, one needs to negotiate the tricky 
question of how to take the limit of infinitesimal external field in the 
second term appearing on the right side of (ll4c). One is immediately 
suspicious of this term because it depends on the choice of RG and yet 
will not obviously vanish in the weak-field limit, unlike the final terms 
on the right sides of (ll4c) and (114d). In fact, if we substitute the cap
illary-wave expression (49)-(50) for G 2 (12). it follows that this two-body 
contribution to Tolman's length is simply 

J~ x d:(zc z)p' (z)v' (z) 

(z) 
(116) 

If v(z) was taken to be a step function at Rc. (116) would be zero. Or, if 
one uses v(z) mg: and argues that a gravitational field would have to 
be able to act on the equimolar then again (116) would be zero. 
The conclusion here is that in the limit of vanishing external field, the a/ 
aRG derivatives used to derive (114) to (116) only lead to a well-defined 
planar limit at fixed T,!J. in the case RG--+ z0 , defined by (116). Thus we 
conclude that Tolman's length for a free liquid-vapor drop (oLv) is, like 
oHs, given by a pure three-body correlation function sum rule [i.e., the 
first term on the right side of (114c)]. Of course, oLv only exists if the 
particular moment of G(l23) defined in (114c) is well defined. That is, a 
noninfinite value for Tolman's length places strong restrictions on the 
capillary-wave contribution to the three-body density-density distribu
tion function [see (117)]. It is also worth noting the penetrable sphere 
model result ofRowlinson (1984), who found that oLV diverges much less 
strongly than the bulk correlation length in the approach to the critical 
point. 

Finally, it should be mentioned that it would be expected to be possible 
to invert (114c) to obtain a corresponding direct correlation function 
expression; for example, from the result proposed by Phillips and 
Mohanty (1985), one might hope to be able to show that 
(kD V(zt)v'(z2)v'(z3 )G(l23) can be replaced by p'(zJ)p'(Z2)p'(ZJ) 
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G- 1(123), directly analogous to (77). Here we would presumably need 
the second order Omstein-Zemike equation [see, e.g., Henderson 
(l987c)]: 

G(l23)=-J d4f d5 J d6G- 1(456)G(I4)G(25)G(36) (117) 

However, using this result, the present author did not find the simple 
inversion suggested by analogy with (77). The direct correlation function 
expression obtained by Phillips and Mohanty (1985) is somewhat dubious 
because the derivation relies on extracting a second-order curvature term 
from fluctuation theory of a planar interface; nevertheless, the basic form 
of their solution is highly suggestive of the structure of ( l14c). Phillips 
and Mohanty (1985) placed great emphasis on a term analogous to ~h·body• 
but the analogy with (116) suggests that their interpretation and the con
sequences claimed for the critical point divergence of are most un
likely. 
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I. INTRODUCTION 

A. Why Density Functionals? 

The last 15 years or so have seen an enormous growth in the use of density 
functional methods applied to inhomogeneous classical fluids. Such sys
tems are characterized by spatial variation of the average one-body den
sity p(r). Density functional methods are based on the idea that the free 
energy of the inhomogeneous fluid can be expressed as a functional of \ 
p(r). From a knowledge of this functional all the relevant thermodynamic 
functions can be calculated so that tensions can be computed for interface 
problems, solvation forces can be determined for confined fluids, and 
phase transitions can be investigated for various types of inhomogeneity. 
Moreover, derivatives of the functional determine the equilibrium distri
bution (or correlation) functions that describe the microscopic structure 
of the inhomogeneous fluid. Determining the exact free-energy functional 
is, of course, equivalent to solving exactly the statistical mechanics for 
the particular fluid under investigation (i.e., calculating the partition func
tion). So what is to be gained by adopting the density functional approach? 
First, we can employ the methods of functional differentiation and inte
gration to obtain important formally exact results for correlation functions 
and thermodynamic functions (see Chapter 2), which are less easily or 
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less elegantly derived by methods that focus on the partition function 
directly. Second, we can seek explicit approximations for the free-energy 
functional that will allow calculations to be made for a wide variety of 
inhomogeneous systems. One of the key results of density functional the
ory is that the intrinsic Helmholtz free energy is a unique functional 2F[p] 
for a given interatomic or intermolecular potential energy <1>. That part 
of the free energy, which is not associated directly with the external po
tential V(r) producing the inhomogeneity, has the same dependence on 
p(r) for all V(r). Thus the same 2F[p] should be valid for the liquid-gas 
interface stabilized by a gravitational field, for the same fluid adsorbed 
by a substrate or confined in a capillary or for the bulk crystalline solid 
whose periodic density can be regarded as that of the highly inhomoge
neous, symmetry-broken fluid. A major goal of the theory is to find suit
able approximations for 2F[p] (for a given type of fluid) that are compu
tationally tractable and that are sufficiently accurate for application in a 
wide range of problems [i.e., remain accurate for various choices of V(r)]. 
For simple (atomic) fluids described by a Lennard-Jones (or cruder) pair
wise potential there exists a plethora of approximations. Some of the more 
sophisticated versions have been applied successfully to a wide variety 
of interfacial, confinement, and freezing problems. Others have been de
signed specifically for one particular type of inhomogeneity (this has often 
been the case in theories of freezing), so their usefulness in other problems 
is not determined. Relationships between the different approximations, 
when they exist, are often obscure. It is the purpose of this chapter to 
review briefly the formal aspects of density functional theory, to discuss 
some of the approximations that have been used, and to describe some 
of the applications to interfacial and adsorption problems. In other chap
ters of the book applications of density functional theory to freezing, 
nucleation, and liquid-crystalline ordering are described. 

B. Origins 
Rowlinson will have mentioned some of the history of the use of func
tionals in Chapter I. Bogo!iubov [I J is often credited with introducing 
functional techniques into statistical physics. Morita and Hiroike [2], de 
Dominicis [3), Stillinger and Buff [4], and Lebowitz and Percus [5] de
veloped much of the formalism of inhomogeneous fluids in the early 1960s. 
The influential articles of Percus [6] and Stell [7) described functional 
methods and their applications to the theory of the structure of bulk fluids. 
At about the same time, Hohenberg and Kohn [8] and Kohn and Sham 
[9] developed a powerful density functional treatment for the ground state 
of the inhomogeneous interacting electron liquid. Their work provided an 
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important synthesis of the approach used by Thomas, Fermi, Dirac, and 
others and the self-consistent field approach of Hartree, Slater, and so 
on. Hohenberg and Kohn used a fundamental variational principle for the 
ground-state energy to show that the intrinsic part of this energy is a 
unique functional of the electron density n(r). By recasting the many
electron problem in terms of a variational principle based on an energy 
functional of the electron density they showed that Thomas-Fermi theory 
consists simply of a local density approximation for the kinetic energy 
functional plus complete neglect of all exchange and correlation contri
butions-only the electrostatic energy is treated properly. Hartree theory, 
on the other hand, constitutes an exact (Schrodinger equation) treatment 
of the kinetic energy but also neglects all exchange and correlation con
tributions. More significantly, the density functional approach suggested 
possible ways, different from the Hartree-Fock, or configuration inter
action approaches, of including exchange and correlation. Kohn and Sham 
used their variational principle to rewrite the interacting many-electron 
Schrodinger equation as a formally exact one-electron equation with an 
additional effective potential arising from the (unknown) exchange and 
correlation energy functional Exc[n]. The crudest (local density) approx
imation to the latter already constitutes a significant improvement on 
Hartree theory for the electronic structure and ground-state properties of 
atoms, molecules, and solids. Indeed, almost all modem band structure 
calculations are based on the density functiOnaJiheoryofXo-liiiandSham, 
Mtli~siffiple-approximation forthe funcfionaiExc(n}. We refer the 
reader to the recent comprehensive review [I 0] and book [I 1] for detailed 
accounts of density functional theory applied to electronic systems. Mer
min [121 extended Hohenberg and Kohn's treatment to nonzero temper
ature, writing down a variational principle for the grand potential func
tional of the interacting electron liquid. The realization that such methods 
were readily applicable to classical fluids, where they could also generate 
useful approximation schemes, came in 1976, or thereabouts, in the work 
of Ebner and Saam [13,14} and Yang et al. [15]. By then, several groups 
(e.g., F. F. Abraham, H. T. Davis, and S. Toxvaerd) had been using 
approximate free-energy functionals to calculate the density profile and 
surface tension of the liquid-gas interface. (See Refs. 16 and 17 for re
views.) In the late 1970s it was recognized that the square-gradient ap
proximation of van der Waals and some of its generalizations could be 
derived in a systematic fashion using density functional theory. This work 
[13-17] was influenced strongly by that of Hohenberg and Kohn on the 
gradient expansion for the electron liquid. A certain amount of cross
fertilization between classical and quantum liquids has occurred subse-
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quently, but sometimes approximations have been (re)discovered by au
thors unaware of the corresponding results in the other field. 

The late 1970s also saw important applications of density functional 
techniques in deriving [18,19] exact integrodifferential equations for the 
density profile of a fluid in an external potential (see Chapter 2) and in 
analyzing the nature of correlations at the liquid-gas interface [20,21]. 
The development of approximation schemes and their application was a 
major activity during the 1980s. Weighted-density approximations to ?:i'[p] 
have become especially popular and have met with widespread success. 
These have their origins in a variety of sources that we describe. 

C. Scope 

The subject of this chapter has a large and rapidly growing literature. It 
would be inappropriate to attempt a comprehensive review here. We spe
cialize in one-component, argonlike fluids, mentioning work on mixtures 
of simple fluids where this is considered relevant. Density functional 
methods have been applied to more complex fluids, and some of these 
applications are described elsewhere in this book. Representative papers 
on extensions of density functional theory to the surface properties of 
ionic fluids can be found in [22,23]. to electrical double layers in [24], to 
inhomogeneous dipolar and quadrupolar fluids in [25,26}, and to liquid 
metal surfaces in [27}. 

In Section II we give a self-contained account of the density functional 
formalism and a discussion of the exact free-energy functional for the 
case of hard rods in one dimension. Approximations for ?:i'[p] are described 
in Section III. We have attempted to include most of the schemes that 
have been employed, pointing out their strengths and weaknesses and 
listing the problems to which they have been applied. In Section IV we 
describe some recent applications of density functional theory to the de
termination of the structure of uniform fluids [i.e., the radial distribution 
function g(r) and the three-body direct correlation function c<3l of bulk 
liquids]. By examining the consequences of approximate theories for bulk 
structure it is possible to learn something about their intrinsic limitations. 
In Section V we describe some applications of approximate density func
tional theories to fluid interfacial phenomena. Since this is an enormous 
field we cannot do it justice and we restrict ourselves to a few topics, 
emphasizing the successes and failings of approximation schemes in ac
counting for phase transitions and criticality at various types of interface. 
Section VI contains some concluding remarks. 

Parts of the present chapter draw heavily on a set of lecture notes by 
the author entitled ·'Microscopic Theories of Simple Fluids and Their 
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Interfaces" [28]. Several sections of those notes have been amplified and 
brought up to date here. 

II. FORMALISM 

In this section we summarize the formal structure of density functional 
theory, specializing to one-component atomic fluids. We work in the grand 
canonical ensemble, which is the most convenient for most problems 
involving inhomogeneous fluids. The presentation is similar to that given 
in [28]. Details of proofs are omitted; these can be found in an earlier 
review [16] or in Ref. 12. More rigorous treatments of the foundations of 
classical density functional theory can be found in Ref. 29. 

A. Generating Functionals and Hierarchies 
of Correlation Functions 

The Hamiltonian for the fluid of N atoms, each of mass m, is 
N N 

HN = 2: <f)(r1 •. , rN) + 2: V(r;) 
i=l 2m i=J 

K.E. + q) + v 
(!) 

where p; is the momentum of atom i and ¢ is the total interatomic potential 
energy (not necessarily pairwise additive). The on~Q~~y external poten
tial V(r) is, as yet, arbitrary. The grand potential 0 is a function of chem
ical potential 1-1· inverse temperature f3 (ken 1' and the available vol
ume; it is also a functional of V(r) and therefore of the combination 

u(r) = 11- - V(r) (2) 

A hierarchy of correlation functions is obtained by functional differen
tiation of n with respect to u(r). The first derivative is simply the average 
one-body density 

p(r) = p< 0 (r) = (p(r)) = 
an 

ou(r) 
(3) 

where p(r) = 2:;':, 1 o(r - r;) and ( ) denotes the ensemble average. For 
a fluid p(r) must have the symmetry of the external potential V(r). A 
second derivative yields the density-density correlation function 

G(r1 ,r2) = ((p(rd - (p(rJ)))(p(r2) - (p(r2)))) (4) 
= f3 1 op(rd = -f3-l o2n 

ou(r2) ou(r2) ou(rt) 
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which is related to the two-body distribution function p<2
l via 

G(rt h) = p<2l(rt h) p(rt )p(r2) + p(r1 )o(rt - r2) 

Evans 

(5) 

Further differentiation yields three-body, four-body, and so on, corre
lation functions. This procedure is the standard one in equilibrium sta
tistical mechanics (see Chapter 2 and Ref. 30). Note that for a bulk fluid 
of uniform density p, p(r) ~ p and translational invariance demands that 
G(r~,rz) ~ G(r12) = p2(g(rn) I) + po(r12), where r12 =I rt - r2l and 
g(r) is the usual radial distribution function. It follows that the Fourier 
transform G(k) = pS(k), where S(k) is the static structure factor of the 
bulk liquid [30]. 

The density functional approach focuses on functionals of p(r) rather 
than u(r). While it is clear that p(r) is a functional of u(r), one can prove 
[12,16,29] the less obvious result that for given <1>, fl., and T only one 
external potential V(r) can determine a specified equilibrium one-body 
density p(r). From this result it follows that the probability density 

f:v = 2 1 exp[-f3(H:v- 1-LN)) (6) 

where 2 is the partition function, is uniquely determined by p(r)-the 
latter fixes V(r), which then determines f N· Since f N is a unique functional 
of p(r), so is the quantity 

9F[pJ = (K.E. + <I> + f3 -! In f N) (7) 
= Trc~[f N(K.E. + <I> + f3 1 In fN)] 

where Trc1 denotes the classical trace. The same form of 9F[p] will be valid 
for any external potential. A second functional is constructed from a Le
gendre transform of 91': 

!1v[p] = 9i'[p) - J dr u(r)p(r) (8) 

When p = p, the equilibrium density, !1 v[p], reduces to the grand potential 
!1. It can also be shown [16] that !1 is the minimum value of !1v[p], so 
that we have a variational principle 

o!1v[p] I = 0 
op(r) p 

!1v[p] = n (9) 

for determining the equilibrium density of a fluid in an external potential. 
9F[p) is the intrinsic Helmholtz free-energy functional, since the total 
Helmholtz free energy F = !1 + 1-L f dr p(r) = 9F[p] + f dr p(r)V(r). 
Combining (8) and (9) we have 

1-L = V(r) + ();y;[p] 
op(r) 

(10) 
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which expresses the constancy of the chemical potential through the in
homogeneous fluid. f);y;[p]/8p(r) can be regarded as the intrinsic chemical 
potential; in general this will not be a local function of p(r). 

By virtue of (9), use of !lv{p] as a generating functional is identical to 
the standard procedure. A second hierarchy of correlation functions is 
generated by differentiating ;y;[p]. The latter contains an ideal gas (non
interacting) contribution 

;y;;d[p] = J dr fid(p(r)) (11) 

with f;d(P) = 13 1p(ln A3p - 1), the free-energy density of a uniform ideal 
gas. :\ is the thermal de Broglie wavelength. Subtracting the ideal con
tribution we generate the direct correlation function hierarchy: 

(12) 

.rd (!3) 

that is, 

op(r,) 

where the tilde in the density variable is omitted. Using (1 I) and (12), 
(10) can be reexpressed as 

(14) 

where c0 l is itself a functional of p(r). For an ideal gas cm 0 and (14) 
reduces to the familiar barometric law for the density distribution in the 
presence of an external field. Thus (14) implies that -13 -I cm(r) acts as 
an additional effective one-body potential in determining self-consistently 
the equilibrium density. This quantity is the classical analog of the effec
tive one-body potential f dr' n(r')~ r - r'l + 8Exc[n]/on(r) entering the 
theory of Kohn and Sham [9] for the electron density n(r). That potential 
enters a one-electron Schrodinger equation appropriate to a noninteract
ing electron liquid. The presence of the exponential in (14) reflects the 
corresponding classical behavior. 

In a uniform fluid with V(r) = 0, (14) reduces to 

(15) 

with I-Lid(p) = dfidldp, so that c0 l(p) is proportional to the excess (over 
ideal) chemical potential. Equation (14) is also equivalent to Widom's 
potential distribution formula (see Chapter 2). From (12), (13), and (10) 
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we find that 

(16) 

where the second term is [via (4)] 
being defined as 

G - 1(r1 ,rz), the functional inverse 

J dr3G- 1(rl ,r3)G(r3 .r2) = o(rt - r2) (17) 

Thus c<2> is (essentially) the inverse of the density-density correlation 
function G. With (5), (16) and (17) together imply the integral equation 

(18) 

relating the two-body direct correlation function c(
2 ) to the total corre

lation function h defined by 

(19) 

Equation (18) is the familiar Ornstein-Zernike equation for an inhomo
geneous fluid. Often this is used to define , however, we see that this 
equation follows as a natural consequence of having two generating func
tionals fl v and fF linked by the Legendre transform (8); that is, (l7) is 
equivalent to 

J 82ff 82flv 
dr3 ---------

op(rt) op(r3) 8u(r3) ou(rz) 
(20) 

Thus the direct correlation function hierarchy has equal status with the 
standard distribution function hierarchy. Indeed, the existence of two 
hierarchies, generated by two generating functionals, is a common pro
cedure in many-body theory. In field theoretical treatments [31] of sta
tistical mechanics, the analog of ff[p] is f($], the generating functional 
for the VerteX functiOnS f<Nl, With <5, the averaged Order parameter, being 
the analog of the average density p(r). 

Henderson has described, in Chapter 2, how the formalism above can 
be used to derive exact sum rules for inhomogeneous fluids. Here we 
apply the formalism to the determination of thermodynamic functions. 

B. Thermodynamic Functions via Functional 
Integration 

There are several routes to the calculation of the free energy of an in
homogeneous fluid. We describe two of these. Consider an initial fluid 
state with density Pi(r) and a final state with density p(r) at the same 



Density Functlonals In Nonuniform Fluids 93 

temperature T and suppose that these can be linked by a linear path in 
the space of density functions characterized by a single coupling param
eter a: 

Pa a= p(r;a) = p;(r) + a(p(r) - p1(r)) 

= p;(r) + allp(r) 

with 0 :S a :S I. Integration of (12) yields 

(21) 

where the functional dependence of c< 1 
l is made explicit. A second in

tegration [see (13)] gives 

cw<lPal:r 1) cm([p;]:rd + l"' da' J dr2Llp(rz)c(21 ([pa·];r~,rz) (23) 

For a uniform fluid (23) simplifies. with p; 0, to 

so that 

J dr c<21 (p;r) (24a) 

which, by virtue of (15), is equivalent to 

p J dr c<2l(p;r) (24b) 

the compressibility sum rule. c<2l(p; r 1 ,r2 ) c<2J(p; I r 1 - r2 j) is the (two
body) direct correlation function of the bulk fluid. Equations (22) and (23) 
can be combined to give 

f39Fex[P] = f39Fex[p;] J dr Ap(r)c0 l([p;];r) 

- l' da J dr 1 Ap(rd l"' da' J dr2 Llp(r2 )c<2>([pa·J; r 1,r2 ) (25) 

Using the identity 

l' do.. L"' da' q(a') l' da(l - a)q(a) 
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valid for any function q(a.), (25) simplifies to 

1);9'ex[P] 1);9'ex[P;] J dr Ap(r)c< 0 ([p£];r) 

Evans 

+ L1 
da.(a. I) J dr1 J dr2 Ap(rJ) Ap(r2)c<21 ([p"'];rl ,r2 ) (26) 

As emphasized by Saam and Ebner [14] this result should be independent 
of the choice (21) of integration path; recall that ;9' ex [p] is a unique func
tional of p(r). A more familiar version of (26) emerges when p; 0 and 
the final state is a uniform fluid of density p. The total Helmholtz free 
energy density is 

f(p) f;d(p) + 13 ~ 1p2 L1 
da.(a. - I) J dr cm(a.p;r) (27) 

The thermodynamic functions ;9' and !1 can be obtained from (26) by 
adding the external potential contribution and the resulting formulas are 
equivalent [16] to those obtained by Stillinger and Buff [4] and Lebowitz 
and Percus [5] using different methods. We shall see that (26) forms the 
basis for several approximate theories of inhomogeneous fluids. It also 
provides the starting point for the modern theory of freezing, where the 
reference state refers to that of a bulk liquid and the final state refers to 
the bulk crystal, viewed as an inhomogeneous fluid (see Chapter 9). Note 
that while is formally exact its evaluation requires as a functional 
of p(r). This is a tall order for any theory and we shall find that gross 
approximations must be made for this quantity. Note also that use of the 
corresponding bulk expression (27) is restricted to integration paths (at 
fixed n in a single-phase region, where c<21 (p;r) is single valued. 

A second formula for the free energy can be obtained for the particular 
case when the potential function <P is pairwise additive, that is, 

1 N 
<P(r1,rz, .... rN) .., 2: 2: d:>(r;,r) 

~ ;,-j j= 1 (28) 

i JJ dr dr' d:>(r,r')i)(r) (i)(r') 8(r r')) 

The grand potential is a functional of d:>(r,r') = <f>( I r - r' I ) and has the 
property, for fixed T and u(r), 

8!1 
(29) 

since, from (5) and (4), 

p<2>(r1 .rz) = {p(rt)p(r2)) - (p(r, ))8(r, - r2) (30) 
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Equation (29) implies that 

I _ __::.:...::.._ = - p<2>(r r ) 
O<j>(rt ,r2) 2 I' 

2 (31) 

We now consider a reference fluid at the same temperature and density 
p(r), for which the pairwise potential is <l>r and integrate (31) using a 
"charging" parameter a: 

<f>"'(rt h) = <f>r(rt ,r2) + a<f>p(rt ,r2) 

The result is 

(32) 

~[p] ~rfp] + ~ 11 

da J dr1 J dr2 p<2l(d>n :r1 h)d>p(rt .rz) (33) 

where ~,[pJ is the intrinsic free energy of the reference fluid (a = 0), and 
<bp = <D <f>, is the perturbation potential that is turned on via (32). A5 
a increases between 0 and I the density p(r) must not alter, so it is nec
essary to envisage [32] an effective external potential, depending on o.. 

that imposes such a density for any intermediate system with pairwise 
potential . This external potential will only reduce to the actual one 
V(r) in the final system a = I. 

Equation (33) is the basis of all perturbation theories [30] of bulk and 
inhomogeneous fluids. Usually, 4>, is taken to be the repulsive part of the 
full pairwise potential and the remaining, attractive part is treated as the 
perturbation <f>w By making suitable approximations for ~r[p] and for the 
two body distribution function p<2)(<ba:r 1 ,r2 ) of the inhomogeneous fluid 
with potential <f>o., approximate free-energy density functionals can be 
derived (see Section III.D). 

C. Hard Rods in One Dimension: An Exactly 
Solvable Model 

There is no continuum model for which the statistical mechanics can be 
solved exactly (at liquid densities) in three dimensions. Thus there is no 
model for which the functional ~[p] is known exactly in three dimensions. 
In one dimension, however, where correlations are of a much simpler 
nature, exact results do exist for particles with nearest-neighbor inter
actions. Percus [33] derived an integral equation for the density profile 
p(z) of a one-dimensional fluid of hard rods (length u) in an arbitrary 
external potential V(z) via functional differentiation of the grand partition 
function with respect to u(z) 1-L - V(z). Robledo [34] obtained the same 
equation from potential distribution theory, while Robledo and Varea [35] 
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and Percus [36] constructed the functional flv[p]. This has the usual struc
ture 

flv[p] = ~id(p] + ~ex(p] - J dz u(z)p(z) 

with the excess free-energy functional given by 

-~- 1 J dz p(z) ln(l t(z)] (34) 

where t(z) = n-cr dy p(y). Requiring flv[p] to be a minimum yields 
Percus's equation for the profile: 

~u(z) --'----- + { Z + CT dy ____;___:;.__ 
t(z) Jz l - t(y) 

(35) 

c<2>, c<3>, and so on, can be obtained by further functional differentiation 
and can be shown [33] to be of finite range in all pairs of variables [e.g., 
c <2>(z. z') = 0 unless I z z' I :Sa]. Percus [36] also considered the case 
of sticky hard rods, deriving flvlPl and showing that c<2

l vanishes beyond 
the range of the core. For the special case of hard rods confined by two 
hard walls, Robledo and Rawlinson [37] have obtained a complete set of 
results, including then-body distribution functions and the solvation force 
(the excess pressure brought about by confinement). (See also Davis [38] 
for a treatment of the confined Tonks-Takahashi one-dimensional fluid.) 
Vanderlick et al. [39] have extended the work ofPercus [33,36] to mixtures 
of hard rods in an arbitrary external field, and these authors provide many 
results for density profiles, selective adsorption, and solvation force of a 
binary mixture confined between two walls. Monson [40] has determined 
the partition function and density profiles for inhomogeneous one-di
mensional square-well mixtures. 

Can we learn anything from these exact solutions that will guide us 
toward an effective approximation for real fluids? This question was posed 
by Percus [36,41] and Robledo and Varea [35], who suggested possible 
approximation schemes for higher dimensions based on the form of (34). 
Rewriting this equation as 

with 

1\lex(n) = -~-I ln(l - na) (37) 

and 

f
ul2 

pT(z) = a- 1 dy p(z + y) 
-cr/2 

(38) 
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it is clear that the excess free-energy functional is an integral over the 
excess free energy of a uniform fluid: (37) is the excess free energy per 
particle of the uniform hard-rod fluid of density n. [This result can be 
obtained from the thermodynamic identity (alj!exlan)r = n- 2(p- nfj- 1

) 

applied to the hard-rod equation of state fjp = n(l - ncr) -t.] However, 
(36) is not merely a local density formula-the excess free energy is that 
of a bulk fluid at a density pT(z), which is the average over the particle 
in question. It is tempting to assume that (36) will generalize to hard disks 
and spheres, provided that suitable average densities can be constructed 
and the lj!ex appropriate to the higher dimension is utilized. This was the 
strategy proposed in Refs. 35 and 36. A skeptic might argue that there is 
no reason to suppose that correlations between hard particles will have 
the same form in higher dimensions as in one. Nevertheless, such gen
eralizations have proved very instructive and we discuss them further in 
Section IILE.5, where we make connection with other, closely related 
approaches that also involve a local average of the density. 

Ill. APPROXIMATIONS FOR FREE ENERGY 
FUNCTIONAlS 

A. Basic Strategy and Its Pitfalls 

Any practical implementation of density functional theory for a particular 
physical problem almost always requires some explicit approximation for 
the functional ;y;[p]. Once this is given. the equilibrium p(r) and grand 
potential 0 are determined, via (8) and (9), for specified T, J.L, and V(r). 
(There is the tacit assumption that flv[p] still obeys the minimum principle 
when ~[p] is an approximation to the exact functional.) Direct correlation 
functions, if required, are obtained by further functional differentiation, 
distribution functions G(r 1 ,r2 ). and so on, follow via the Omstein-Zer
nike equation (17) or (18). From an engineering viewpoint this strategy 
is very appealing. The reliability and accuracy of the results should reflect 
the skill with which ~[p] is constructed for the particular model Hamil
tonian. For certain problems one might be able to extract understanding 
of the essential phenomena using very crude approximations. For others, 
which demand detailed information about the microscopic structure, say, 
sophisticated approximations will be required. From a statistical me
chanics viewpoint the strategy is less satisfactory. There is always great 
danger of losing sight of the Hamiltonian.* Once ~[p] is specified, all 
equilibrium properties are determined, so there is a temptation to regard 
~[p] as defining some model fluid. If ;y;[p] corresponds to some exactly 

* Henderson (Chapter 2) also discusses these issues. 
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solved model, as in the case of hard rods, there is a one-to-one relationship 
between the functional and the Hamiltonian. If, however, ~[p] is merely 
some (intelligently chosen) functional, there is no reason to expect the 
resulting properties to be those which would correspond to exact solution 
of any Hamiltonian, let alone the original. There is a model due to Percus 
[42] for which 

~~ex[P] = -i JJ dr1 dr2 c(r 1 

with c the basic model function. Functional differentiation implies that 
the direct correlation function cl2l(r 1 .r2) = c(r1 - r 2). independent of 
any external field, for this model. Percus showed that provided that c(r 1 

r 2 ) :2: 0, such a model could be represented by a Hamiltonian consisting 
of an infinite sequence of many-body interaction potentials whose forms 
are determined by c. This model fluid exhibits very peculiar phase tran
sitions, however [42]. 

Phase transitions warrant special mention. We cannot expect any ap
proximate density functional treatment to answer subtle questions re
garding phase transitions. Most approximate functionals are mean field 
in character, so that certain (but not all) effects of fluctuations will nec
essarily be omitted. An important case is that of the liquid-gas interface 
in a weak gravitational field where capillary-wave-like fluctuations play 
a role. Weeks and co-workers [43,44] (see also Bedeaux [45]) have em
phasized the pitfalls that are encountered when one attempts [46} to apply 
simple approximations to ~[p] in this problem. They have also devised 
[43] a method for constructing the exact functional for an "anisotropic" 
Kac-van der Waals fluid. We will return to the failings of the approximate 
treatments of the liquid-gas interface in Section V .A. 

Perhaps it is worth pointing out the difference between the density 
functional strategy and the more conventional field-theoretical approach. 
There one does not normally make direct approximations to the generating 
functional f[$]; rather, one uses the machinery of loop expansions, and 
so on, to generate systematic approximations for thermodynamic func
tions and correlation functions [31 ]. This usually allows one to keep track 
of fluctuation effects. However. field-theoretical treatments of realistic 
models of inhomogeneous fluids are not easy! By approximating f[<i>] (or 
~[pJ) directly it is sometimes difficult to ascertain what, if any, fluctuation 
effects are being incorporated into the theory. The Fisk-Widom [47] the
ory of the liquid-gas interface near the bulk critical point is in this spirit 
(see Section V.A). Although their functional omits interfacial (capillary
wave induced) broadening of the density profile, it is constructed so as 
to incorporate the effects of bulk critical fluctuations (i.e., the correct 
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bulk critical exponents). Setting aside the issue of fluctuations at phase 
transitions, it should be clear that the classical density functional strategy 
is very much in keeping with that used for electronic properties. In the 
Hohenberg-Kohn-Sham scheme the analog of ~ex[P] is the energy func
tional 

1 JJ , n(r)n(r') 
2 dr dr I r r' I + Exc[n] 

and approximations are sought for Exc[n]. As in simple Hartree theory, 
the direct Coulomb repulsion between electrons is treated exactly. For 
classical atomic fluids where the pairwise potential cf>(r) has both repulsive 
and (shorter-range) attractive contributions a corresponding division of 
~ex[P] is not so obvious. For ionic liquids, however, it is natural to sep
arate out the total electrostatic energy and seek approximations for the 
remaining part of , which is then the classical analog of the exchange 
and correlation functional e.g .. Refs. 22 and 23). 

In the remainder of this section we describe various approximations 
for 9F[p] that have been developed for simple, atomic fluids. 

B. Square-Gradient Approximation and a 
Descendent 

The best known approximation is probably that arising from truncating 
the gradient expansion of 9F[p]. This is derived by supposing that the 
density p(r) = 'l'(r/r0 ), where the scale parameter r0 ----'T x. Then the density 
may vary by large amounts but over a long distance scale. Following 
Hohenberg and Kohn [8], one finds that [I 6] 

~[p] = J dr[f(p(r)) + j 2(p(r))(Vp(r))2 + 0(Vp)4
] (39) 

Successive terms correspond to successive powers of r0 
1 and symmetry 

arguments, equivalent to those used in Landau theory, eliminate certain 
terms. f(p) is the Helmholtz free-energy density of a uniform fluid of 
density p, so that truncating the expansion after the first term constitutes 
the local density approximation. This first term also contains all ideal gas 
contributions, since these are given exactly by the local density form [see 
(II)]. The other coefficients, f2(p), and so on, can only be determined by 
imposing additional requirements on ~[p]. A natural choice is that (39) 
should be consistent with linear response theory [i.e., with the change of 
free energy obtained by creating an infinitesimal perturbation of the den
sity op(r) away from that of a uniform fluid]. That change can be obtained 
by functional Taylor expansion and involves the direct correlation func-
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tions of the uniform fluid [8,15,16]. It is found that 

fz(p) = (12[3) 1 J dr r 2
c(

2 J(p;r) 

Evans 

(40) 

The coefficient of the square-gradient term in the expansion of 9'[p] is 
- (2[3)- 1 times the coefficient of k2 in the Fourier transform of the two
body direct correlation function of the uniform fluid. Higher-order coef
ficients depend on integrals of c<n> with n > 2 and are much less amenable 
to calculation. For this reason and for overall simplicity (39) is usually 
truncated after the second term. With some means (e.g., via integral equa
tion or perturbation theory) of calculating c<2>(p;r), and hence f(p) and 
f2(p), for bulk fluids (39) constitutes a very simple but fully microscopic 
theory for an inhomogeneous fluid. 

Formally, the square-gradient approximation should be valid only for 
the case of very slowly varying density profiles, such as would pertain 
for the liquid-gas interface near the bulk critical point [ 47, 17] or for a 
single phase fluid in a gravitational field. However, the theory is often 
applied to situations were the profile varies rapidly-by orders of mag
nitude over a distance of a few atomic diameters in the case of the liquid
gas interface near the bulk triple point [ 16.17]. There is no reason to expect 
the theory to be accurate in these circumstances. 

The neglect of higher-order terms in the expansion has severe reper
cussions when the theory is employed for fluids with power-law (alge
braically decaying) pairwise potentials <j>(r). A formal gradient expansion 
does not exist for such potentials. Since c<2>(p;r) ~ - f3<J>(r) as r--+ ex:, 

higher moments of c<21 will diverge if <J>(r) ~ r-n as r--+ ex:. The most 
relevant case is the Lennard-Jones 12-6 potential, which has n = 6. f 2(p) 
exists but not higher-order coefficients. This is reflected in the small k 
behavior of the Fourier transform c(

2J(p:k), where the presence of a k3 

term reflects the -r 6 decay of <J>(r) [48,49]. The square-gradient ap
proximation fails to describe the z 3 algebraic decay of the tails of p(z) 
at the liquid-gas interface of the Lennard-Jones fluid [50,51]; rather, it 
predicts exponential decay. More important, it cannot account for the 
proper growth law for wetting films in systems that exhibit van der Waals 
forces [52]. Such difficulties are best surmounted by treating attractive 
forces in a nonlocal fashion that avoids the gradient expansion. In the 
extreme case of an ionic liquid (n = 1) a gradient expansion is meaningful 
only for the residual, non-Coulombic, part of 2i'ex[PJ [22]. 

There is another difficulty associated with the implementation of (39) 
with (40). If the fluid exhibits attractive, as well as repulsive interatomic 
forces, bulk liquid-gas coexistence will occur. The density of the inho
mogeneous fluid may take values locally that lie within the bulk two-phase 
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region. This is certainly the case for many interfacial problems. What 
values should be used for f(p), and how is one to calculate ca>(p;r)? In 
practice, f(p) always has some (generalized) van der Waals form, so that 
J.L(p) atlap has a loop for subcritical temperatures [17], and some ex
trapolation of cc2>(p;r) [or f2(p)] into the two-phase region is made. For 
the Lennard-Jones fluid, f2(p) is calculated [53,54] to be weakly density 
and temperature dependent. The integral in (40) is dominated by the larger 
r portion, where c<2>(p;r) - - ~<l>(r) and f 2 can be regarded as a positive 
constant determined primarily by the attractive part of <b(r). The resulting 
square-gradient theory is then essentially the same as that of van der 
Waals (see Chapter 1 and Ref. 17). 

Despite the shortcomings described above, the square-gradient ap
proximation has proved extremely valuable for a wide variety of inter
facial problems. Its generalization to fluid mixtures is straightforward 
[54,55] and has proved useful for understanding surface tension and rela
tive adsorption at the liquid-gas [55.56] and liquid-liquid [56] interfaces 
of binary mixtures of simple fluids. It has also been used to investigate 
a wetting transition at a fluid-fluid interface and surface tension near a 
critical endpoint [56]. In these applications some prescription for calcu
lating the coefficients f 21J(p1,pJ) with i,j referring to species I and 2 is 
required. A simple perturbation theory. using a mixture of hard spheres 
as a reference system, has been used to calculate for the bulk mixtures 
[55,56]. 

The square-gradient approximation formed the crucial ingredient for 
Cahn · s [57) seminal paper on wetting transitions. Cahn employed (for a 
planar interface) the grand potential functional per unit area 

!lv[p] {"' [ (dp)
2 J ~ = Jo dz f(p(z)) + fz dz - J.Lp(z) + <l>..,(pw) (41) 

where the substrate (or spectator phase)-fluid contribution is taken to be 

(
c 2 

2f2 2 Pw (42) 

with p.., = p(O+ ), the density of the fluid at the substrate (wall). The 
quantity 2!2€ > 0 measures the strength of the attractive substrate po
tential, while the term hCp,} represents a modification of pair interac
tions between fluid particles at the substrate. For pure fluids it is natural 
to take C > 0 since the absence of fluid for z < 0 means that there is less 
net attraction from fluid atoms, causing an increase in surface energy. C 
< 0 implies some enhancement of the attractive pair attraction at the 
substrate, lowering the surface energy. Although (42) is not a particularly 
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realistic representation of the substrate-fluid free energy (it can be de
rived as the continuum limit of a lattice-gas model, where €. and C are 
more meaningful parameters [58]), it does have the advantage that the 
Euler-Lagrange equation obtained by minimizing (41) has a first integral 
so that the profile p(z) is easily determined and the grand potential has 
a simple form. This makes (41) very well suited for global investigations 
of interfacial properties, including surface phase transitions such as wet
ting. Different classes of behavior can occur depending on the values of 
the parameters C (surface enhancement) and €. (surface field). Following 
Cahn' s pioneering work there has been an enormous number of studies 
of (Landau) theories of this type (see the reviews [58,59]). Such a func
tional does not incorporate the short-ranged correlations, which lead to 
the oscillations in the density profile that usually occur for liquids near 
substrates. Any liquidlike film that develops near the substrate will be 
represented by a density that is high but almost constant. p(z) can only 
vary monotonically. While this defect is serious for the microscopic struc
ture of adsorbed films, it should not be crucial as regards predictions of 
global features of wetting transitions (at the mean-field level). The choice 
(42) is appropriate to short-range wall-fluid forces. In reality van der 
Waals forces between the atoms of the substrate and those of the 
fluid give rise to an effective one-body potential V(z) ~ - z 3

, large z. 
The presence of such power-law potentials, V(z)- z ~m, leads to critical 
exponents for film growth at complete wetting (from off bulk coexistence; 
see Chapter 2 and Refs. 58 and 59) that depend directly on the value of 
m. The Cahn functional with (42) does not capture these effects; any 
critical exponents will take the mean-field values appropriate to a system 
where all forces are strictly short range. This is discussed further in Sec
tion V.B. 

We complete this subsection by mentioning a close descendent of the 
square-gradient approximation. This is the functional 

(43) 

introduced by Ebner et al. [13] in a study of a liquid-gas interface and 
used subsequently by Ebner and Saam [60,61] in their important work on 
gas adsorption at substrates, where they discovered (independently of 
Cahn) a first-order wetting transition. Equation (43) can be derived from 
a partial resummation of the gradient expansion, as suggested by Ho
henberg-Kohn-Sham for the electronic case. It may also be justified in 
terms of an approximation [14,16] for c(2)([p",J;r 1 ,r2 ) in (25) for the exact 
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functional. The important feature is that (43) is consistent with linear 
response (even for rapidly varying pertubations) and reduces to the gra
dient expansion for slowly varying densities. Practical implementation 
requires some prescription for the "mean" density pm (e.g., pm = [p(r1) 

+ p(r2)]/2) and some means of calculating c<2l(p;r). Ebner et al. [13] solved 
the bulk Perc us-Y evick equation numerically at a large set of state points 
for a Lennard-Jones fluid and extrapolated c(p;r) into the two-phase re
gion. They also make a complicated parametrization of the density profile 
in order to effect the minimization of n v[p]. 

It is not clear that (43) will provide an accurate description of the highly 
structured density profiles that one finds for fluids near substrates. The 
results of Ebner and Saam [60,61] for gaseous "argon" adsorbed at a 
planar "'carbon dioxide" substrate caused some controversy and stimu
lated many subsequent calculations, using various techniques, for the 
same modeL* Recent Monte Carlo results [63] (see Section V.C) for the 
density profiles and adsorption provide convincing evidence for the ex
istence of the wetting and prewetting transitions. with a wetting temper
ature similar to that calculated by Ebner and Saam. However, the Monte 
Carlo density profiles are considerably different from the Ebner-Saam 
density functional results as regards the shape of the oscillatory part. 
Whether this reflects some fundamental shortcoming of the theory or is 
an artifact of the parametrization [60] of the profile is not obvious. One 
disturbing feature of (43) is the presence of the local density term f(p(r)). 
Packing effects induced by both the repulsive and attractive parts of the 
substrate potential V(z) can cause the local density p(z) to be very high
sometimes greater than the close-packing density. Under these circum
stances f(p(z)) is divergent. Since the theory simply cannot tolerate such 
high densities, any minimization procedure would force the maxima in 
p(z) to be smaller. In this respect (43) is similar to (41). Because of such 
difficulties and considerable numerical complexity, (43) has fallen out of 
fashion and appears to have been superseded by other approximations to 
be described later. 

C. Density Expansions 

Let us return to the exact expression (26) for the excess free-energy func
tional ~ex[p]. We are free to choose the initial density p;(r) to be pb, that 
of a uniform (bulk) reference fluid at the same chemical potential. Then 

* Some of the history is given in footnote 79(b) of Ref. 62. 
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Llp(r) = p(r) - Pb and the grand potential functional becomes 

Ov[p) = n[p&] + J dr V(r)p(r) + 13 1 J dr [ p(r) In p::) p(r) + Pb J 
+ 13- 1 L1 

da(a- 1) J dr1 J drzc<2l([pa);r1,rz)Llp(r1)Llp(rz) 

(44) 

having used (15). Suppose now that we neglect the dependence of c(2)([p"'J; 
r1 ,rz) on the coupling parameter a and, for simplicity, set this function 
equal to the two-body direct correlation function of the uniform fluid, so 
that 

c<2l([p.,J ;r1 ,r2) = cCl(Pb, I r 1 

Then (44) simplifies to [64]: 

ilv[p] = n[pb] + J dr V(r)p(r) + 13 1 J dr [p(r) In p::) p(r) + Pb J 

(45) 

(46) 

This functional can now be minimized, according to (9), and yields the 
following integral equation for the density profile: 

p(r1) = Pb exp [ 13 V(rd + J drz c< 2 l(Pb ;rn)(p(r2) Pb) J (47) 

which is the same as that obtained by making the HNC closure of the 
wall-particle Ornstein-Zernike equation (see Chapter 4). The Percus
y evick (PY) version is a simple linearization of part of the exponent in 
(47), that is, 

p(r1) Pb exp[ -13 V(r1 )] [ l + J dr2 c< 2 l(pb ;rt2){p(rz) Pb) J (48) 

Both equations, along with closely related approximations based on 
alternative closures of the wall-particle Ornstein-Zernike equation, have 
been used in many studies of the density profile of liquids and gases near 
walls. Some of this work is reviewed in Chapter 4. While these theories 
are quite successful at describing the oscillatory profiles of hard spheres 
near hard walls, they are less successful when the fluid possesses an 
attractive, as well as a repulsive, component in the interatomic potential. 
One severe drawback of this type of integral equation theory is their 
inability to account for the presence of macroscopically thick wetting (or 
drying) fdms at a wall-fluid interface [65] or for the phenomenon of critical 
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adsorption, which arises from the slow, algebraic decay of the density 
profile associated with the diverging bulk correlation length [66]. Such 
theories are not capable of describing phase transitions at fluid interfaces. 

Their deficiencies can best be understood by reconsidering their gen
erating functional (46). Clearly, this approximation retains only terms 
quadratic in the "perturbation" p(r) Ph; the logarithm merely reflects 
the ideal gas contribution. Note that c(2l(Ph ;r) is fixed once IJ. and Tare 
specified. If one considers (46) for bulk densities p, other than the initial 
one, one finds that the grand potential density 

w(p) = w(ph) + 13- 1 (pin :h- p +Ph)-
13;

1 I drc(2l(ph;r)(p- Ph)2 

cannot account for liquid-gas coexistence [65). A quadratic is insufficient 
to describe two minima, which is a necessary requirement for coexistence 
in the uniform fluid. If the functional does not exhibit two minima (cor
responding to bulk liquid and bulk gas), it will not be able to describe the 
development of a macroscopic wetting film, nor will it be able to describe 
correctly the interface near the critical poinL whose properties reflect 
(within the mean field approach) the coalescence of two minima [66]. 

How does one improve on (46)? It is straightforward to show that this 
approximation is equivalent to retaining only the quadratic term in the 
functional Taylor expansion of 9fexlPJ about the uniform reference value 
Ph· The next term in the expansion is 

_!_I dr1 I dr~ I dr 3 -~-j 3! - . Op(rl) 0p(r2) 0p(r3) pb 

x (p(rd ph)(p(r2) 

where the derivative can be identified with -13 - 1c 0 l(pb ;r1 ,r2 ,r3 ), the 
three-body direct correlation function of the uniform fluid. Including such 
a term is sufficient to ensure that w(p) does have two minima, so that 
coexistence and wetting are possible [67]. Rickayzen and Augousti [68] 
have included the third-order term by making a simple ansatz for c<3>, 
characterized by a single parameter. The resulting theory, obtained by 
minimizing a new functional, does improve on (47) and (48) for the density 
profile of hard spheres at a hard wall [68] and has proved very successful 
for describing the density profile of certain (supercritical) states of a Len
nard-lones fluid confined in a slit [69]. The parameter in the third-order 
theory is chosen in such a way that the exact sum rule (l3p = Pw) for the 
density at a single hard wall is satisfied automatically. [It is well known 
that the sum rule is not satisfied by either the HNC (47) or PY (48) equa
tions.] A generalization of the third-order theory to binary hard-sphere 
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mixtures has been made and tested against simulations for a mixture con
fined in hard-wall slit [70]. Note that the input to both the quadratic and 
the third-order theories is the direct correlation function c<2J(Pb ;r) at some 
specified bulk density Pb and temperature. For fluid absorption at a single 
wall it is natural to choose Pb equal to the density of the bulk fluid far 
from the wall. For confined fluid, however, the choice of Pb is not quite 
so obvious. If the fluid has access to a reservoir, as for an open slit or 
cylinder, one might choose Pb to be the density of the bulk fluid at the 
chemical potential fixed by the reservoir. Then the comparison with grand 
canonical Monte Carlo can be made. Such a comparison is shown in Fig. 
I for a supercritical Lennard-Jones fluid between two "10-4-3" walls. 
For a subcritical Lennard-Jones fluid capillary condensation of an un
dersaturated gas to a "liquid" will occur in pores with attractive walls 
(see Section V .D; a brief review of the phase equilibria of fluids confined 
in pores is given in Ref. 71). If the walls are hard capillary evaporation 
of the liquid to a "gas·· will occur for J..l slightly greater than its value at 
saturation [72]. While it is clear that (47) or (48) cannot account for such 
phase transitions, it is not clear how the third-order theory should fare. 
Reference 69 reports comparison of theory with canonical Monte Carlo 
results-the simulations and theory referring to the same average density 
of fluid in the hard-wall slit. Such a comparison is problematical at sub
critical temperatures, especially when phase transitions are possible. 

Other improvements on the HNC and Percus-Yevick approximations 
have been developed. Some of these are known to correct the fundamental 
deficiencies described above. In particular, Zhou and Stell [73] have de
veloped powerful nonlocal integral-equation approximations, which they 
term hydrostatic HNC and PY, based on a density functional expansion 
of direct correlation functions developed earlier by Stell and co-workers. 
Zhou and Stell show that the HHNC approximation is much superior to 
HNC and PY for Lennard-Jones fluids near walls and confined in slits. 
They also demonstrate that HHNC can account for wetting and drying 
transitions at a single wall and for capillary condensation in a slit pore. 
A second class of improvements makes use of the inhomogeneous Om
stein-Zemike equation (18) (see Chapter 4 and the paper by Kjellander 
and Sarman [74] for a comprehensive list of references and a thorough 
discussion of some of the most recent results). Such theories take both 
the singlet density and the pair distribution functions as unknown (i.e., 
the closure is effected at the pair level, which demands a very large com
putational effort). We do not discuss this type of approach further. 

Rather we return to the question of the usefulness of the functional 
Taylor expansion. This has received much attention from the practitioners 
of the density functional theory of bulk freezing. Indeed, the quadratic 
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Fig. 1 Density profiles of a (truncated) Lennard-Jones fluid confined between 
two parallel walls exerting 10-4-3 potentials mimicking ethylene on graphite: (a) 
wall separation L = 20au; (b) L = 5au; (c) L = 2.5au. In each case k8 Tie = 
1.35, which lies above the critical temperature, and JL = - 3e, which fixes the 
density Pb~u = 0.28. The solid curves are the results of Rickayzen-Augousti 
theory and the points are the grand-canonical Monte Carlo results of Walton and 
Quirke. (Redrawn from Ref. 69.) 
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approximation ( 46) formed the starting point for modern developments 
of this subject (see Chapter 9). Within the context of freezing Pb in (46) 
refers to the density of a uniform liquid and p(r) to that of the crystal; 
V(r) == 0. Considered as a generating functional (46) asserts that the direct 
correlation function for any inhomogeneous fluid, including the crystal, 
is cC2l(Pb ;r12). [This follows directly using (13).) That correlations in a 
crystal should be identical to those in a uniform liquid is an assertion that 
is somewhat difficult to sustain! Nevertheless, results for freezing prop
erties obtained from (46) have been found to be rather good in certain 
cases (Chapter 9). It appears that this quadratic approximation is capable 
of describing a solid-liquid transition-provided that the spontaneous 
breaking of translational symmetry is inserted by hand (i.e., a specific 
periodic crystalline density is imposed). Those of us raised on a diet of 
fluid interfaces cannot fail to be amazed by the apparent success of this 
(lowest-order) theory for freezing. Higher-order terms in the functional 
expansion have been considered and their effects are often substantial (a 
very recent discussion of the convergence of the density expansion for 
hard-sphere fluids is given in Ref. 75; see also Refs. 76 and 90) but this 
subject is reviewed in Chapter 9. 

D. Perturbation About a Hard-Sphere 
Reference Fluid: A van der Waals 
Approximation 

In this section we consider approximate free-energy functionals obtained 
from (33), the exact expression for the intrinsic free energy for a fluid 
with a pairwise interatomic potential <f>(r). In the perturbation theory of 
uniform liquids p(2l(<f>a;r1 ,r2 ) is replaced by p2g,(p;r)-the pair correla
tion function of the uniform reference fluid (a 0) with the potential 
q,,(r) corresponding to the repulsive force part of the full potential [30]. 
This is equivalent to assuming that pairwise correlations are determined 
primarily by excluded volume effects resulting from the repulsive forces. 
For a dense uniform Lennard-Jones liquid this is known to be correct 
[30,77] and the resulting approximation for the Helmholtz free energy is 
rather accurate. The construction of an analogous perturbation theory for 
the inhomogeneous fluid is less straightforward because much less is 
known about the nature of pair correlations in such fluids. There are many 
interfacial situations when one does expect pc2)(<V;r1 ,r2 ) to be substan
tially different from p<2>($r;r~>rz), where <Vr again refers to the repulsive 
part of q,. Notwithstanding, a simple choice, suggested by the success of 
the corresponding bulk theory, is to set 

pC2>(q,"' ;rt.rz) = p(rt )p(rz)g,(pm ;rtz) (49) 
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where pm is some mean of the local densities at r, and r2. Toxvaerd [78] 
pioneered such an approach using hard spheres as the reference fluid. 
For the free-energy functional of the latter he made the local density 
approximation (LDA): 

~r[p] = ~hs[PJ = J dr fhs(p(r)) (50) 

where fhs(P) is the Helmholtz free-energy density of a uniform hard
sphere fluid. By parametrizing p(z) he minimized the resulting flv[p] for 
the planar liquid-gas interface of a Lennard-Jones fluid to obtain esti
mates of the surface tension and equilibrium density profile. Other work 
of this type is reviewed in Refs. 17 and 54. 

An even simpler approximation, 

(51) 

which ignores correlations completely, leads to what is commonly termed 
a van der Waals theory of nonuniform fluids. With (51) the free-energy 
functional (33) reduces to 

~[pJ ~r[P] + ~ J dr1 J dr2 p(rJ}p(r2)<ll"(r!2) (52) 

which after making the LDA (50) becomes 

~[p] J dr fns(p(r)) + ~ J dr1 J dr2 p(rJ)p(r2)<!>au(rl2) (53) 

<!>" is taken to be the attractive part <!>au of the pairwise potential <j>, but 
there is ambiguity in defining <Van inside the core region, reflecting the 
absence of correlations in (51). For a Lennard-Jones fluid <Patt is often 
set equal to <!>min, the value of <b at its minimum, for r < a, the effective 
hard-sphere diameter-the latter being determined by standard bulk pro
cedures [30]. 

Using (53) the variational principle (9) yields 

I.L = V(rJ) + I.Lhs(p(rd) + J dr2 p(r2)<f>au(rd (54) 

for the equilibrium profile p(rd. The intrinsic chemical potential at r1 
consists of two distinct parts: a hard-core piece determined by local ther
modynamics (I.Lhs = ajh,lap) and a nonlocal piece, arising from the at
tractive tails of surrounding atoms. Such a division lies at the heart of 
van der Waals' own approach to nonuniform fluids (see Chapter I). Our 
present "derivation" of the van der Waals functional (53) emphasizes the 
assumptions and approximations that must be made if the resulting theory 
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is to be applied to a realistic model fluid. There are other ways of arriving 
at (53). These are summarized by Sullivan [32] (see also Ref. 43), who 
discusses a 'Y ordering procedure for obtaining systematic corrections to 
(53) in the limit 'Y--)> 0. ("( measures the strength and inverse range of <l>au .) 

There has been an enormous number of applications of (53) to inter
facial problems. This simple theory has provided insight into the free 
liquid-gas interface, adsorption and wetting phenomena of all types 
[58,59], and phase transitions of confined fluids [71]. But what is the status 
of (53)? For a uniform fluid the free energy per atom reduces to 

F a 
N = P 

1
fhs(P) - 2 P (55) 

with a f dr <l>au(r) > 0, the integrated strength of the attractive 
potential. With the Camahan-Starling [79] prescription for fhs (55) is a 
respectable but not an accurate approximation for a simple fluid; its short
comings have been discussed [80]. The direct correlation function ob
tained from the second functional derivative of (53) is 

[ !3fhs(p(rd) + p(~d J o(rl 

where the prime denotes differentiation with respect to density. The un
physical delta function merely reflects the LDA (50), which is tantamount 
to assuming the correlation length for hard-sphere repulsion is zero. No 
information about the detailed short-range correlations that characterize 
a real fluid are included in (56). For a uniform fluid (56) predicts the correct 
asymptotic behavior c<2l(p;r) ~ ~<l>au(r) as r ~ oo [81]. More signifi
cantly, it implies the same asymptotics for any inhomogeneous fluid. This 
must reflect the underlying mean-field character of the approximation; it 
does not incorporate any fluctuation corrections that may arise. One good 
feature of (56) is that for uniform fluid the compressibility sum rule (24) 
is satisfied and one might hope that certain sum rules for inhomogeneous 
fluids are also satisfied by this functional. 

Let us list some of the advantages of (53) over other approximations: 

1. It is not necessary to parametrize the profile; in most cases the 
integral equation (54) is easily solved by Picard iteration. When 
convergence is slow, as is the case with thick wetting films, the 
grand potential as a function of an imposed film thickness can be 
calculated [82), which is particularly useful for investigating phase 
transitions. 

2. The theory is versatile and can be extended straightforwardly to 
mixtures [58,59,83]. 
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3. The division into hard-sphere and attractive portions avoids the 
difficulties associated with specifying f(p) and c(p;r) in the two
phase region. 

4. Treating attractive forces in a nonlocal fashion avoids the short
coming of the square-gradient approximation in not accounting 
properly for algebraically decaying 4>(r). Within a mean-field sit
uation, the van der Waals theory will treat long-range forces cor
rectly. In the square-gradient approximation (39) the whole of the 
direct correlation function is delta function-like: 

[ 13f"(p(rl )) + I - 213!2 V2] o(r, - r2) (57) 
p(rt) 

where we have neglected any density dependence of f 2 • Note that 
Taylor expansion of (53) or use of (40) imply that 

f dr for the van der Waals theory. 
5. relative simplicity of (56) means that it is sometimes possible 

to invert the Omstein-Zernike and obtain (an approxi
mation for) the pairwise distribution function of the inhomogeneous 
liquid without enormous computational effort. This is especially 
useful for phase transitions. where singular contributions can often 
be ascertained by analytical means [84,85] (see Section V .B). 

The crucial disadvantages of (53) are: 

I. The form of is such that the theory is necessarily mean-field 
like. This has significant repercussions for phase transitions at in
terfaces (see Sections V .A and V .B). However, systematic im
provements, incorporating fluctuation corrections, are notoriously 
difficult to make (e.g., Ref. 32). 

2. Short-range correlations are absent, so that the theory cannot de
scribe oscillatory density profiles, nor will it give a correct de
scription of the density at a sharp boundary such as a hard wall; 
the relevant sum rule will not be satisfied. 

Most schemes for improvement have focused on item 2, often spe
cializing to a hard-sphere fluid from the outset (i.e., the division 9F[p] = 
9Fhs[P] + 9Fau[p] is accepted and an approximation, better than LDA, is 
sought for 9Fhs[p]). The attractive force part 9Fatt[p] is still treated at the 
mean-field level. Some schemes claim, explicitly or implicitly, to apply 
to the full functional. In Section III.E we describe weighted-density ap
proximations for 9Fh,[p], pointing out, where necessary, difficulties that 
arise when these are applied to 9F[p]. 
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E. Weighted-Density Approximations 

The initial idea behind weighted (or smoothed)-density approximations 
(WDAs) was the introduction of a coarse-graining procedure whereby a 
smoothed density p(r) is constructed as an average of the true density 
profile p(r) over a local volume that is determined by the range of inter
atomic forces. The pronounced peaks that occur in an oscillatory profile, 
where the local density may exceed that for close packing, are smoothed 
out in the coarse-grained p(r) so that the (excess) free energy should be 
well approximated by a local function of p(r): 

:?i'ex[P] = :?i'hs[p) - :?i'id[p) == I dr p(r)tVex(p(r)) (58) 

where tVex(P) Uhs(p) f 1d(p)}lp is the excess, over ideal, free energy 
per atom. The different versions of WDA correspond to different recipes 
for p(r). 

1. Recipes of Nordholm eta!. and Tarazona (Mark 1) 

Perhaps the earliest recipe is that of Nordholm and co-workers [86}, for 
which 

p(r) = I dr' wo(l r - r' i)p(r') (59) 

with a weight function w0 proportional to the Heaviside step function 

w0(r) 
3 

8(a r) (60) 

This choice of weight function was considered earlier by Stell [7] in a 
different application of effective density techniques. It is equivalent to 
his lowest-order result w0 (r) = f(r)lf dr f(r), with the Mayer function 
f(r) = exp[- ~<j>(r)] - 1, applied to the hard-sphere fluid. The normal
ization ensures that p(r) reduces to the constant value p in the limit of a 
uniform fluid. Nordholm et al. used the simple approximation ~tVex(P) = 
-ln(l - pv0 ) with the excluded volume vo = a 3 [see (37)]. Their results 
for hard spheres near a hard wall gave sensible oscillatory profiles but 
were not in good agreement with simulation. Two subsequent applications 
of the recipes, with the mean-field approximation for :?Fat~> to the calcu
lation of solvation forces for a Leonard-Jones fluid confined between two 
substrates [87] and to the study of wetting transitions [88] demonstrated 
its usefulness for phase transitions. Since the approximation was for
mulated in terms of a coarse-graining argument for a nonlocal entropy 
functional (in the same spirit as van Kampen [89]), any connections be
tween what was termed a fine-grained generalized van der Waals theory 
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and density functional approaches remained somewhat obscure un~il Tar
azona [90,91] examined the consequences of (58) with (59) as a theory 
for cl,:;!(p;r), the direct correlation function of a uniform hard-sphere fluid. 
Replacing the excluded volume approximation by the accurate Carnahan 
and Starling [79] result 

Tarazona compared the cf2 resulting from functional differentiation of 
(58) with the PY results for various densities [91]. The WDA defined by 
(60) grossly underestimates the magnitude of cf?](p;r) for r ~ o- and yields 
a sizable decaying tail for r > a. While this still represents a poor theory 
of pair correlations in a bulk hard-sphere liquid, the resulting cf?l is a 
major improvement on a delta function! Results [91] for hard spheres near 
a hard wall are still not accurate but represent an improvement on those 
of Ref. which can be traced to the use of the Carnahan-Starling equa
tion of state. The WDA does satisfy the hard-wall sum rule j3p p,.. 
Thus the more accurate the bulk equation of state. the better is the agree
ment between simulation and theory for the contact density p,.,. That a 
WDA should give a proper description of the density discontinuity at a 
hard wall arises from the fact that the smoothed density p( z). and hence 
c0 

- remain continuous [92]; this feature constitutes a significant im
provement over the LOA. 

Tarazona and Evans [91] showed that the WDA, with the mean-field 
approximation for ';!;an, provides a realistic description of the phenomenon 
of complete drying at the hard wall-liquid interface. The density profiles 
of a Leonard-Jones liquid exhibit oscillations that become much less 
pronounced as the bulk chemical potential is reduced toward its value at 
saturation. In the limit I.L--+ I.L,;;;, a thick layer of gas develops at the wall. 
Theirs was probably the first successful theoretical treatment of this phe
nomenon. Tarazona [90] used the same functional in his first study of the 
freezing of hard spheres and disks. He also calculated the phase diagram 
for the bulk Lennard-Jones system, showing that a single theory can 
predict reasonable gas-liquid and solid-liquid phase boundaries, includ
ing the triple point. Later, Mederos et al. [93] applied Tarazona Mark I 
to the investigation of phase transitions in submonolayer films adsorbed 
at attractive substrates. By modeling adsorbate-adsorbate interactions in 
terms of hard disks, treated within the WDA, they obtained rich phase 
diagrams, which include a fluid modulated by the (periodic) substrate 
potential V(r), a commensurate crystal phase, occupying a sublattice of 
the substrate and an "intrinsic" crystal phase, associated with the in
trinsic crystalline order of the hard-disk system, that is incommensurate 
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with the substrate. Possible defect and domain structures were also con
sidered. This study appears to be the first based on a realistic continuum 
theory. It avoids the inherent difficulties that lattice-gas models have in 
describing the intrinsic ordering of the adsorbate. 

It should be evident that the WDA does not correspond to any finite
order density expansion of 2i'ex[p]. In this respect it is superior to the 
approximations described in Section III.C and constitutes an alternative 
nonperturbative approach. 

2. Tarazona (Mark II) 
In a subsequent paper Tarazona [94] developed a more sophisticated ver
sion of his original WDA. The basic strategy was to construct a smoothed 
density, for use in (58), which would lead to an accurate c!;j(p;r) for the 
uniform fluid over a wide range of (bulk) densities p. By ensuring that a 
functional gives a good account of bulk pair correlations, one might expect 
the same functional to provide an accurate description of the singlet den
sity p(r) and the free energy of an inhomogeneous fluid. To this end the 
weight function is allowed to depend on the smoothed density so that the 
latter is determined by the implicit equation 

p(r) = J dr' w(l r r' ! :p(r))p(r') (61) 

which replaces (59). w is specified by requiring (58) with (61) to produce, 
upon differentiation, c~2,{(p;r) close to the corresponding PY result. The 
analysis is simplified by adopting a (truncated) power-series expansion 

(62) 

and the first two coefficients. w 0 and w 1 • are calculated by comparison 
with the virial expansion of c~2./(p:r). while the third. w1 , is obtained from 
a fit to the PY result [94]. w0 is identical to the zeroth-order result (60) 
used in the Mark I version of the theory. Explicit formulas for w 1 and w 2 

are given in Ref. 72; beware of typographical errors in earlier papers [94]. 
Then (61) reduces to a quadratic equation for p(r): 

(63) 

where 

J dr' wJ<i r r' j)p(r') j = 0, I. 2 
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are coefficients depending on p(r). The physical root of (63) is 

_( ) 1 - p 1(r) [(1 - p 1(r))2 4po(r)p2(r)JI12 

p r = 
2p2(r) 

2po(r) 

where the second form is more convenient for calculations since in the 
limit of a uniform fluid p0 (r) p, while p,(r) = P2(r} = 0. Note the 
requirement that p(r) reduce to p in the case of a uniform fluid implies 
the normalization condition 

J dr w(r;p) 

for all p, which [with (62)] implies that 

J dr ~t:;(r) j 0 
j = I, 2 

Like Mark I this Mark II version satisfies the bulk compressibility sum 
rule (24). As pointed out by Tarazona [94]. this implies that use of the 

result for already fixes the value off dr cl,2.,l(p;r). 
for each density. There is then a slight inconsistency involved in fitting 
~t· 1 and w 2 to PY results, but this is not significant since all that is being 
required is a realistic description of d,2}(p;r) throughout the range of fluid 
densities. 

Tarazona [94] showed that his Mark II version gave substantially better 
agreement with simulation for the density profile and surface tension of 
hard spheres near a hard wall than did Mark I. Moreover, the improved 
version gave a better account of hard-sphere freezing. There have been 
numerous subsequent applications of Mark II. Tarazona et al. [72] com
pared the results of this WDA with those of the LDA (53) for an example 
of a wetting transition, for capillary evaporation of a liquid confined be
tween two hard walls, and for capillary condensation of a fluid confined 
between two adsorbing walls and in a cylinder. Unlike the LDA, the WDA 
yields realistic oscillatory density profiles, which in the case of a fluid 
confined in a narrow slit or cylinder, reflect packing constraints on the 
arrangements of atoms. The WDA also yields a realistic equation of state 
in the limit of a two-dimensional fluid [72]. Other applications to wetting 
transitions can be found in Refs. 95 and 96 and to prewetting in Ref. 97 
(see Section V .C.l). A careful comparison between the results of WDA 
and simulation for the wetting and drying transitions of a square-well fluid 
at the square-well wall has been carried out by van Swol and Henderson 
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[92,98]. Ball and Evans [99] have investigated layering transitions for 
gases adsorbed at strongly attractive planar substrates and in pores (see 
also Ref. 100 and Section V.C.2). 

Several groups have applied the theory successfully to the structure 
and phase equilibria of confined fluids. References 101 and 102 describe 
results for capillary condensation in cylinders, showing that the theory 
yields density profiles in good agreement with simulation and gives an 
adequate estimate of the location (in chemical potential) of the phase 
transition for a wide range of pore radii. Vanderlick et al. [103] compare 
the results of Tarazona Mark II for the density profile of a hard-sphere 
fluid confined between two hard walls and of a Lennard-Jones fluid con
fined by Lennard-Jones 10-4-3 walls with those of simulation and other 
approximation schemes. The comparison is made at fixed mean pore den
sity. Mark II is considerably more accurate than Mark I or the original 
Nordholm version (with the simplified bulk equation of state). In the case 
of the hard-sphere fluid (see Fig. 2) at high values of the mean pore den
sity, Mark I predicts erroneous peak positions and peak heights reminis
cent of crystalline densities for the layered fluid, while the Nordholm 
version leads to negative densities in some of the troughs. The applications 
listed here all employ the mean-field treatment for ':if att [p] when attractive 
fluid-fluid forces are present. Some modifications to <l>aa(r) are sometimes 
made [95-98] to ensure a better bulk equation of state. Solving the integral 
equation for p(r), given by minimizing ilv[p], requires more computational 
effort than solving (54) for the van der Waals approximation, since p(r) 
must be determined self-consistently. Nevertheless, it is tractable without 
recourse to parametrization-provided that there are no solid phases pres
ent. For the freezing problem Tarazona [94] introduced a set of identical 
gaussians centered on lattice sites Rt to represent the density of the crys
tal: 

Pcrys(r) (64) 

The width parameter a is the only variational parameter once the lattice 
type has been specified; the lattice spacing is fixed by the average density. 
The elastic constants of the hard-sphere crystal have also been calculated 
within this approximation scheme [104]. 

There is no doubt that Tarazona Mark II has proved a versatile and, 
in many cases, an accurate approximation scheme for inhomogeneous 
fluids, and its success lead the Cornell group [105,106] to consider its 
extension to mixtures. For a binary fluid the appropriate generalization 
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Fig. 2 Density profiles for a hard-sphere fluid confined between two parallel 
hard walls separated by a distance L 8.74u. The mean pore density is fixed at 
0.897rr- 3 in all cases, but the chemical potential IJ. is different in the various 
theories. (a) The Nordholm et al. recipe, using the simple excluded volume equa
tion of state; (b) Tarazona (Mark I), with the Carnahan-Starling equation of state; 
(c) Tarazona (Mark II); (d) Robledo-Varea recipe with the Carnahan-Starling 
equation of state. The dashed lines are the Monte Carlo results for the same mean 
pore density. (Note that the profiles are drawn for half the slit.) (Redrawn from 
Ref. 103.) 
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of the grand potential functional is 
ry 

Ov(P~>P2] = ~;d[PJ.P2] + ~ex[Pt ,pz]- ± J dr(J..l; V;(r))p;(r) (65) 
i=l 

where p;(r) and f..l; are the number density and chemical potential of species 
i, respectively and V;(r) is the external potential exerted on species i. The 
ideal gas term is simply 

f3~;d[PI.P2] ± J dr p;(r)[ln A/p;(r) 
i=J 

I] (66) 

The excess free-energy functional is approximated by 
? ± J dr p;(r)w~x(Pt(r),p2 (r)) 

i=l 

+ 
1 2: JJ dr dr' <t>:ftt(l r 
2 ij 

r' l)p;(r)pj{r') (67) 

where t!J~x(p 1 ,p2 ) is the excess Helmholtz free energy per atom of species 
i of the uniform hard-sphere mixture and the smoothed densities are de
fined [l06] by analogy with (61): 

pAr) J dr' W;(j r r' l;pt(r).p2(r))p;(r') 1,2 

The two weight functions w 1 and w 2 are assumed to have the form 

W;o(r) -'- 2: w;Ar% 
}=l 

1, 2 

(68) 

(69) 

with w 10 , and so on, density-independent coefficients. These are deter
mined by requiring the density expansions of the direct correlation func
tions of the homogeneous hard-sphere mixture, as obtained by differen
tiating (67) (with the attractive pair potentials <!>:Itt = 0) to be close to 
those obtained from the PY approximation. Since the expansion (69) is 
truncated at the term linear in density, this prescription does not yield an 
accurate fit to the PY results at liquid densities [106]. Nevertheless, com
parison with Monte Carlo simulations shows that the resulting theory 
gives a good account of the density profiles of hard-sphere mixtures near 
a hard wall for size ratios azla, :S 3 [106]. 

3. Curtin-Ashcroft Recipe 
Despite the indisputable success of Tarazona Mark II for a vast range of 
problems, the purist must regard the scheme as utilitarian. (It was once 
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described, by an eminent theorist, as a chemical engineer's presciption. 
Whether this constitutes a compliment or an insult is not obvious.) The 
density expansion (62) of the weight function is a little inelegant for a 
pure fluid and any implementation becomes problematical for a mixture. 
The WDA introduced by Curtin and Ashcroft (CA) [107] avoids this ex
pansion at the expense of increased computational complexity. Their 
strategy is the same as that of the Tarazona Mark II in that the excess 
free-energy functional is given by (58), the weighted density by (61), and 
w is determined by requiring the uniform fluid limit of f3o 2;ifex[p]/op(r1) 

op(r2 ) to generate known cm(p;rn) at all fluid densities. Thus 

(I) B;if ex [p] l3c ([p];r,) 
op(rd 

with 

J dr 5 w' (r2 

Note that in the uniform limit the 
by virtue of the normalization 
yields 

in the denominator vanishes 
on w. A second differentiation 

13 l r12 ;p) + pw~x(P) J dr3 w(r13 :p)w(r32 ;p) 

PW~x(p)f dr3 [w'(ru;p)w(r32;p) + w(r13;p)w'(r32;p)] 

in the uniform limit. The uniform fluid direct correlation functions, along 
with l!Jex, constitute the input for the theory. It follows that the Fourier 
transform of the weight function wk(p) = f dr exp(ik·r)w(r;p) satisfies the 
nonlinear differential equation 

-f3- 1ck(2)(p) = 2w~x(p)wk(p) + p a: [w~x(p)w/(p)J (70) 

where Ck(
2J(p) is the Fourier transform of c<2>(p;r) and the prime denotes 

differentiation with respect to density p. Since w(r;p) must be normalized 
wk=o(p) = 1 and (70) is consistent with the compressibility sum rule (24). 
For the hard-sphere fluid, c / 2l(p) and l!Jex(P) are given analytically within 
the PY approximation and (70) can be solved (numerically) to determine 
w(r;p) for all p, without recourse to any density expansion. 

This version of the WDA was applied successfully to hard-sphere freez
ing [107] and later to the determination of the structure and surface free 
energy of the hard-sphere crystal-liquid interface [108,109]. The para-
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metrization (64) is employed for the bulk crystal density, while a flexible, 
two-parameter scheme is used to describe p(r) at the interface~ this allows 
for variations of the width of the interface and of the rate of broadening 
of the peaks in density through the interface region. Curtin's procedure 
improves upon earlier square-gradient treatments of this interfacial prob
lem [109]. Kroll and Laird [Ito] have employed the Curtin-Ashcroft WDA 
for hard spheres at a hard wall and the resulting density profiles are very 
similar to those from Tarazona Mark II [94]. 

CA argue that their WDA contains all information obtainable from the 
two-point function c<2l of the uniform fluid and emphasize [ll I] that the 
c\ChA satisfy the exact sum rule 

appropriate to higher-order direct correlation functions of the uniform 
fluid, implying that a subset of higher-order correlations are treated cor
rectly in the WDA. However. requiring an approximation to satisfy (71) 
is not particularly stringent. Equation (71) follows as a direct consequence 
of the definition of the hierarchy of direct correlation functions [see the 
derivation of (24a), the first member of (71)]. Thus we might expect that 
any free-energy functional approach that does not correspond to a trun
cated density expansion should satisfy (71) automatically. The higher
order c<n> need not be especially realistic in order that (71) be obeyed (see 
Section IV .A). 

In their original treatment CA [ 107] presented their theory in terms of 
the full free-energy functional rather than the hard-sphere part :9'hs[p]. 
However, it is clear that making the WDA on the full functional (including 
:9'au[p]) would require some prescription for ck<2>(p) and Wex{P) for den
sities p corresponding to two phase states of the bulk phase diagram-a 
difficulty that we have encountered for other approximate theories. In a 
later paper [ 112] CA calculated the bulk freezing properties and the liquid
gas coexistence curve for a Lennard-Jones system, treating repulsive 
forces by means of the WDA for :9'hs[P] and attractive forces by means 
of a perturbation theory based on a hard-sphere reference fluid rather 
than the simple mean-field approximation given in (53). Their approxi
mation reduces to the standard hard-sphere perturbation theory result for 
the free energy in the limit of a uniform fluid. The resulting temperature
density diagram is in remarkably good agreement with simulation [I 12]. 
Curtin [109] applied the theory to the crystal-liquid interface of a Len
nard-lones system using a further simplification for ;Jau[p]. 

Denton and Ashcroft [113] have proposed an extension ofthe CA WDA 
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to mixtures. Their starting approximation for ~exh>~>P2l is the same as 
that of Tan et al. [106] [see (67)] but three independent weight functions 
wij are involved, rather than two, so that 

2 

Pi(r) = 2: J dr' wij(j r - r' j;p1(r),p2(r))pj(r') 
j=l 

i = l, 2 (72) 

The wij are specified by requiring the approximate ~ex to generate the 
known direct correlation functions of a uniform mixture d]>(p1 ,p2 ;r). The 
appropriate generalization of (70) is a set of coupled nonlinear differential 
equations for the Fourier components of w,j in terms of those of cf}>. In 
principle, these could be solved for a binary hard-sphere mixture using 
the PY results as input, but this was not attempted in Ref. 113. Rather. 
a modified version of the WDA (see Section III. F. I) that uses position
independent weighted densities was developed and applied to the freezing 
of hard-sphere mixtures. 

4. Recipes of A1eister and Kroll and of Groot and 
van der Eerden 

An alternative method of construcing a WDA was introduced by Meister 
and Kroll (MK) (114] based on the idea that could be expressed as 
a functional of some slowly varying reference density p0 (r), as well as of 
p(r). By minimizing the dependence on p0 (r) an expression for p0 (r} can 
be determined that has the same form as ( 61) for a weighted density. 

MK's starting point is the exact result (22), which can be reexpressed 
as 

13~ex[PJ = -£1 

dcx J dr p(r)c<n([ap];r) (73) 

by setting Pi 0. They then expand c< 1l about a uniform reference system 
at a (coarse-grained) density p0 (r): 

n 

X I1 [ap(r k) - aPo(r)] (74) 
k=l 

where c( 0 (p) = -131-Lex(P) and the c<n + 0 refer to the direct correlation 
functions of the uniform fluid. If (74) is truncated at then = 1 term (73) 
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reduces to 

2l'ex[P] = I dr p(r)ljlex(Po(r)) 

- Jj- 1 J dr I dr' p(r)L(po(r);l r 

(75) 

r' I )(p(r') - Po(r)) 

where 

L(po(r); I r r' I> = L1 

do. o.cr2l(o.po(r);l r - r' I) (76) 

In order to specify the reference density MK extremize the functional 
fiv[p,Po] with respect to Po(r). From the requirement 

oilv = o2fex = 0 
opo(r) opo(r) 

(77) 

it follows that 

p(r) [Jjljl~x(po(r)) + I dr' L(po(r);l r - r' I) 

- I dr' L'(po(r);i r - r' j)(p(r') po(r)) J = 0 (78) 

By virtue of the compressibility sum rule (24), along with the definition 
(76), the sum of the first two terms vanishes for all p0 so that (78) implies 
that 

Po(r) = 

I dr' L'(po(r);j r - r' j)p(r') 

J dr' L'(po(r);j r - r' I) 

which is of the desired form (61) with a weight function 

w(j r r' l;po(r)) 
Lb(po(r)) 

where L0(p) f dr L'(p;r). Clearly, w is normalized. 

(79) 

(80) 

This MK recipe is certainly appealing. It appears to avoid the rather 
ad hoc nature of previous recipes. Using (79) in (75) one has a functional 
of p(r) only, which can be differentiated in the usual way to determine 
the equilibrium density profile and the thermodynamics. MK used this 
recipe in successful investigations of drying a hard wall and of a first
order wetting transition at a Lennard-Jones 9-3 wall. Only 2fhs was 
treated within their WDA, and L and $ex were calculated from PY ap
proximation. The contribution from attractive forces :?~'an was treated in 
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mean-field approximation. MK's results [114] indicated that including 
short-range correlations, via their WDA, significantly reduce the tem
perature of the wetting transition below the value obtained when using 
the LDA (50) for ~hs· This important result was verified by several sub
sequent calculations using other versions of WDA [72,88,95,97]. 

Groot [115]* pointed out an important deficiency of the MK recipe. 
~ex[P] resulting from (75), with (79), does not satisfy -j3o2~exl 
op(rt)Sp(rz) = c<2>(p;l r 1 - r2 j) in the limit of a uniform fluid. [This is a 
consequence of the truncation of (74) at the c<2> term.) The em generated 
by differentiation can be quite different from the bulk em, which is the 
input for the theory. Groot and van der Eerden (GvE) [ll8] modified the 
theory to remedy this deficiency. They consider a functional ~ex[p,p0 ] 
that is identical in form to (75) but allow L to be an arbitrary two-point 
function, not (76) as given by truncation. It is assumed that the form of 
(75) remains a good approximation when higher-order (n > l) contribu
tions in (74) are included. Applying the extremum condition (77) yields 
(78) once more. Requiring the same condition to hold for a uniform fluid 
implies that 

Lo(p) J dr L(p;r) (81) 

The same prescription (79). with (80), follows for p0 (r). However. L is 
now determined by requiring consistency between generated from 
'Zfo ex and the uniform fluid result. This requirement leads to the following 
differential equation for the Fourier transform L 1Ap): 

2Lk(p) + L~(p) (Lk(p))
2 (82) 

[Note the similarity with the corresponding CA equation (70).] In the limit 
k = 0, (82), with (81), is identical to the compressibility sum rule (24). 
GvE describe the implementation of their theory for hard spheres at a 
hard wall, using as input cr2>(p;r) obtained from simulation. Kroll and 
Laird [llO] investigated the same model system using PY results as input. 
They found (see Fig. 3) that the density profiles from the GvE recipe are 
almost identical to those from the CA recipe; both are markedly better 
than MK for large bulk densities. They conclude that the requirement 

* Groot also discusses the extension of MK theory to mixtures. Sokolowski and Fischer 
[116] report results of MK theory applied to binary mixtures of hard spheres at a hard wall. 
The results are in good agreement with simulation, even for large size ratios (see Ref. 106). 
Sokolowski and Fischer [ 117] describe applications of the same theory to adsorption of 
binary Lennard-Jones mixtures in narrow pores. 
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Fig. 3 Density profiles for hard spheres near a single hard wall: (A) bulk density 
pba.J = 0.813; (B) Pb~ = 0.9135. The points are the Monte Carlo results, the 
dashed lines are the results of the original MK theory, and the solid lines are 
those of theCA and GVE recipes; the differences between the results of the latter 
theories cannot be resolved in the figure. All the calculations make use of the PY 
compressibility equation of state and direct correlation function, so that while the 
contact density satisfies the sum rule ~p = p(O+) for all three theories, p(O+) is 
different from the simulation result. (Redrawn from Ref. 110.) 
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that '!f ex yield the correct c<2> for a uniform fluid is a crucial ingredient of 
any theory. 

There is a close relationship between the CA and GvE recipes. The 
former can be derived [110] by demanding that the final term in (75) vanish 
so that '!fex reduces to the purely "local" form f dr p(r)tllex(Po(r)). This 
condition then implies that 

J dr' L(po(r);j r r' j)p(r') 

Po(r) = (83) J dr' L(Po{r);l r r' I> 

which is exactly of the form p0 (r) f dr' w( I r r' 1: p0 (r))p(r') assumed 
in the CA or Tarazona (Mark Il) recipes. By requiring the resulting 'lfex 
to generate c<2

l in the uniform fluid we recover the CA recipe. Which of 
the two is to be preferred? This last derivation suggests that CA corre
sponds to choosing the reference density p0 (r) p(r)J so that all con
tributions to , other than the local one, vanish, whereas GvE aims to 
minimize the dependence of on p0 (r). [Both theories assume that (75). 
with arbitrary L, is an accurate approximation to the exact functional.] 
We speculate that the CA procedure reduce the errors associated 
with approximating higher-order terms. One disturbing feature of GvE 
and of the original MK, which does not appear to have been pointed out 
in the literature [this was noticed by P. Tarazona (private communication, 
1986) for the MK theory], is that in the limit of a uniform fluid the second 
derivative o2 'lfexl8p0 (r) 8p0 (r') reduces to 13Ptll~x(P) o(r r'), which is 
negative for the case of a hard-sphere t1uid, since ~Ji~x(P) is positive for 
all fluid densities. This suggests that the extremal condition (77) actually 
determines a maximum; any perturbation op0 (r) will lower the free energy 
'lfex from its value at the extremum. Kroll and Laird [110] have found 
another rather surprising feature. They state that when GvE is refor
mulated for a position-independent weighted density the equation for the 
weighted density [analogous to (79)] has no solution for a crystalline 
phase. In contrast, the position-independent version of CA is known to 
yield accurate results for hard-sphere freezing [119]. 

Sokolowski and Fischer [120] have extended the MK recipe by in
cluding three-particle correlations. The functional (75) is supplemented 
by the term 

-(213) 1J dr p(r) JJ dr' dr" 11 

da a 2c<3l(ap0 (r);r,r' ,r")(p(r') 

Po(r))(p(r") Po(r)) 

and the triplet direct correlation function c<3J is approximated according 
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to the factorization scheme of Barrat et al. [121]. By including such a 
term, 'Ii'ex does generate the correct c(2J in the uniform limit; inconsis
tencies develop only at next order. The density profiles calculated for 
hard spheres at a hard wall and at a Lennard-Jones 9-3 wall represent 
a marked improvement [120] on the MK results, but for the hard wall 
they appear to be slightly less accurate than those from CA or GvE [110). 
This procedure can be regarded as a generalization of the third-order 
density expansion used by Rickayzen and co-workers [68-70] (see Section 
III. C). 

5. Recipes of Percus and of Robledo and Varea 
We return now to the question raised in Section II.C as to whether the 
exact results for hard rods in one dimension can prove useful in higher 
dimensions. Percus [36.41.122] writes the excess free-energy functional 
of the hard-rod fluid (36) in the form 

(84) 

where pAx) is the average defined in (38) and 

(85) 

is a second average of the density profile p(x). [Note the resemblance 
between (84) and (58). the usual starting point for a WDA.] p.,. and Per are 
linear volume and surface averages. respectively. A natural generalization 
of (84) to a three-dimensional fluid is 

where lj;ex is again the excess free energy per atom and 

p7(r) = J dr' T(r - r')p(r') 

Pcr(r) = J dr' a(r r')p(r') 

(86) 

(87) 

are suitable averages. The weight functions T and a are assumed not to 
depend on the average densities. Percus [36] states that (86) "is an out
rageous extrapolation based on minimal information" and suggests [41] 
that T and a can be obtained by requiring 'Ii'ex to generate known c<2l(p; 

r) in the uniform limit. For the hard-rod case the exact weight functions 
are T(x) = @(rr/2 - I x j)/rr and a(x) = o(rr/2 - I x !)12. Robledo and Varea 
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[35] introduced direct generalizations for a hard-sphere fluid: 

T(r) 

<T(r) 

e(cr/2 - 1 r I) 
1Tcr3/6 

o(cr/2 - 1 r I> 
1TCf2 

127 

(88) 

Both are normalized, as is required by (87) in the uniform limit. Signifi
cantly, the range of,. is half that of wo, the weight function introduced 
by Nordholm et al. (see Section III.E.l). By substituting (88) into (86) 
and differentiating, Robledo and Varea showed that the resulting c<21 (r~o 
r2 ) has the range of the hard-core interaction [i.e., c<2> vanishes when I r1 

- r2 I > cr]. In the limit of a uniform fluid they obtained a cubic in r (with 
no r 2 term) for cm(p;r) inside the core. This form is the same as that 
obtained from PY or scaled particle theory for hard spheres. In contrast. 
the Nordholm et al. or Tarazona (Mark I) recipe yields a substantial (un
realistic) nonvanishing tail in cc 1(p:r) for cr < r < 2cr [91], reflecting the 

range of the weight function. Fischer and Heinbuch [123] compare 
c' 2)(p;r) as obtained from the Tarazona (Mark l) and the Robledo-Varea 

using the same Carnahan-Starling tllex as input. As expected, both 
approximations give a very poor representation of the exact result. Note 
that Tarazona (Mark I) and all subsequent WDAs are equivalent to setting 

= &(r) (i.e .. the surface average has zero range). The interesting 
paper of Fischer and Heinbuch [123] also points out the close connections 
between WDA and theories, such as that of Fischer and Methfessel [124]. 
based on approximations to the Born-Green-Yvon equation for the den
sity profile. In one dimension the exact relationship has been established 
[125]. 

Vanderlick et al. [103] compared the results of the Robledo-Varea 
recipe and those of the Fischer-Methfessel approximation with Monte 
Carlo results for a hard-sphere fluid confined between two hard walls. 
Unlike those from Tarazona (Mark II) (see Fig. 2), the density profiles 
from both approximation schemes are in very poor agreement with simu
lation. From Vanderlick et al.'s valuable study we conclude, in keeping 
with our earlier statements, that for a WDA to give an accurate description 
of the density profile of a highly inhomogeneous fluid it must generate a 
fairly accurate c<2l(p;r) for uniform fluids over a wide range of densities 
p. This, in tum, seems to demand that the weight function be density 
dependent. 

6. Recipes of Rosenfeld and of Kierlik and Rosinberg 
A different version of WDA was introduced by Rosenfeld [126] specifi
cally for hard-sphere mixtures. Rosenfeld's free-energy functional is mo-
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tivated by his earlier work [127] on uniform hard-particle fluids, where 
he argues that the pair direct correlation functions dP, in any number of 
dimensions, should be dominated by terms corresponding to the overlap 
volume il Vu and overlap surface area il Su of two individual spheres i 
andj-quantities arising from convolutions of functions that describe the 
volume and surface of the spheres. His results [I 26, 127] in three dimen
sions can be expressed (in his notation) as 

cW(r) x(3)il Vu(r) + x(2)ilS;j{r) 

+ x<llilRu(r) + x<OlE)(R; + Rj r} (89) 

where R; a;/2) is the radius of the sphere of species i, 0 the Heaviside 
function, ilR;j a further geometrical measure, and the coefficients x<kl 
depend only on the four scaled particle [128] variables: 

~(/.;) = 2: p,R/k) k 0,1,2,3 (90) 
i=I 

with R/0
l = 1, R/ll = R1, RF) = 4TrR/. and R/3

) 4TrR?I3 in the case 
of hard spheres. vis the number of species in the mixture. In a remarkable 
paper Rosenfeld derives (89) via a new graphical expansion of the direct 
correlation functions involving overlap volumes as basic functions and 
pair excluded volumes as basic variables [ 127]. His lowest-order "scaled 
field particle approximation" takes the form (89) for hard spheres and 
Rosenfeld shows that (89) is equivalent to the standard PY result for this 
case. Subsequently, he postulated [ 126] an excess free-energy functional 
'ZF ex' motivated by the exact low-density expression (incorporating pair 
exclusion) that generates (89) in the uniform limit. We refer the reader to 
the original articles [126, 129] for details of Rosenfeld's derivation, pre
ferring to follow the subsequent, but somewhat more transparent argu
ments of Kierlik and Rosinberg [130). 

The special structure of (89) and the experience gained from earlier 
sections (especially Sections III.C and III.E.5) suggest the form 

f3~ex[{p;(r)}] = J dr <P({na(r)}) 

where <P is a function of linear averages (the weighted densities) 

na(r) = ± J dr' p;(r')w/"'l(r - r') 
i=l 

(91) 

(92) 

and w/'d(r), with a = I, 2, ... , m, are unknown but density-independent 
weight functions. (Percus (122] argued that the latter, and hence the 
weighted densities na., could be scalars or vectors.) Inserting (92) in (91) 
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and differentiating, we find that 

op;, (rt )op;,(r2)···op;.(r n) 

f dr , .. ~an iJna,iJ::~. ·iJna. 
(93) 

X w)~tl(r 1 - r)w};2 >(r2 - r) ··· w):,'nl(rn - r) 

In particular, the Fourier transform of the pair function (n = 2) in the 
uniform fluid reduces to 

a2<P 
c)Jl(k) = - 2: w/"l(k)w/~'>l(k) (94) 

a.f3 iJna ant> 

since the derivative is position independent in this limit. Equation (94) 
has the same form as the Fourier transform of (89). Of course, it remains 
to determine the weight functions and the excess free-energy density 
13 1<1>[{fla}]. Unlike Rosenfeld [126,129], who argues these quantities are, 
in some sense, uniquely predetermined by geometric considerations, 
Kierlik and Rosinberg [ 130] make a more heuristic. and probably more 
reasonable. specification. For the first four weight functions they require 
the normalization 

w/"'l(k = 0) J dr w/"'l(r) R/<d a 0, 1, 2, 3 (95) 

so that fla(r) - ~<al (a = 0, l, 2, 3) in the limit of a uniform fluid. For 
the remaining weight functions they require that 

a>3 (96) 

so that the flex (a > 3) vanish in the uniform limit. But in this limit <I> 
should be identical to the PY (compressibility} result, which expressed 
in terms of scaled particle variables is 

(97) 

where flex = ~<al. [Note that n3 = 2:1= 1 p,(41T/3)Rl is the packing fraction.] 
By imposing a natural scaling condition, 

w/")(k) _ (a)( ) 

w/a)(k = 0) - W l; (98) 
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with t; kR;, Kierlik and Rosinberg [130) show that four independent 
scalar functions w<a>(t) are sufficient to recover (89) from (94) and they 
obtain unique solutions 

w/3>(r) = 6(R; - r) 

wP>(r) = 8(R; r) 

wPl(r) 8~ '6'(R; - r) 

l f 

r) + - 8 (R; - r) 
2'Tl"r 

(99) 

No vector weight functions are introduced. In contrast, Rosenfeld 
[126, 129] employs the first two of (99) but introduces vector functions to 
avoid the derivatives of delta functions that enter the third and fourth 
equations. However, the method by which he introduces a vector part of 
<P is not completely clear [130]. There does not appear to be any fun
damental objection to the appearance of derivatives of the delta function 
since these always appear inside integrals so that the weighted densities 
na(r) are not pathological [ 130]. In one dimension Rosenfeld et al. [ 129] 
show that their approach reproduces the exact hard-rod free-energy func
tional of Percus [i.e., (36)]. The relevant weight functions then reduce to 
those described in Section lll.E.5 for hard rods. 

These approaches are certainly appealing. They constitute a funda
mental improvement on the recipes of Section III.E.5 in that they guar
antee (by construction) that the PY direct correlation functions are re
produced in the uniform fluid. Morevoer, since they are specifically 
designed for hard-sphere mixtures that automatically avoid the difficulties 
encountered in extending some earlier recipes to multicomponent fluids 
(see Section III.E.2). Rosenfeld's approach makes optimal use of geo
metric considerations. Indeed, his determination of the weight functions 
is based purely on a decomposition of the pair exclusion step function. 
The simplified version of Kierlik and Rosinberg, which is removed slightly 
further from purely geometrical considerations, requires only four scalar 
na(r), irrespective of the number of species v. These quantities can be 
regarded [130] as the generalization to nonuniform fluids of the four in
dependent variables of scaled particle theory [e.g., n3 (r) is the local pack
ing fraction}. Unlike the uniform case, however, some of the na(r) can, 
and in practice [130) do, take on negative values, so that their physical 
interpretation is no longer obvious. By introducing four (density-inde
pendent) weight functions the recipe would seem to contain essentially 
the same ingredients as those of Tarazona (Mark II) and CA, who allow 
their single weight function to be density dependent. Whether the recipe 
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is better founded than these earlier WDAs is a matter for debate. Rosen
feld et al. [129] argue that their version is systematic because it has its 
origins in a diagramatic description which can, in principle, provide a 
systematic means of improving on the weight functions. 

How well do the existing recipes fare? Kierlik and Rosinberg [130] 
applied their version to the canonical problem of hard spheres near a hard 
wall. The resulting density profile (see Fig. 4) for a high-density bulk (p&<:r3 

= 0.878) is very close to the simulation results; the oscillations coincide 
almost exactly-something not achieved by other approximate theories 
at this density. The only significant disagreement is very close to contact. 
As with other WDAs the theory satisfies the sum rule p(O+) = j3p. but 
the pressure p is that corresponding to the PY compressibility equation 
rather than the exact, or Carnahan-Starling, result. Adsorption at a Len
nard-Jones 9-3 wall is also considered in [130]. As shown in Fig. 5a. the 
theory does remarkably well for a very strongly adsorbing wall. It only 
begins to fail (Fig. 5b) when the temperature is low and the bulk takes 
on a liquidlike density (pb<:r3 = 0.611). Then the theory gives a poor de
scription of the first peak of p(z) (corresponding to the first adsorbed 
layer). In this region the local packing fraction n3 (z) ~ 0.65, so one cannot 
expect the PY theory for <I> or for d)l(p:r) to be accurate. Moreover. no(z) 

z/a 

Fig. 4 Density profile of hard spheres near a single hard wall at bulk density 
Ph~ 0.878. The points are Monte Carlo results and the solid line denotes the 
density functional results from the Kierlik-Rosinberg recipe. (Redrawn from Ref. 
130.) 
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Fig. 5 Density profile of hard spheres at a Lennard-Jones 9-3 wall with E:Jk8 

= 2876 K and Zo = 0.562a, mimicking argon on graphite: (A) bulk density pba3 

= 0.467 and temperature T 150 K; (B) pba3 = 0.611 and T = 100 K. The points 
are the Monte Carlo results of Ref. 120 and the solid lines are the results of Kierlik 
and Rosinberg. (Redrawn from Ref. 130.) 
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takes on negative values in the same region. By contrast, the density 
functional results of Sokolowski and Fischer [1201 (see Section III.E.4) 
for the same model remain rather accurate for the high-density state of 
Fig. 5b. 

Rosenfeld [ 126, 129] and Kierlik and Rosinberg [ 130] apply their recipes 
to the calculation of hard-sphere freezing, using (64) for the crystal den
sity. The latter authors find that the free energy of the crystal decreases 
extremely rapidly for Gaussian widths a- 112 that are unrealistically large. 
(According to simulation, freezing should occur near au2 = 80.) tZo(r) and 
n1(r) become negative in regions where n3(r) is close to unity, so that the 
terms -no ln(l - n3) and n,n2/0 - n3) in <l>py (97) become large and 
negative [130]. Once more the crucial problem is that associated with 
large values of the local packing fraction n3(r). In the limit a--+ x, when 
the crystal density becomes a sum of delta functions, n3(r) 2:1 6(R -
I r R1 I ) and the packing fraction is unity in a sphere of radius R around 
each lattice site R1• Evidently, the short range of the weight function 
w 0 >(r) [equal to the hard-sphere radius R cr/2)] is the source of the 
problem [ 130]. As mentioned in Section III.E.5. other WDAs have a range 
equal to cr, and these do not run into the difficulties encountered in the 
present case [i.e .• the local packing fraction pfr)-rrcr 3/6 remains :S0.5]. We 
are forced to conclude that the Rosenfeld or Kierlik-Rosinberg recipes 
are inherently unsuited for applications to freezing or to adsorption of 
liquids at strongly attractive substrates. Rosenfeld et al. [126,129] find, 
contrary to Ref. 130, that the free energy of the crystal is never lower 
than that of the liquid (a = 0), so there is no freezing transition. They 
also attribute their result to the short range of their weight functions but 
defend their recipe by arguing that it is just this feature that makes their 
approach exact in one dimension. We see no reason why the range of the 
weight function(s) should not increase with increasing dimension. 

The main thrust of Rosenfeld et al. 's work, however, lies in the cal
culation of triplet direct correlation functions c 0 > for uniform hard-sphere 
liquids. c<3> is obtained easily from (93). The results are in good agreement 
with extensive Monte Carlo simulations-as are those from the simplified 
version in Ref. 130. We return to this aspect of density functional theory 
in Section IV. 

F. Position-Independent WDAs 

The approximations described in the preceding subsections all employ 
weighted densities that depend on position r. Another class of WDA has 
been developed, primarily for the study of freezing, which makes use of 
a single, position-independent weighted density. These approximations 
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are often computationally simpler than many of the earlier versions. Here 
we discuss some that might be relevant for other types of inhomogeneity, 
as well as for the freezing problem. 

1. MWDA of Denton and Ashcroft 
Denton and Ashcroft [ 119] proposed a modified WDA (MWDA) based on 
the following relation for the excess free energy per atom: 

:9'ex[PJ 
N 

(100) 

where, by analogy with the earlier definition (61) of the weight function, 
the weighted density is postulated to be 

p = ~ J dr p(r) J dr' p(r')~v(l r r' I: p) (IOI) 

with N = f dr p(r). The new weight function ~·is specified by requiring 
(100), with (101), to generate the (given) uniform fluid c<2l(p;r). It is found 
[119] that 

~V(r;p) (102) 

where Vis the total volume of the fluid. The second term, which ensures 
that the compressibility sum rule (24) is obeyed, is somewhat curious since 
it implies that ~v has a constant "tail" 0(1/N). If we ignore the tail, w is 
simply proportional to, and therefore has the same range as, c(2 >(p;r). 
Note that (100) and (101) require that lV is normalized in the uniform limit 
[i.e., f dr lv(r;p) = 1}. In the MWDA the weight function is given im
mediately, whereas in the CA recipe the differential equation (70) must 
be solved. As the MWDA also satisfies the sum rule (71), it retains many 
of the good features of the CA version of WDA. 

Denton and Ashcroft [I 19] applied the MWDA to the freezing of the 
hard-sphere fluid, using as input c< 2l(p;r) and ljlex(p) from PY approxi
mation. Their results for the freezing characteristics were very close to 
CA and the simplified theory appears to be equivalent (essentially) to the 
more sophisticated and computationally demanding WDA-at least as 
regards freezing. But how does it perform for interfacial problems, where 
the extent of the density inhomogeneity is finite rather than infinite, as 
is the case for the crystalline solid? For fluids adsorbed at walls the 
MWDA turns out to be completely equivalent [BIJ to (47), the HNC 
closure of the wall-particle Ornstein-Zernike equation. The structure of 
the MWDA is such that it corresponds to a truncation of the density 
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expansion at the quadratic term, as in (46), when it is applied to adsorp
tion. Although the higher-order direct correlation functions c01, and so 
on, generated from (100) are nonzero, their form is such [see (I 15)] that 
they make vanishingly small contributions when the integrals are per
formed in the higher-order terms of the density expansion of (44) [131]. 
It follows that the MWDA shares the strengths and the weaknesses of 
( 47). In particular it cannot describe the growth of wetting films or surface 
phase transitions. Perhaps this is unsurprising. Since {J is position inde
pendent it is forced to be equal to P&(l + O(N- 1 

)), where P& is the density 
of the bulk fluid far from the wall; the bulk must dominate the integration 
in (101)-so there is no possibility of {J taking on a value characteristic 
of the incipient wetting phase. When applied to the calculation of the 
structure of a uniform fluid, where the inhomogeneous density is caused 
by fixing one atom of the fluid, the MWDA again turns out to be equivalent 
to the (bulk) HNC approximation [131-133]. We postpone further dis
cussion of this result to Section IV. 

The MWDA has been extended to mixtures, following the procedure 
developed for theCA WDA (see Section III.E.3). Analytical results are 
obtained for the weight functions and the theory has been applied suc
cessfully to the freezing of binary hard-sphere mixtures [ 113.134]. It has 
also been applied. as one ingredient. in an investigation of surface melting 
at a crystal-gas interface [135] and in an extensive investigation [136] of 
the freezing of bulk fluids with soft repulsive (inverse-power and Yukawa) 
interatomic potentials. The latter uses the modified HNC theory to obtain 
the requisite bulk fluid input data c< 2 l(p;r) and Wex(p). The MWDA fails 
to predict freezing to a body-centered cubic (bee) structure but does pro
vide a good account of the liquid-face-centered cubic (fcc) transition. 

Reference 136 also provides an instructive alternative derivation ofthe 
MWDA. This follows the derivation of the CA WDA given in Section 
III.E.4 but now c( 1l([ap];r) is expanded about a uniform fluid of constant 
density p so that we consider a functional 

~ex[p,p] = Nwex(fJ) ~ 1 J dr J dr' p(r)L(p;j r r' j)(p(r')- {J) 

(103) 

where L is (another) arbitrary two-point function. p is treated as the den
sity of a reference fluid to be chosen so that the second term in (103) is 
zero-then the free energy of the inhomogeneous system is equal to that 
of the uniform reference fluid of density p. It follows that 

, = I J d ( ) J d , ( ') L(fJ;I r - r' I) (104) 
p N r p r r p r Lo({J) 
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with Lo(p) = f dr L(p;r). Clearly, (104) is of the form postulated in (101), 
with w = L(p;j r - r' j)/L0 (p) now normalized for all p. When the function 
L is determined by requiring the resulting free-energy functional to yield 
the (given) c<2> in the uniform fluid, we arrive back at (102). 

2. GELA of Lutsko and Baus 
Baus and co-workers have developed a variety of "effective liquid the
ories'' for use in density functional treatments of freezing. These involve 
different prescriptions for the effective density of a uniform liquid that is 
being used to describe the crystal [137]. One the latest versions, termed 
the generalized effective liquid approximation (GELA) [138], warrants 
special mention. 

We begin with the exact result (25) for the excess free-energy functional 
and choose the initial density p; = 0. Then (25) simplifies to 

f391'ex[P] = l' da J dr p(r) l"' da' J dr' p(r')c<21 ([a'p];r.r') (105) 

For a uniform fluid of density p (105) reads 

(106) 

One can map [138] the (unknown) excess free energy per atom of the 
nonuniform system onto that of some effective uniform liquid of densiy 
p, by requiring that (105) and (106) be equal. Then 

Pt = p,[p] = ~ J dr p(r) J dr' p(r')w(r,r';[p]) (107) 

with a weight function 

w(r,r' ;[p]) 

l' da La da' c< 21 ([a'p];r,r') 

J dr L1 

da L"' da' c<2 l(a'p1 ;r) 
(108) 

Note that w is normalized in the limit of a uniform fluid p(r)--+ p1 , where 
Pt--+ p~, but not in the nonuniform system [see (104) for the MWDA). 

A structural mapping can also be constructed [138] by requiring the 
density-averaged direct correlation function of the nonuniform fluid with 
density p(r) [that enters (105)] to be identical to that of an effective uniform 
liquid of density 1>2 p2[p]): 

J dr J dr' p(r)p(r')c<2>([p];r,r') 

= J dr J dr' p(r)p(r')c(2>(p2[pJ;I r r' j) (109) 
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Then ( 105) can be reexpressed as 

fl~ex[P] = -11 

da J dr p(r) L"' da' J dr' p(r')c<2>(p2 (a'pJ;I r - r' I> 

(I 10) 

which, by comparison with (106), implies that p2[p]--+ Pt in the limit p(r) 
--+PI· If we now combine the first (thermodynamic) mapping with (110), 
we obtain 

1 
J dr p(r) J dr' p(r') 11 

da Lo. da' c<2>(p2(a' p];l r - r' j) 

PI=-----------~--~----~--------------------N 

(111) 

which. unlike (107). is expressed entirely in terms of for the uniform 
fluid. So far all is purely formal. Provided that both mappings exist, every
thing remains exact. 

The GELA proceeds by making the assumption that 

P1lPJ ih[pJ p[p] 

The two mappings are taken to be equal so that the same effective liquid 
that is used to mimic the density-averaged correlation function of the 
nonuniform fluid is also required to reproduce its excess free energy. 
Equation (Ill) then takes the form of a self-consistency equation for p in 
terms of p(r), given c( 2

J of the uniform fluid. It can be written, by analogy 
with the exact expression (107), as a doubly weighted density with w 
replaced by 

Because of the functional dependence of p in the numerator, this weight 
function is normalized only in the limit of a uniform fluid. 

To summarize, the GELA excess free-energy functional is defined by 

~~XELA[p] A 

N = \jlex(p) 

as in the MWDA, or alternatively, by (110) with p2 p, where the 
weighted density is given by (1 I I) with p2 = p1 = p. The striking feature 
of the GELA is that the direct correlation functions of the nonuniform 
fluid can be expressed directly in terms of c<2l(p; I r - r' I ). Noticing 
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[138] that (110) retains the formal structure of the exact result (105) (the 
integrations are identical) it follows, via differentiation, that 

and 

-() 
d:H:::LA((p];r) = Op(r) (J39f~xELA(p]) (113a) 

= J dr' f da c<2>(p[apJ;I r - r' I) 

02(Jj9f~xELA[p]) 

op(rt) op(rz) 

= c<21 (f>[p];l r - r' I) 

an-lc(2)CiHpJ; I r1 - r2l) 

op(r3 )·. ·op(r n) 

(I 13b) 

n > 2 (ll3c) 

The key result is (I I3b), which states that c(2
l of the nonuniform fluid is 

identical to that of the uniform fluid at the self-consistently determined 
density ih[p]. It is this feature that makes the GELA different from other 
theories, where the equivalence holds only in the uniform limit. Clearly, 
one cannot study the structure of inhomogeneous fluids using the GELA; 
it is a theory designed to provide the optimal way of calculating ther
modynamic properties within an effective liquid picture. While (113c) does 
offer a way of obtaining the higher-order of the uniform fluid, the 
results are unrealistic. 

Lutsko and Baus [138] describe the determination of p [i.e., the solution 
of (Ill)] for crystals where the density is parametrized, as in (64). Their 
results for hard-sphere freezing are remarkably close to simulation and 
rather better than those from other density functional approximations. 
Somewhat surprisingly, the G ELA appears to fail to predict freezing into 
either bee or fcc crystals for inverse-power law repulsive potentials, 
whereas the MWDA does account for the transition to fcc [136]. 

It is not obvious that the GELA is well suited for applications other 
than freezing. The self-consistent solution of (II I) for densities that are 
not parametrized might prove intractable. Moreover, the status of such 
an approach, with a position-independent weighted density, for adsorption 
problems remains to be investigated. Does it suffer from the same defects 
as the MWDA when applied in this context? The GELA has much the 
same structure as the MWDA. For example, c8~LA for the uniform fluid 
[see (116)] is proportional to v- 1

, where V is the total volume occupied 
by fluid. This suggests, as with MWDA [131], that contributions with n 
> 2 in the density expansion of 9f~xELA are vanishing small in the ther
modynamic limit for adsorption at a wall, therefore making zero contri-
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bution to the surface tension and having no affect on the profile. The 
GELA would then also reduce to the HNC closure (47) for such problems. 
This contention remains to be proved. Note that for freezing, where the 
inhomogeneity extends throughout the system, the high-order contribu
tions are nonvanishing and constitute very significant corrections to the 
quadratic (n = 2) approximation. For fluids at interfaces, however, a 
versatile approach would seem to demand a position-dependent weighted 
density. 

Finally, we mention that Lutsko and Baus [138] show how the MWDA 
and an earlier self-consistent ELA (SCELA) of Baus [139] can be viewed 
as mathematical approximations to the solution of GELA. The SCELA 
replaces p[a'p) in (II I) by a'p[pJ, which simplifies the calculation of{>. 
Although this changes the character of the theory [(113) no longer hold] 
it does yield the correct em in the uniform limit and its numerical per
formance is close to that of the GELA-at least for hard-sphere freezing 
[138]. Zeng and Oxtoby [l40] have also introduced an effective liquid 
mapping that yields another prescription for a position-independent p that 
is slightly less successful than the GELA for this 

IV. FREE-ENERGY FUNCTIONAl$ AND THE 
STRUCTURE OF UNIFORM FlUIDS 

Before discussing applications to intrinsically nonuniform fluids it is in
structive to inquire about the predictions of the various approximation 
schemes for the correlation functions of uniform fluids. There are two 
(distinct) procedures that can be applied. The first has already been men
tioned several times. Given some approximate ~exlP] one can generate 
the hierarchy c<n) via (12) and (13) and compare the results, in the uniform 
limit. with those from simulation or from other (integral equation) theo
ries. In the crudest versions comparison for ca1(p;r) (n 2) is already 
informative. In the more sophisticated versions, where c<2J(p;r) is often 
an input for the theory, the predictions for n ~ 3 are relevant. Recently 
simulation data for c 0 > has become available for a uniform soft-sphere 
fluid [I 2 I] and for the hard-sphere fluid [ 129]. The latter data are rather 
extensive. 

A. Three-Body Direct Correlation Function 

In Section III.E we indicated that any free-energy functional, which is 
not merely a truncation of the density expansion, should satisfy the sum 
rule (71). Thus, for n 3 the Fourier transform of c<3>(p;rl ,r2,r3) = 
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in an obvious notation;cm(p; k) = ck<2l(p), introduced in (70). Even the 
crudest of approximations for '2fex will yield cf3l consistent with (114). 
Satisfying this sum rule does not constitute a severe test. 

CA [Ill] calculated c0 > for a hard-sphere fluid using their WDA and 
compared their results with the soft-sphere results of Ref. 121. The agree
ment was reasonable. Rosenfeld et al. [ 129] carried out a detailed com
parison of their simulation results for c<3>(p;k,k') with the predictions of 
Rosenfeld's WDA; the latter yields analytical results for c<3> and the 
higher-order functions. These authors showed that the theoretical results 
agree quite well with the Monte Carlo data, apart from certain discrep
ancies in c<3l(p;k,- k) at small k, which they ascribe [see (114)] to the 
fact that the inputted PY c<2l(p;k) is itself inaccurate for ko- :S 3.5. They 
also argued that the (seemingly successful) factorization ansatz in r space 
introduced in Ref. 121 may be "less conclusive than originally reported," 
noting that such a factorization is not in keeping with that suggested by 
their own approach, where c0 l is factorized in k space. The simplified 
version of Kierlik and Rosinberg [130] yields even an simpler expression 
for em which appears to do slightly better at accounting for the Monte 
Carlo data. 

The MWDA of Denton and Ashcroft [Il9] yields a simple analytical 
expression for the three-body direct correlation function [I 19, 131]: 

-f:) 1 d,;~)WOA(p;rl,f2,r3) 2V-l\j!~x(p)[w(rl - rz;p) + 
w(rl - r3;p) + w(rz- r3;p)] + 2V- 1 \j!~x(p)[w'(rl - rz;p) + (115) 

;v'(rl - r3;p) + w'(rz- r3;p)] + pV- 2\j!~'x(P) 3V- 2 \j!~x(P) 

where V is the total volume of the fluid. While it is easy to check that 
(I 15) satisfies (114), the factors of v- 1 ensure that this result is totally 
unrealistic otherwise. diRvoA(p;k,k') is identially zero for k,k' ?"= 0 unless 
k' = -k, where it reduces to -2f3(\j!~xw 1 (k;p) + tll~xwl(k;p)), consistent 
with (102) in (114). Since the GELA of Lutsko and Baus [138] has the 
same structure as the MWDA, it should yield similar c0 l. Differentiating 
(l13b) we find that 

c8kLA(p;r~>rz,r3) = aap c<2l(p;j r1 - rzl) op~~3 ) I P (116) 

with op/op(r3 ) = v-t in the uniform limit [132}. Even if (116) were to be 
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symmetrized, as mentioned in Ref. 138, it would remain just as unsatis
factory as (115). 

To overcome this defect of the MWDA, Denton and Ashcroft [141] 
introduced a weighted density approximation for the one-body direct cor
relation function; that is, they set 

(117) 

where c< 0 (p(r)) refers to a uniform liquid of density p(r) with the weighted 
average defined via (61). Then 

(2)( ) - 8c<O([p];r,) - (l)t(-( )) 8p(rt) (118) 
c r, ,r2 - op(r2) - c p r, 8p(r2) 

which is not equal to c< 2l(r2,rt) for all densities [i.e., the last of the equal
ities in (13) is not satisfied since this particular approximation does not 
follow from an excess free-energy functional]. However, in the uniform 
limit. where p(r) p(r) p. 8p(r 1 )/8p(r2 ) reduces to w(j r2 r 1 j;p), and 
requiring (118) to reduce to c<21 (p:r 12 ) (assumed known) gives the unique 
form 

11:( r;p) 
cm(p;r) 

cm'(p) 
(119) 

for the weight function. Differentiating again. Denton and Ashcroft ob-
tained, in the uniform limit an explicit formula for in terms of c( 21 : 

(k )] 

c0 1" c<2 )(k )c<2l(k') 

(c0 >'f (120) 

As before, a prime denotes differentiation with respect to p. While (120) 
satisfies the first two of (114), it does not satisfy the sum rule with k' 
-k. Presumably, this is a consequence of beginning with an approxi
mation for em rather than for ezfex· Denton and Ashcroft [141] argue that 
this is also the reason for the lack of any dependence of em on the angle 
between wave vectors k and k', and propose to remedy this deficiency 
by imposing a symmetry requirement. Although a detailed comparison of 
(120) with simulation has not yet been reported, Rosenfeld et aL [129] 
state that the results are "able to account for the gross features in the 
simulation data." They also state that Curtin's WDA results for c<3l are 
close to those from the Denton-Ashcroft scheme. 

Thus, at present, it is difficult to choose between the Rosenfeld recipe, 
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the CA recipe, and probably Tarazona (Mark II), on the basis of their 
predictions for c(3). This is a little disappointing. Given that the range of 
the relevant weight function is quite different in these recipes, we might 
have expected some propagation of the difference into c<3l(p;k,k'). Fur
ther comparisons might be more revealing. 

B. Two-Body Correlations and the Percus 
Identity 

The second procedure that can be applied to the determination of the 
structure of uniform fluids makes use ofPercus' [6] observation. Consider 
a fluid of N atoms, with uniform density P&, single out one atom, and 
measure the positions of the remaining N I with respect to the center 
of that atom. Each of these N I atoms will experience an "external" 
potential that is identical to the interatomic pair potential <f>(r) = <f>(r) 
exerted by the atom fixed at the origin. Percus observed that the fluid 
then has a nonuniform density profile 

p(r) p(r) fJ&g(r) (121) 

where g(r) is the radial distribution function: recall the definitions of both 
functions. It is clear that an approximate density functional theory, when 
applied to this particular type of inhomogeneity. will yield an approxi
mation for g(r); minimization of the approximate flv[p], with V(r) = <!>(r), 
and solution of the resulting Euler-Lagrange equation is all that is re
quired. The status of results obtained from such a procedure requires 
some examination, however. To appreciate the issues that are involved, 
it is first necessary to recall standard integral equation theories of liquids. 

The density profile can be expressed [see (14) and (15)] in the form 

p(r) = P& exp[ -13d>(r) + c< 1l([p);r) - c<n(p&)] (122) 

which leads, via (121). to a self-consistency equation for the radial dis
tribution function 

g(r) = exp[ -13d>(r) + cnl([p&g];r) - c< 0 (p&)] (123) 

The exponent can be reexpressed. using (23), with Pi = P&, as 

c<l)(p&) = L1 

da J dr2 (p(r2) - P&k<2l([pa];r~.r2) 

so that (123) becomes 
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where h(r) = g(r) - I = p(r)/pb - 1 is the total correlation function of 
the unifonn fluid. Equation (124) is still exact but of no practical use until 
some approximation is made for c<2>([p,.];r1 ,r2 ), the quantity that refers 
to the nonunifonn fluid of density Pa(r). The HNC approximation simply 
replaces this quantity by c<2>(pb ;rd, its value in the initial (bulk) state 
with o: = 0 [see (45)]. Thus the HNC closure is 

In g(rd = J3¢(rd + Pb J dr2 h(r2}c<2>(pb;r12) (125) 

Using the unifonn fluid OZ equation 

h(rt) c<2>(pb;rt) +Ph J dr2 h(r2)c<2>(pb;rl2) (126) 

(125) reduces to the familiar HNC form 

[?(r) = expf -JjQ>(r) + h(r) - c<2>(pb;r)] HNC (!27) 

The bridge or elemental diagrams that are missing in the HNC can be 
reinstated formally via the inclusion of the bridge function B(r): 

g(r) = exp[ J3¢(r) + h(r) c< 21 (pb;r) + B(r)] (!28) 

Approximate integral equation theories correspond to different prescrip
tions for B!r) and some of the more sophisticated versions yield results 
for both structure and thermodynamic functions that are in excellent 
agreement with simulation (e.g., Refs. 28 and 30). 

Comparison of (123) and (128) shows that B(r) may be expressed as 

B(r) = c< 1 '([p~;g];r) c< 1 '(p~;) h(r) + c<2l(p~; ;r) (129) 

By expanding the first term about the density of the bulk fluid, we obtain 

c<0([p~;g];rd = c<0 (p~;) + p~; J dr2 h(rz)c<2>(p~; ;rd 

+ i 1 f drz ··· f drn~l h(r2) ··· h(rn+l)c(n+l)(p~;;rl, ... , fn-d 
n=2 n. 

(130) 

Use of the OZ equation (126) then leads to the exact expansion [121] for 
the bridge function 

B(rt) = n~2 ~; f drz ··· f drn+l h(r2) 

... h(rn+l)c(n+l)(pb;rl, ... 'rn+d (131) 

in tenns of the high-order direct correlation functions of the uniform fluid. 
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Note that truncation of (130) at the first-order term yields B(r) = 0, which 
is the HNC approximation (127). Given some theory for em, and so on, 
B(r) may be estimated from (131). Barrat et al. [1211 used a real-space 
factorization ansatz for em and ignored terms with n > 2 to construct an 
approximation for B(r). The resulting theory represents a significant im
provement on the HNC for soft spheres, the Lennard-Jones liquid and 
the OCP. Denton and Ashcroft [133] suggested that c<3

l as derived from 
explicit density functional approximations (see Section IV .A) could also 
be used to investigate the form of the bridge function. 

Given an explicit approximation for ~ex[P] it is, of course, straight
forward to calculate c< 0 ([pbg ];r) appropriate to this type of inhomoge
neity. In the MWDA of Denton and Ashcroft [119} (see Section III.F.l) 
it turns out [131,132] that p pb(l + 0(1/N)) and 

c<n([pbg ];rl) = c01 (ph) + Ph I drz h(rz)c< 21 (pb ;rd + 0 (~) 

Thus. in the thermodynamic limit. MDW A corresponds to neglecting all 
terms with n 2: 2 in ( 130). The resulting closure is simply (125), the HNC 
approximation. At this stage $ex(P) and c(21 (p;r) remain unspecified. If 
we require c<21 and g to satisfy the exact OZ equation (126), we recover 
the usual HNC integral equation theory for a uniform liquid [131,132]. 
Note that need not be specified; it would be natural to calculate the 
free energy via the compressibility equation of state. Other theories that 
employ a position-independent weighted density should also be equivalent 
to HNC for uniform fluids [142]. If, however, the weighted density is 
position dependent we should expect the resulting theory to be different 
from HNC and yield a nonzero B(r). 

Jones and Kim [143] have developed this strategy further, addressing 
the fundamental issue of how the free-energy functional is related to the 
interatomic pair potential <f>(r). They consider the WDA as implemented 
by CA (see Section lll.£.3) so that 

~ex[P] = I dr p(r)$exGHr)) (132) 

with p(r) given by (61) and the weight function w(r;p) is related to c<2l(p; 
r) via (70). The functions I)Jex and ware (initially) unspecified. Jones and 
Kim argue that use of the Percus identity (121) is sufficient to determine 
these functions, at least for a certain class of interatomic potentials and 
thermodynamic states. Their procedure is shown schematically in Fig. 6. 
Given (initial) I)Jex and w, g(r) is determined for a given potential <f>(r), 
but then c<2>, as obtained from the OZ equation, does not satisfy the 
requirement that cC2> is the second functional derivative of (132). The 



Density Functlonals In Nonuniform Fluids 145 

l{fex.w p(r) -t cO>([p,g];r) -t p(r}il!p,g(r) 

r r 1 

equation (70) 

...__ __ o-Z equation (126)--+----' 

Fig. 6 Implementation of the WDA to determine the structure and thermody
namics of a uniform fluid. 

iteration procedure in Fig. 6 may or may not converge for arbitary bulk 
densities and potentials. Following Tarazona [94}. Jones and Kim assume 
that w(r;p) has the density expansion (62) and that g, , and ~!!ex have 
similar density expansions. They then proceed to obtain the low-order 
coefficients. arguing that the theory has a unique solution within the region 
of convergence of the density expansion. provided that w0 (k) 
f dr e'"rw0 (r) ¥ l for real wave vectors k. But the zeroth coefficient 
wo(r) f(r)lf dr f(r), where f(r) e-i3<f>(rl ~ l, is the Mayer function 
(see Section III. E. I), so that for purely repulsive potentials(<!>> 0 every
where), I w0 (k) I < 1 for all real k 0. When<!> has an attractive portion, 
w0 (k) will be equal to 1 for some real k and sufficiently large (3. Then the 
iteration procedure breaks down [143], suggesting that the basic assump
tions are not valid for such pair potentials. Jones and Kim compute the 
coefficients gi(r) (i = 0, I, 2) in the density expansion of g(r), as well as 
the (pressure) virial coefficients up to B4 for hard spheres and for the 
Gaussian model. B4 can be determined from g 2(r) using either the com
pressibility (C) equation or the virial equation ( V). For hard spheres B4( V) 
is 0.6% larger than the exact value, while B4(C) is 1.6% greater than 
B4(V). For the Gaussian model, where f(r) exp( -ar 2

), corresponding 
to soft repulsive forces, B4( V) and B4 ( C) agree to within 0.3% and B4( V) 
lies within 0.3% of the exact result. g0 (r) and g 1(r) agree with the exact 
virial results, but g2(r) does not. Nevertheless, for both models g2(r) lies 
very close to the exact results and is much better than the corresponding 
results from PY and HNC, suggesting that the theory is very promising. 
Kim [142] has also investigated the GvE recipe (see Section III.E.4) for 
the free-energy functional [i.e., (75) with (79) for po(r) and the two-point 
function L determined by (82)]. Making the same density expansions as 
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previously, Kim finds that B4 and g2(r) are given much less accurately 
than in the CA version of WDA. This would appear to support our as
sertion that there is nothing to be gained in extremizing the functional 
(75). Of course, it remains to be seen whether the iteration procedure can 
be effected for dense liquids, where the expansion is no longer useful. 
Jones and Kim point out that the failure of the WDA theory at low tem
peratures for fluids with attractive potentials probably reflects some fun
damental structural flaw in the form (132) assumed for the excess free
energy functional in the case where <!>(r) can be negative. This observation 
reinforces our earlier contention that attractive and repulsive forces re
quire separate treatments; (132) may be accurate for the repulsive force 
contribution to '!f ex but not for the attractive force contribution. 

Denton and Ashcroft [144] have reported some calculations of g(r) for 
hard spheres based on their earlier ansatz (117) for c<n[p];r). Their input 
are the PY results for cm(p) and c(2l(p;r), so that the weight function (I 19) 
has a range exactly equal to the hard-sphere diameter. Equation (122) can 
then be solved iteratively for p(r) and p(r) and hence g(r). Although the 
results are in reasonable agreement with simulation, they are not as ac
curate as the standard PY results. The bridge function B(r) is estimated 
using (129) with the PY expressions for c(2 )(Pb ;r) and h(r). Again the 
results are in reasonable agreement with simulation and appear to be more 
accurate than those obtained from the truncated expansion of B(r) [i.e., 
taking the first term in (131) with given by (120)]. No attempt was 
made to recalculate c<2l(Pb ;r) and iterate to self-consistency, in the sense 
of Fig. 6. A similar calculation has been performed by Brenan and Evans 
[145] using as input the Carnahan and Starling result for ljlex and the Tar
azona (Mark II) recipe for the weight function. The resulting g(r) is now 
very close to simulation even for high densities. However, the hard-sphere 
virial equation result, ~P Pb[l + ~'ITpba3g(a+)], is still not satisfied 
exactly. Freasier et al. [I 46] performed the equivalent calculation but with 
the zeroth-order weight function w0 of Section lll.E.l. When the Car
nahan and Starling result for Wex is employed (Tarazona Mark I) the peaks 
and troughs in g(r) are greatly exaggerated. This trend is consistent with 
the results shown in Fig. 2 for the density profile of a confined hard
sphere fluid. Takamiya and Nakanishi [147] have investigated the radial 
distribution function of two-dimensional fluids (hard disks and Leonard
Jones) using a modification of Tarazona (Mark II) to construct 'lfex for 
the hard-disk system. Their results are also encouraging. No attempt was 
made to iterate to self-consistency in [ 145-147]. 

For completeness we should mention the work of Zhou and Stell [73], 
referred to in Section III.C, who have developed a nonlocal density func
tional expansion of the direct-correlation function which allows calcula-
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tion of an approximate B(r). They regard their new approximations as 
adding "hydrostatic" correction terms to the standard PY and HNC ap
proximations. Their approach differs from others described in this chapter 
in that they do not consider an explicit free-energy functional. 

V. APPLICATIONS TO FLUID INTERFACES 

As indicated in Section L there have been numerous applications of ap
proximate density functionals to the calculation of interfacial properties. 
Rather than attempting to review the entire field we select a few topics 
that illustrate the usefulness and the shortcomings of the density func
tional approach. The choice reflects the author's own interests. 

A. liquid-Gas Interface 

We consider an atomic fluid in an external potential V(z). which we shall 
set to the gravitational potential mgz. The simplest choice of the 
free-energy functional is the square-gradient approximation (39). If. for 
simplicity. we ignore the density dependence of the coefficient / 2 • the 
Euler-Lagrange equation for p(z), the density profile of the planar in
terface. is 

V(z) = JL(p(z)) - 2f2p"(z) (133) 

where JL(p) = (aj/ap)r exhibits a van der Waals loop forT< T,. We are 
interested in the solution of ( 133) in the limit where the potential vanishes. 
It is well known [ 17 ,148] that a nontrivial solution characteristic of a two-
phase system [i.e., with p' (z) dpldz ¢. 0] exists in this limit when !L 
!Lsa:. the chemical potential at bulk liquid-gas coexistence. There are an 
infinite number of solutions, all with the same shape, and a unique solution 
is specified by fixing the position of the Gibbs dividing surface at z 0, 
say. When V(z) = 0 (133) has a first integral 

'l'(p(z)) = w(p(z)) + p = f2(p'(zW (134) 

with w(p) = f(p) - JLP, the grand potential density, and p = Psat. the 
pressure. 'l'(p(z)) vanishes deep in the liquid phase where p(z} ~ P1 and 
deep in the gas phase where p(z) ~ P.r:· Note that at coexistence f(pt) -
!LP1 = - p = f(pg) - JLPg· In fact, 'l'(p) has two minima at pg and p1 and 
a maximum at an intermediate density [ 17]. Once f (p) and f 2 are specified, 
p(z) is easily obtained by quadrature. The surface excess grand potential 
is 

nex = J dr (w(p(z)) + f2(p'(z))2 + p) (135) 
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and it follows that in zero field the surface tension is 

(136a) 

or 

(136b) 

The second version remains valid when f2 depends on p. Numerical work 
based on (134) and (136), with h estimated from (40) (see Section III.B), 
yields sensible, monotonic density profiles whose width increases with 
increasing temperature. eventually diverging as T ~ T, with the same 
(mean-field) exponent v = ! as the bulk correlation length ~b· The surface 
tension vanishes as (Tc - nji.. with ji = ~·This is van der Waals' original 
result [I 7]. 

The internal consistency of this simple density functional approach can 
be tested by examination of the exact Triezenberg-Zwangzig [149] for
mula for the surface tension, 

where c 2 (z 1 ,z2 ) is the second (transverse) moment of the two-body direct
correlation function of the nonuniform fluid. For planar geometry 

(138) 

and the Fourier transform has the expansion. in powers of Q2
: 

c 12)(ZI ,Z2 ;Q) = J dR eiQ·Rc<2l(Zt ,Z2 ;R) (139) 

= Co(ZI,Z2) + C2(Zt.Z2)~ + ··· 

Q is a wave vector parallel to the surface. Within the square-gradient 
approximation c<2> is very simple. From (57) we find that 

(140) 

which, when inserted into (137), reproduces (l36a). Note that (137) applies 
in the presence of the external field (see Chapter 2) and that ( l36a) is also 
valid (for the tension -y) in a nonzero field. Moreover, the zeroth moment 
co(ZJ.Z2) obtained from (57) and inserted in the exact equation for p'(z), 

p'((ZJ)) + f)V'(zd = f"" dz2 Co(ZJ,Z2)p'(Z2) (141) 
P Zt _, 

yields the derivative of (133). In other words, the square-gradient ap-
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proximation is consistent with the formally exact equations for interfacial 
properties. This is not surprising. The exact equations are obtained by 
minimizing the exact grand potential; minimizing an approximate func
tional should lead to equations of the same form. 

What physics does the square-gradient approximation omit? As men
tioned in Section III.B, this approximation predicts exponential decay of 
the profile p(z) into the bulk liquid or gas with a decay length equal to 
that of the appropriate bulk correlation length. For a Lennard-Jones fluid 
a nonlocal treatment of attractive forces, via a functional such as that in 
(53), leads to z- 3 decay of the tails of p(z) [50,51]. Such behavior reflects 
the algebraic decay of the direct-correlation function, [i.e., c<2> -

fj<l>au(r 12 ) for large separations r 12 ; see (56)]. Clearly, a nonlocal theory 
such as that based on (53), or on a more sophisticated WDA for repulsive 
forces, will correct this particular defect of the square-gradient approx
imation. However, such approximations are still strictly mean field in 
character; they will not account for the correct surface tension critical 
exponent ,:i. Fisk and Wid om ( 17 ,47] extended the classical van der Waals 
(square-gradient) treatment to include nonclassical (bulk) critical expo
nents. Recognizing that the square-gradient approximation should be
come increasingly accurate as T ~ T,, where p1 - p"' decreases and the 
interfacial width increases, leading to small density gradients, they re
tained the functional (39) but replaced the mean-field expansion of the 
grand potential density by 

w(p) 
a 

w(p,) + 2 (p ' b 
p,)- + 0 + l (p (p- pJ(v.- V-sat) (142) 

where Pc is the critical density, b is a constant, 8 is the exponent describing 
the v.-(p) critical isotherm, and1a is a quantity that vanishes as the inverse 
compressibility [i.e., a - KT -I - (T, n"'~'J. This form guarantees that 
bulk thermodynamic exponents are properly incorporated into the theory. 
The second modification involves the coefficient h ofthe square-gradient 
term, which can no longer be treated as a positive constant when T ~ 
Tc. It is no longer appropriate to take c<2J(p;r)- - fj<f>au(r) when the bulk 
correlation length ~b is diverging; this result is valid only for r > ~b (17]. 
In reality the second moment of c<2J(p;r) [see (40)] is very weakly diver
gent: ! 2 - (Tc - n-V'Y), when TJ is the exponent that governs the decay 
of the radial distribution function g(r) at T = Tc. From (I36b) it follows 
that the surface tension vanishes as f 2

112 a 112(p1 - pg)2
, so its critical ex

ponent is ,:i = - VTJ/2 + "{12 + 2fj, where fj is the order-parameter ex
ponent: p1 - pg- (Tc - n 13 • Standard (bulk) exponent relations permit 
ii to be expressed in several ways [17]. Perhaps the most concise one is 
ii = 2 - a - v, where a is the heat capacity exponent. Using the mean-
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field values TJ 0, -y = I, f3 !, a 0, we recover the mean-field result 
Ji ~- For dimensions d::::: 4 we expect hyperscaling to be valid so that 
dv = 2 - a and Ji (d I)v. It is straightforward to show that the 
interfacial width must diverge as j 2

112a 112 or (Tc - n-vr,l2--y12• Use of 
the Fisher relation (2 TJ)v = -y then shows that the width diverges in 
the same fashion as the bulk correlation length but with the proper non
classical value of the exponent v. The predictions of this Fisk-Widom 
version of density functional theory are satisfied exactly for the two
dimensional Ising model (Ji = v I) and experimental results for real 
fluids, including binary liquid mixtures near their consolute points, are 
in excellent agreement with the prediction ,:i = 2v [17]. 

While the Fisk-Wid om approach incorporates the effects of bulk fluc
tuations, on a length scale set by ~b. it does not incorporate the effects 
of interfacial (capillary-wave-like) fluctuations. In this respect it is still a 
mean-field theory and is no more satisfactory than the original square
gradient or van der Waals theory based on (53). The long-wavelength 
interfacial fluctuations are expected [!50] to lead to thermal broadening 
of the average density profile so that the total width W can be regarded 
(effectively) as the sum of an "intrinsic" width ~~band a fluctuation or 
"wandering" contribution . If the wandering is on a similar scale to 
the intrinsic width and thus remains finite in the thermodynamic limit of 
infinite interfacial area and vanishing external field, the interface is said 
to be smooth. If, however, L and hence W diverge in this limit, the 
interface is described as rough. Analysis of effective interfacial Hamil
tonians* [20,150] indicates that the liquid-gas interface is rough for all 
temperatures at which two-phase coexistence occurs, for dimension d 
3 or 2. (For d > 3 this interface is predicted to be smooth for all tem
peratures.) In the marginal dimension d 3 b. ~ (In L) 112 when the 
interfacial area L 2 --+ oo in zero external field, or t1. ~ (-In g ) 112 as the 
gravitational acceleration g _,. 0 with L2 x. For laboratory-sized sam
ples orfor infinite samples in the earth's gravity the capillary-wave broad
ening of the density profile is only a few atomic diameters (i.e., it is on 
the same scale as the intrinsic width). It is therefore difficult to disentangle 
wandering from intrinsic contributions. In d = 2, where the interface is 
a line rather than a surface, the broadening is much stronger and ~..L ~ 

L 112 or g 114
• Extensive molecular dynamics simulations [151] (using a 

special-purpose hard-ware processor and up to 16,000 particles) for a two
dimensional Lennard-Jones fluid have confirmed the prediction that the 
total width W ~ L 1n. By contrast, theories based on approximate free
energy functionals yield density profiles p(z) that are essentially g inde-

* Reviewed by Hendersoo in Chapter 2. 
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pendent. Taking the limit of vanishing external field does not lead to the 
broadening of the profile that is described above; p' (z) remains nonzero 
for g 0 and infinite area L 2

• Moreover, the same form of profile is 
obtained for all bulk dimensions d, reflecting the mean-field character of 
the theories. However, this does not mean that such theories are com
pletely useless for investigating the liquid-gas interface. Although they 
fail to account for a diverging interfacial width (roughening), they do pre
dict the long-range transverse correlations that are the key signature of 
the capillary-wave fluctuations. 

Given an explicit form, such as (56) or (57), for c<2>(r1,r2), one can 
effect the OZ inversion (17) to obtain the density-density correlation func
tion G. Provided that z1 and z2 1ie in the interface and the external potential 
is weak, one finds [46,84] 

for the Fourier transform at small wave vectors Q. When V(z) 
this result can be reexpressed in Ornstein-Zernike form as 

as small Q, where the zeroth moment [see (139)] 

p' (Zl )p' (zz)~rr 2 

p-y 

and the transverse correlation length 

[ 
-y ]112 

~i1 = mg(p, - p~J 

mgz 

(144) 

(145) 

(146) 

We emphasize that (144) and (145) are valid when z1 and z2 lie in the 
interface where p' (zd and p' (z2 ) are large. ~ 11 is the classical capillary 
length; it is of macroscopic extent ( -10- 3 m) for argon at its triple point 
in the earth's gravity. The physical picture behind (143) is one of capillary
wave-like fluctuations developing in the interface where p' (z) is largest. 
These fluctuations, which act to increase the surface area, are restored 
by the tension -y and are damped by gravity g. In the limit g ~ 0, ~~~ 

diverges as g 112, for any T < Tc, suggesting that the bulk coexistence 
curve acts as a line of critical points for transverse interfacial correlations. 

It is important to recognize that the form of(143) to (146) can be derived 
from analysis of the exact equations for the density profile and surface 
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tension. These read (see Chapter 2) 

p'(Zt) == -(3 J:"" dzz Go(Zt,Zz)V'(zz) 

which is equivalent to (141) and 

Evans 

(147) 

'Y == -(3 J:"" dz,J:"' dzz V'(zt)V'(zz)Gz(Zt.Z2 ) (148) 

which is equivalent to (137). G2 (z1 ,z2 ) is the second transverse moment 
of G [see (139)]. If the tension -y is to remain nonzero as g-')> 0, the integral 
JI dz1 dzz Gz(Zt ,zz) must diverge asg 2

• Similarly, ifp'(zt) is not to vanish 
too quickly (the precise details are left unspecified at this stage) I dz2 

Go(z 1 ,z2 ) must diverge no faster than g 1
• It is clear that (144), with (145), 

satisfies the sum rules (147) and (148) identically; any higher-order terms 
must make vanishingly small contributions to the integrals. Wertheim [19] 
(see also Refs. 20 and 21) was the first to propose (143), solely on the 
basis of an eigenfunction analysis of correlations. His analysis does not 
determine the dependence of p' (z) on g; it is valid whether p' (z) is nonzero 
in the limit g -')> 0 (the prediction of mean-field density functional ap
proaches) or is slowly vanishing (the prediction from theories based on 
effective interfacial Hamiltonians). Weeks [20] first argued that the pres
ence of long-range transverse correlations must drive the interface rough, 

--)> x, whereas the mean-field treatment implies that L remains finite 
as g -')> 0, leaving the interface smooth. The mean-field treatment would 
appear to allow insufficient feedback from the transverse correlations to 
the density profile for the latter to be smeared out. This issue has aroused 
much interest and continues to attract a certain amount of controversy. 
(References 16 and 46 by the present author contributed to the confusion!) 
Here we give a simple argument that illustrates the deficiency of the mean
field treatments and supports the predictions of those theories based on 
capillary-wave models (effective interfacial Hamiltonians). 

We note first that the simplest density functional approximations yield 
a second moment c2 (zt ,z2 ) that is independent of the density profile and 
therefore of the external field. This conclusion is apparent in the square
gradient result (140) and is readily obtained from the van der Waals result 
(56) (see also Ref. 28). If such a Cz(Zt ,Zz) is employed in the Triezenberg
Zwanzig formula (137), the tension -y will vanish unless p'(z) remains 
nonzero in the limit g = 0. This observation attests once more to the 
internal consistency of the density functional approach. The tension ob
tained from (137) or (148) will be identical to that obtained from the excess 
grand potential. For certain choices of functional this can be provided 
explicitly [152]. Improving the treatment of repulsive forces via a WDA 
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does not alter the essential mean-field character of c(2)(r1 ,r2 ). In reality 
we expect the direct-correlation function and, in particular, its second 
moment c2(Zt ,z2) to depend on p' (z). For the capillary-wave model in d 
= 2 this quantity is known explicitly [44]: 

(Pt - P11 )p' (zJ) 
(149) 

which satisfies (137) identically. Weeks et al. [153] have recently at
tempted to calculate the dominant contribution to c2(z 1 ,zz ;Q) for the cap
illary-wave model in d = 3. They state that 

( ~J Zt c - ( z J,l2 ; Q) = '-(_:____:__ _ __;;;_;_.=_ 

Pt-
(150) 

for Q 3> ~ 11 1 , a quantity that can be made arbitrarily small. Clearly, (150) 
has the same form as the d 2 result. (149). There is no reason to expect 
( 150) to provide an accurate description of in the interface of a real 
fluid since effective interfacial Hamiltonians can only describe the very 
long wavelength fluctuations associated with thermal wandering, not the 
intrinsic structure of the interface. which is on a short length scale O(~b), 
or the long-wavelength bulk densitv !luctuations 120.44.153]. It is clear 
that this result is of a totally different character from the corresponding 
mean-field resulL Recall that p' 1 ~ ~V diverges in the capillary-wave 
model. Rather than focusing on c(2

J. however, we return to the mean-field 
prediction (143) for G and demonstrate that this implies an unbounded 
correlation function in real space. 

Assuming that (143) is the dominant contribution for Q < Qmax with 
Qmax = 'lT~b 1

, a short-wavelength cutoff, it follows that 

p'(zJ)p'(z2) lQmo.x e-iQ·R 
G(Zt ,Z2 ;R) - r:l. (2~)d-l dQ t 

P'Y " 0 ':,II 

(151) 

for Zt and Z2 in the interface. For transverse separations R li> ~11 (151) 
predicts the familiar (Ornstein-Zernike) exponential decay of (transverse) 
correlations. For ~b ~ R ~ ~11 the integral in (151) predicts R -<d- 3) power
law decay ford> 3 and In R behavior in d 3. The latter is characteristic 
of two-dimensional Ornstein-Zernike behavior. It is well known that in 
bulk, such behavior leads to unbounded correlations near the two-di
mensional critical point. A proper treatment of fluctuations leads to e'er
relations decaying as g(r) 1 - r-<d-

2 + 11> with 11 = *in d = 2. The 
situation is different in the interface. There it is possible to retain OZ 
behavior (143) for transverse correlations, that is, to maintain the analog 
of 11 equal to zero but still have finite values of G provided that the flue-
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tuations drive p' (z) to zero in the limit ~ 11 --.. cc. More explicitly, we set R 
= 0; then 

G(zt ,Zz ;0) ~ p' (z1 )p' (z2)b 2 

where the interfacial roughness b. is given by 

1 (Qmax 

13'Y(21T)d- t Jo dQ b 

(152) 

(153) 

[In the capillary-wave model is defined as the interfacial width [44] 
since ~.L 2 = (h(R)h(R))cw is the height-height autocorrelation function for 
this model.] The integral in (153) is well known: 

d<3 
d = 3 
d>3 

(154) 

with w (41TI3'Y~b"r 1
, a dimensionless constant. Thus in mean-field ap

proximation, where p' (z) is nonzero in the limit of vanishing field, (152) 
implies an unbounded correlation function in the interface for d :S 3. If 
we retain the Wertheim form (143) and G is to remain bounded, consistent 
with its definition (4) as a density-density correlation function, the prod
uct p' (z)~.L must remain finite. For the case where the height-height au
tocorrelation function diverges, this divergence must be compensated by 
a vanishing p'(z); that is, in a vanishing field, 

p'(z) L- 1 --..0 d:S3 (155) 

for z in the interface. But this is precisely the result of the capillary-wave 
model, which invokes a relationship between fluctuations of height h(R) 
of the dividing surface and density fluctuations in order to obtain p(z) 
[ 44]. Our present argument predicts p' ( z) - ( -In g)- 112 in d = 3 without 
direct appeal to the capillary-wave model. In other words, the Wertheim 
form for G (143), which satisfies the exact sum rules and which corre
sponds to 11 = 0, necessarily implies interfacial broadening (155) in the 
limit g- 0. Only ford > 3 does ~.L remain finite and then the mean-field 
prediction p'(z) # 0 should be correct. 

The argument given above [154] complements the elegant argument of 
Weeks [155], based on a scaling hypothesis for G, which showed that the 
total interfacial width must diverge for d < 3 but was inconclusive in d 
= 3. Although our argument is in the same spirit as work of Robert [156], 
it differs in important detail; Robert sets the external field to zero at the 
outset and argues that p'(z) # 0 leads to a contradiction-a divergent 
surface tension. He is not able to derive (155), which is, of course, mean-
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ingful only in nonzero but small field. Our present argument wiU not satisfy 
those seeking rigorous proofs but does have the merit of focusing on the 
failing of the mean-field theory. The latter has the correct OZ-like pair 
correlation function but omits the effects of feedback of long-range trans
verse correlations into the density profile that produce broadening. We 
might expect a similar scenario for other interfacial problems, such as the 
growth of wetting films, which also involve capillary-wave fluctuations. 
Indeed, we turn to this in Section V.B. 

Finally, we wish to emphasize that the present discussion of fluctua
tions at the liquid-gas interface is in no sense complete. Several authors, 
starting with Weeks [20], have attempted to "marry" the treatments of 
interfacial and ordinary. bulk density fluctuations. Huse et al. [ 157] argued 
that incorporation of the wandering of the interface should not change 
the value of the critical exponent jl from the Fisk-Widom (scaling) value. 
As treated by effective intert·acial Hamiltonians, interfacial fluctuations 
should correspond to wavelengths than . which is itself diverging 
near Tc. Fluctuations on longer length scales should not be important for 
gross features of the critical behavior. such as exponents. Sengers and 
van Leeuwen [158] treat the near-critical interface as a fluctuating Fisk
Widom interface and propose method for determining capillary-wave 
contributions to the surface tension and density profile in order to effect 
comparison with experimental reflectivity measurements and with re
normalization-group results. We recommend this paper to readers inter
ested in the (subtle) issues involved in the marriage of the intrinsic in
terface, which should be described well via density functional approaches, 
with treatments that focus on the interfacial fluctuations. The effects of 
gravity also become very important very close to Tn where the com
pressibility is large. These have been analyzed in some detail [159]. 

B. Criticality at Wetting Transitions 

In Section III we mentioned that there have been many applications of 
density functional methods to problems involving wetting phenomena. 
The excellent reviews [58,59] describe much of the work based on the 
local density approximation (50) for :9'hs(P] and on the square-gradient 
approximation (39). In this volume Franck (Chapter 7) has reviewed ex
perimental work and Henderson (Chapter 2) has discussed sum-rule anal
yses for continuous wetting transitions at planar wall-fluid interfaces. 
Here we merely add some remarks regarding the efficacy of current den
sity functional approximations in accounting for criticality at wetting tran
sitions. Given the mean-field character of such .approximations it is tempt
ing to suppose that they will be totally inadequate for describing the 
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Fig. 7 Density profile of a wetting film (schematic). In the approach to complete 
or critical wetting, the film thickness l diverges and this is accompanied by a 
divergence in the transverse correlation length ~11 • The interfacial roughness ~J., 
and hence p'(l), should also diverge for dimension d :S 3. Note that a local density 
approximation will not describe the oscillations near the wall. 

divergence of the wetting film thickness* l (see Fig. 7) and of the trans
verse correlation length ~11 , which characterize both complete wetting 
(from off-bulk coexistence) and critical wetting that occurs as T-"' T w-, 
the wetting transition temperature, when the fluid is in bulk coexistence. 
That this is not necessarily the case was recognized first by Lipowsky 
[160] (see also Ref. 161). When fluid-fluid or substrate-fluid attractive 
forces are long range (i.e., exhibit power-law decay), the upper critical 
dimension de for both types of transition depends on the particular power 
law but is less than 3 (Chapter 2). Thus for real systems, governed by 
van der Waals forces, the critical exponents that describe the divergence 
of l and £11 should be given correctly by a mean-field theory, provided that 
the theory treats the attractive forces in a nonlocal fashion and not in the 
fashion of Cahn (see Section III.B). For example. the well-known result 
I - (J.Lsat - J.L) -l3s, with ~s ~, for the growth of a thick wetting film of 
liquid from an undersaturated gas should remain valid beyond mean-field 
approximation. The effects of capillary-wave-like fluctuations in the liq
uid-gas edge of the growing film are insufficient, in dimension d 3, to 
alter the critical exponents from their mean-field values when the relevant 
potentials are long range. This is an important bonus for the density func-

* Note that this thickness is denoted by t in Section IV of Chapter 2. 
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tional approach. If fluid-fluid and substrate-fluid forces are exponentially 
decaying or are of finite range, as one might employ in simulations, de 
= 3 for both types of wetting transition. Renormalization-group studies 
of effective interfacial Hamiltonians point to significant effects of fluc
tuations (see Chapter 2 and Refs. 58 and 59) at the marginal dimension 
d = 3 and there is no reason to suppose that mean-field (density func
tional) theory will yield the correct critical behavior. Although the critical 
exponents for complete wetting in d = 3 are predicted to retain their 
mean-field values, the amplitudes of I and~~~ should be renormalized. More 
significantly, for critical wetting with short-range forces, the exponents 
are predicted to be nonuniversal and dependent on the liquid-gas surface 
tension. 

Despite the shortcomings described above, simple density functional 
approximations can yield insight into the nature of criticality at wetting 
transitions. One of the fundamental issues concerns the form of the den
sity-density correlation function G(r 1 .r~) in a wetting film. This has been 
analyzed in some detail {84.85.152] for Sullivan's [162] model of a fluid 
adsorbed at a planar substrate. Using the local density approximation for 
g:hslPJ (50) and the mean-field treatment of attractive fluid-fluid forces 
(53), minimization of the grand potential functional yields (54), which 
reduces to 

(156) 

when the substrate-fluid potential V(r) V(z:), so that the density profile 
p(r) = p(z:). Sullivan introduced a simple Yukawa form for the attractive 
fluid potential 

where a 

<!>au(r) 
aA.3e- i..r 

47rA.r 
(157) 

- J dr <!>au(r) is the integrated strength and he assumed that 

{

OCJ z < 0 
V(z) = - Ek.e -i..z z > 0 {158) 

with Ew (>0) a strength parameter. The decay length A. 1 of both potentials 
is the same. Sullivan showed the model defined by (156) to (158) and the 
free-energy functional (53) has a critical wetting transition at a temper
ature T w given by ap1( T w) = 2Ew and a critical drying transition at Tv 
given by apg(T v) = 2Ew. As T- Tw-, for f.L = f.Ls-;;,t. the thickness of the 
fluid film I - -In( T w - T) and ~ 11 - ( Tw - T)- 1

• Equivalent results 
pertain for the drying transition. For T > Tw the wetting film thickens as 
-ln(f.Lsat - f.L) and ~ 11 - (f.Lsat - f.L)- 112

• These exponents are the usual 
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mean-field results for short-range forces. The direct-correlation function 
c<2l of the inhomogeneous fluid has the simple form given in (56). Although 
it is not possible to effect a full inversion of the Ornstein-Zernike relation 
and obtain G(zi ,Zz ;Q) analytically, it is possible to derive results for the 
transverse moments Go(ZI ,z2) and G2CZI ,zz) introduced in Section V .A 
[152]. When both particles lie in the edge of the film, ZI ,z2 - l, we find 
the same Ornstein-Zernike behavior (144) and (145) as that exhibited by 
the liquid-gas interface in a gravitational field, but now the transverse 
correlation length ~11 diverges in the manner indicated above. The inter
facial fluctuations are controlled by undersaturation 1-lsat - 1-l in the case 
of complete wetting or by the field T w - T for critical wetting. The mean
field character of the theory manifests itself in two ways: the exponents 
take their mean-field values, and p' (1), the density derivative in the edge 
of the film (see Fig. 7), remains nonzero as [--.. oo and the interface depins 
completely from the substrate. If we were to Fourier transform back to 
real space G(l, l; R = 0) would be proportional to (p' (1))2 ~-'- 2 [see (151) 
to (153)], which is unbounded; the interfacial roughness ~-'- still diverges 
as in (154). Once more the mean-field treatment implies an unbounded 
pair correlation function ford ::.s: 3. Nevertheless, as was the case for the 
free liquid-gas interface, we expect the Ornstein-Zernike form (144) and 
( 145) to remain valid in an exact treatment of correlations (the analog of 
TJ should be zero) but with p' (l) vanishing as ~-'--I. Similarly, we expect 
the density functional predictions for the form of the transverse moments, 
with ZI or z2 removed from the edge of the film, to be valid beyond mean 
field. The predictions for the moments are rather rich and have been 
shown [85, 152] to be consistent with sum-rule analyses of both types of 
continuous wetting transition (see Chapter 2). For example, analysis of 
the Sullivan model yields [85] for the zeroth moment 

Go(z,O) = p' (Z)PwXh~~w) 
Pw - 2a Ew 

z>O (159) 

where Pw = p(O +) and Xh(p) = ([3p df.lhs/dp)- I is the susceptibility of a 
uniform hard-sphere fluid. In the approach to the critical wetting transition 
p,.,--.. Pt and p' (0)--.. 0 as the profile becomes flat. Then G0 (z,O) diverges 
as p'(z)(Tw- T)-I, when z- I (i.e., when one particle is at the wall and 
the other is in the edge of the film). The sum-rule analysis [85] predicts 
that, in general, Go(/,0) - p'(l)(al/aT) in the same limit. Inserting the 
mean-field results p' (l) # 0 and I - -In( T w - T) leads to the same 
divergence as the explicit density functional result. 

In the special case of a hard wall (Ew = 0), (159) reduces to 

z>O (160) 
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which should be compared with the,exact sum rule (Chapter 2) Go(z,O+) 
= p' (z). The only discrepancy is the factor Xh(Pw), which can be attributed 
[152] to the failure of the local density approximation to account for the 
exact sum rule fjp = p..,. Within the Sullivan treatment the latter is re
placed by Phs(Pw) = p when Ew = 0. For the hard wall it is also possible 
to prove [152] that when both particles are at the wall, 

(161) 

where -y is now the total wall-fluid interfacial tension. This result differs 
from the exact sum rule G2(0+ ,o+) = - fj-y for the reason given above. 
A nonlocal WDA treatment of repulsive forces will remedy these defects 
and ensure that both sum rules are ob~yed. The behavior of correlation 
functions for complete drying at a hard wall has been analyzed in some 
detail using the results from the Sullivan model [152]. Note that in com
plete wetting or drying G0 ({.0+) and G2 (0+ ,0+) remain finite, while in 
critical wetting both quantities diverge. Analysis of the Sullivan model 
showed [85] that fluctuations manifest themselves in a much more pro
nounced fashion for critical wetting. Indeed, it was possible to calculate 
the transverse correlation length for two particles at the substrate. as 
defined by 

[ (!62) 

where Go sing refers to the singular contribution due to the critical interface, 
and show that ~~~w = a 1 ~ 11 , with a 1 a constant. Recall that~~~ refers to two 
particles in the edge of the film: 

~II= [ Z1 ,Z2- [ (163) 

That ~ 1t diverges in the same fashion as ~ 11 implies that transverse cor
relations are not localized in the depinning liquid-gas interface but extend 
all the way to the wall in the case of critical wetting. The local suscep
tibility x(z) = fj- 1 (a In p(z)/CJf.Lh provides another measure of the strength 
ofthe fluctuations. While x(z) diverges asp' (z)~ 112 , for z ~I, at both types 
of wetting transition x(O +)remains finite at complete wetting but diverges 
as (T w - n 1 or (all aT) at critical wetting. We reiterate that all of these 
results are consistent with sum-rule analyses (Chapter 2). 

Perhaps we should add a cautionary note here lest the reader becomes 
overexcited by tales of dramatic fluctuation behavior. A critical wetting 
transition has not yet been found in real experiments or in computer simu
lations for continuum fluids. However, new results, based on massive 
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molecular dynamics simulations, for a (truncated) Lennard-Jones fluid 
at a truncated Lennard-Jones substrate do appear to find some evidence 
for a continuous drying transition [163,164]. 

C. First-Order Phase Transitions in 
Adsorption at Substrate-Fluid Interfaces 

Density functional techniques might seem better suited to the investiga
tion of first-order phase transitions in inhomogeneous fluids, where the 
effects of fluctuations should not be of crucial importance. In adsorption 
problems the solid substrate is usually deemed to be rigid on relevant 
time scales and its boundary smooth and planar on relevant length scales 
so that it merely acts as a spectator phase exerting an external potential 
V(r) on atoms in the fluid. The equilibrium properties of the adsorbed 
fluid can then be calculated using density functional methods. A first
order transition between two distinct adsorbed phases cr and f3 occurs 
when their grand potentials are equal for given (11-,n. Equivalently, the 
surface excess grand potential per unit area wcx(IL,T: V(r)), obtained by 
subtracting the bulk contribution to n, must be the same in each phase: 
w,:'" w 13e". The amount adsorbed (the coverage) in each phase is given 
by the Gibbs adsorption equation r = - (awe"la!L)T. Almost all density 
functional studies have employed substrate-fluid potentials for which V(r) 

V(z). Then f J dz(p(z) - Pb), where Pb(IL,T) is the density of the 
bulk fluid (usually gas) far from the substrate. 

Two types of transition have been investigated: (I) first-order wetting 
transitions and the accompanying prewetting and (2) layering transitions. 
We restrict ourselves to examples of some recent results obtained from 
calculations based on a WDA. 

1. Prewetting at a Lennard-Janes 9-3 Substrate 
In Section Ill.B we mentioned that Cahn [57] and Ebner and Saam (60] 
were the first to discover a first-order wetting transition and the associated 
prewetting that occurs out of bulk coexistence. The model system con
sidered by Ebner and Saam was a Lennard-lones 12-6 fluid at a 9-3 
substrate, with parameters chosen to mimic argon at the rather weakly 
adsorbing solid C02 substrate. Prewetting is characterized by a discon
tinuous jump in the adsorption from a value r 13 , corresponding to a thin 
adsorbed film, to a value r"' typical of a thick liquid film, at some value 
of chemical potential f.J.pw ( n < f.Lsat ( n. It occurs for T between the wetting 
transition temperature T w and the pre wetting critical temperature Tsc, 
where the distinction between thin and thick Thus the pre
wetting line f.J.pw(n meets the bulk coexistence curve (tangentially) at T 
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= T w and terminates at T sc. Figure 8 shows the very recent density func
tional results of Velasco and Tarazona [97] for the prewetting transition 
in the model described above. Their version of WDA (Tarazona Mark II) 
was modified to include a temperature-dependent hard-sphere diameter 
and a parameter A that controls the form of the effective attractive in
teraction. Velasco and Tarazona take <!>au in (53) to be 

0 

<!>an ( r) 

0 

When f... = l <l>au reduces to the attractive pan of the Lennard-Jones 
potential truncated at r, 2.5rru. By treating A and the hard-sphere 
diameter as adjustable parameters. they are able to ensure that the bulk 
coexistence curve obtained from the theory is identical to that obtained 
from simulation of the truncated Lennard-lones fluid. The density pro
files in 8a show the jump in thickness of the adsorbed film. Note that 
the thick films are highly structured. In Fig. 8b adsorption isotherms are 
plotted for four different temperatures in the prewetting regime. The lo
cation of the prewetting line relative to the bulk coexistence curve is 
shown in Fig. 8c, where the density functional results are compared with 
those from the isobaric-isothermal Monte Carlo simulations of Finn and 
Monson [63) on the same system. The theoretical result for the critical 
temperature is T:c TsciE 0.96 ± 0.01, while the estimate from simu
lation is T:c 0.94 ± 0.02. Theory also gives an accurate description of 
the jump in adsorption at T* = 0.88 (see Fig. 8b). However, theory does 
appear to overestimate the undersaturation at which pre wetting occurs; 
the transition occurs at lower pressures, relative to bulk saturation, than 
in simulation and this leads to a lower value for the wetting transition 
temperature. Velasco and Tarazona predict T=. < 0.74, which could be 
below the bulk triple-point temperature, whereas the Monte Carlo results 
[63} indicate that T! 0.84 ± 0.01. Whether the differences between 
theory and simulation can be attributed to possible difficulties in deter
mining an accurate bulk coexistence curve in Monte Carlo simulations is 
still a matter for debate [97, 1651. Nevertheless, it is clear that the density 
functional approximation does provide a reasonably accurate description 
of what is a rather subtle and sensitive surface phase transition. Indeed, 
this example shows how density functional calculations can complement 
simulation studies. The original predictions for the prewetting transition 
were made on the basis of fairly simple theories. These predictions stim
ulated further calculations based on more sophisticated theories and de-
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tailed simulations. As remarked by Finn and Monson, "studying these 
(wetting) phenomena by Monte Carlo simulation is not yet a routine mat
ter"; observe the error bars in Fig. 8c. By contrast, establishing the ex
istence and location of first-order phase transitions by means of a density 
functional approach is relatively straightforward. Unlike in simulation, 
wex(J.L, T; V) is calculated directly. 

Before completing this discussion we should note that the nature of 
prewetting criticality is of special interest. Since the order parameter for 
the transition is the difference in film thickness (or r Q_ r ~) and only 
the transverse correlation length ~11 can diverge (the film thickness remains 
finite at T,c), any criticality should lie in the d = 2 Ising universality class. 
This conjecture has been confirmed by extensive Monte Carlo simula
tions, in conjunction with a finite-size scaling analysis, for a lattice-gas 
model that exhibits prewetting [166]. The resulting critical exponents are, 
to within statistical error. equal to the Onsager values. (It is certainly not 
feasible to perform an equivalent analysis for prewetting criticality in a 
continuum fluid.) Consequently, the density functional coexistence curve 
(dashed line) in Fig. 8b, which corresponds to!',, r 13 ~ (Tsc - T)13 with 
13 = ~. the mean-field result. is not as flat as the exact curve, which must 
have 13 A· 
2. Layering Transitions in Continuum Fluids 
Layering transition is the name given to the discontinuous increase in 
adsorption, associated with the growth of a new adsorbed layer of a dense 
phase, that occurs when the (bulk) gas pressure, or chemical potential, 
is increased at fixed temperature. The existence of a series of such tran
sitions at temperatures below the bulk triple point has been established 

Fig. 8 Prewetting as described by WDA. (a) Density profiles for T* = 0.88 and 
several values of the (reduced) bulk density: pt = 0.01290, 0.01720, 0.01860, 
0.01860, 0.01989, 0.02043, and 0.02150. The two profiles labeled 13 and o. corre
spond to coexisting thin and thick films at the transition. Bulk liquid-gas coex
istence occurs at pJ = 0.02344 for this temperature. (b) Adsorption isotherms for 
T* = 0.80(a), 0.84(b), 0.88(c), and 0.92(d). The vertical lines indicate the phase 
transition for each temperature. The two points on the isotherm at T* = 0.88 
denote the values of r j; and f"' obtained for coexisting films in Monte Carlo simu
lations [63] of the transition at this temperature. (c) Prewetting temperature as a 
function of the undersaturation of the bulk: llpt(D == pJ(D - pt(D. The solid 
line denotes the density functional results, with the large circle marking the prew
etting critical point. The data with horizontal error bars are the Monte Carlo 
results of Finn and Monson [63]. (Redrawn from Ref. 97.) 



164 Evans 

in many adsorption experiments for rare gases and small molecules ad
sorbed on graphite. Some recent experiments, along with references to 
earlier work, are described in [ 167, 168]. If solid-like layers develop, it is 
not too surprising that the growth takes place in discontinuous jumps. 
Lattice-gas models of adsorption [ 169, 170] are known to predict an infinite 
sequence of first-order transitions provided that the substrate potential 
V(z) is strongly attractive, so that Tw = 0 and the gas-substrate interface 
is wet completely by liquid. Each transition has its own critical temper
ature Tc.n, above which the new layers grows continuously with increasing 
J.L. As n _. oo, Tc.n approaches the roughening temperature TR of the lattice 
model. ForT> TR there are no layering transitions. (IfT.,. > TR, as occurs 
for less attractive substrates, layering is replaced by a single prewetting 
transition.) One might suspect that the discreteness of the transitions is 
imposed by the discreteness of the imposed lattice. On the other hand, 
it is clear that very pronounced layering can occur for continuum fluids 
near substrates (see Figs. I and 8a). Thus it is natural to inquire whether 
discrete transitions between layered liquid films can develop under fa
vorable circumstances (i.e., for temperatures in the neighborhood of the 
bulk triple point T,r). Although it should be impossible to have infinitely 
many transitions for T > T,r, since the liquid-gas is always rough, can 
several transitions occur? This question was addressed by Ball and Evans 
[99], who used the Tarazona (Mark II) version of WDA to investigate 
adsorption for various model fluids and substrates. Figure 9 shows some 
of their results for a Yukawa fluid [see (157)] at a Yukawa wall [see (158)] 
with decay length X 1 = a, the hard-sphere diameter. The strength of 
the wall-fluid potential Ew = 4k8 T"' where Tc is the critical temperature 
of the bulk fluid. Similar results are obtained with more realistic potentials 
[99]. At a low-temperature T 0.5Tc, close to T,r, the liquid wets the 
wall completely but the film grows layer by layer rather than continuously 
with J.L. Each jump in adsorption (Fig. 9a) results from the addition of 
(roughly) one dense layer to the adsorbed film (see the density profiles 
in Fig. 9b). The transitions cluster together more closely as saturation is 
approached, so that it is increasingly difficult to distinguish individual 
transitions. In Fig. 9c the adsorption isotherm for T = 0.6Tc is plotted. 
Only a few "bumps" remain as evidence of the transitions that occurred 
at lower temperatures. Each layering transition ends at a critical tem
perature, but these are calculated to be ::50.6Tc. Since the density func
tional theory is mean-field like, effects of roughening are omitted. We 
might expect the incorporation of fluctuation effects in the edge of the 
growing film to wash out some of the higher n transitions. Although the 
results in Fig. 9 certainly suggest that discrete transitions between layered 
liquid films should occur, they raise many queries (99]. Are the first one 
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c 

Fig. 9 (Continued) (C) Adsorption isotherm forT = 0.6Tc. All first-order tran
sitions have disappeared, implying that the critical temperatures Tc.n of (at least) 
the first nine transitions lie within the range 0.5Tc < Tc,n < 0.6Tc. (Redrawn from 
Ref. 99.) 

or two layers liquidlike or does spontaneous crystalline ordering (parallel 
to the wall) occur for such large local densities and deep substrate po
tentials? If so, what is the nature of the crystalline phases? In principle 
such a query could be answered within the context of the density func
tional approach [93], but this requires some delicate parametrization of 
p(r). What is the locus of the line of layering critical points Tc.n? Is this 
line strongly influenced by T R and Ttr? Does it depend sensitively on the 
form of the substrate-fluid potential? Simulation studies can provide an
swers and some important progress has been made [100]. 

Such issues attract much attention from experimentalists working on 
multilayer adsorption. There is a growing amount of evidence, for gases 
adsorbed on graphite, that transitions between layered liquid films do take 
place. Ethylene [171,172], ethane [173], and oxygen [174] are cases where 
up to seven or eight discrete steps in the adsorption have been resolved 
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in ellipsometric or heat-capacity studies for T > Ttr. Very recent ellip
sometric data for argon [ 168] point to a sequence of first --order transitions 
for isotherms in the range 72 s T s 77 K. These transitions, which cor
respond to the addition of an "ordered layer displacing the disordered 
surface outward by one layer," seem to be similar to those described in 
Fig. 9. However, the critical points Tc.4 to Tc.1 are at about 77 K, which 
lies below Ttr 83.8 K. The surface phase diagram in this system is very 
rich Il68], and a detailed interpretation of the various phases and their 
transitions remains a challenging task. 

Finally, we should note that the criticality of layering transitions, like 
that of prewetting, should lie in the d = 2 Ising universality class. Whether 
fluctuation effects lead to significant departures of Tc.n from their mean
field (density functional) values remains to be seen. 

D. Phase Transitions in Confined Fluids 

There have been many applications of the density functional approach to 
determining the microscopic structure and the phase equilibria of fluids 
confined in model pores or capillaries. Open cylinders and slits, with 
infinite interior interfacial area A. are the most popular models. Usually, 
one envisages a reservoir of fluid in contact with the pore so that fluid 
molecules can be adsorbed on the interior substrate of the cylinder and 
on the two interior substrates of the slit. Those substrates then exert a 
confining external potential V(r) on the fluid. Minimization of the (ap
proximate) grand potential functional !1v[p] yields the equilibrium density 
profile p(r) and grand potential of the confined fluid, which is then a 
function of f.L,T and the pore width or radius. 

From the viewpoint of phase transitions, the new feature associated 
with adsorption in a pore, rather than at a single substrate (wall), is the 
presence of an extra thermodynamic field. For slit geometry an increment 
in grand potential is given by 

d!1 = -p dV SdT- N df.L + 2'Y dA Af dL (165) 

The standard (bulk) terms are augmented (see also Chapter 2) by the 
surface work term: 2'Y is the total wall-fluid interfacial tension,* and the 
new term, which represents the work done when the wall separation L, 
is increased by an amount dL. The conjugate density to L is the solvation 
force f, which can be expressed as a pressure difference 

f= 1 (an) 
A aL fL.T.A 

p (166) 

• Strictly, excess grand potential. 
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where p(!L, T) refers to the pressure in the reservoir. Only in the limit L 
___,. oo does f vanish. In cylindrical geometry the interior radius Rc plays 
the same role as L but there is no simple analog for f. 

The phase transition that first comes to mind for confined fluids is 
capillary condensation-the phenomenon whereby a gas at chemical po
tential 1-L < I-Lsat condenses to a dense, liquidlike phase that fills the pore. 
This corresponds to a shift of the bulk liquid-gas transition resulting from 
finite-size effects and the presence of attractive wall-fluid forces. Cap
illary condensation occurs when the walls favor liquid, so that the contact 
angle e < rd2. If the walls favor gas, e > rd2, capillary evaporation of 
liquid occurs for 1-L > I-Lsat. Density functional calculations have provided 

· much insight into the physics of capillary condensation, the nature of its 
criticality, and how it competes with surface phase transitions such as 
prewetting and layering, which can still occur for confined fluids. They 
have also formed a valuable tool for understanding various features of 
the solvation force for simple fluids. We do not review this subject here 
but refer the reader to a survey by the present author [71]. In Chapter 8 
Lozado-Cassou reviews other theoretical work on confined fluids. 

VI. CONCLUDING REMARKS 

In this chapter we have reviewed many approximate density functional 
treatments of nonuniform classical fluids. We should therefore be in a 
position to answer the following query. Suppose that an enthusiastic grad
uate student comes to your office with an exciting idea about a new in
terfacial phenomenon. He or she wishes to develop some microscopic 
theory for this (equilibrium) problem and has heard that the density func
tional approach is the thing to use but is confused by the plethora of 
possible approximations. Which recipe or recipes do you recommend? 
This would be my advice. The simple van der Waals approximation (53) 
is always a good starting point. It will often indicate what gross features 
of the structure and phase equilibria are to be expected for the particular 
problem under consideration. Once these have been understood it is usu
ally necessary to adopt a nonlocal treatment of repulsive forces that will 
incorporate realistic short-range correlations, packing effects, and so on. 
Naturally, this is crucial for problems that involve layering or require a 
very detailed knowledge of the microscopic structure of the fluid. Al
though the WDAs appear to be the most versatile, there are many of 
these. On the basis of the results and the discussion in Sections III.E and 
III.F, it is fair to conclude that two of the earlier recipes remain the most 
successful. (A glance through the list of references will indicate why the 
author should confess to being a little biased.) Tarazona (Mark II) has 



Density Functlonals In Nonuniform Fluids 169 

been implemented for the widest variety of problems. Curtin-Ashcroft 
(CA) seems to lead to similar results but has been less widely applied and 
requires more computational effort. Although the more recent recipes 
attempt to improve on these earlier versions, it is not clear that they do
except in a few very specialized cases. (The situation is somewhat dif
ferent for freezing, where approximations based on position-independent 
weight functions might be expected to be equally useful. The author offers 
no advice in this case.) 

Compared with theories of bulk liquids. where modern integral equa
tion approaches are embarrassingly accurate, the density functional ap
proximations described here are quite primitive. It is likely that integral 
equation theories based on the inhomogeneous Ornstein-Zernike equa
tion and some sophisticated closure approximation made at the pair level 
(see Chapter 4) will prove more accurate for the calculation of the one
and two-body distribution functions of nonuniform fluids. However. these 
theories have the disadvantage of ( 1) requiring major computational effort 
and (2) not yielding the free energy of the fluid directly; this makes their 
application to the calculation of surface tension and of phase equilibria 
problematical. Methods based on the variational principle for ilv[p] 
should continue to have the edge as regards the thermodynamic prop
erties. We have emphasized that density functional calculations comple
ment computer simulations. especially in the context of phase transitions. 
The determination of global phase diagrams via simulation can be a daunt
ing task. The density functional results can point to what types of tran
sition might occur and where they might be located. 

What developments can be expected? There is no doubt that the search 
for more accurate free-energy functionals will continue. For hard-sphere 
fluids, or fluids with purely repulsive interatomic forces, the WDA does 
seem to capture the essential physics. Finding an improvement on the 
simple mean-field treatment of :fau{p] is necessary if a quantitative de
scription of pairwise correlations is to emerge for more realistic fluids. 
Of course, this is also necessary if a theory is to incorporate the effects 
of capillary-wave fluctuations, or indeed, of any type of critical fluctuation 
in the nonuniform fluid. Further work on the structure of uniform liquids, 
in the spirit of Section IV, might shed some light on what does constitute 
an accurate approximation for the full functional :f[p]. However, it seems 
unlikely that theories based on a free-energy functional will be serious 
competitors to the modern integral equation theories of uniform liquids. 
What is likely is that existing density functional approximations will find 
much wider application. For example, work on the crystal-liquid inter
face, on nucleation (Chapter 10), and on the adsorption of simple liquids 
and their mixtures at substrates is still in its infancy. Techniques de vel-
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oped for simple fluids are already being extended successfully to more 
complex fluids. This process will certainly continue, guaranteeing that 
the subject remains ebullient. (Note: This chapter was submitted in No
vember 1990. No attempt has been made to include new material.) 
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I. INTRODUCTION: BULK FlUIDS 

Bulk fluids are considered first. equations have been employed 
to calculate the structure and thermodynamic properties of bulk liquids 
and dense fluids for the past six decades or so. Most of the progress has 
occurred in the past three decades, during which perturbation theory and 
integral equations based on the Omstein-Zernike equation have been 
developed. 

The integral equation approach, although more difficult numerically 
than perturbation theory, has the advantage of wider applicability. Per
turbation theory has been very successful for simple dense fluids com
posed of spherical molecules interacting with van der Waals forces, but 
has not been notably successful for molecules fluids composed of non
spherical molecules or for fluids in which there are density inhomogene
ities. The integral equation approach is applicable to all of these systems. 
For a comprehensive review of the theory of liquids, see Barker and 
Henderson (l976) or Hansen and McDonald (1986). 

The integral equation theories give equations for correlation functions. 
The h-particle correlation function as defined by 

p("l(rt· · ·rh) 

Pbh (N 
(l) 
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where the bulk density Pb = N/V, Nand V being, respectively, the number 
of molecules in the fluid and the volume of the fluid, f3 = IlkT (k is 
Boltzmann's constant and Tis the temperature), and <P(r1···rN) is the total 
potential energy of the system. The generalization of (l) to mixtures is 
quite straightforward. The case of the pair correlation functions, g(r 1 h), 
is of particular interest. The superscript 2 is dropped for notational con
venience. 

For simplicity, it has been assumed that the correlation functions are 
functions of position. For molecular fluids, the correlation functions are 
functions of position and orientation. Equation (I) still applies to molec
ular fluids. However, r; should be interpreted as a generalized position 
of the ith molecule including spatial and orientation variables. In actual 
fact there have been few calculations for inhomogeneous molecular fluids, 
so that, in general, r; will be interpreted as the spatial position of molecule 
i. 

The potential energy can be written as the sum of the pair energies. 
the triplet energies, and so on. In this chapter. triplet and higher-order 
terms will not be considered. Thus 

N 

<P(r1• .. rN) = 2: u(r;,rj) (2) 
I<}= I 

If (2) is satisfied, the system can be said to be pairwise additive. In most 
applications, the pair energy depends only on the separation of the center 
of mass of the two molecules, so that the pair potential can be written as 
u(rii), where rii = I r; - r1 I . Similarly, the pair correlation function for 
such a fluid would be g(rd. 

For the systems considered in this chapter, model potentials will be 
used. Two widely used model potentials are the hard-sphere potential 

u(r) = {; 

and the Lennard-Jones 6-12 potential 

r < d 
r < d 

u(r) = 4eu[ (cr;-') 12 (cr;-') 6 ] 

(3) 

(4) 

For bulk fluids, thermodynamic properties can be calculated from the 
partition function, the denominator in (1), or from g(r). Thus the equation 
of state calculated from 

kT(~; )T = 1 + Pb J h(r) dr (5) 
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where h(r) = g(r) - l, is called the total correlation function, 

l J au(r) 6 ~p r-;;;:- g(r) dr 

or 

~U = ~ + !~P f u(r)g(h) dr 
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(6) 

(7) 

where p and U are the pressure and internal energy, respectively. Equa
tions (5). (6), and (7) are called the compressibility, pressure (or viria/), 
and energy equations, respectively. Equations (6) and (7) are valid only 
for pairwise additively, whereas (5) is general. 

The emphasis in this chapter is on the calculation of correlation func
tions by means of integral equations. One such integral equation can be 
obtained by differentiating g<hl(r2 • .. rh) with respect to rt. Using (I) and 
assuming that only pair potentials contribute to 4> yields 

where 
as 

h 

1· ·h) 
}=2 

1· ··h) ;.;U'l(r~···rh). and so on. For h 2. (8) can be rewritten 

_ kT a In g(12) = au(I2) + Pb J g 0 l(l23) dz + rl3 - d3 au( B) dr
3 

arl2 arl2 g(l2) 2rl2rl3 arn 

(9) 

Equation (9) is usually referred to as the first Born-Green (BG) equation 
(Born and Green, 1946). 

To solve (9), g<3l(l23) must be approximated. The best known and 
simplest approximation is the superposition approximation (Kirkwood, 
1935), 

g<3>(123) = g(l2)g(l3)g(23) (10) 

This approximation is exact only in the limit of vanishing density. A sim
ilar-looking approximation is 

g<3l(ijk) = g(ij)g(jk) (II) 

where riJ and rjk are both smaller than r;k. Equation (1 I) is not exact at 
any density. However, it seems to be useful for hard spheres when the 
centers of the three spheres form a straight line. 

As mentioned, the superposition approximation (SA) is valid at low 
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densities. It may be corrected systematically by means of an expression 
in powers of Pb· Thus 

g(l23) = g(l2)g(13)g(23>[ I + Pb J f(l4)f(24)f(34) dr4 + ··· J (12) 

where 

f(ij) = exp[ f3JL(ij)] (13) 

Now 

h(ij) = fU.f) + Pb[l + f(ij)] J f(ik)f(jk) drk + ··· (14) 

Using this, (14) can be rewritten with a renormalized integand, giving 

g(123) g(l2)g(l3)g(23>[ 1 + Pb J h(l4)h(24)h(34) dr4 + ··· J (15) 

or 

g(l23) g(l2)g(13)g(23) exp[pb J h(l4)h(24)h(34) dr4 + ···] (16) 

In addition to approaches based on the BG equation, a second class 
of approaches can be formulated using the Ornstein-Zernike (OZ) equa
tion (Ornstein and Zernike, 1914): 

h(l2) c(l2) + Pb J h(l3)c(23) dr3 (17) 

or 

(18) 

where c(r) is the direct correlation function. The integral in (l7) is called 
a convolution. The asterisk in (18) denotes a convolution integral. The 
OZ equation is nothing but a definition of c(r). If h(r) is known, c(r) can 
be calculated. Although the relation between c(r) and h(r) is complex in 
r space, it is simple in Fourier space, where (17) becomes 

h(k) = c(k) + Pbh(k)c(k) (19) 

or 

c(k) 
h(k) 

(20) 
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where 

- 41T ("' 
h(k) = T Jo sin kr h(r) dr 

is the Pourer transform of h(r), and so on. Equation (20) leads to 

1 - PbC(k) = [1 + Pbh(k)] I 

181 

(21) 

(22) 

Equation (22) means that (5), the compressibility equation, can be written 
as 

13( iJp) = 1 - Ph J c(r) dr 
iJpb T 

(23) 

since the integrals in (5) and (23) are just h(O) and c(O), respectively. The 
idea behind the OZ equation is that h(r) is divided into two terms: the 
direct correlation function c(r) and an indirect term, the convolution in
tegral, which gives the correlation between molecules I and 2 resulting 
from the presence of a third molecule. This division is somewhat arbitrary. 
Presumably, it was chosen for its simplicity in Fourier space. Also, Om
stein and Zemike were interested in light scattering, so Fourier transforms 
were of natural interest to them. Even so, the division seems appropriate. 
The direct correlation function. in general. has a shorter range than h( r) 

and is simple in structure and so is easier to approximate. 
Equation (17) is an identity. To obtain an equation, some ansatz relating 

h(r) and c(r) must be introduced. There are three ansatze in common 
use. They are the Percus-Yevick approximation (PYA) (Percus and Yev
ick, 1958): 

h(r) - c(r) = y(r) - l 

and the hypernetted chain approximation (HNCA): 

h(r) c(r) = In y(r) 

(24) 

(25) 

The HNCA was formulated by several authors (Morita, 1958, 1960; van 
Leeuwen et al., 1959; Morita and Hiroike, 1960, 1961; Meeron, 1960a,b,c; 
Rushbrooke, 1960; Verlet, 1960). The third approximation is the mean 
spherical approximation (MSA) of Lebowitz and Percus (1966): 

h(r) = -1 

c(r) = J3u(r) 

r<O 
r > 0 

(26) 

As formulated above, the MSA is used for potentials with a hard core 
such that u(r) is infinite for r < 0. Thus the first part of (26) is an exact 
statement of the nonoverlapping of the molecules. The second part of (26) 
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is the approximation and can be regarded as a linearized version of the 
HNCA, where 

In y(r) = !3u(r) + In g(r) = !3u(r) + h(r) (27) 

The PYA is a good approximation for the hard-sphere fluid but is less 
successful for other systems. The HNCA can be regarded as a comple
ment of the PYA. It is not particularly successful for hard spheres but 
often describes the corrections to the hard-sphere fluid, due to the longer
range attractive forces, rather well (Barker and Henderson, 1976). One 
possibility is to combine the two approximations and use the PYA (or 
even simulation results) for the hard core and the HNCA to compute the 
corrections due to the attractive forces. Such an approach is called the 
RHNCA (reference HNCA}. 

The MSA is identical to the PYA for the hard-sphere fluid since for 
both approximations 

h(r) = -I 
c(r) = 0 

r < d 
r > d 

(28) 

for the hard-sphere fluid. Thus the MSA is quite accurate for the hard 
cores and for many systems, at high densities at least, gives the contri
butions of the attractive forces more accurately than the PYA (but less 
accurately than the HNCA). If the strength of the attractive forces is large, 
the MSA can yield negative values for g(r). Even in this case, the ther
modynamic functions are often quite reasonable. 

Finally, there is the generalization of the HNCA involving bridge dia
grams. Quite formally, 

h(r) - c(r) In y(r) - B(r) (29) 

where B(r) is the sum of all bridge diagrams. This is an infinite sum of 
diagrams that have not even been enumerated, let alone calculated. How
ever, the lowest-order terms are known. For example, 

B(r) !pb2 J f(l3)f(14)f(23)f(24)f(34) dr3 dr4 + (30) 

Just as with (15), this equation can be renormalized to give 

B(r) = lpb2 J h(l3)h(l4)h(23)h(24)h(34) dr3 dr4 + (31) 

There is evidence that B(r) does not depend strongly on the inter
molecular potential. Therefore, if B(r) can be parametrized accurately 
for some fluid, such as the hard-sphere fluid, the resulting B(r) can be 
used in many applications (Rosenfeld and Ashroft, 1979). 
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II. SINGLET THEORY OF INHOMOGENEOUS 
FLUIDS 
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At an interface, the density of the fluid is no longer uniform but is a 
function of position. Thus one can write p(r), or if the wall is flat and 
there is cylindrical symmetry, p(x). The OZ equation can be generalized 
to a mixture 

hii = Cij + 2: Pt:hik*Ck.i 
k 

(32) 

The case of a fluid near a wall can be realized by regarding the wall as 
a giant molecule dissolved in the fluid. Then the inhomogeneous fluid of 
n components, say, can be considered as a homogeneous mixture of n + 
I components containing a giant molecule (which will not be given a 
subscript) whose diameter D and density p has the property (Perram and 
Smith, 1976; Henderson et al., l976a) 

D---+x p->0 

Thus the OZ equations divide themselves into three classes: 

and 

hij = Cij + L Pt}1ik*Ckj 
k~l 

h, = Cj + L Pkhk*Cki 
k l 

h c + L Pkhk*Ck 
k=l 

(33) 

(34) 

(35) 

(36) 

The first equation is just the bulk OZ equation. The second equation has 
the form 

where 

~dx,t) = ("' ck1(s)s ds 
Jlx-ti 

(37) 

(38) 

The function ck1(s) is the bulk direct-correlation function. Its appearance 
in (35) and (37) is not an approximation. Equations (35) and (37) are merely 
definitions of c1(x). Once h1(x) is known, the density profile can be ob
tained from 

p1(x) p1[l + h;(x)] (39) 
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Lozada-Cassou (1981, 1982) has obtained (35) and (37) by an interesting 
alternative argument. 

Equation (36) is also of interest because the force between two giant 
molecules can be calculated from 

a 
F= -kT-lng(x) ax (40) 

Note that, in contrast to (34) and (35), no iterations are required for a 
numerical solution of (36). 

Equations (34) to (36) can be solved using the different approximations 
mentioned above. One is under no obligation to use the same approxi
mation throughout. For example, one could use the MSA to solve (34) 
and the HNC to solve (35) obtaining what is called the HNCI/MSA equa
tion for (35). The number 1 following HNC is meant to denote that the 
theory is a singlet HNC theory, in contrast to pair theories, which will 
be considered presently. Similarly, (35), or (37), will be referred to as the 
OZ 1 equation. 

Lebowitz (1964) has solved the PY equation for a mixture of hard 
spheres. His results can be used to obtain analytic results for the Laplace 
transform of the correlation functions for hard spheres near a hard wall 
(HS/HW) or for the force between two large hard spheres in a fluid of 
small hard spheres. These transforms can be inverted (Smith and Hen
derson, 1970; Henderson and Smith, 1978; Henderson, 1988). 

In Fig. I, the singlet PY (PY I) results (Henderson et al., 1976a) for the 
HS/HW system are plotted. The agreement with the computer simulations 
(Snook and Henderson, 1978; Henderson and van Swot, 1984) is quite 
good except in the immediate neighborhood of the wall. At contact the 
PYl (or MSAI) results for the HS/HW system (Carnie et al., 1981) is 

( 
a ) 112 

p(O) = Pb f) a:b (41) 

where f:)aplapb is the PY compressibility result. Equation (41) is valid, in 
the MSA 1, for any fluid near a hard wall. It is to be compared with the 
exact result (Henderson et al., 1979), valid for any fluid near a hard wall, 

p(O) = f:)p (42) 

obtained from force balance considerations. For comparison, the corre
sponding HNCI result is 

p(O) = iPb ( 1 + f) ap ) 
apb 

(43) 
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Fig. 1 Density profile of the hard-sphere fluid near a hard wall. The points give 
the computer simulation values of Snook and Henderson ( 1978) and the curve 
gives the PYI results (Henderson eta!., 1976a). 

At low densities, (4l) and (43) agree with (42). However, as the density 
is increased, p(O), as given by (41), is too small and p(O), as given by (43), 
is too large. Nonetheless, since p(O) and ~iJpliJpb are both large for hard 
spheres, the PYl and HNCI results are at least qualitatively correct for 
the HS/HW system. 

The situation is less favorable for some other systems. For example, 
(41) to (43) are valid for any fluid at a hard wall. At low densities, (41) 
and (43) are correct. They are also qualitatively correct at high densities 
and at high temperatures where the repulsive forces in the fluid dominate. 
However, for a liquid in equilibrium with its vapor (or at least nearly so), 
p = 0, whereas ~iJpliJpb is large. Thus (41) and (43) will yield substantial 
errors. This can be seen in Fig. 2, where the density profile of a Leonard
Jones liquid in equilibrium with its vapor (or at least nearly so) is dis
played. The PYl results (Sullivan and Stell, 1976; Sullivan et al., 1980; 
Plischke and Henderson, 1986a) fails to show the layer of vapor near the 
wall (wetting by the vapor) seen in the simulations (Abraham, 1978). 
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Fig. 2 Density profile for a Lennard-Jones fluid near a hard wall. The points 
give the computer simulation values of Abraham (1978) and the curve gives the 
PY! results (Plischke and Henderson, 1986a). 

Molecules interacting by the Yukawa pair potential 

r <a 
u(r) (44) 

r >a 

and near a wall for which the surface/molecule is an exponential 

{
oo X< 0 

V(x) = -ewe-1-..~x X > 0 (45) 

have been examined by Henderson et al. (1976b) using the MSAI. Al
though the profiles themselves have the same difficulties as those shown 
in Fig. 2, the absorption isotherms, defined by 

r = L= [p(x) - Pb] dx 

= Pb L"' h(x) dx 

(46) 
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are more physical, at least in certain regions. The result which they ob
tained is 

(47) 

where a = (j3ap/apb) 112 and 'TJ = 1r~ /6. The expression for the parameters 
C.., is complex (Henderson et al., 1980) but is simple if V(x) is short range, 
Aw-+ oo (Ewl!...., finite). For this case 

(48) 

so that 

r (49) 

Hence r diverges when a__, 0. This is not a satisfactory theory of wetting 
since r should diverge near the coexistence curve not at a = 0, which is 
inside this curve. Further, (49) cannot be used to describe wetting by a 
vapor since r should be negative for this case. Even so, (49) might be 
useful for supercritical isotherms or as a semiempirical isotherm for ab
sorption of a vapor. 

There has been some work on inhomogenous molecular fluids. For 
example, Badiali (1985) has studied dipolar hard spheres near an un
charged flat wall using a cluster expansion and finds that they tend to lie 
flat near the walL Torrie et al. (1988) have applied the RHNCAl to wa
terlike molecules at a charged hard but not flat wall and find that when 
the wall particle is large (the diameter of the wall particle is 30 times that 
of the dipole's hard sphere) there is an '' icelike'' structure near the ''wall'' 
which is not present at smaller diameters of the wall particle. This struc
ture tends to persist even when the "wall'' is charged. Unfortunately, 
Torrie et al. were not able to obtain solutions for infinite wall particle 
diameter. More recently, Torrie et al. (1989) have used the RHNCAI for 
dipolar hard spheres at a charged hard, but not flat, wall and finds that, 
in contrast to the waterlike fluid, the dipolar fluid is not highly structured 
near the wall. These are important and fascinating results. However, it 
should be kept in mind that the relevance of these results to flat walls or 
electrolytes with significant electrostatic screening has yet to be estab
lished. 

There has been some work on inhomogeneous molecular fluids using 
the RISM (reference interaction sphere model). Briefly, the RISM ap
proach considers the molecule fluid to be a collection of spheres with a 
o-function interaction between spheres of the same molecule and a regular 
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pair potential for the intermolecular interaction between spheres in dif
ferent molecules. One of the integral equation approximations is applied 
to calculate the sphere-sphere correlation functions. The inhomogeneous 
case can be realized by considering a mixture consisting of one giant 
sphere dissolved in the molecular RISM fluid. Sullivan et al. (1981) have 
used this approach to consider a fluid of hard dumbbells. They find that 
as the density or the distance between the spheres in the dumbbell is 
increased, there is an increasing tendency of the spheres near the wall to 
orient themselves parallel to the wall. A more recent study is that of 
Borstnik and Janezic (1989), who use RISM to study SOz at a soft planar 
wall. 

To complete this section, some recent applications of (36) will be con
sidered. Henderson and Lozada-Cassou (1986) and Henderson (1988) 
have used the PY results (Lebowitz, 1964) to calculate the force between 
two large hard spheres in a fluid of small hard spheres. The resulting force 
is shown in Fig. 3. The oscillations are core exclusion effects and are in 
agreement with the oscillatory forces measured by Israelachvili and col
leagues (Israelachvili, 1985, and references cited therein). Prior to ls
raelachvili's studies, it was thought that the force between macrospheres 
would be monotonic. 

Strictly speaking, Henderson and Lozada-Cassou used the PYA for 
(34) and (35) but used the HNCA for (36). If they had used the PYA 
throughout, the force would be proportional to the exp(D) rather than D, 
as should be the case. Since h and c do not appear in the convolutions 

0 2 
x/d 

3 4 

Fig. 3 Force between two giant spheres immersed in a hard-sphere fluid whose 
density is pd3 = 0.8. The quantities d and R are the diameter of the small sphere 
and the radius of the large spheres, respectively. 
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in (36), the Lebowitz values for these PYA values for these convolutions 
can still be employed. In any case, with this hybrid scheme, they obtain 
correctly F ex: D. 

In addition to the core exclusion effects discussed above, there are 
other forces, of course. These might be van der Waals attractive forces, 
analogous to the r- 6 term in (4) or electrostatic forces (usually repulsive). 
The effects of these terms is considered by Henderson and Lozada-Cassou 
(1986). 

Lozada-Cassou (1984) has developed an interesting alternative ap
proach to Eq. (36). Instead, he uses (35) to describe a fluid between two 
macroparticles, but considers the giant particle in (35) to be a dumbbell 
of macrospheres. In this way he can calculate the force between two 
macrospheres, or the pressure between flat walls, from (35). Lozada
Cassou discusses this approach in detail in Chapter 8. 

Ill. PAIR THEORY OF INHOMOGENEOUS FlUIDS 

In the preceding section, a theory of inhomogeneous fluids that involves 
only singlet functions has been outlined. This approach is very useful for 
many applications (e.g .. hard at a hard wall and the electrified 
interfaces discussed in Chapter 6). However, it fails for some other ap
plications. This failure is not due to the formalism. It is a failure of the 
ansatz used. Systematically including bridge diagrams would remove 
these problems. 

Another approach is to generalize (17), the OZ equation, to an inhomo
geneous fluid by moving the density, which now depends on the position, 
inside the integraL Thus 

h(l2) c(l2) + J p(3)h(l3)c(23) dr3 (50) 

To distinguish this equation from the OZI equation, (50) will be referred 
to as the OZ2 equation. This equation can be coupled with one of the PY, 
HNC, or MSA ansatze to yield the PY A2, HNCA2, or MSA2 equation. 

However, in contrast to the previous theories, the pair theories require 
an additional equation relating p(x) to the pair functions. Two relations 
have been used. The first is the first Born-Green (BG) equation (Born 
and Green, 1946), 

-kT a In p(x) 
ax 

aV(x) 

ax 

f oe J."' au(r) + 27T (x - x')p(x') dx' -- g(x,x',R) dr 
-= lx-x'l iJr 

(51) 
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and the second is the Lovett-Mou-Buff-Wertheim (LMBW) equation 
(Lovett et al., 1976; Wertheim, 1976), 

-kTa In p(x) = aV(x) - 2'1TkT f"' ap(~') dx' {"' Rc(x,x' ,R) dR (52) 
ax ax -oo ax Jo 

In (51) and (52) V(x) is the external potential between the wall and a fluid 
molecule and u(r) is the usual pair potential among the fluid molecules. 
The surface has been assumed to be flat so that there is cylindrical sym
metry. Thus p(r) = p(x) and g(r1 ,r2 } = g(x1 ,x2 ,R 12), where Xt and x2 give 
the perpendicular heights of the two molecules above the surface, 

(53) 

as usual, and R 12 is the projection of the preparation of the two molecules 
onto the plane of the surface so that 

(54) 

With the use of the OZ2 equation, the LMBW equation can be written 
in the equivalent form 

k a In aV(x) l"" f= aV(x') d - T-__:_;;_-'-=---2'1T RdR p(x')h(x,x',R) , x' 
ax ax 0 -= ax 

(55) 

Equations (51) and (52) [or (55)] can be obtained (Henderson and Plischke, 
1987) from (9) by generalization to a mixture and allowing one species to 
be very large but present in infinite dilution. If molecule I is the large 
molecule, the LMBW equation results; whereas if molecule I is a fluid 
molecule, the BG equation results. 

For the HS/HW system, (51) becomes 

a In p(x) 2 lx+d ( ') ( ')G( ') d , = 'IT X - X p X X,X X 
ax [O.x-d] 

(56) 

where [0, x - d] indicates that the maximum of 0 and x - d is to be used 
and G(x,x') is the value of g(x,x' ,R) when the two spheres at a height of 
x and x' above the surface are in contact. For any simple fluid near a 
hard wall, (52) becomes 

a In p(x) = p(O)K(x,O) + {"" ap(~') K(x,x') dx' (57) 
ax Jo ax 

where 

K(x,x') = 2'1T L"" Rc(x,x', R) dR (58) 
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and (55) becomes 

a In p(x) = 2'1Tp(0) f"' Rh(x,O,R) dR 
ax Jo (59) 

Equations (57) and (59) are equivalent as long as h and c are related by 
the OZ2 equation. 

Modified versions of the LMBW equation can be obtained by substi
tuting the contact value theorem, Eq. (42), into the right-hand sides of 
(57) and (59). This yields 

and 

a ln p(x) = ppK(x,O) + ("" ap(x') K(x.x') dx' (60) 
ax Jo ax' 

a In 
ax 

= 21T(3p l"' Rh(x,O,R) dR (61) 

As long as no approximations have been made, this substitution is only 
formal. No change has been made. However, if some approximation is 
used, the LMBW and modified LMBW equations will not be equivalent. 
Equations (59) to (61) are to the case of a hard wall 
with a longer-range tail, that is. 

V(x) = { ~(x) x<O 
x>O 

(62) 

The contribution of the longer-range part of V(x) in (52) and (55) must be 
included and the contact value theorem must be generalized (Henderson 
et al., 1979) to yield 

L= aV(x) 
kTp(O) = p + -- p(x) dx 

0 ax 
(63) 

There is no modified version of the BG equation because p(O) does not 
occur in this equation. Also, the BG equation has the interesting property 
that this equation yields a p(x) that satisfies the exact contact value theo
rem with the pressure calculated from (6) using whatever the approxi
mation gives for the bulk g(r) (Carnie and Chan, 1981; Henderson et al., 
1981). Since (6) often gives poor results, the BG equation may give poor 
results for p(O) even though the exact contact value theorem is satisfied 
in a formal sense. The LMBW equation does not satisfy the exact contact 
value theorem. There is no known contact value theorem for the LMBW 
equation [i.e., there is no explicit formula for the LMBW p(O)]. Even so, 
the LMBW equation usually gives good values for p(O). They are generally 
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better than those obtained from the corresponding singlet equation and 
are often as good, or better, as those obtained from the BG equation, 
especially if the modified versions are used. The LMBW equation in
volving c(x1 ,x2 ,R) is often the easiest equation to use numerically because 
(49) and (53) involve the longer-ranged function g(x1 ,x2 ,R). Additionally, 
the BG equation focuses its attention on the region where the derivative 
of exp[ ~u(r)] is large. Also, if the molecules have a hard core, extrap
olation to the hard-core diameter may be involved if the BG equation is 
used. 

Sokolowski (1980) has solved the PY2 and LMBW equations for the 
Sokolowski HS/HW system for low values of pd3

• Plischke and Hender
son (1986a) have solved these same equations for moderate to high hard
sphere fluid densities. As shown in Fig. 4, the resulting density profiles 
are much better than those of the PY I theory. Only at contact is there 
any error in the PY2 results. Whether this is due to numerical errors or 
to deficiences in the PY approximation is not known. In any case, Plischke 
and Henderson ( 1990) have repeated the calculation using the modified 

x/d 

P. d3 =0.81 
b 

Fig. 4 Density profile of the hard-sphere fluid near a hard wall. The points give 
the computer simulation values of Snook and Henderson (1978) and the curve 
gives the PY2 values (Plischke and Henderson, l986a). 
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LMBW equation and obtained improved results. The contact values for 
p(x) are nearly exact. KjeUander and Sarman (1988) have also applied the 
PY2 theory to the hard-sphere/hard-wall (HS/HW) system with good suc
cess. 

The pair correlation functions for the HS/HW system can also be com
pared with computer simulations. Such a comparison is made in Figs. 5 
and 6 for the contact values, G(xt ,xz). For the configuration Xt = Xz = 
x shown in Fig. 5, G(xt ,x) is quite featureless. On the other hand, for the 
configurations shown in Fig. 6, where one sphere is at the wall and the 
other sphere slides over its surface until the line of center is perpendicular 
and then the pair moves away from the surface, G{xt ,x2 ) oscillates 
strongly. 

The PY2 values at contact are too small (a common feature of the PYA). 
However, the curves parallel the computer results, so the PYA gives 
reasonable results. The contact values in Figs. 5 and 6 have been described 
quite well by Henderson and Plischke (!985). For x 1 x2 x (Fig. 5) 

g(x.x,R) = I + c(x.x)h(r) (64) 

where h(r) is the bulk total correlation function and c(x 1 ,x2 ) is a function 
depending on Xt and x2 and the density. An examination (Piischke and 
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Fig. 5 Values of G(x 1 ,x2) for hard spheres near a hard wall for Xt = x2 = x. 

The dashed curve gives the results of the Henderson-Plischke fit [Eq. (68)] and 
the solid curve gives the PY2 results. The points give some of the simulation 
results of Snook and Henderson (1978). 
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Fig. 6 Values of G(x1 ,x2 ) for hard spheres near a hard waiL The curves and 
point have the same meaning as in Fig. 5. 

Henderson, 1984) of the density expansion of g(x 1 ,x2 ,R) in the limit of 
zero density shows that c(O,O) = ! at low densities. As the density in
creases, c(O,O) increases. Further, as x 1 and x 2 increase, c(x1 ,x2 ) --). I. 
Henderson and Plischke (1985) found that reasonable results could be 
obtained by using 

-{c + HI _ c{3(x,: xz) c(x, ,xz) -

1 

(65) 

They found that c is given quite well by 

c = 0.5 + 1.03pd3 
- 0.5p2d 6 (66) 

For R = 0 (orr = I x, - x2 j), the configuration depicted in the singlet 
panel of Fig. 6, the shielding approximation of Percus (1980), 

g(O,x, ,Xz) = ( ) g(r) 
P Xmax 

(67) 

where X max is the greatest of x 1 and x2 , is quite accurate. The interpolation 
formula, based on (64) and (67), 

G(x 1 ,x2 ) = (x, d-(xz)pg)(d) + _d_-----'---'----'---' [I + c(x,.xz)h(d)J (68) 
P Xmax d 
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gives a good description of G(xt .x2 ) in the left panel of Fig. 6. Further 
details can be found in Henderson and Plischke (1985). 

It is interesting to note that if the surface is regarded as a third (giant) 
molecule, the shielding approximation is just (11), and for c = l, (64) is 
just the superposition approximation. 

The PY2 theory has also been applied (Piischke and Henderson, 1986b) 
to a Lennard-Jones fluid near a hard wall. As can be seen in Fig. 7, the 
PY2 theory correctly predicts the wetting of the wall by the vapor when 
a liquid is near its vapor pressure and close to a wall. 

A related problem is the wetting of the wall by the liquid when a vapor 
is near a wall. This problem has been studied by Nieminen and Ashcroft 
(1981), Forbes and Ashcroft (1982), and Hildebrand and Nieminen (1984) 
using the HNC2 equation with an approximation to the contribution of 
the bridge diagrams without finding evidence of wetting. However, Bruno 
et al. (1986, 1987), using a different approximation for the bridge diagrams, 
find evidence of wetting. 
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Fig. 7 Density profile for a Lennard-lones fluid near a hard walL The points 
give the computer simulation values of Abraham (1978) and the curve gives the 
PY2 results (Plischke and Henderson, 1968a). 
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IV. SIMPLE APPROXIMATIONS FOR THE PAIR 
FUNCTIONS 

Henderson 

If g(x 1,x2,R 12 ) or c(x1 ,x2,R12) could be approximated directly and then 
used with either the BG or LMBW equation, a considerable savings in 
computer time (and memory!) could be achieved since the OZ2 equation 
need not be used. The simplest approximation would be the use of the 
bulk functions g(r12) or c(r12). The approximation 

(69) 

is just the superposition approximation [Eq. (10)] if the surface is regarded 
as a third (giant) molecule. If this approximation is substituted into the 
BG equation. the integration over x can be performed analytically. For 
the specific case of the HS/HW system, the result is 

f
x+d 41T 

In p(x) = In Ph - 1rg(d) [I - (x - x')2 ]p(x) dx + 
3 

pg(d) 
[O.x-d] 

(70) 

where [O,x - d] means that the maximum of 0 and x - dis to be used. 
Henderson and Plischke (1986) have solved this equation. The results are 
not very good. The contact value is correct, but the oscillations are out 
of phase and too large in amplitude. 

Equation (69) can also be substituted into the LMBW equation. The 
result, for the HS/HW system, is 

In p(x) = In Ph - 21Tp(O) L= y(y - x)h(y) dy (71) 

This equation does not even have a solution, except at low densities. 
However, the modified version of (71), 

In p(x) = In Ph - 21T(jp L"' y(y - x)h(y) dy (72) 

does at least have a solution. It is, however, not very good. 
The shielding approximation 

g(x1,x2,R 12) = ( ) g(r12 ) 
P Xmax 

(73) 

when substituted into the BG equation, also yields an equation for which 
the x integration can be performed analytically. For the HS/HW system, 
the result is 

p(x) = Pb - 7rpbg(d) Jx [1 - (x - x'f]p(x') dx' (74) 
[O.x-d] 
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Henderson and Pliscbke (1986) have also solved (74). The results are not 
very good. The contact value is correct, but the oscillations are damped. 

A more promising approach is to correct (69) systematically in the spirit 
of (15) or (16). In lowest order 

g(x1 ,x2 ,R12) = g(r12>[ 1 + J h(l3)h(23)p(3) dr3 + ···] (75) 

or 

No results have yet been obtained using this approximation, but it, or its 
extensions, should be of value. 

The HNC approximation to (37) can be obtained from a density func
tional expression using the approximation 

(77) 

As a result, it is sometimes suggested that improved results could be 
obtained if the pair direct-correlation function were used in (37). The 
resulting equation would be an integrated version of the LMBW equation. 
However, it is not correct! The bridge diagram enters with a factor of 
unity, not i, if this incorrect procedure is used. 

V. BULK FLUID AS A SPECIAL CASE OF AN 
INHOMOGENEOUS FLUID 

Just as a giant molecule can be thought of as a source of an inhomogeneity, 
one of the molecules in a bulk fluid can be thought of as inducing an 
inhomogeneity. In this way, the theory of inhomogeneous fluids devel
oped in this chapter can be used to produce improved theories of bulk 
fluids. For example, we can use the inhomogeneous Omstein-Zernike 
equation to calculate the correlation function of two molecules in the 
presence of a third molecule; call this g(l2/3). This inhomogeneous OZ 
equation can then be coupled with either the BG or LMBW equation to 
yield the correlation function of one molecule in the presence of a second 
molecule; call this g(I/2). The pair and triplet function can be calculated 
from g(l/2) and g(l2/3). If the PYA, HNCA, or MSA is employed in this 
approach, the results are improved over the original formulations of these 
approximations. For example, in these improved PYA and HNC, some 
bridge diagrams are included. 

Conversely, one could use the singlet OZ equation to yield the cor
relation function of one molecule in the presence of two molecules g(l/ 
23) and from this, the pair correlation function. The possibilities are end-
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less. For example, one could formulate a theory in terms of g(l2/34) and 
use the inhomogeneous OZ equation to obtain a quadruplet correlation 
function. 

Attard (1989) has used the g(l2/3) approach to calculate bulk hard
sphere correlation function with excellent results. Lozada-Cassou uses 
the g(l/23) approach in Chapter 8 to calculate the force between colloidal 
particles. Stell (1975) has given an alternative formulation of Ornstein
Zernike relations for higher-order correlation functions. 
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I. INTRODUCTION 

The aim of this chapter is to illustrate some general properties of Coulomb 
fluids (especially electrolytes) through two-dimensional models having the 
very peculiar property of being exactly solvable. Thus this chapter may 
be considered as an introduction to Chapter 6. 

The structure of three-dimensional Coulomb fluids is strongly depen
dent on the special llr form of the potential, which generates the fun
damental laws of electrostatics and specific features of the screening ef
fect. For mimicking three-dimensional Coulomb systems in two 
dimensions, one must use the two-dimensional Coulomb potential, which 
is logarithmic: The interaction energy between two particles of charges 
e and e' is chosen as - ee' ln(r/L), where r is the distance between these 
particles and L some arbitrary length scale that fixes the zero of energy. 
This logarithmic potential is the one which, in two dimensions, obeys 
Poisson's equation 

r 
A In L = 21To(r) 

and the other equations of electrostatics (the numerical factors, however, 
are different in three and two dimensions). This two-dimensional Coulomb 
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potential has a strength that grows to infinity at large distances; however, 
this causes little trouble, because screening effects generate effective po
tentials that decrease at large distances. 

We deal here with equilibrium properties of classical (i.e., nonquantum) 
systems. We shall discuss mainly two kinds of models. The one-com
ponent plasma (OCP), or jellium, is made of identical particles of charge 
e embedded in a continuous charged background of the opposite sign. 
The two-component plasma (TCP), or Coulomb gas, is made of two spe
cies of particles, positive and negative, with opposite charges, ±e. 

The "charge" e defined here is such that e2 has the dimensions of an 
energy. For a system of point particles at temperature T, the only di
mensionless coupling constant is f = e 2/k8 T (where k8 is Boltzmann's 
constant). This coupling constant is independent of the density, a special 
feature of two-dimensional Coulomb systems. A related property is the 
occurrence of a very simple equation of state. 

For defining a sensible classical model of a three-dimensional two
component plasma, one must introduce some kind of short-range cutoff 
in the Coulomb interactions; otherwise, the configuration integral di
verges when two particles of opposite charges come close to one another. 
On the contrary, for the two-dimensional case, in the high-temperature 
region defined by f < 2, the two-component plasma with pure Coulomb 
interactions is a well-defined system; indeed, a pair of particles of opposite 
charges ±e contributes to the Boltzmann factor by a term exp[- r ln(r/L)] = 
(L/r) 1

', and this term is integrable, in two-dimensional space, near r 0, 
provided that f < 2. However, for f 2:: 2, this term is no longer integrable, 
and this signals that a collapse into neutral "molecules" does occur, un
less some short-range cutoff of the interaction is introduced. With such 
a cutoff, the two-component plasma remains well defined for r 2:: 2, and 
near f = 4, it undergoes the celebrated Kosterlitz-Thouless phase tran
sition to a low-temperature insulating phase. This phase transition is out
side the scope of the present chapter; there is an enormous literature about 
it (for a review, see, e.g., Ref. 1). The one-component plasma with pure 
Coulomb interactions is a well-defined system for any value of f. It be
comes a two-dimensional Wigner "crystal" for r > 142 [2]. 

Our main concern is to build models for the electrical double layer (i.e., 
that arrangement of charges which forms at the interface between two 
conducting media, for instance at an electrode-electrolyte interface). A 
real electrical double layer is a complicated three-dimensional system with 
finite-size ions, a solvent that has a molecular structure, and so on; al
though an electrolyte is well described by classical mechanics, quantum 
effects are important for the electrons in an electrode. The two-dimen
sional solvable models considered here certainly are oversimplified: They 
are purely classical, the particles are pointlike or almost pointlike, the 
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solvent is replaced by a continuous medium. Nevertheless, many features 
of a Coulomb system are closely related to the harmonicity oft he Coulomb 
potential. Therefore, just by using the proper potential, one may expect 
the models to provide an insight into salient properties of electrical double 
layers. Also, the exactly solvable models could be used as a test bench 
for approximate methods. 

Before we turn to inhomogeneous fluids, we shall review the solvable 
models in the homogeneous case. At any temperature, for two-dimen
sional systems of point particles with pure Coulomb interactions, the 
equation of state has a very simple form, which is a rather trivial con
sequence of the mere scale invariance of the logarithmic potential, as 
explained in Section II. More interestingly, exact results for the other 
thermodynamical quantities and the structural properties have been ob
tained, but up to now only for the special temperature such that r = e 2/ 

ksT = 2; at this temperature, the densities and correlations can be com
puted not only for homogeneous systems but also for several physically 
interesting inhomogeneous systems. The solutions at f = 2 are described 
in Section III for the one-component plasma, in Section IV for the two
component plasma. The results are exploited further in Section V. 

II. EQUATION OF STATE FOR SYSTEMS WITH 
PURE COULOMB INTERACTIONS 

The equation of state has the simple form 

p = p(ksT - :ie2
) (1) 

where p is the pressure and pis the number density of the particles. This 
equation of state has the peculiarity that it does not become the ideal gas 
law in the low-density limit. The derivation is based on an elementary 
scaling property [3] of the canonical partition function. 

A. Two-Component Plasma 

For N positive and N negative particles in a domain D of area A, the 
excess canonical partition function (which exists for e 2/ksT = r < 2) is 

1 J J ( 1 ru) 2

N 2 Qex = 2N •• · exp - 2:: e;ej In- IT d r; 
A D D ksT i<j L i= 1 

where e; = :!: e. Introduction of rescaled position variables s; = r; A- 112 

yields 

Qex = exp - -In 2 ( ··· ( exp - 2:: e;ej In su IT d 2s; ( 
Nf A) ( 1 ) 2N 

2 L J1 J1 ksT i<j i=l 
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where now the integral is on a domain I of unit area. Therefore, the 
dependence of Qex upon A is explicitly displayed in the first factor; cor
respondingly, the excess free energy is of the form 

' A Fex = !2Ne- In e + F*(N,T) (2) 

Derivation with respect to A gives (1), where p = 2NIA. Equation (I), 
however, holds only above the critical temperature T = e 2/2ks (f = 2). 
Below that temperature, it is reasonable to believe that the system has 
collapsed into an ideal gas of neutral molecules of density p/2; indeed, (l) 
becomes p (p/2)ks T at f 2. 

B. One-Component Plasma 

The same reasoning as above applies, with minor modifications taking 
into account the presence of a uniform charged background. For a system 
with N mobile particles, the excess free energy is of the form 

(3) 

and the equation of state is also (1), where p = N/A is the number density 
of the mobile particles. 

For the one-component plasma, no collapse occurs, and (1) remains 
valid at arbitrary low temperatures; thus the pressure becomes negative 
for T < e 2/4ks. The occurrence of negative pressures is not a special 
feature of the two-dimensional case; the same phenomenon is present for 
the three-dimensional one-component plasma. Actually, the negativeness 
of the pressure causes no special difficulty, since the background must 
be considered as rigidly maintained at a given density by some external 
constraint. It may also be noted that the pressure which is considered 
here is the "thermal" one, defined by deriving the free energy with respect 
to the area A of the whole system; for systems with a background, how
ever, there are other possible definitions of the pressure, some of which 
are nonequivalent [4]. 

Ill. ONE-COMPONENT PLASMA AT r = 2 

For the one-component plasma, r = 2 corresponds to a special temper
ature at which many more exact results are available. It is convenient to 
work in the canonical formalism. 
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A. Homogeneous Plasma 

We first review the homogeneous case: particles of charge e embedded 
in a uniform neutralizing background. The thermodynamical and corre
lation functions can be obtained as follows [5 ,6]. 

We can start with a system of N particles of charge e confined in a 
disk of radius R; let p NITrR 2 be the number density. The disk also 
contains a uniform background of charge density ep. From elementary 
two-dimensional electrostatics, after some rearrangement one finds for 
the total potential energy (including particle-particle, background-par
ticle, and background-background interactions) 

Ne 2 e2 

- In L + - Tip 2: r/ 
2 2 j 

e 2 2: In ru (4) 
i<j 

where r1 is the position of particle} (the origin is chosen at the center of 
the disk). Perhaps it is worth to note that the uniform background charge 
density - ep creates the nonuniform background particle interaction est 
+ (e 2/2)Trpr/, in agreement with Poisson's equation. 

When f = e 2/k8 T = 2, the Boltzmann factor is 

~) = A IJ e -rrpr} IJ rt 
ksT 1 i<J 

where A is a constant. 
As alternative labels for the positions r1 of the particles, it is convenient 

to introduce the complex numbers z1 = r1 exp(itl;) (where r1 and 81 are the 
polar coordinates of r;). The Boltzmann factor can be rewritten in terms 
of a Vandermonde determinant, since 

[ z, 
Zz 

Til r; r1 12 = I I1 (Z; - z;) 12 = det ~~~ zl 
i<j i<j 

N-l Z2N 1 
ZJ 

Taking into account the factors exp ( Trpr/), we obtain 

exp(~~) = A I det[tjJn(r;)Jn.J= I •...• N 1
2 

where 

ZN l ZN
2 

ZNN 

(5) 
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The functions 1\Jn(r) form an orthogonal set, since their scalar products 
contain the integrals 

1
2-rr 

ei(n-m)6 de = !-" 
...,.,IUnrn 

0 

We have now made the crucial step. The determinant in (5) can be 
regarded as a Slater determinant (i.e., as the wave function for a system 
of independent fermions occupying orthogonal orbitals). The classical 
probability density exp(- il>/k8 T) for our system of interacting particles 
is proportional to the quantum mechanical probability density for a sys
tem of independent fermions, and we can use well-known simple tech
niques of quantum mechanics. 

1. Free Energy 
From (5), the configuration integral is 

Q 

Making the change of variable t = 1rpr2
, one finds for the excess partition 

function 

Q (3 L) N! N 
Qex = (1TR2)N = exp 4 N2 + N ln R NN<N+ I)/2 }}I -y(n,N) 

where 

-y(n,N) = lN e -trn -I dt 

is the incomplete gamma function. The corresponding free energy is in
deed of the form (3) and generates the pressure (1). 

It can rigorously be shown that when taking the thermodynamic limit, 
it is legitimate to replace at once -y(n,N) by -y(n,x) = (n - l)!. Then, by 
repeated use of Stirling's formula, one finds (5] the excess free energy 
per particle at r = 2, 

I. Fex 1. ( ksT ) e
2 

2 2 1 1 1m N = 1m - N ln Qex = - 4 ln(1rpL ) + e (z - 4 In 21T) 

e2 
- - In 1rpU + 0.0405e 2 

4 

2. Correlations 
For obtaining the one-body and many-body densities associated with the 
Slater determinant appearing in (5), it is convenient to use normalized 
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wave functions \[rn(r) rather than the unnormalized functions t!ln(r). Re
placing \)Jn by 'V n in (5) only changes the multiplicative constant A. The 
p-body densities associated with the Slater determinant are given by stan
dard expressions in terms of 

(6) 
n 

One should note, for further reference, that Pis the projector on the vector 
space spanned by the functions \)Jn(r). 

For simplicity, we work at once in the thermodynamic limit (the more 
rigorous approach which starts with a finite system [7 ,8] gives the same 
results). The \[r n normalized in the whole plane are 

An elementary calculation of (6) (where now n runs from I to oo) gives 

P(rt ,rz) = p exp[1Tp(ztZz 

The one-body density is 

p(r) = 2: I \[r nCr) 1
2 

Thus the density is a constant: 

p(r) = p 

P(r,r) (7) 

It is remarkable that this sound result comes from a delicate balance 
between the nonuniform background-particle interaction and the parti
cle-particle interactions. 

The two-body density is 

p<2l(rl ,rz) = 2: I \[r nCr1) 1
2 2: I \[r mCrz) 1

2 
- I 2: \[r nCrt )'If nCrz) 1

2 

= P(rt ,rt)P(rzh) - I P(rt.F2) 1
2 (8) 

where one sees the familiar exchange term. One finds that 

p<2l(rt ,rz) = p2[1 - exp( -1TprTz)l 

and the truncated two-body density [6], defined as 

Pr<2l(rt ,rz) = p<2l(rt ,rz) - p2 

has the very simple Gaussian form p/2
) = - p2 exp( -1Tprh). 

The higher-order distribution functions are given by the general formula 

p(pl(r1 ,r2 , ••• ,rp) = det[P(r;,rj)];.j~ 1 ••••• p (9) 
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while the corresponding truncated distribution functions (Ursell func
tions) are 

p/Pl(rJ ,r2 , ••• ,r p) = (- l )P + 
1 ~ P(r;, ,r;2 )P(r;2 ,r;,)· · · P(r;p ,r;,) ( l 0) 

(i! i2 .. ·ip} 

where the sum runs on all possible cycles (i1i2···iP) built with {1, 2, ... , 
p}. 

A somewhat surprising result is that the correlations have a Gaussian 
decay rather than an exponential decay of the Debye type. There are 
indications that this Gaussian behavior occurs only at f = 2. 

3. Other Thermodynamic Quantities 
Since all the distribution functions are known in closed form at f = 2, 
it is possible to compute the derivatives of the free energy with respect 
to the temperature, at r = 2; these derivatives can be expressed in terms 
of integrals involving the interaction potential ln(r/L) and the distri
bution functions. By this method, in the thermodynamic limit, the internal 
energy per particle and the specific heat (at constant volume) per particle 
have been computed. Their excess values are [6], respectively, 

I
. Vex 
Im = 

N 

where -y = 0.5772 ... is Euler's constant, and 

lim ~x = k8 (In 2 ;:) 

4. Other Geometries 
It is possible to start with geometries other than the disk. The particles 
can be confined on the surface of a sphere [9]. From the start, the partition 
functions involves factorials rather than incomplete gamma functions, 
certainly a simplification. In the thermodynamic limit, one finds the same 
results as above. 

Another approach is to start with a rectangular doma:in and to go first 
to the limit of a "semiperiodic strip" [10]: a strip of infinite length and 
finite width, with periodic boundary conditions on its sides. The distri
bution functions have the remarkable property of being periodic along the 
strip; in that respect, the strip behaves like a strictly one-dimensional one
component plasma. When the width of the strip is made infinite, the pe
riodicity disappears and, again, one finds the same thermodynamic limits 
as above. 
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while the corresponding truncated distribution functions (Ursell func
tions) are 

p/Pl(rJ ,r2 , ..• ,rp) = (- !)P+ 1 2: P(r;,r;2)P(r;2 ,r;,)···P(r;p,r;,) (10) 
(iliz' ··ip) 

where the sum runs on all possible cycles (i 1 i2 · • ·ip) built with {I, 2, ... , 
p}. 

A somewhat surprising result is that the correlations have a Gaussian 
decay rather than an exponential decay of the Debye type. There are 
indications that this Gaussian behavior occurs only at f = 2. 

3. Other Thermodynamic Quantities 
Since all the distribution functions are known in closed form at r = ? 

it is possible to compute the derivatives of the free energy with respect 
to the temperature, at r = 2; these derivatives can be expressed in terms 
of integrals involving the interaction potential -ln(r/L) and the distri
bution functions. By this method, in the thermodynamic limit, the internal 
energy per particle and the specific heat (at constant volume) per particle 
have been computed. Their excess values are [6], respectively, 

r Vex t z ~ 1m N = - :te [ln(1TpL-) + -y] 

where -y = 0.5772 . is Euler's constant, and 

lim ;x = ks(ln 2 - ;:) 

4. Other Geometries 
It is possible to start with geometries other than the disk. The particles 
can be confined on the surface of a sphere [9]. From the start, the partition 
functions involves factorials rather than incomplete gamma functions, 
certainly a simplification. In the thermodynamic limit, one finds the same 
results as above. 

Another approach is to start with a rectangular doma:in and to go first 
to the limit of a "semiperiodic strip" [10]: a strip of infinite length and 
finite width, with periodic boundary conditions on its sides. The distri
bution functions have the remarkable property of being periodic along the 
strip; in that respect, the strip behaves like a strictly one-dimensional one
component plasma. When the width of the strip is made infinite, the pe
riodicity disappears and, again, one finds the same thermodynamic limits 
as above. 
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B. Inhomogeneous Plasma: Electrical 
Double layer 

I. Problem and Method of Solution 
Our aim is to obtain models describing charged interfaces. For this pur
pose it is necessary to deal with inhomogeneous one-component plasmas. 
In the potential energy function, the background-particle interaction of 
(4), (e 2/2)1Tpr/, must be replaced by a more general potential e2 V(rj), 
created by a nonuniform background (and perhaps having nonelectrostatic 
contributions as well). 

If the circular symmetry is preserved [i.e., if V(r) depends only on the 
distance r to the origin], the Boltzmann factor is still a determinant of the 
form (5), now made of functions 

\jln(r) = exp[- V(r)Jzn 1 

which again are orthogonal. Thus the calculation of the one-body and 
many-body densities proceeds in a way very similar to what has been 
done for the homogeneous plasma. Cases for which the density varies 
only in one space direction, say the x-direction, can be solved by a suitable 
limiting procedure that transforms circles into straight lines: One starts 
with a circular geometry, and one sends the center of symmetry to infinity 
in the x-direction. This method has been used for studying a large variety 
of plane interfaces [I I J. 

Here we describe a more powerful method [12}, which applies to a 
larger class of inhomogeneous cases. For an arbitrary one-body potential 
e 2 V(r), the Boltzmann factor is still proportional to the squared modulus 
of a determinant: 

exp(;B~) = Ai det(e-V<rlz/ IJ 12 

but the orbitals exp[- V(r)]zn-l are not orthogonal to one another in the 
general case for which V(r) has not the circular symmetry; in terms of 
nonorthogonal orbitals, there is no standard expression for the densities. 
Now, the basic remark is that the determinant is changed only by a mul
tiplicative constant if theN orbitals are replaced by N orthonormal linear 
combinations 'I' nCr). Therefore, the densities are given by the general 
expressions (7) to (10) where Pis defined by (6) in terms of these ortho
normal functions 'I' n. This Pis the projector on the vector space~ spanned 
by the functions exp[- V(r)]zn-l, and its practical calculation amounts 
to finding an orthogonal basis for this vector space. 

For the cases that are considered here, an essential simplification is 
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obtained by starting at once with an infinite system, because it is then 
possible to take advantage of specific translational symmetries and also, 
as for quantum-mechanical particles in a magnetic field, of a kind of gauge 
invariance, which here can be described as follows. The one-body po
tential energy e2 V(r) has an electrostatic part e2 V8 (r). For a given back
ground charge density - ep8 (r), the electrostatic potential e V 8 (r) is de
termined by both Poisson's equation~ V8 (r) 211'p8 (r) and by boundary 
conditions. However, because of the screening effect, in an infinite plasma 
the one-body and many-body densities are expected to be independent 
of the boundary conditions at infinity; that is, these densities should be 
invariant under the addition to V 8 (r) of an arbitrary function of zero La
placian (although, in general, the projector P is not invariant). This in
variance can indeed be explicitly checked. Therefore, it is possible to 
choose V 8 (r) as the simplest possible one for the case under consideration. 

2. Plane Interfaces 
Models for plane interfaces are obtained from a background charge den
sity - ep8 (x), which varies only in one space direction, say x. It is then 
convenient to choose an electrostatic potential of the form e V 8 (x ), obey
ing Poisson's equation, 

d 2 Vs(x) 

dx 2 
(II) 

The total one-body potential energy e2 V(x), obtained by adding possible 
nonelectrostatic contributions to e 2 V 8 (x), will also depend only on x. 

An orthogonal basis for the space ~ spanned by the functions 
exp(- V(x)]zn- 1 is provided by the functions 

IJ!k(r) = exp(- V(x) + kz] kEIR 

(at least in the sense of distributions, which is enough for computing a 
projector). Indeed, 

zn-1 = d:-_11 ekz I = I"' (- lt I s<n-l)(k)ekz dk 
dk k=O -oo 

and the functions IJ!k(r) are mutually orthogonal because of the factor 
exp(iky) in exp(kz). Although lfik(r) is not normalizable in they-direction, 
we can adapt (6), using the standard replacement of a discrete sum Ln 
by an integral (211') - 1 f dk, and introducing the normalization factor in 
the x-direction 

N(k) = J:, I \ftk(r) 1
2 dx = J:, exp[- 2V(x) + 2kx] dx (12) 
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In this way, we obtain the projector on ~: 

I 1= dk 
P(r 1 h) = 21T -= N(k) exp[ 

(13) 

The one-body density is P(r,r) and the many-body densities are given by 
(9) or (10). 

The rather general expression (13) can be adapted to more specific 
cases. For instance, for a homogeneous plasma, the basis can be chosen 
as ljlk = exp( -1rpx2 + kz), and it can be explicitly checked that this choice 
gives the same densities as the previous choice $n = exp(- !1rpr2)zn- 1

. 

Let us now consider interfaces. 
a. Ideally Polarizable Interface. In this model, two different con

ductors are separated by a plane impermeable to the charges. An exter
nally applied potential difference controls the polarization of the interface: 
surface charges of opposite magnitudes on each side of the plane. This 
model grossly mimics systems such as the Hg-FNa(aq) interface, a clas
sical example. 

Here we consider a two-dimensional one-component plasma separated 
into two regions, the half-plane x > 0 and the half-plane x < 0, by they
axis assumed to be impermeable to the particles. In general, the back
ground charge density will have different (constant) values -epa and 
- epb in the regions x > 0 and x < 0, respectively. This system has been 
studied by a different method in Refs. 13 and 14. 

Rather than fixing the numbers of particles in each region, it is equiv
alent but more convenient to do so only in the average, using a kind of 
grand-canonical formalism. The impermeability condition can be replaced 
by the introduction of a potential jump at x = 0; this will be seen to be 
equivalent to a jump in the electrochemical potential. Therefore, to a 
solution V s(x) of Poisson's equation (ll), we add different constants in 
each region; without loss of generality, this constant can be chosen as 
zero in one region. Thus the total one-body potential energy e2 V(x) to 
be used in (12) and (13) is 

x>O 
x<O 

Then the normalization factor (12) has the more explicit form 

N(k) ek
2

127tpa [ ( k ) J ek
2

127tpb [ ( k ) J \I'8P: 1 + erf \I21Tpa + Zo ~ 1 - erf V21rpb 
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where zo exp(- 2 V0 ) and 

'1 11 erf(t) = ,~ e- 112 du 
v 'IT 0 

is the error function. This gives through (13) and (9) or (10) a one-param
eter integral representation for the p-body densities. For instance, the 
one-body density is 

{

_!_ J"' dk e- 2-rrpax2 + 2kx 

2'IT -oo N(k) 
p(x) = P(r,r) = 1 J"' dk 

_ zoe- 27Tp&x 2 + 21.:x 

2'IT -oo N(k) 

x>O 
(14) 

x<O 

A typical shape of p(x), numerically computed, is shown in Fig. I. 
The departure of p(x) from the bulk values Pa and Pb is localized near 

x = 0. The impermeability causes p(x) to have a discontinuity at x = 0: 
p(O )/p(O+) = z0 . It can be checked by explicit calculation that the surface 
charge densities have opposite values ea and - ea on the x > 0 and x < 
0 sides of the interface, respectively: 

a = L'' [p(x) - PaJ dx = - J~"' [p(x) - Pb] dx 

The electrical potential ditTerence across the interface, t. <1> = <j>(cc) 

Fig. 1 One-component plasma. Density profile of the ideally polarizable inter
face, for PaiPb = 4, zo = 4.212; this choice of Zo gives a surface charge density 
ea = -ei'IT. The unit of length is (1Tpb)- 112 . (Adapted from Ref. 14.) 
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4>( c:c), is expected to be related to zo by the thermodynamical relation 

2Vo = In zo 
ksT 

(15) 

where f.la and f.lh are the bulk chemical potentials in the regions x > 0 and 
x < 0, respectively; this relation expresses that, in equilibrium, the re
versible works needed for extracting a particle from oo(- f.lh), bringing 
it across the interface (- e 2 V0 + e u <f>), and injecting it into + :xl(f.la) add 
up to zero. Here u<f> can also be computed microscopically: from ele
mentary electrostatics, u<f> is given by the first moment of the charge 
density profile as 

u<f> = 2'ITe {J~"' [p(x) Pb]x dx + i"" [p(x) - Pa]X dx} 

and an explicit calculation using (14) gives 

zo = ,ff! exp(-
2u4>) 

Pa e 

This is indeed equivalent to (15), since ~ = exp[(f.lb f.la)lk8 T], a 
consequence of the equation of state (1). Thus we have explicitly checked 
that both thermodynamics and the exact statistical mechanics of the model 
give the same relation (15). 

By now it should be clear that u<f> (or equivalently, z0 ) is an independent 
parameter, which controls the properties of the interface such as the den
sity profile p(x), the total surface charge density on each side ±eo-, and 
so on. The bulk properties, far away from x = 0 in each region, are 
independent of u<f>. 

b. Nonpolarizable Interface. We now consider two different con
ductors separated by a plane permeable to the charges. The potential 
difference is no longer an adjustable parameter; it is determined by the 
equilibrium condition. This model mimics systems such as the calomel 
electrode. 

Here, we very simply obtain a nonpolarizable interface as a special 
case of the previous one, by setting V0 = 0 (i.e., zo = l) in the previous 
equations; suppressing the potential jump V0 amounts to letting the par
ticles move freely through the line x = 0. This system has been studied 
by a different method in Ref. 15. 

Now, p(x) is continuous at x = 0. The relation (15) becomes 

f.lb f.la - e U 4> = 0 

expressing the equality of the electrochemical potentials f.lh + e<f>(- c:c) 
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and J.-la + e<f>(co). For given bulk densities Pa and pb, ll<P is fully deter
mined. 

c. Primitive Electrode. This simplest model of an electrolyte-elec
trode interface pictures the electrode as a structureless impenetrable wall, 
carrying a given surface charge density. Thus we consider a two-dimen
sional one-component plasma, with a constant background charge density 
- ep, occupying the region x > 0. The region x < 0 represents an im
penetrable electrode: It contains neither background nor particles. The 
line x = 0 carries a given surface charge density - eu. This system has 
been studied by a different method in Refs. I 6 and I 7. 

A somewhat subtle point is that it is illegitimate to apply the general 
formalism of Section III. B. I directly to the present geometry, because 
this formalism has been built for infinite systems with a screening con
ducting medium at infinity in all directions. A correct approach is to 
describe the primitive electrode as a limiting case, starting with the ge
ometry of the ideally polarizable interface plus a surface charge density 
- eu at x = 0. Thus, introducing the proper discontinuity of dVIdx across 
the charged surface at x = 0, we can choose 

{ 

2 
V(;\) = 1Tpx , - ax 

' 1Tpbr - 21T(u + a)x + Vo 
x>O 
x<O 

As discussed in Section III. B. I, the densities should be independent of 
the constant a, and it can explicitly be checked that this is so; thus we 
can choose a = 0. We then repeat the calculation of Section III. B. !.a, 
take the limit Pb ~ 0, and at the end only take the limit V0 ~co (i.e., zo 
~ 0). In the limit Pb ~ 0, one finds that [N(k)J 1 vanishes if k < - 21Tu. 
The result for the projector P, which is nonzero only for x 1 and x2 non
negative, then is 

exp( -1Tp(xi - k/21Tpf -

P( ) _ YIP J"' dk 1Tp(x2 - k/21Tp)2 + ik(y 1 - rz)J 
rl,r2 - -- '; 

1T - 2-rrcr 1 + erf(k/ v 21Tp) 

X X1 ,X2 2: 0 (16) 

Typical shapes of the density profile p(x) = P(r,r) are shown in Fig. 
2. The departure of p(x) from its bulk value pis localized near the electrode 
at x = 0. It can be checked by an explicit calculation that the surface 
polarization charge in the plasma is the opposite of the charge - eu on 
the electrode: 

e l"' [p(x) - p] dx = eu 
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Fig. 2 One-component plasma. Density profiles p(x)/p in the primitive electrode 
model. The solid line is for an uncharged electrode, the dashed line for a very 
positive surface charge density on the electrode, the dotted line for a very negative 
surface charge density on the electrode. The unit of length is (Tip)- 112

• 

d. Miscellaneous Other Cases. Many special cases or variants of 
the examples just discussed have been studied explicitly, starting from a 
circular geometry, as skeched at the beginning of Section III.B.I. The 
interested reader is referred to the literature [8, I I, 15, 18-20]. The results 
can be retrieved in an easier and more systematic way as special cases 
or limits of (13). 

Some cases with image forces have been solved. The primitive elec
trode model can be modified by considering a plasma along a wall made 
of a material of either zero or infinite dielectric constant. The zero die
lectric constant case is not completely academic, because what matters 
is the ratio of the dielectric constant of the container wall to the dielectric 
constant of the electrolyte solvent, and this ratio is actually small for real 
systems; the zero dielectric constant case has been solved by introducing 
the proper image forces into the Hamiltonian of the plasma [7,18]. The 
infinite dielectric constant model pictures the electrode as an ideal con
ductor; this case also has been solved by introducing the proper image 
forces into the Hamiltonian of the plasma [21]; it is, however, much easier 
to take the limit of the polarizable interface when on one side the plasma 
density becomes infinite [22], because this plasma then behaves as an 
ideal conductor (its correlation length, which is of the order of p- 112

, goes 
to zero). 
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3. Interfaces with Adsorption Sites 
An electrode in contact with an electrolyte may adsorb ions; there is an 
equilibrium between the adsorbed ions and the electrolyte ions. The ad
sorption sites are likely to form a surface lattice, which reflects the pe
riodic structure of the electrode. 

It is possible to mimic these adsorption effects, yet still have a solvable 
model, by adding equidistant adsorption sites on the interfaces studied in 
Section III.B.2. The potential Vad(r) created at r by an adsorption site at 
the origin is assumed to be the sticky potential of Baxter [i.e., such that 
exp( vadlksD = l + A8(r)]. Special cases have been solved by a tour 
deforce of expansion resummations [23]. It is, however, simpler and more 
efficient to use [24] the general method described in Section III.B. I. 

The Boltzmann factor associated to the total one-body potential now 
is exp[ -2V(x)][I + A8(x) 2:mEZ 8(y ma)], where a is the distance 
between adjacent adsorption sites; as in Section III.B.2, e2 V(x) is the 
one-body potential energy associated to the background and possibly in
cludes other contributions from walls, potential steps, and so on. The 
densities are given by (9) or (10) in terms of the projector P on the vector 
space ~ spanned by the functions 

'Pk(r) = [N(k)]-It2e-v<x)-rkz[I + AO(x) 2: 8(y- ma)]I/2 
mEZ 

For convenience, we have already included 

N(k) J~"" e-2V(x)+2kx dx 

which is a normalization factor when A = 0. 
For A # 0, the basis formed by the 'Pk(r) is not an orthogonal one. 

However, the matrix of the scalar products is block diagonal, as a con
sequence of the periodicity in y of the total one-body potential; indeed, 
writing k = 2'TT(~ + n)/a, with~ E [0,1] and n E 7!_, we find scalar products 
of the form 

If we are able to find the orthogonal eigenvectors (an U>) and the associated 
eigenvalues a; of the matrix A,, such that 

2: A~;(n,n')a~? = a;an (i) 
n' 
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we obtain an orthogonal basis of~: the functions 

The peculiar form of the Baxter potential gives 

where 

[ 
A J 112 e V(O) 

aN[(2TI/a)(~ + n)] 

and the problem for a matrix of this form is a standard one. A, has two 
eigenvalues: a 1 = I + Ln [f,(n)f, associated with the eigenvector [an(ll 

f~:(n)], and a 2 = 1, associated with all the other eigenvectors that span 
the subspace orthogonal to a(l). After some rearrangement, one finds 

m 

with 

P*( ) _ p ( ) _ - V(xl) V(_Q) t d~ J..LG(~,ZI )G(~,Z2) 
r1 h - o r1 ,r2 e Jo a 1 + J..LG(~,O) 

where Po is the projector in the absence of the adsorption sites, J..l A 
exp[- 2V(O)]Ia, and 

G(~,z) = n~ [ Nc: (~ + n)) J 
1 

exp[
2
: (~ + n)z J 

Obviously, when r 1 and r 2 are not on adsorption sites, P = P*, and 
therefore P* describes the nonadsorbed particles; their density is p*(r) 
= P*(r,r). As to the adsorbed particles, they are described by the singular 
part of P; the mean occupation number of an adsorption site can be written 
as 

_ * _ ( 1 1-lG(CO) 
nad - Ap (0) - Jo d~ l + 1-lG(LO) 
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2 3 

Fig. 3 One-component plasma. Density profiles near a line of adsorption sites; 
It 10 and a = 2. The unit of length is (1Tp)- 112 . (From Ref. 23.) 

More detail can be found in Refs. 23 and 24. Here, let us only mention 
that, in the simplest case of a line of adsorption sites in a homogeneous 
background of charge density - ep, we can take V(x) = 1rpx2

, and Gq;,z) 
can be expressed in terms of the Jacobi theta function* 

(
71') 112 [ _'ITz(u + n)z] 

lh(u,t) = - 2:: exp 
( nEZ ( 

as 

(
7rpz

2
) ( paz 1rpa

2
) G(~,z) = ap exp -

2
- lh ~ - 2 , -

2
-

The density p*(r) of nonadsorbed particles is shown in Fig. 3. 

IV. TWO-COMPONENT PLASMA AT r = 2 

Also for the two-component plasma, f = 2 corresponds to a special tem
perature at which many exact results are available. However, since this 

*The present definition of the theta function is the same as in Ref. 23. 
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temperature is precisely the one at which a collapse occurs for the pure 
Coulomb interaction system, which then has a divergent configuration 
integral, it is necessary to introduce some kind of short-distance cutoff, 
for instance by representing the particles as charged hard disks of diameter 
d; exact results can be obtained near the limit d ~ 0. This small hard
disk model will be obtained by considering the continuum limit of a lattice 
model [25) (for which there are no divergences). It is now convenient to 
work in the grand-canonical formalism. 

A. lattice Model 

We represent the position r of a particle by the complex number z = x 
+ iy, where (x,y) are the Cartesian components of r. For a system of N 
positive and N negative particles, the complex coordinates of which are 
ll; and V;, respectively, the Boltzmann factor is, at r = 2, 

---""-----''----V-"--j) 12 

= L2N I [ det U; ~ v; lJ=l. .. N 12 

where the last equality stems from the Cauchy double alternant deter
minant formula. Two interwoven lattices U and V are introduced. The 
positive (negative) particles sit on the sublattice U( V); each lattice site 
is occupied by no or one particle. A possible external potential is described 
by position-dependent fugacities ll.(u,.) and ll.(v;). Then the grand partition 
function (here defined as a sum including only neutral system) is 

Z = I + L
2 2: ll.(u)ll.(v) 1-1-1 2 

uEU ll - V 

vEV 

+ L
4 2: ll.(udll.(u2 )ll.(vl)ll.(vz) I det [~] .. _ 1

2 

+ ··· 
UJ.U2EU ll, VJ 1.}-1.2 

VJ,V2EV 

(where the sums are defined with the prescriptions that configurations 
which differ only by a permutation of identical particles are counted only 
once). It can be easily seen that this grand partition function is the ex-
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pansion of a determinant built on all lattice sites: 

0 
L'A(ul) 1) 

U1 - VJ U1 - V2 

0 
Lf...(u2) LA(u2) 

0 
Z = det 

Lf...(vd Lt..( vi 

VI u1 vi -liz 
LA( V2) Lt..(v2) 

0 
v2- u1 v2 - u2 

A more compact notation can be used: Each lattice site is characterized 
by its complex coordinate z (or, alternatively, the corresponding vector 
r) and an isospin index s; s = + I (- I) if the site at r belongs to the 
positive sublattice U (negative sublattice V). The position-dependent fu
gacities will be called t..+(r) for positive sites and f.._(r) for negative sites. 
A matrix built on all lattice sites can be regarded as a direct product of 
a matrix in coordinate space and a 2 x 2 matrix in isospin space; a matrix 
element taken only in coordinate space is still a 2 x 2 matrix in isospin 
space. In this notation, introducing the usual Pauli matrices I, ax, a Y, a z 

operating in isospin space, we write Z as 

{ [ 
I + a. I - a.] I I } Z = det I + t..+(r) 

2 
' + /.._(r) -

2
-' (r K r') 

where 

(r I K I r') = CJx + iay _L_ + CJx - L 
2 z - z' 2 z - z' 

Along these lines, in the case of an homogeneous system (no external 
potential), the equation of state and the correlation functions have been 
explicitly computed [25] in terms of integrals involving elliptic functions. 
Here, rather than describing these results about the lattice system, we 
shall consider the continuum limit (26], which is substantially simpler. 

B. Continuum Limit 

The great simplification that occurs in the continuum limit (i.e., as the 
lattice spacing goes to zero) is that the inverse of matrix K becomes a 
simple differential operator. Indeed, (r I K I r') can be written as 

(r I K I r') = L(r:rxax + ayay) In I r - r' I 



Inhomogeneous Two-Dimensional Plasmas 221 

and since v2 In r 21io(r), it is obvious that the inverse operator is 

I S 
K = z,.L (crxax + cryay) 

(the area per siteS appears when discrete sums are replaced by integrals). 
Thus an alternative form of Z is 

z = det{ [ crxax + cryay + m+(r) l ~ 

where m:::(r) (21iL/S)A.:::(r) is a rescaled fugacity that has the dimen-
sions of an inverse length) and 

In Z Tr{ In[ crxax + cryay + m +(r) I ~ 
(17) 

These forms of Z and In Z involve the two-dimensional Dirac operator 
and express an equivalence, well known to field theorists, between the 
Coulomb gas at f 2 and afree Fermi field. It is remarkable that intro
duction of an external potential through a position-dependent fugacity is 
equivalent to a position-dependent mass for the Fermions. 

Although the last expression of In Z is a formal one that is not properly 
defined without some regularization, we use it for obtaining the one-body 
densities and the many-body truncated densities, in the usual way, by 
taking functional derivatives with respect to the fugacities m::: (r). Marking 
the sign of the particle at r; by the index si ± 1, and defining the matrix 

GSIS2(rl ,r2) = \ ftSt I [ crxax + cryay + m+(r) 
1 ~ crz 

1 cr,J + m (r)-
2
-

(18) 

we obtain the one-particle densities 

Ps,(rd = ms,(rt)GS!SI(rt ,rt) (19) 

the truncated two-body densities 

p~~1;Crt ,rz) = - ms,Crt)ms2(r2)Gs,s2Crt ,r2)Gs2SI(r2,rt) (20) 
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and more generally the truncated p-body densities 

p~J"[. .. spCrt,rz, ... ,rp) = (-1)P+ 1ms,(rdms2 (rz)···msp(rp) 

Jancovici 

X L Gs;1Si
2
(r,, ,r,J· · ·Gs;P,,.(r1p ,r1,) (21) 

(hh"·ip) 

where the summation runs over all cycles (i1 i 2 ···ip) built with {1, 2, ... , 
p}. 

Therefore, the calculation of the one-body and n-body densities re
duces to obtaining G, which is a Green's function, the solution of a system 
of four coupled partial differential equations. In a 2 x 2 matrix notation, 

1 - U-J + m (rd-
2
-' G(rt ,rz) = ~o(rt - r 2 ) 

(22) 

Since the correlations (21) have to decay at large distances, the boundary 
conditions for (22) are that [m5 ,(r 1)ms2(rz)] 112Gs,s2 (rt.f2)......., 0 as I r1 - rzl 
-00 

By using the formal expansion of Gin powers of uxax + uyay it is easy 
to derive the useful symmetry relations 

GssCrt ,rz) 

Gs sCr1 ,rz) 

C. Homogeneous Plasma 

GssCrz,rt) 

- G -ss(rz ,rt) 

The simplest case of a homogeneous two-component plasma is described 
by taking constant fugacities m + = m _ = m. In that case, G + + = G __ , 
and by combining the elements of the matrix equation (22) one obtains 

(m2 
- v?)G + + (r 1 ,r2 ) = mo(rt - rz) 

and 

mG- + (rt ,rz) 

The solution is 

and 

m 
G + + (r1 ,rz) = - Ko(m I r1 - rz !) 

2'1T 
(23a) 

where Ko and K 1 are modified Bessel functions. The many-body truncated 
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densities are then given by (20) and (21); the two-body truncated densities, 
for instance, have the simple forms 

(;~) 
2 

[Ko(mr)f 

(~
2

)
2 

[K,(mr)f 
-1T 

Since, for large r, the Bessel functions K0 and K 1 essentially behave 
like exp( mr), the rescaled fugacity m is the inverse correlation length. 
It is very remarkable that for a given value of the rescaled fugacity m (or 
of the correlation length m- 1

), the correlation functions [i.e., the n-body 
(n 2:: 2) truncated densities] are well-defined quantities for the presently 
considered continuum-point particle system with pure Coulomb inter
actions. 

The catastrophic collapse of the nonregularized model, however, 
shows up in the one-body density (19) which is infinite since K 0 (mr) di
verges logarithmically as r--"' 0. For suppressing this divergence, we re
place the point particles by charged hard disks of diameter d. Near the 
limit md--"' 0, we can keep the point-particle expression for the correlation 
functions, for separations larger than d, and compute the one-body density 
by using the perfect-screening rule 

P+ = P- J d2 r[p<;):::(r)- p<;)r(r)J 
r>d 

(which expresses that the charge in the polarization cloud around a given 
particle is opposite to the charge of that particle). In this way we obtain 
the behavior of the density Ps of particles of one sign, as md--"' 0: 

m
2 

( 2 ) P+ = P- -- In- - -y 
21T md 

(24) 

where -y = 0.5772 ... is Euler's constant. Thus for small hard disks of 
diameter d, one obtains Ps simply by replacing the infinite K0 (0) by the 
finite K 0 (md) before using (23) in (19). 

Either by integrating 2m -t ps(m) or by using a regularized form of (17), 
one obtains for the pressure p 

__[!_ = mz (In .2_ - -y + !) 
k8 T 21T md 2 

As d--"' 0, one finds the finite limit p/2k8 Tps --"' !. This is indeed the 
expected result for an ideal gas of collapsed neutral pairs. 
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D. Inhomogeneous Plasma: Electrical 
Double layer 

1. Method 
For computing the densities in the general inhomogeneous case, one has 
to solve (22). Here we consider only plane interfaces. The interface is 
assumed to be along they-axis, and the system is translationally invariant 
in they direction [i.e., the position-dependent fugacities m:::(r) actually 
depend only on x]. In such a geometry, the standard technique is to Fou
rier-transform G(r1 ,rz) with respect to y2 - y 1 ( G depends on y 1 and y2 

only through their difference): 

Joo dk ' k( ) G(r r) = - G(x x, k)e'·y,-n 
J, 2 -oo 2'IT }, """' (25) 

In terms of G, one obtains ordinary differential equations, in one vari
able x,, such as 

xz) (26a) 

0 (26b) 

For the cases under consideration, these equations can be solved easily 
and explicitly. In general, the fugacities m =(xi) will be discontinuous on 
the interface at x 1 = 0; the solutions of (26) in the regions x 1 > 0 and x2 

< 0 must be connected by the conditions that G + + and G _ + be contin
uous at x 1 = 0. 

2. Plane Interfaces 
We now consider a few simple more specific models. 

a. Primitive Electrode. In this two-component plasma version of 
the primitive electrode model, the half-space x < 0 represents an impen
etrable electrode; the fugacities m=:(x) vanish in that region. The line x 
= 0 carries a given surface charge density -ea. This electrode, and 
another one of opposite charge assumed to be at x = +oo, generate an 
electrostatic potential which is 0 for x < 0 and 21Teax for x > 0; corre
spondingly, the fugacities are of the form ms(x) = m exp( -41Tsax) in the 
half-space x > 0 where the Coulomb gas is. 

We want to solve (26) for a source point at x2 > 0. In the wall region 
x, < 0, as m = - 0, the solution that vanishes at x, = - oo becomes such 
that G+ + = 0 if k < 0, G_ + = 0 if k > 0. Thus, for the solution in the 
region x, 2: 0, continuity at x 1 = 0 gives the boundary conditions at x 1 
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= 0: G+ +(xl = O,x2 ,k) = 0 if k < 0, G +(x 1 = O,x2 ,k) 0 if k > 0. 
The effect of these boundary conditions is to add a "reflected" expo
nential to the free-space exponential solution of (26). The result is 

[ms(xl)ms(xz)] 112 GssCXt ,Xz,k) (27) 
mz 

2
K(k) {exp[- K(k) I Xt - Xz I + A,(k) exp[ K(k)(x 1 + x2 )]} 

where 

K(k) 

and 

A +(k) -1 if k < 0 

A +(k) 
21Ta 

if k > 0 
21TIT 

+ k- 21Ta 
if k < 0 A (k) 

K(k) - k + 21TIT 

A (k) -I if k > 0 

C;_+ is given by (26b). This gives through (25) and (2l) a one-particle 
integral representation for the n-body densities. However, in the one
body density ps(x), there is a divergent bulk contribution Ps [from the first 
term on the right-hand side of (27)] for which one must use the regularized 
form (24). 

The density profiles are shown in Fig. 4 for an uncharged and a charged 
wall. At x = 0, a further divergence has to be regularized: ps(O) Ps 
must be replaced by Ps ( d/2) - Ps, which means that the center of a hard 
disk has its radius d/2 as its minimum abscissa. Away from the interface, 
the densities go to their common bulk value (24), governed by m, while 
the electrode charge density ea affects only the structure near the elec
trode. By an explicit calculation, one can check the expected screening 
rule 

e L"" [p+(x) - p (x)] dx = ea 

which expresses that the surface polarization charge in the Coulomb gas 
is the opposite of the surface charge ea on the electrode. 

b. Ideally Polarizable Interface. The model is a two-component 
plasma separated into two regions (1) (the half-plane x > 0) and (2) (the 
half-plane x < 0) by a membrane (they-axis) impermeable to the particles. 
As in the one-component model, the impermeability condition can be 
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Fig. 4 Two-component plasma. Density profiles in the pnmitlve electrode 
model. For an uncharged wall (cr = 0), P+(x) = p_(x) (black circles). For a 
charged wall (27rcr = m). P+(x) (crosses) and p_(x) (white circles). The cutoff is 
md = 0.01. 

described by using different constant fugacities on each side. Altogether, 
there are four constant fugacities; without loss of generality, they can be 
expressed in terms of the four constants ma, mb, <j>,, <Pb, defined through 

if X> 0 
(28) 

if X< 0 

With this choice, (26) reduces in each region to a system of linear 
differential equations with constant coefficients, the solutions of which 
have to be connected at x 1 = 0 by the continuity requirement. The result 
is 
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if X1 ,Xz < 0 

[m+(xdm+(xz)] 112 G+ +(x1 ,Xz,k) = (mamb) 312 [(Ka + k)mbet:..<t>le 

+ (Kb- k)mae-t:..<t>le]- 1 exp[ -Ka I X1 I- Kb I x2l] 

if X1 > 0, Xz < 0 

where Ka = (m/ + F)112
, Kb = (m/ + P) 112

, D.$ = <f>a - <f>b· One 
obtains [m_(xdm-(x2 )]

112G _ -(X1 ,x2,k) by changing the signs of D.<f> and 
k in the expressions above. One obtains G _ + from (26b ). Again, this 
gives through (25) and (21) an integral representation for the densities; a 
finite one-body density is obtained by an appropriate regularization. 

The density profiles are shown in Fig. 5. By an explicit calculation, 
one can check that the total charges on each side of the interface have 
opposite values: 

cr = Loo dx[p+(x) - P-(x)] = - J~oo dx[p+(x) - P (x)] 

Far away from the interface, all the densities are the bulk ones, determined 
by the fugacities rna and mb in regions (a) and (b), respectively. Near the 
interface, the densities depart from their bulk values; this departure de
pends on the additional parameters <!>a and <f>b, although only the difference 
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Fig. 5 Two-component plasma. Density profiles of the ideally polarizable in
terface, for mb = 0.5ma and exp( -2~4>/e) = 4: P+(x) (crosses) and p_(x) (white 
circles). The cutoff is md = O.Ol. 
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ll<P <Pa - <Pb appears in the formulas. These results are not unexpected. 
If we define bulk chemical potentials ILa and ILb by rna = rn0 exp(f.Lalk8 T) 
and rnb = rn0 exp(f.Lblk8 T) where rn0 is some inverse length, the fugacities 
of the particles of signs in regions (a) and (b) can be written as rn0 exp[(!La 
+ se<Pa)lk8 T] and rn0 exp[(!Lb + se<j>b)/k8 T], respectively. This means 
that ILa + se<Pa and ILb + se<h can be interpreted as electrochemical 
potentials, including an electrical part se<Pa or se<j>b, and <Pa and <Pb can 
be interpreted as constant electrical potentials in the bulks of regions (a) 
and (b). This interpretation is corroborated by an explicit calculation of 
the first moment of the charge density profile across the interface which 
indeed reproduces the correct potential difference: 

c. Miscellaneous Other Cases. If, in the results for the impermeable 
membrane, we take the limit rnb--+ 0, we retrieve the hard-wall expres
sions. Another interesting limit is rnb --+ x. Then, the correlation length 
rnb 1 in region (b) vanishes, and region (b) becomes an ideal conductor. 

As a special case of the impermeable membrane, we can obtain a solv
able model of a semipermeable membrane (i.e., a membrane permeable 
to one species, say the positive particles, and impermeable to the other 
species). Now, there are only two control parameters, which can be cho
sen as the bulk fugacities on each side, rna and rnb. We expect the elec
trochemical potential of the positive particles to be the same on both sides, 
since these positive particles can freely cross the membrane; this con
dition, rna exp(e<Palk8 T) = rnb exp(e<PblksT), then determines ll<P = <Pa 
- <Pb, which is no longer a free parameter. With this condition, it is easy 
to check that the formalism of Section Ill.D.l.b gives indeed a density 
of positive particles that is continuous at x = 0, while in general the 
density of negative particles has a jump. 

V. FURTHER EXPLOITATION OF THE RESULTS 

The results that we have obtained for solvable models will now be used 
as illustrations of quantities and properties of general interest in the phys
ics of Coulomb fluids. 

A. Macroscopic Physics of Interfaces 

1. Relevant Control Parameters 
A fundamental law of the electrostatics of conductors says that they 
"want" to remain neutral inside. In the bulk, the charge density vanishes; 
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if there is any excess charge, it concentrates on the surface. At an interface 
between two conductors, there is in general a local nonzero charge density 
(the electrical double layer), but its net charge is zero. For our solvable 
models, these basic facts are rooted in statistical mechanics. 

Indeed, for the homogeneous one-component plasma, the formalism 
gives [see (7)] a particle charge density opposite to the background charge 
density. The presence of external electrodes at infinity does not change 
anything; these electrodes create inside the plasma an additional potential 
of zero Laplacian, which is irrelevant, as discussed in Section Ill.B.l. 
For one-component models of interfaces, the formalism gives bulk prop
erties far away from the interface and opposite charges on each side of 
the interface. In addition to the background densities, for polarizable in
terfaces there is one additional control parameter that governs the surface 
properties. This parameter has been chosen as the surface charge density 
for the primitive electrode model and as the potential difference across 
the interface [see (15)] for the ideally polarizable interface model; in any 
case, the potential difference and the surface charge density on one side 
of the interface are related to one another, and only one of them can be 
chosen as an independent variable. 

The two-component plasma models have been studied in the grand
canonical formalism, where the "desire to remain neutral" appears as a 
restriction on the number of relevant chemical potentials or fugacities. 
For the homogeneous two-component plasma, one can solve (22) with 
independent constant fugacities m + and m for the positive and negative 
particles, respectively; nevertheless, the system remains locally neutral, 
and the one-body and many-body densities are found to depend only on 
m = (m _,. m _) 112

, in agreement with general rigorous results about S
component Coulomb systems [27]. For the two-component model of the 
ideally polarizable interface, we have introduced four electrochemical 
potentials (J..La ± e<l>a on one side, ILb ± e<j>b on the other side), but we 
have found that only three combinations are relevant: !La and ILb control 
the bulk densities, while for controlling the electrical double layer at the 
interface <l>a - <l>b is also needed. 

2. Differential Capacity 
On a polarizable interface separating two regions (a) and (b), the surface 
charge density eO' on side (a) and the potential difference .:l<j> = <l>a - <l>b 
depend on one another. The derivative C = a(eO')/a( .:l<j>), taken at constant 
bulk properties on each side, is called the differential capacity. The func
tion C(.:l<j>) is usually accessible to measurements, and it plays an im
portant role in electrochemistry. The usual experimental shape for the 
curve representing C(.:l<j>) is parabola-like, with a minimum. 
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For the models considered here, the charge density profile q(x) Is 
known, and one can obtain the differential capacity from 

eu Lx q(x) dx 

and 

For the one-component plasma models [14], the computed C(ll<j:J) does 
not reproduce the experimental behavior. In the primitive electrode model 
of Section IILB.2.c, one finds that 

e 4 p 

I 1 erf(uV27r/p) 
-ln-------------
2 2 

The corresponding C(ll<j:J) is monotonic, increasing from 0 to +co as ll<P 
goes from co to +co. In the ideally polarizable interface of Section 
III.B.2.a, one finds a more complicated expression [14]; the correspond
ing C(ll<P) is found to have a maximum. These unphysical behaviors are 
obtained because there is in the model only one species of mobile par
ticles: When a strong ll<P pushes these particles away from the interface, 
the thickness of the equivalent plane condenser becomes large, and its 
capacity becomes small. 

For the two-component plasma models, the differential capacity is in 
qualitative agreement with the usual experimental results, with a mini
mum in the curve representing C(ll<j:J). For the primitive electrode model 
of Section IV.D.2.a, one finds the simple result 

C(ll<j:J) 
m 2ll<P 
-cosh--
1T e 

For the ideally polarizable interface model of Section IV.D.2.b, the gen
eral results are more complicated; however, in the special case of equal 
bulk densities on each side (i.e., equal bulk fugacities m), one again finds 
a simple result: 

m 11<!> 
C(ll<P) = -cosh-

4 e 

Thus, allowing for a microscopic structure of the electrode does not 
change much the general behavior of the differential capacity curve. 
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3. Surface Tension and Lippmann Equation 
In a system where there is an interface of area A, the surface tension -y 
is defined in terms of the free energy For the grand potential fl (depending 
on which set of independent variables has been chosen) by -y = iJF!aA or 
-y = afllaA. The surface tension plays an important role in electrochem
istry, especially when the interface is between two conducting liquids. 

For an electrified interface, by a thermodynamical argument, one can 
derive the Lippmann equation, which relates -y to the electrical properties: 

a-y 
-- = - ea 
aLl. 4> 

(29) 

In statistical mechanics, there are several possible routes for computing 
-y. One can start with a finite system, compute the free energy F including 
the surface corrections, and use -y = aF!aA; this route has actually been 
used for one-component plasma models [7, 14,28] and it has the advantage 
that one can make an explicit check of relations such as the Lippmann 
equation (29). Another possible route would be to use expressions of -y 
in terms of integrals involving the correlation functions [28]; this has not 
yet been done for the solvable models considered here. Finally, it is pos
sible to use known derivatives of -y, such as (29); in this way, -y can be 
computed from the density profiles, and this is the route that will be briefly 
described here. 

For the one-component plasma model of a primitive electrode, the 
surface tension can be regarded as a function -y(p,a,T) (here the temper
ature is fixed by the condition r = 2). When a = 0, -y obeys the sum 
rule [28] 

a-y l= - = (v - l)ne2 dx x 2 [p(x) 
ap o 

p] (a = 0) (30) 

where v(v = 2,3) is the dimensionality. For the present model, one can 
compute the right-hand side of (30) as a function of p, integrate (30) from 
(p = 0, -y = 0) for obtaining 

2 ~ 1 L= 1 + erf(t) 2 - -y(p,a = 0) = - . ;-;; In dt = 0.239 
e p v2 o 2 

and integrate (29) [using the known function Ll.<j>(a)] for obtaining 

[
2o3 1 1 - erf(a~)J 

-y(p,a) - -y(p,a = 0) = e 2 JP + 2 a In 
2 
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By a similar method, one obtains a more complicated expression for the 
one-component plasma model of an ideally polarizable interface [14]. 

For the two-component plasma model of a primitive electrode, it is 
more convenient to use as an independent variable the bulk fugacity rather 
than the bulk density Ps. When cr = 0, instead of (30) one has the more 
familiar Gibbs adsorption equation: 

I a'Y leo 
k T

m- = dx[p+(x) + p_(x)- P+ - P-1 
B am 0 

(cr = 0) (31) 

[this is just the surface analog of the bulk relation (k8 T)- 1m(ap/am) = 
p + + p ]. For the present model, the computation of the right-hand side 
of(31) gives [(11211')- t]m; the integration of(31) gives "{(m,cr = 0), and 
finally, the integration of (29) [using the known function cr(~<!>)] gives the 
simple result 

"' = ezm (! - I cosh 2~<1>) 
2 4 211' e 

1 

By a similar method, one would obtain a more complicated expression 
for the two-component plasma model of an ideally polarizable interface; 
in the special case of equal bulk densities on each side (i.e., equal bulk 
fugacities m) one again finds a simple result, 

Since in the models considered here the interface is a rigid one, the 
computed surface tension is not necessarily positive, but the general shape 
of the electrocapillarity curve"{(~<!>) is correct for all these models: The 
curve looks like an inverted parabola, with a maximum. However, it must 
be admitted that this is not a very severe test, since (29) gives a2 "f/(a~<j>) 2 

< 0 as a simple consequence of a positive differential capacity C = a(ecr)/ 
a~<!>> o. 

B. Contact Theorems 

These general theorems express a balance between the bulk pressure(s) 
and the forces exerted by a wall or interface (and the background, if any). 

Among the solvable models considered here, the simplest case is the 
two-component plasma near a charged hard wall (primitive electrode 
model). Then, in dimension v(v = 2,3), the contact theorem is [29] 

ksT[p+(O) + P-(0)] = p + (v - 1)1Te2cr2 
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This is a balance between the kinetic pressure associated to the particle
wall collisions (the left-hand side), the bulk pressure p, and the electro
static pressure (v - l)11e 2cr2. At f = 2, the pressure p has about one
half of the ideal gas value k8 T(p + + P- ), and that explains why, at cr = 
0, the contact densities are about half the bulk ones (Fig. 4). 

For a one-component plasma near a charged hard wall, there is an 
additional term that takes into account the force exerted by the back
ground; the contact theorem becomes [4,30] 

k8 Tp(O) = p + (v (v 2,3) 

Similar theorems hold at the interface between two plasmas [15,26]. 
Adsorption sites can be taken into account, providing an additional term 
[24,31]. 

For the solvable models under consideration, these contact theorems 
can be explicitly checked using the computed pressures and density pro
files. 

C. Correlations and Sum Rules 

The correlation functions of Coulomb systems obey a variety of sum rules 
that are consequences of the screening properties. A review of these sum 
rules has recently been published [32]. By explicit calculations, which 
will not be detailed here, it can be shown that each sum rule is actually 
obeyed by the correlation functions of the two-dimensional solvable 
models. We shall only quote a few examples. Although the sum rules are 
of very general validity and hold for an S -component plasma, here we 
shall write them for a one-component plasma, for the sake of a simpler 
notation. 

1. Screening of a Particle of the System 
A particle of the system is surrounded by a polarization cloud of opposite 
charge: 

p(r) = - J d 2r' pPl(r,r') · 

2. Charged Hard Wall (Primitive Electrode) 

(32) 

Near a hard wall made of insulating material carrying a surface charge 
density - ecr, the response of the density to a variation of cr is related to 
the dipole moment of the correlation function: 

ap(X;CT) 21T(V- l)e
2l d2 '( 1 ) (2)( ') = - r x - x Pr r ,r 

acr ksT x'>O 
(v = 2,3) (33) 
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The total charge near the electrode is +ea. Thus 

27r(v - l)e2loo d f d2 I( I ) (2)( I) x r x - x PT r ,r = 
ksT o x'>O 

-1 (34) 

the integrations must be performed in the indicated order. 
Near the wall, the dipole moment of the polarization cloud, which 

appears in (33), does not vanish: The wall makes the screening less good. 
A related effect is that the correlations have only a slow (algebraic) decay 
along the wall instead of the fast decay found in the bulk (Gaussian in 
the present two-dimensional one-component model, exponential in the 
two-component model). With positions noted as r = (x,y), where y stands 
for the components(s) of r parallel to the wall, p/2

l is a function PTm(x ,X 1
, 

I y - yl I) which has the asymptotic behavior 

2 (2J( 1 I 1 I ~ f(x,xl) 
e PT x,x ' y - y )[y-y'[-x I I IV y - y 

(v = 2,3) 

where f(X,X 1
) is a function that is important only for small x and X

1 and 
which obeys the sum rule 

L, d.x L"" dx 1 f(X,X 1
) (v = 2,3) 

3. Ideal Conductor Wall 
Suppose now that the region x < 0 is occupied by an ideal conductor, 
while the plasma is in region x > 0 (this case can be obtained as the limit 
of an interface between two plasmas when the one in the region x < 0 
becomes of infinite density). There is a given potential difference ll<f> 
<f>( +oo) - <f>(O). Then the analog of (33) is 

ap(x;ll<f>) = _!!__ [ ( ) + J d2 I (2)( ~)] 
a(Ll<f>) ksT p X x'>O r PT r,r 

[The right-hand side does not vanish, notwithstanding (32), because now 
there are also polarization charges on the surface of the ideal conductor, 
and they complete the screening.] The analog of (34) is 

Here also, the integrations must be performed in the order indicated. Now 
the whole space is filled with conducting material, there is a good screen
ing, and the correlations have a fast decay, even along the wall. 
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VI. FINAL REMARKS AND CONCLUSION 

The two-dimensional classical Coulomb systems which have been studied 
here are solvable models at r = 2 because they are equivalent to quantum 
systems of free (i.e., noninteracting) fermions, as discussed in Sections 
III.A and III.B for the one-component plasma and in Section IV.B for 
the two-component plasma. 

In the case of the homogeneous one-component plasma, the individual 
"wave functions" 1jl" = exp(- hrpr2 )z"- 1 are the wave functions of the 
(degenerate) ground state of a charged quantum particle in a magnetic 
field B normal to the plane, when the vector potential has been chosen 
as A = !B x r. The alternative choice ljlk = exp(- 1rpx2 + kx + iky) 
corresponds to another gauge, with a vector potential A = (O,Bx,O). Thus 
there is a close analogy between the classical one-component plasma and 
a quantum magnetic problem, and the freedom about the choice of the 
background potential and the associated basis, discussed in Section 
Ill. B. I, is indeed related to the gauge in variance of quantum electrody
namics. The analogy can be extended to nonhomogeneous cases; the 
quantum problem then is about a particle in position-dependent magnetic 
and electric fields. 

A more general model can be solved: a two-component plasma with a 
background (i.e., a system made of positive particles, negative particles, 
and a charged continuous background). It suffices to use in ( 17) and (18) 
position-dependent fugacities of the form ms(r) = m exp[- 2sV8 (r)], 
where e V 8 (r) is the background electrostatic potential. Explicit results 
have been obtained for a uniform* background (12] and near a hard wall 
[33]. In the limit m ~ 0, the one-component plasma is recovered. This is 
an alternative route for obtaining the p-body densities of the one-com
ponent plasma. 

Although the techniques of resolution that have been used rely on the 
equivalence with free fermions and therefore are valid only at r = 2, it 
is likely that r = 2 is not a singular point (provided that one defines the 
two-component plasma with some short-distance cutoff). 

It has been shown in Section V .A.2 that the two-component models 
give a better account of the differential capacity than the one-component 
models. 

The simple two-dimensional models that have been studied in this chap
ter are not expected to provide detailed pictures of real systems. How
ever, they contain one essential ingredient, Coulomb's law, and it is re
markable that this is enough for illustrating many generic qualitative 
features of charged fluids. 

*There are sign mistakes in Ref. 12. 
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I. INTRODUCTION 

The study of the interface between two phases that are charged and/or 
conducting is of relevance to a number of systems that occur in nature: 
colloids, micelles, membranes, solid-solution interfaces in general, and 
metal-solution interfaces in particular. These form a bewildering array 
of systems of enormous complexity. The investigation of the structure of 
these systems poses considerable difficulties. both experimentally as well 
as theoretically. The experimental problem is that the interface has l0- 8 

particle relative to the bulk, solid or liquid, phases. For this reason one 
needs a surface-specific method, which is able to discriminate between 
the signals from the surface and the bulk. Electrons do not penetrate into 
solids and for that reason have been used extensively for the ex-situ de
termination of the surface structure of solids. They must be used in vac
uum and that precludes their use in the in-situ study of the liquid-solid 
interface. The study of electrode surfaces removed from the liquid cell 
under various conditions has provided an enormous wealth of useful data 
that we will not try to review here. The only way to understand the relation 
between the ex-situ and in-situ structures is to measure both, something 
that is only now becoming possible. The in-situ structural determination 
methods are x-ray scattering or diffraction techniques and the scanning 

239 
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tunnel microscope (STM). There are three x-ray-based techniques that 
have been used to determine the structure in well-characterized single
crystal metal electrolyte interfaces: 

I. Extended x-ray absorption fine structure (EXAFS) [I ,2]. This 
method permits the determination of the distances of the nearest 
neighbors of a given target atom, not necessarily in a regular struc
tural arrangement, and also yields information about the electronic 
state of that atom when it is adsorbed at the surface. 

2. Grazing incidence x-ray diffraction (GIXS) [3,4]. This method per
mits determination of the in-plane structure of an adsorbed mon
olayer on the surface. It is an accurate technique and requires a 
regular structure of the adsorbed monolayer which should be dif
ferent of that of the substrate. 

3. Standing wave methods. An x-ray standing wave is set up at the 
interface of the solid and the fluid. There are several modes in 
which these standing waves can be formed: they allow determi
nation of the distance from the surface of the solid into the fluid 
phase [5 ,6]. 

The STM [7 .8] is a very promising technique since in principle it permits 
the direct determination of the structure of any surface that is sufficiently 
conducting. It has been shown recently by various groups that the STM 
is capable of resolving structural details of metal surfaces in contact with 
electrolytic solutions. However, when the electrochemical potential is 
scanned, the tunnel voltage of the STM also changes. This does not affect 
the study of surface geometry, since the images are relatively independent 
of the tunnel voltage. The resolution of the STM pictures of the metal
electrolyte interface is on the order of 0.5 A. A first attempt at the theory 
of the STM in an electrolyte has recently been developed by Schmickler 
and Henderson [9]. 

Other in-situ techniques give information that is thermodynamic in na
ture since it comprises the average over a number of atoms. One technique 
that has been established recently is the quartz microbalance [I0-12); this 
instrument can measure small changes in the mass of a metallic electrode 
that is attached to a quartz oscillator. The electrosorption valency, for 
example, can be calculated directly, by measuring the mass deposited at 
the electrode and the amount of charge from voltamogram. The inter
pretation of the results of this instrument requires electrode surfaces that 
have large molecularly smooth regions. Spectroscopic methods using (13-
15) ultraviolet, visible, or [16) Raman spectroscopy are very useful in situ 
probes because a large number of organic molecules can be studied. In
teresting information about changes in bonding and symmetry can be 
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extracted. The optical spectroscopic methods do not require installations 
such as the synchrotron. and are most useful for complex molecular spe
cies. The techniques are surface-enhanced Raman, surface infrared spec
troscopy, and second harmonic generation, which permits us to discrim
inate between different geometries of the adsorbates on single-crystal 
surfaces. 

Among the optical techniques there are also the more traditional meth
ods, such as the ellipsometry, electro reflectance, and particularly, surface 
plasmons. vvhere experimental and theoretical advances have made it 
possible to offer a picture of the surface electronic states of the metal in 
some selected cases, such as the silver (Ill) phase. We should mention 
here the measurement of image-potential-induced surface states by elec
troreflectance spectroscopy. ln this case, besides the normal surface 
states that arise from termination of the crystal lattice, there are discrete 
states due to the existence of an potential for charges near the 

interface. 
A method that very interesting information about the struc-

and interactions in the diffuse par1 of the double layer is the direct 
measurement of forces between colloid particles [ 17]. The forces between 
two mica are measured in the presence of different solu-
tions: These forces oscillations of a period similar to 

dimensions of the molecules enclosed between the plates. Last, but 
certainly not there is and important literature on 
the differential capacitance of solutions near either solid (polycrystalline 
or or liquid (mercury) electrodes which we will not try to 
cover. We should mention recent work on the influence of the crystal
lographic orientation of silver on the potential of zero charge of the elec
trodes, in which a detailed mapping of the influence of the crystal face 
on the differential capacitance of the inner layer is made [18-20]. 

The complexity of the system described by the experimental methods 
defies any simple theoretical interpretation. Yet these are needed for an 
understanding of what is actually going on at the charged interface. It is 
dear that the simplest theory should discuss two kinds of forces: the long
range Coulomb forces and the short-range forces that are at the origin of 
the chemical bonds and are also responsible of the repulsion between 
atomic cores. There are important quantum effects at the interface due 
to the quantum nature of the electrons in a metal [21-29]. These effects 
are very difficult to compute in a proper way, and in most theoretical 
discussions only very sketchy models of the liquid side of the interface 
are discussed when attempting to describe the metal side of the interface. 

For this reason we have organized the theoretical discussion starting 
with very simple model systems about which much is known, and going 
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to systems that are much more realistic but difficult to handle. The em
phasis of the theoretical treatment will be on the structure functions. or 
distribution functions p(l). p(2), ... which give the probability of finding 
an ion(s) or solvent molecule(s) at specified position(s) near the interface. 
The properties of the interface can then be calculated from these distri
bution functions. One of the very interesting theoretical developments of 
recent years has been the exactly solvable model developed by Jancovici, 
Cornu, and co-workers. This is a two-dimensional model at a particular 
value of the reduced temperature and is particularly useful to elucidate 
the subtle properties of the long-range Coulomb forces. This model is 
discussed in detail in Chapter 5. For the nonprimitive model with solvent 
molecules there is a one-dimensional exactly solvable model. Exactly 
solvable models serve as benchmarks for approximate theories and to test 
exact and general sum rules. 

We start with the simplest model of the interface. which consists of a 
smooth charged hard wall near a ionic solution that is represented by a 
collection of charged hard spheres. all embedded in a continuum of die
lectric constant E. This system is fairly well understood when the density 
and coupling parameters are low. Then we replace the continuum solvent 

a molecular model of the solvent. The simplest of these is the hard 
sphere with a point dipole [30.31]. which can be treated analytically in 
some simple cases. More elaborate models of the solvent introduce com-

m A model of 
ionic solutions uses a solvent model with tetrahedrally coordinated sticky 
sites. This model is still analytically solvable. More realistic models of 
the solvent, typically water, can be studied by integral equations and 
computer simulations, which, however, is very difficult for charged in
terfaces. The full quantum mechanical treatment of the metal surface does 
not seem feasible at present. The jellium model is a simple alternative for 
the discussion of the thermodynamic and also kinetic properties of the 
smooth interface [:2 I 

II. THEORIES FOR THE SINGlET AND PAIR 
DISTRIBUTION FUNCTIONS 

We have mixture of ions of e1, and diameter cr1• 

is the number density profile of i at a distance z from the electrode, 
which is assumed to be flat and perfectly smooth. Typical values 
of obtained from both theory and simulation are shown in 
Fig. l. The singlet distribution function is 

(1) 
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Fig. 1 profile for hard ncar a hard-charged electrode 
for a I M, l: I electrolyte. The reduced charge density q~ The model 
parameters are a 4.21 T = 298 K. and E 78.5. The 
lation values and the solid and dashed curves the HNC 
Chapman values. The value of is 0.25. 

The charge density IS given 

q(z) (2) 
i = l 

where m is the number of ionic species. The electrostatic potential <l> is 
obtained by integration of Poisson's equation, 

(3) 

This equation can be integrated to obtain the alternative relation between 
the charge and potential profiles 

') -= 

<!>(t) = - -11' j I z - t I q(z) dz 
E 0 

(4) 

The total potential drop L1<!> is obtained from (4) by either letting <j>(z) 
0 at z = 0 or z ~ oo, depending on the reference potential of the model. 
In general, the latter choice is adopted. An important quantity is the 
differential capacitance Cd, defined by 

(5) 
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where qs is the surface charge on the electrode. This quantity is difficult 
to measure directly and is inferred either from surface tension measure
ments or frequency-dependent ac measurements of the capacitance. The 
surface charge satisfies the electroneutrality condition 

l oc EoE 
q(z) dz = 

4 ) 1T 
(6) 

where £ 0 is the external or applied field. That is E(z 0). 
Consider the Poisson equation (3). If we approximate the density of 

the ions by Boltzmann· s distribution formula [38,39] 

(7) 

and substitute into (3). we obtain the Poisson-Boltzmann equation, 

(8) 

A first integral of this differential equation can be obtained multiplying 
both sides by v <DC:) and integrating. For the planar electrode this yields 

Using the definition of and the electroneutrality relation (6) we get 
the formula for differential capacitance: 

(10) 

where <f:>(O) = <j>(z)l: 0 = Ll<b is the potential at the origin and is equivalent 
to the total polarization potential of the electrode. At this point it is con
venient to make a change in the variable 

(ll) 

where e1 z1e. e is the elementary and is the electrovalence of 
species i. We integrate (9) to get 

(12) 

where x and A are integration constants. The electrovalence Zi is always 
a small number and the integration of the left-hand side is always possible 



lectrolytes at Interfaces 245 

1 terms of elliptic functions [40]. When z1 - z2 1 the radicand of 
1e left-hand side of (12) is a perfect square and the integral can be per
)rmed explicitly. For the potential drop we obtain the implicit relation 

= 2 sinh 
KE 

he density profile is given by 

:here 

efines the 

kT L Pi(O) 
{-'-' l 

2 
(13) 

2 

(14) 

(15) 

(16) 

... 4 •. uu•vu satis
condition that fixes the 

Poisson-Boltzmann ap-

+ kT L p; (17) 
'~ 1 

'he contact theorem. well as other sum rules that are valid for the 
interface. will be in Section III. The density profiles 

·btained from the Gouy-Chapman theory are monotonous; that is, they 
how no oscillations. Since. in this theory. the electroneutrality condition 
; satisfied and the contact theorem is almost satisfied. Pi(Z) is pinned at 
ne and has a fixed so that the density cannot deviate 
;JO much from the correct result. When the contact theorem is not sat
,fied, such as in the case of mixtures of unequal-size ions at low electrode 
harge or for density, the are oscillatory, and we expect 
eviations from the GC theory. This is also true for the nonprimitive 
r!Odel, in which the solvent is a fluid of finite-size molecules. 

II. EXACT RESULTS AND THEOREMS 

-he sum rules for the charged interfaces can be classified in two cate
cories: 
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l. The screening sum rules, which are specific to Coulomb forces. 
Because of the very long range of the electrostatic forces, the stability of 
the system requires that all charges surround themselves with a neutral
izing cloud. The surface charge satisfies the electroneutrality condition 

(18) 

where £ 0 is the external or applied field. In the one-sided models this is 
the independent variable. In homogeneous systems of molecules inter
acting with Coulomb forces the screening of charges and multipoles by 
the conducting media is intuitive because of the isotropy of the system. 
In the homogeneous solution every charge is surrounded by an ionic cloud 
of exactly the opposite charge. Also every dipole is surrounded by a 
charged cloud that has a dipole moment exactly opposite that of the orig
inal dipole. and in general. one can show [41-43} for any charge distri
bution in an homogeneous system that any arbitrary multipole is perfectly 
screened by the ion distribution. The fact is that it is also true in the 
inhomogeneous case, which is not intuitively obvious, and has been con
firmed by the beautiful work of Jancovici [44-49], for an exactly solvable 
two-dimensional modeL This model is discussed in detail in Chapter fl. 
The demonstration of these theorems is based on the Born-Green-Yvon 

and an assumption on the clustering of the correlation 
functions. 

") The dynamic sum rules that are derived from balance-of-force con
siderations. Systems interacting with conservative forces must satisfy mo
mentum conservation and force balance. This apparently trivial require
ment is not satisfied by some of the approximate theories used in the 
description of the electrode interface. For interfaces consisting of hard 
walls plus some soft interactions (which could be either attractive or re
pulsive) and for planar systems, the force balance equation reads 52] 

p 
M m l= d- ·( ) /. . . "\:"' - w, z r..T 2: p,(O)-..::... p, d"' __ 

i l i~ l 0 d{. 

where w1( ;::) is the unscreened total interaction potential between the ions 
and the electrode wall. 

We consider a system that is limited by an arbitrarily rough planar but 
charged surface. The precise mathematical requirement is that there is a 
prism with an arbitrarily large cross-sectional area S and height L (the 
volume V == SL) such that the force through the walls parallel to z is of 
0(51

-
8
), where 3- 0 asS- oo. We integrate the BGY equation in the 

volume of a prism of the same sectionS but smaller height L1 < L. Sum-
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ruing over all species i, we get 

i; J dl [pi(!)\', U;
0 (1) 

i=1 

+ Eip,(I) V1 <jl(l)J + i: f dl i: f d'2 Pu(l,2) v, uz(l,2) (20) 
i= I j ! 

+ i: f:'; f dl p;(l) i: e; f d2 p; (2)hu(J.2) vl 1.2) 
i l J= I 

where wii(l ,2) is the soft part of the pair potential. Since for the planar 
\' 1 1 the integral of the left -hand term can be easily per-

formed. Thus 

where we have used the definition 

l 

s 
wher," :-. the of the surface al ( .. 1· 1 l. 

term the right-hand side we use Poisson ·s 

-4TI m 
2.: e;p;(l) 

E i I 

where we have used the electric field 

('2!) 

(22) 

the second 

(23) 

(24) 

Substitution into the second term of the right-hand side leads to 

J dl ;i:, e;p;(l)[EJJ)] = -t:I4TI J dl \'2 <jl(l)[£~(1)] 

E J dl[V,·E(l)JE,(l) (25) 
4TI 

where E(l) is the electric field at position r 1 , and £ 2 (1) is the z-component 
of this field. Using Poisson's equation and integrating by parts, we get 
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The second term on the right-hand side is zero: For a periodic interface 
in the x and v directions. if we takeS to be the surface of a unit cell, then 
the terms iJEA I)/Cix 1 will be of equal magnitude but with opposite sign for 
neighboring cells. For the general random interface we conjecture that 
this term is finite; then is the limit S ~ x the contribution vanishes. We 
have 

1 m sf dJ iLl e;pJI)E:Ol = ;: ([E:OW!s (27) 

where the average square field in the z direction is 

<l ( l (28) 

The other single-particle term containing the short-range interactions be
tween the molecules and ions and the wall yields 

! ) r!ll ;o( l ) 

a::1 s 

s 

I 

s (29) 

(30) 

The last term on the right-hand side of (20) is the average of the pair 
forces. We write 

(31) 

j 
where 

L2l 1,2) (32) 

Since the forces of a pair are equal in magnitude and opposite in sign, 

Fii(l,2) = .F;;(2,I) (33) 

from where the first double integral in (31) vanishes. Since the interactions 
are short range, the second double integral yields the virial contribution 
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to the bulk pressure p: 

Pvirial = Sl f dx, dy, f dx2 dy2 (L' dz, (L dz2 2: Fi;(l ,2) 
S S J Zs(XLJ'il J L1 ij 

27T "' l= d 1 [[e;ej]hu(r) au~(r)] 
- L..t PiPJ r r + gu(r) --
3 ij 0 E.r ar 

<34) 

Putting it all together yields the general contact theorem for a 
on the average, but not necessarily smooth, surface: 

kT i p;(O) = P + E {[EzO>F)s - i \ p,(t) au;o(l)) (35) 

I I 81T 1 1 ' l / ~· 

This theorem (52} is a generalization of the previously derived comact 
theorems to the realistic case of non smooth electrode surfaces. It contains 
the results as cases. If the interface 
walL the surface averages become the surface values of 
and \Ve get 

rn 

kT p 

where the last term is now 

IJ 

1) au;o(l) 
iJ;:l 

When u/)(l) is zero, we obtain the contact theorem: 

' I 

p + --
8"i7 

.\ 

(381 

for the primitive model with a continuum solvent of dielectric constant 
E, and 

tn ,- £0 2 

kT 2: p;(U) T kT £..., p,(O) = - + p 
87T i=1 i=l 

for the case of an electrolyte in a molecular solvent. Comparison of (38) 
and (17) shows that the Poisson-Boltzmann theory satisfies the contact 
theorem with the perfect gas approximation 

p = kT 2: p; (40) 
i=l 

For a surface with an arrav of stickv adsomtion sites ~uch as in the 
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case of the sticky site model (SSM) model discussed elsewhere [5 I], the 
adsorption potential has the form 

exp[ f3ua(r)] = 1 (41) 

with 

(42) 
n1n~ 

Here R x,y is the position at the electrode surface, and z the distance 
to the contact plane, which is at a distance a/2 from the electrode. In (42). 
n 1 and n: arc natural numbers, and a 1 and a2 are the lattice vectors of the 
adsorption sites on the surface. The parameter "" represents the fugacity 
of an adsorbed atom of species a. Define now the regular part of the 
density function 

Y,( I) (43) 

Substituting into the general contact theorem. Eq. (35). gives [52] 

kT ::2; iHOJ 
I=- I 

This theorem has been verified recently [53] for the 
of a one-component plasma in two dimensions. 

IV. SCREENING SUM RUlES 

(-+4) 

solved model 

In electrically neutral systems any fixed arrangement of charges is 
screened by the mobile charges of the system. In homogeneous bulk 
phases this is an intuitively natural fact because if the long-range Coulomb 
forces would not be screened, the partition function would not exist (it 

would and matter would not be stable . This · 
distribution around a 

value but sign. Thus 

-e; = J d2 
1 

L2J 

Rotational invariance in bulk fluids requires that not only but 
also multipoles of arbitrary order should be screened by the mobile 
charges of the media [41,42]. This fact is much less intuitive in the neigh
borhood of charged objects, in particular in the neighborhood of a charged 
electrode. However, the theorems hold, and in classical mechanics, at 
least, perfect screening of all multipoles occurs in both homogeneous and 
inhomogeneous systems. These conclusions are supported by the results 
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of the exactly solved Jancovici model (48,49] (see Chapter 5). However, 
perfect screening of all multipoles does not occur in quantum systems or 
in systems out of equilibrium [55]. As a consequence of the screening, 
the second moment of the pair distribution function must be normalized. 
This is the Stillinger-Lovett [56] moment relation. As was shown by Outh
waite [57], it can be written in the form of a normalization condition for 
the electrostatic potential 

which satisfies the sum ruie 

(,, ( "l 
lj ,_ 

ll 

(46) 

(47) 

condition is also 
Consider the 

4) 

where cu( 1.2) is the direct correlation function and the singlet density 
function p1( I) satisfies the condition 

q, - ~ ry dr ~ e,p,(r) 
J Jo i= 1 

(49) 

where q, is the surface charge density and Sis the area of the interface. 
The inhomogeneous distrihution function satisfies the sum rule 

~e; J d2 .2:: e1p1(2)hu0.2) 
J 

(50) 

From the diagram expansion we write the direct correlation function as 
the sum of a short-range part and the pair potential, which in our case is 
long range: 

cu0,2) c~(L2) wuO ,2) (51) 

where we recall that the electrostatic interaction of ions is 

wuO ,2) (52) 
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media, using the first screening relation (50), we have 

- wu( 1,2) + ~ I d3 wik(I ,3)pk(3)hAJ(3 ,2) 
k I 

(53) 

and from the OZ equation (48) we get 

hu(l.2) = -13ei<f>j(l) + cZ(l,2) + ~ I d3 c?k(l,3)pk(3)1zAJ(3,2) (54) 
k I 

Multiplying this equation by eJpj(2), integrating over r2 , and summing 
over r yields 

13 2: eJ j dr2 p;(2)<j.>j(2, I) 
J 

(55) 

which is the generalization of the Outhwaite formula of the Stillinger
Lovett sum rule for inhomogeneous charged systems. 

V. OTHER SUM RULES 

For flat hard electrode surfaces there are number of other sum rules. A 
complete review of these rules was recently made by Martin [59]. A rel
evant sum rule for the calculation of density profiles in the electric double 
layer is the dipole rule [60], 

kTa In 
a Eo 

J d2 2: eipi(2)hu0 ,2)(z 1 

J 

(56) 

where £ 0 is the bare field at the electrode surface. The differential ca
pacity, which is defined by 

where qs is the surface charge, q, 
satisfies the sum rule 

, and .6. <b is the potential drop, 

STr: I dl d2 2: e,eJp,(l)pJ(2)huO ,2)(zi 
IJ 

(58) 

The surface tension 'Y obeys relations that can be given in terms of the 
direct correlation function [61 ,62] (see Chapter 2). 

TrkT I d d " iJp;(l) iJpj(2) l= d [ ]3 ··(1 2) 
2 

Z1 Z2 £... , , r12 ru Cu , 
ij oZ1 oZ2 0 

(59) 
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Using the Omstein-Zemike equation we get the form that contains the 
pair correlation function 

(60) 

These sum rules provide ways of asserting the accuracy of the different 
approximations used to compute the charge and ion density near charged 
walls. 

VI. INTEGRAl EQUATIONS: THE PRIMITIVE 
MODEl 

There have been a number of papers dealing with wavs to improve 
the Gouy-Chapman equation. In the regime oflow density and high tem-

(or dielectric constant) the GC theory is quite good 
because it satisfies the contact theorem (38) asymp

and it satisfies the electroneutralitv condition 
. in real systems with molecular solvents the and cou-

significant deviations from the behavior predicted 
occur. For this reason it is to determine the 

l)fthe equations for the primitive model for 
constants beyond the parameters that correspond to experimental situ
ations. because it will indicate which theory can be used for the nonprim
itive model of the electric double layer. These theories can be formulated 
as integral equations for the density profile Pi(l), or as a differential or 
integrodifferential equation for the potential <b(l). The central quantity of 
our discussion is [63] the one-particle direct correlation function, from 
which the integral equations will be deduced: 

cO) I 
Pi0) 

n--
Z; 

f3u;(l) (61) 

where c1(l) is the one-particle direct correlation function, Zi the fugacity 
of speci.::s i, and ui(l) the external potential. The function c,(i) is a member 
of the family of direct correlation functions cij ·· · I ,2 .... ), which is the 
sum of all irreducible graphs with density factors p;( 1) for every field point. 
{For a detailed discussion of correlation functions, see, for example, Han
sen and McDonald [64].) Functional series differentiation [65,66] produces 
approximations, such as the hypernetted chain (HNC), and its modifi
cations, and the mean spherical (MSA), and its modifications, that are 
used in conjunction with the Ornstein-Zernike equation. A different set 
of approximations is obtained by spatial differentiation of c;(l), which 
.,.;vru: .... f-h" Dr.?""r. r:.-nr.""' Vu,.-.,r. fO~Vl 'J'P"'\,4 \~J~rthr-fm.~ l A":rPtt_""-tfrtn_Qnff 
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(WLMBJ equations. Finally, the Kirkwood equation is obtained by dif
ferentiation with respect to the chemical potential. Some of these methods 
have been discussed in Chapter 4. 

A Ornstein-Zernike-Based Approximations 

At the interface between an electrode and a fluid the density of the fluid 
is a function of the distance of the point to the surface Pi(::). The Ornstein
Zernike equation for this system can be obtained as a limit of a system 
that is a homogeneous mixture in which there are some large ions, of 
radius R" _.... x. such that p"R .. '--+ 0. In this limit the planar (67.68] HAB 
(Henderson-Abraham-Barker) OZ equation is 

h,( I) c/'(1) = .~ J d2 hp)pjC:fj(l.2) 
J~l 

(62) 

where I) is the density profile correlation function of ion i: c,"(l) is 
not the single-particle direct correlation function cf I). but a different 
magnitude defined below (64l. and c.1f(l.2} is the bulk direct correlation 
function. 

l) I) (63) 

The function · · · (1 . ) is a very complicated function and, in gen
eraL does not admit a simple diagram expansion. To get insight about the 
meaning of this function. we use functional series expansion. Consider 
the functional power series expansion of In pi(!) around the uniform den
sity [65.66] pi: 

!!I r d2 i) In p, (l 
I 

.... . .. f d2 J3 ... .. ( l . ) (64) 
n n' J.k . .. =I 

The direct correlation functions are defined by the functional derivative 

c1Jk···(l,2,3, ... ) (65) 

The superscript B stands for the bulk functions. We now introduce the 
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function c,w(l), defined by 

c/''(1) In g;(I) + lz;(I) + ,2: [PiPe· 
j.k l 

J d2 d3 hj(2)hk(3)cfj~;(l,2,3)] + 

The inhomogeneous potential is of the form 

U;(l) u/1(1) + W;(l) 

255 

(66) 

with u;0 (1) short range, and for a hard, smooth charged electrode, the 
electrostatic part is 

W;(l) 
2 

Combinmg this defimtion with the unctionai 
HNCI for flat 

In d2 .., 

(()')) ha:; a aspect. but because ur the 
range character of H·,( 1) is not convergent and therefore not amenable to 

numerical solution. Using (51), 

with (52). 

and replacing into yields 

where <b(l) is defined by 

¢(1) 

m p; ( d2 h;(2)c~(1.2) 
j I 

J 

m ·(/) 
EoZJ + J d2 ,2: e;p1 

-

J= 1 Er12 

(71) 

(72) 

(73) 

Equation (73) when combined with (6) yields (4). This equation is the 
plane electrode version of the hypernetted chain equation, called the 
HNCJ [69]. Note that the Gouy-Chapman theory results if the right-hand 
side of (72) is neglected. It is completely defined in terms of short-range 
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quantities, which is not the case for the first form of (69). The HNCI is 
the theory that has the closure with the largest number of graphs. It sat
isfies the electroneutrality relations and the Stillinger-Lovett sum rules 
(see below). One important observation about the HNCI is that it does 
not satisfy the contact theorem (38), but rather, 

kT L p;(O} 
E 

Eo2 
pokT[I + (3aplopo] 

81T 
+ 

i I 2 
(74) 

where 
m 

Po 2: Pi (75) 
t-:=-c J 

For high fields and low concentrations the fact that we get the compres
sibility rather than the pressure is not very important and the HNC I is 
still a reasonably good theory, as will be shown below. However. for 
dense systems at low field, this is a rather severe shortcoming. Specifi
cally. when we are dealing with a molecular (dipolar) solvent the density 
is very large and the dielectric constant E is on the order of I (instead of 
80 in water). which makes the electrostatic term, which satisfies the con
tact theorem (38), small in comparison to the contact density term. The 
consequence is that the HNC 1 will put more counterions near the elec
trode than the exclusion of the hard cores will , ther
modynamic stability conditions will be violated, and we get a negative 
capacitance, reflected by a decreasing potential drop ~ d> with increasing 
applied external field £ 0 . 

The HNC is the most accurate theory for bulk electrolytes. One would 
expect that this fact would remain true in the plane electrode limit. How
ever, because of the inaccuracy of the HNC for uncharged hard-sphere 
fluids, the HNCI does not do well in representing the exclusion volume 
of the ions and is not. on the whole, such a good approximation for the 
electric double layer. The bulk direct correlation function 

~'12 I> 

which should be used in solving the HNCI equation is that obtained 
of the bulk HNC equation for the same system. However. this HNC/ 
HNC approximation yields poor results when compared to computer 
simulations [ 69]. Generally, better results are obtained if instead of the 
HNC bulk direct-correlation function the corresponding MSA functions 
are used [58.70-74). Some results of the GC and HNCI/MSA theory are 
compared with simulations in Fig. 1. The next term to be considered is 
the third term of (64), which is a three-particle contribution. The three-
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particle direct -correlation function is in general a very complex function 
and must be approximated. The simplest of these approximations is to 
include the first diagram of the density expansion of the three-point direct
correlation function, the bridge diagram [75]. Ballone et aL [76] performed 
this calculation with good success. The density profile for the l M, 1-1 
electrolyte at a surface charge qs* qsa2/e 0.7 is shown in Fig. 2. 
This is the highest surface density simulated and shows charge oscillations 
due to the hard core of the electrolyte. which is not seen in the HNCl 

In this calculation the bridge diagrams were computed 
directly from the product of the three bulk pair correlation functions, 
which is the first term in the density expansion of the bulk triplet direct
correlation function 

c-1;,(1,2.3) 

of this calculation are shown in 
parameters. the agreement - very 

x/d 

(77) 

2. Since there are no 
alternative. less 

Fig. 2 Density profile for charged hard spheres near a charged hard wall for a 
I M, 1 : I electrolyte. The definition of q* and the model parameters are the same 
as those of Fig. I. The solid and dashed curves give the HNCI results with and 
without the contribution of the bridge diagrams. The value of q* is 0. 7. 



258 Blum and Henderson 

laborious procedure was suggested by Rosenfeld and Blum [77], but actual 
calculations were not performed. 

Another way of improving the HNCl approximation was introduced 
by Forstmann and co-workers [78-82]. In their method the HNCl equa
tion is used as described above, but instead of taking the bulk direct
correlation function, as prescribed by (72), a local density-dependent 
cf)(r,p) is taken. The local density is defined by 

1 lx+o lx+cr/2 
iJ;(z) = 

2 
.., dx dy p;(y) 

CTU x- 0 x- cr/2 
(78) 

where a is the diameter of the ion and o is an adjustable parameter. The 
bulk correlation function is then 

(79) 

For the test case with surface charge, q, * = 0. 7; the results of this method 
are similar to those shown in Fig. 2. A recent calculation by Mier et al. 
{83]. based on a density functional expansion, also gives results compa
rable to those of Fig. 2 but does not require the use of adjustable param
eters. 

B. BGY-Based Approximations 

The BGY can be derived from the one-particle direct
correlation function c;(J). Consider again (64). Letting the gradient v act 
on the Mayer f function of the graphical expansion of c;(l), we get the 
BGY equation: the first member of this hierarchy is 

p;(I) v 1 u;(!) + ~ J d2 Pu( 1,2) v 1 uu(l ,2) (80) 
j I 

Using (67) and (70) to eliminate the long-range terms. we obtain (80) in 
a different form: 

kT p;(l) 

.~. J d2 1,2) VI 
J I 

+ p;(I)e; ~ e1 J d2 p1(2)hu(l 
j I 

This equation can be integrated from x to z, to yield 

e;[<!>(z) + t!Jj{z)] + lu(z) 

(81) 

(82) 

which together with the Poisson equation (3) forms a closed system of 
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equations that is very convenient for numerical solutions. This equation 
is of the same type as the one derived from the HNCl equation (72). The 
right-hand term consists of three contributions: the potential <j>(l), which 
is determined by the single-particle distribution function p;(z); and the 
terms tVj(Z) and Jii, which are functions of the pair distribution function 
hii(L2). From (81) we get 

(83) 

We remark that in (81) [and also in (82)], if the fluctuation terms Jii(z) 
and llij(z) are neglected, we recover the Gouy-Chapman equation (8). 

which has a known analytical solution. In the BGY-based theories the 
pair correlation function hu( I ,2) must be given by some approximation. 
The feature of the BGY equation is that no matter what the 
closure. it satisfies the contact theorem The approximation 
is equivalent to Kirkwood's superposition approximation and consists in 
\\Tiling 

where ht{l r12 j) is the bulk pair correlation function. It fails to satisfy the 
electroneutrality condition ( 45) 

J d2 .2: ejpj(2)hii(l ,2) 
J 

(85) 

and gives very poor results when compared to the computer simulations. 
The approximation [86] 

, ··(I '">) = {J;(l)Jj(2)ht<l r12 i) 
11/j ,.:. l 

where 

+ a; 

2 

r12 > au 
r12 < au 

(86) 

(87) 

is constructed so that the functions f 1(1) are required to satisfy the elec
troneutrality condition (85) for the inhomogeneous pair distribution func
tion. This inhomogeneous pair correlation function will for high densities 
give negative values of guO ,2). The problem is specially severe for salt 
concentration greater than 2 M or also for high surface density charge. 
A C';T"nro.ln 'l.lf0'P tr. 0;rr""ttrr·nr~"Mt th;<' -rAh1r:..rn Hf'"lC' C'l1CYCYP.ctnrl h·u r'"lr-r0rnt> t::)t 
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al. [87]. The approximation 

hu0.2) = {~\ofj(2)he(l r12 D + Au(! ,2) 

Blum and Henderson 

r12 >au 
r12 <au 

(88) 

where the function Au( 1 ,2) takes into account the hard-core exclusion 
effect of the ions near the electrode surface. A sensible guess is 

(89) 

The parameter A is adjusted to eliminate negative values of gil(! ,2). The 
results are, however, not very sensitive to the exact value of A. Com
parison with the Monte Carlo simulations is again good; for the test case 
vvith qs* q 5 (J

21e 0.7~ this method yields results that are similar to 
those shown in Fig. 2. 

Another method, which is probably the most systematic and has the 
great advantage of formally satisfying all known sum rules, is to use the 
inhomogeneous pair correlation function hu( I ,2) obtained from the in
homogeneous OZ equation 

2: d3 
k I 

with a suitable closure for the direct-correlation function. Thus we have 
the MSA2 approximation 

I ,2) f3wu(l.2l (91) 

and the HNC2 approximation 

hu(l ,2) In gu(l.2) (92) 

C. WLMB-Based Equations 

Yet another integral equation is derived from the direct-cor
relation function I), by introducing relative coordinates in the 

representation and taking the derivatives with respect to those 
coordinates. This yields an exact hierarchy of equations which is related 
to the BGY hierarchy. The first member is the Wertheim-Lovett-Mou
Buff (WLMB) equation, 

(931 

This equation contains long-range, divergent terms. Introducing the local 



Electrolytes at Interfaces 261 

potential <!>(l) [Eq. (4)] we have 

V1 In pll) + !3V1<!>rO) = 5: J d2 c;'[(t.2)V2 p/2) (94) 
j=l 

The MSA2 approximation cannot be integrated explicitly. as is the case 
for the homogeneous MSA. However, when the ions are approximated 
by charged points, then, for some specific form of the density profiles, 
p;(l). the OZ equation can be integrated [72,88]. One interesting feature 
of the results above is that the pair correlation function g 12 as 1/ 
r 3 if the charges are held at a fixed distance from the electrode. This 
behavior is exact and was first pointed out by Jancovici [48] (see Chapter 
5). 

The numerical solution of the HNC2 and MSA2 approximations has 
been extensively studied by Plischke and Henderson [89.90]. For q, * 
q, = 0. 7 obtain results very to shown in 'l 

Approximate solutions of this type the local ekctroneutrality con-
dition <45) and dipole sum rule 156L 

Plischke and Henderson HNC') 
rier transform techniques. To facilitate the calculation 
c(l functions the behavior and which are ana-

transformable. Colmenarec and Olivare' the 
WLMB equation together with the 

c(l ,2) cB(I.2) (95) 

and obtained reasonably good results. However. it has been shown that 
this procedure is equivalent to solving the HNC! equation. 

D. Kirkwood's Equation 

An interesting approach has been suggested Kjellander and Marcelja 
[93-96]. based on the observation that for the HNC approximation the 
chemical potential can be obtained explicitly as a function of the pair 
potential hu<l r 12 j) for a homogeneous tluid. Then. within the HNC, the 
function C;( 1) can be explicitly evaluated. The central idea is to divide the 
three-dimensional space into two-dimensional layers that are homoge
neous. The three-dimensional OZ equation can be mapped into coupled 
set of N two-dimensional OZ equations for a mixture of N components; 
each component is an ion in a different layer. The particles interact with 
a species-dependent interaction pair potential. In the limit of an infinite 
number of layers this procedure yield5 the correct inhomogeneous OZ 
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equation. The chemical potential f.L;(a) of the ith ion the ath layer is given 
by Kirkwood's equation: 

f.l;(a) 

where A. is the coupling parameter, ilz the thickness of the layer, A0 the 
ideal gas fugacity, V1(a) the interaction between a particle in layer a and 
the wall, and R the two-dimensional distance. In the HNC closure 

Kirkwood's equation can be integrated to yield 

p;(a) = ~~ exp[f3f.L;(a) ~ iJ'J: 
1 

p;((3) J dR U h?1(R,a(3) cu(R.ap) 

J 
[I [ (3w;;(R,a(3)l ·1 

- 0wu(R.o:(j) Lzln 2 R o J 

where cfl,(o:) is the average potential for layer a. 

cfl,{ o:) (98) 

The results of their calculation for q,* = q,a2/e = 0. 7 are again similar 
to those shown in Fig. 2. 

The modified Poisson-Boltzmann (MPB) equation [98,991 is an ap
proximate solution of Kirkwood's equation [ 100]. As has been shown by 
Levine, Outhwaite. and Bhuiyan, it can be casr in the form of an inhom-
ogeneous linearized Debye-Huckel for the potential 

I.., 

where the inhomogeneous Debye parameter is 

llOOl 

They obtain an approximate solution. valuable at low concentration and 
small electrode charge. It does not yield the layering seen in Fig. 2, but 
is useful for its regime of validity because of its simplicity. 
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VII. INTEGRAL EQUATIONS: NONPRIMITIVE 
MODElS 

263 

In contrast to the large number of studies for the primitive model, using 
various approximations, there have been few investigations of inhomo
geneous electrolytes in which a molecular model of the solvent is em
ployed. The earliest study is that of Carnie and Chan [73] and of Blum 
and Henderson [97], who used the hard sphere with a point dipole model 
for the solvent and the MSA I approximation. This model is useful and 
instructive because it is analytic and because, as has been shown recently, 
the MSAI is a "controlled approximation" in the sense that the internal 
energy is always a bound of the exact value of the internal energy flO I]. 

The solution of the MSAI for the ion-dipole mixture is but 
results can be obtained in cases. such as the 

dilute solution limit. We obtain in this limit a series of powers of Debye·s 

I Oll 

<T, the ionic diameter. the solvent diameter. "' the dielectric 
constant nf the solvent. and the parameter A is obtained from E usmg the 
MSA [ l . The result is 

A.(! + (102) 

Since this is a cubic equation for A. an explicit expression of this parameter 
can be obtained for any solvent. It is related to an effective dipole moment. 
which can he computed from Wertheim· s work [I 02] or can be obtained 
from the experimental dielectric constant. The parameter A. is a slowly 
varying function of E: For E = I, A. I and for E = 80, A. 2. 7. The 
effective moment for this last case is 2.2 D. compared to the value 
of 1.85 for the water molecule. 

The first term is just the linearized Gouy-Chapman result, while the 
second term is independent of concentration. If the series in (101) is ter
minated after the second term, the ditlerential capacitance will have the 
form 

c I (103) 

where CGc is the Gouy-Chapman capacitance and CH, often called the 
inner layer or Helmholtz capacitance, is independent of concentration. 
As shown in Fig. 3. (103) is verified experimentally [103), although there 
are small deviations that are usually ascribed to experimental errors. We 
will return to this point shortly. 
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Fig. 3 Inverse capacitance of an aqueous solution of NaH2P04 at 2SOC near a 
hanging mercury electrode as a function of the inverse Gouy-Chapman capaci
tance. C J 

1 The light straight lines of unit slope give the results obtained from 
103). The heavy lines give the full MSA results obtained using u u, 2. 76 

The metallic contribution of -0.026 cm2/fl.F ha~ been included. 

Experimentally, CH does not depend on the properties of the ions. 
Because of this, in the past C H has been regarded as the capacitance of 
an inner layer of water molecules, tightly bound to the electrode surface. 
This is highly unlikely from the emerging theoretical and experimental 
evidence. which shows that the structure of the first adsorbed layer (which 
is not the classic inner layer responsible for the capacitance behavior) is 
rather sensitive to changes in the potential and not at all simple [104]. 
Thus the idea that the total capacitance is the result of coupling the inner 

in series with the diffuse layer is unlikely. 
In the old picture C H is extracted from the experimental data and is 

just a parameter. One needs to introduce a dielectric constant for the 
mner usually very low 3 to with no explanation of why 
the solvent would separate sharply in two phases for all values of the 
potential bias. The dielectric constant is a bulk property and has no mean
ing for a monolayer, and although phase transitions may occur at the inner 
Helmholtz layer, they will be very sensitive to the applied potential bias 
[52] and therefore not at all constant. 

The ion-dipole charged wall model described above is much more 
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satisfactory. It gives rise to (103) at low to moderate concentrations. Be
cause 

E I 
~~ (104) 

the theory correctly predicts that CH will be determined by the solvent 
properties to a good approximation. The model also gives a formula for 
CH with no adjustable parameters that yields values in general agreement 
with experiment. However, the underlying interpretation is different from 
the old picture, because now the additional constant term is due to the 
fact that the solvent has a molecular structure, and the additional shift is 
due to the finite size of the solvent molecule. It is easy to see from (101) 
that this effect will disappear in the limit rrs ~ 0. The solvent polarization 
by the field of the diffuse layer is an effect that occurs over the entire 
double layer and is not restricted to the monolayer adjacent to the elec
trode. This is seen in Fig. 4, where the orientational part of the profile 
of the solvent molecules, !.lhs(z), is plotted. The dashed curve is a plot 
of e-KX. It is clear that as required for ~· .l .z:) behaves 
asymptotically as e- KX. 

We have mentioned that (101) and (l are just the leading terms in 
the expansion of the MSA result. It is fairlv simple to solve these equations 

cone= O.OiM 

x/d 

Fig. 4 f:.hs(z) as a function of z in the MSA for a 0.01 M, 1: 1 model electrolyte 
solution. The parameters of Fig. 3 are used. The parameter c, is a normalization 
parameter whose value is not significant for the present calculation. 
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numerically and obtain the MSA capacitance near the point of zero charge 
for finite concentrations. In Fig. 3 the MSA capacitances are compared 
with experimental values, which now show similar deviations from lin
earity. 

To get good agreement with experiment, (101) must be coupled with 
a more realistic model of a metal. A metal is not a charged hard wall; it 
contains electrons. The simplest model of a metal is the jellium model, 
in which the metal is regarded as a free fermion gas of electrons in a 
positive backgtound potential arising from the metallic ions. In principle. 
the neutralizing background should be the lattice of the metal ions. But 
this is the problem of an electron in a three-dimensional lattice, which is 
periodic in only two dimensions. and therefore has difficult boundarv 
conditions. A much simpler model is obtained by smearing the charge of 
the ions. Then the problem is much easier, since we have electrons in a 
continuous background that terminates at the electrode surface. Clearly. 
the electrons can spill out into the electrolyte. The problem of the electron 
at such an interface has been studied extensively in the literature [ l 05]. 
The addition of the electrolyte complicates the problem considerably. For 
this reason in the early treatments the electron density is parameterized 
and the parameters arc found minimizing the surface free energy 
alently. the surface energy, since the electron gas is completely degen
erate). Several refinements of this model have been made: The metallic 
lattice structure is taken into account means of a In 
any case. the inhomogeneous region of this electron gas gives rise to a 
potential difference that has to be added to the one of the electrolyte. 
This results in generally good agreement of the work functions and po
tentials of zero charge for most non-d-metals, which unfortunately ex
cludes the noble metals. A more refined model of jellium in which the 

equations [106} were solved were performed Price and 
Halley [28.29]. In their calculation the electron density profile shows the 
required Friedel oscillations. 

The modified Poisson-Boltzmann (MPB) approximation has been used 
to the hard-wall system [98,99]. Unfortunately, solutions 
of these can be obtained only at low solvent densities and smali 
dielectric constant. Within its region of validity. the results are interesting 
and similar to that of the MSA. 

Torrie and colleagues [107] have used the HNCI approximation to
gether with a model of the solvent that includes dipoles and quadrupoles 
to study solvent effects in the double layer. For reasons that are not yet 
understood, they are unable to obtain convergence for planar walls. How
ever. they are able to examine spherical electrodes which are 50 times 
the size of the ions and solvent molecules. These calculations are very 
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difficult, but they are worthwhile since the HNCl approximation is the 
most reliable simple approximation for electrolytes and direct computer 
simulations of these systems in the presence of ions are not yet feasible. 
Torrie et aL find considerable structure near the electrode when the sol
vent is pure, but this ordering is inhibited when the ions are present; 
presumably, this is due to the screening of the interactions between the 
solvent molecules by the ions. 

VIII. INTERACTION BETWEEN MACROIONS IN 
AN ELECTROLYTE 

Although experimental studies of capacitances provide some support for 
the modern theories of the double discussed herein. the support 
not overwhelming. Semiempirical descriptions can be brought into 
agreement with experiment. The problem is that the capacitance and the 

are which are averages pf 

the mterface and therefore insensitive to the details of 

hraelachviil and II have measured the force between 
crossed mica surl·aces in an solution. The 
of Poisson~ Boltzmann theory is that the force between the plates should 
be repulsive and monotonically increasing as the separation between the 
cylinders is decreased. When the short-range van der Waals forces are 
also included, as is done in the Derjaguin, Landau, Verwey, and Overbeck 
theory (DLVO), the force is repulsive at large separations but attractive 
at short range, as shown, as shown in Fig. 5. Israelachvili·s experimental 
results agree with the DLVO theory at large separation but show strong 
oscillations at short separation. 

Since one of the differences between the modern theories of the double 
layer and the Gouy-Chapman theory is the appearance of oscillations in 
the correlation functions predicted hy these modern theories might ac
count for the oscillations seen by lsraelachvili. Ideally, one would like to 
obtain the solution of the MSA for large macroions in an ion~dipole so
lution. This has been done in principle [ 109], but the numerical results 
are not yet available. 

Numerical results have been obtained by Henderson and Lozada-Cas
sou [110], who used a similar but simplified modeL They considered 
charged hard-sphere ions and a hard-sphere solvent in a dielectric con
tinuum whose dielectric constant equals that of the solvent. This result. 
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Fig. 5 Force between macroions in an electrolyte. The solid curve gives the 
experimental results of Israelachvili et a!. The dashed curve gives the DL VO 
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theoretical results of Henderson and Lozada-Cassou. The dashed curve gives 
the DL VO result. 
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Fig. 7 Pressure between two parallel plates as a function of the plate separation. 
The fluid between the plates is the tetrahedral sticky water model. The results 
are obtained canonical ensemble Monte Carlo simulation. 

shown in 6. is strikingly similar to the experimental results shown 
In Fig. 'i 

Yet another model of the solvent has recently been proposed by Blum, 
Bratko, Cummings, and Luzar [Ill 113]. This model, which is solved 
analytically, consists of a hard sphere with a point dipole and a tetrahedral 
sticky potential that mimics hydrogen bonding. A computer simulation 
[ 114] of this solvent between parallel plates clearly yields the pressure 
oscillations seen in the experiments of lsraelachvi!i, as shown in Fig. 7. 

IX. SUMMARY 

In most of this century our understanding of inhomogeneous electrolytes 
has been based on the Poisson-Boltzmann approximation (the Gouy
Chapman or the DL VO theories). These theories predict rather featureless 
correlation functions. Until recently, experimental results were not suf
ficiently sensitive to expose the deficiencies of these theories. This is 
rapidly changing. Modern theories predict much more interesting cor
relation functions. Further, the integral quantities, such as the differential 
capacitance, agree with the experiment without semiempirical adjust
ment. Moreover, such venerable concepts as the inner layer have been 
found to have a limited validity in the explanation of capacitance exper
iments. 
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Wetting Experiments 

Carl Franck 
Cornell University 
Ithaca, New York 

I. INTRODUCTION 

The observation of wetting phenomena is something which for many of 
us started early in our lives. Everyday experiences include the capillary 
action occurring when a paper towel wipes up a spill and the behavior of 
water on clean versus greasy surfaces. In this chapter I review some of 
the recent work (through 1990) on experimental wetting both in and out 
of thermal equilibrium [ 1]. Our discussion will be divided up into the 
answers to four questions: (1) What are the intermolecular forces that 
produce wetting layers? (2) What are the different thermodynamic states 
of wetting, and what is the nature of the transitions between them? (3) 
What are the effects of thermal fluctuatioas on wetting layers? (4) How 
can wetting systems be driven out of thermal equilibrium? 

II. HOW DO WETTING LAYERS REVEAL 
INTERMOLECULAR FORCES? 

By a wetting layer, we mean a region of fluid at a substrate/fluid interface 
which is perturbed by the substrate from its bulk structure. We will label 
the thickness of the wetting layer by I. In Fig. 1 we picture such a system. 
We call the bulk fluid adjacent to the wetting layer the spectator phase. 
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Fig. 1 Schematic diagram of a boundary fluid. S, substrate; W, wetting layer; 
B, bulk (spectator) phase; /, thickness of wetting layer. 

There is great variety in the possible ways a wetting arrangement may be 
realized. If the bulk fluid is a one-component vapor, the wetting layer 
could be a liquid or a solid form of the same material. If the bulk system 
is a homogeneous binary liquid mixture, the wetting layer could be a phase 
with a different composition from that of the bulk. 

We seek to learn the nature of the intermolecular forces that are re
sponsible for establishing the wetting layer. The means by which this will 
be accomplished is to arrange for competition between these forces and 
an external control parameter that is set to be unfavorable to formation 
of the wetting layer. The idea is to vary the strength of the external pa
rameter and observe the thickness of the wetting layer. In this section 
we consider only cases where the substrate-fluid interaction is always 
favorable toward increasing the thickness of the wetting layer. As a first 
example of such a measurement, we examine the noble gas adsorption 
experiments of Krim et al. [2]. In one of their experiments, the substrate 
was a gold (111) surface and the bulk fluid was argon. The fluid was kept 
at a fixed temperature. The surface was found to be loaded with liquid 
argon, but since the pressure was below that of liquid-vapor coexistence 
(i.e., the vapor is undersaturated), the amount of adsorbed liquid on the 
substrate was limited by the deviation of the pressure from the pressure 
at coexistence. Because the system temperature was kept above the triple 
temperature, we expect that the wetting and spectator phases are both 
fluids. The amount of adsorbed material was measured by vibrating the 
substrate with an attached quartz mechanical oscillator. The shift in fre
quency turns out to be proportional to the change in the adsorbed mass. 
The sensitivity of this technique is so great that much less than a mon
olayer of adsorption can readily be detected. Their measurements of fre-
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quency shift versus gas pressure yields the result seen in Fig. 2. The 
power-law growth in the amount adsorbed with the deviation of the pres
sure from the saturation pressure was found to have an exponent in agree
ment with the expectation that the intermolecular force responsible for 
the formation of the wetting layer was a nonretarded dispersion force of 
attraction between the argon atoms and the substra:te. The intermediate 
steps needed to make this assertion are worked out in Ref. 3. 

As a second example of how the forces responsible for wetting have 
been established in a one-component fluid, we consider the experiment 
of Kayser et a!. for sulfur hexafluoride at bulk liquid-vapor coexistence 
(4]. In this experiment, with wetting layers that were considerably thicker 
(tens of nanometers), they tested the validity of the Dzyalosinskii, Lif
shitz, and Pitaevskii (DLP) theory of dispersion forces [5]. The compe
tition was between gravity and the substrate-molecule attraction. To ar
range for a range of the gravity control parameter, the substrate surface 
was vertical. Thus the experimenters could scan the wetting layer as func-

,.,., 
I 

N 

:r: 
,.,., -<J 

....... 

84.2 K 

2 

Fig. 2 Adsorption of argon gas by a favorable substrate for wetting. The oscil
lator frequency shift, i:l.f, is proportional to the amount of adsorption, and P is 
the vapor pressure (P0 corresponds to saturation). The system temperature is 
fixed above the triple temperature. (From Ref. 2.) 
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Fig. 3 Gravity-controlled wetting experiment. Vapor is on top, liquid is on the 
bottom. See the text for symbol definitions. 

tion of height (see Fig. 3) to look for variation in the thickness of the 
wetting layer. This was elegantly described as follows: F(l) + t1pgh = 
0, where I is the thickness of the wetting layer, h the height of the point 
of measurement above the bulk liquid-vapor interface, t1 p the mass den
sity difference between the liquid and the vapor, g the acceleration of 
gravity, and Fa function supplied by the DLP theory. The wetting layer 
thickness was measured through the polarization properties of the light 
reflected (i.e., ellipsometry) from the substrate (fused silica)-liquid in
tert'ace. By minimizing the temperature gradients, thermal equilibrium 
was attained. The substrate also served as the window for the probe light 
beam. Its internal strain caused the limiting feature in the measurement: 
extraneous optical birefringence. The agreement achieved with the DLP 
theory is demonstrated: extraneous optical birefringence. The agreement 
achieved with the DLP theory is demonstrated in Fig. 4. Vertical scans 
were made at two values of reduced temperatures [t = (T- Tc)ITc, where 
Tc is the temperature of the liquid-vapor critical point]. Between these 
two temperatures there is no significant variation in the prediction. We 
see that the complete DLP theory, including retardation effects, is sup
ported. As in the earlier work of Sabisky and Anderson on adsorbed 
helium [6], we have a successful quantitative comparison between theory 
and experiment. 

Turning to wetting by binary liquid mixtures, for the reasons put forth 
by Kayser et al. [7], it is very difficult to get adsorption measurements 
in thermal equilibrium when the bulk is at two-phase liquid-liquid co
existence. Among the problems are great sensitivity to thermal gradients 
and extremely long relaxation times. However, interesting results have 
been gotten readily when the bulk is in the single-phase region. As an 
example, we consider the experiment of Ripple et al. on the liquid mixture 
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carbon disulfide + nitromethane on a borosilicate glass substrate [8]. As 
shown in Fig. 5, the experiment was performed upon approaching liquid
liquid coexistence by changing temperature at a fixed chemical compo
sition. As the system approached the phase separation temperature T* 
[ = Tc (critical mixing temperature) 1.24 K], the amount of adsorption 
on nitromethane in the presence of the bulk phase, which was rich in 
carbon disulfide, increased. This was indicated by an increase in the re
flectivity of the substrate-liquid interface, as shown in Fig. 6. The theory 
used was based on the assertion by Kayser [9] that ionic forces should 
be considered as part of the substrate-liquid interaction. In fact, they 
were found to dominate the dispersion forces completely in this system, 
despite the apparent nonionic character of the materials involved. Besides 
providing a good account of the observations, the ionic theory was further 

60.------------------------------. 
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Fig. 4 Wetting layer thickness l versus vertical height h. The sample is sulfur 
hexafluoride. Two values of reduced temperature (t; see the text) are shown. 
(From Ref. 4.) 
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Fig. 5 Thermodynamic trajectory (marked "A") for the study of wetting by : 
binary liquid mixture. The system is a mixture of carbon disulfide + nitromethanc 
at a fixed composition (<h) which is rich in the nonwetting material. The phast 
separation temperature is T* and the critical mixing point is located at compositiOI 
<Pc and temperature Tc. (From Ref. 8.) 
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Fig. 6 Reflectivity Rs of a liquid-glass interface versus reduced temperature 
with respect to the bulk transition temperature [t* == (T - T*)/T*]. The liquid 
is nitromethane + carbon disulfide in the single-phase region. Dots correspond 
to an untreated system. Crosses correspond to a sample with a soluble salt (tet
rabutyl ammonium iodide) capable of screening electrostatic substrate-liquid in
teractions. The upper solid curve indicates the theory for the untreated sample. 
The lower solid curve is the theory for the treated sample. Dashed lines show 
the extent of uncertainty in the theory. The increase at large t* is due to thermal 
expansion. (From Ref. 8.) 



Wetting Experiments 

Jl'"'! 
uo 
c: 
0 

:;:;v 
go 
'

l.J_ 

<5~ 
>0 

0.0 20.0 40.0 60.0 80.0 
Distance from Wall (nm) 

283 

Fig. 7 Model structure of the wetting layer as coexistence is approached in the 
experiment of Fig. 6. Reading left to right: t* = 3. 71 X 10 -}, 1.94 X w-\ and 
2.56 X w- 5 • (From Ref. 8.) 

confirmed by the success at explaining the large decrease in adsorption 
produced by the addition of a soluble salt to the system. The salt had the 
effect of "shorting out" the ionic force. The remaining adsorption was 
found to be due to an effective force arising from bulk critical fluctuations, 
as discussed below. Finally, the theory used here shows in Fig. 7 how 
the wetting layer becomes more distinct as coexistence is approached. 

To summarize, by arranging competition between substrate-interac
tion forces favorable to the formation of a wetting and external thermo
dynamic forces, equilibrium studies of the degree of adsorption are being 
used to discover the nature of substrate-liquid interactions. 

Ill. DISCOVERY OF INCOMPLETE WETTING 
AND WETTING TRANSITIONS 

For many scientists the recent excitement in the subject of wetting began 
with the insight of Cahn [IO] that in the wetting situation at bulk two
phase coexistence described by Fig. 1, there could be situations in which 
the thickness of the wetting layer was not limited simply by external 
forces, but rather by the thermodynamics of the liquid-surface interac
tion. To use different language, which will be especially useful in dynam
ical discussions below, one says that the liquid-liquid interface that de
fines the boundary between the wetting layer and the bulk liquid is 
"p:nned" at the liquid-substrate interface [II]. Furthermore, Cahn ar
gued that if this "incomplete wetting" situation were to occur then closer 
to the bulk critical point and still at bulk coexistence, the system would 
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inevitably switch to a state in which the thickness of the wetting phase 
was limited only by external forces (e.g., gravity). The latter state is called 
"complete wetting." It was the "approach to complete wetting" that we 
in fact studied in all the examples in Section II. In this section we examine 
experimental results that have established the existence of states of in
complete wetting, and the "Cahn" transitions between incomplete and 
complete wetting, all in thermal equilibrium. 

For an example of a wetting transition in a one-component system, let 
us return to the noble gas adsorption experiments of Krim et a!. [2] (see 
Fig. 8). This time, by going below the triple temperature they considered 
the wetting of the gold substrate by krypton solid, with a bulk vapor phase. 
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Fig. 8 Adsorption ofkrypion at constant temperature as measured by frequency 
shift of oscillating substrate, as a function of the bulk gas pressure. Po is the 
saturation pressure. Below the triple temperature, T,, the system is incompletely 
wet. At or above the triple temperature, the system is completely wet. (From 
Ref. 2.) 
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For temperatures below the triple temperature, the adsorption was finite 
as the system approached the saturation pressure. However, this finite 
value was ever increasing as the temperature reached toward the triple 
temperature, above which the adsorption at saturation pressure diverged 
(not shown). Thus we see that there is a Cahn transition between incom
plete and complete wetting at the point at which the wetting phase melts. 

The study of wetting by binary liquid mixtures has yielded wetting 
transitions that, by contrast, are not associated with bulk phase transi
tions. The first example was the study of the wetting of the liquid-vapor 
interface by mixtures of cyclohexane + methanol at liquid-liquid co
existence (as well as liquid-vapor coexistence) by Moldover and Cahn 
[12]. In this experiment the methanol-rich phase was the wetting phase 
and the cyclohexane-rich phase was the bulk spectator phase. By mea
suring the dihedral angle, e, called the contact angle, formed by the wedge 
of the wetting phase as it slips between the substrate (vapor phase) and 
the spectator phase, they assessed the state of wetting. As shown in Ref. 
13, the connection is as follows: 

cos e Us 
(1) 

u 

where uw, us, and u are the interfacial free energies among the following: 
the wetting phase in the bulk and the substrate; the spectator phase in 
the bulk and the substrate; and between the two bulk liquid phases (wet
ting and spectator phase), respectively. The crucial result contained in 
this formula is that as long as the vapor is incompletely wet by the meth
anol-rich phase, cos e < I, but as the preference of the vapor for the 
wetting phase increases, e decreases, until it saturates at 0 and the system 
becomes and remains completely wet. Moldover and Cahn tuned the sys
tem through such a wetting transition by reducing the amount of water 
added to the mixture at a fixed temperature (22°C), giving the result shown 
in Fig. 9. 

It is interesting to compare the Moldover-Cahn observations with the 
earlier work of Zisman in which he developed a scheme to characterize 
the energy of surfaces [14]. Zisman measured the advancing (in the sense 
that the wetting layer wedge was moving toward the direction where it 
is thinnest*) contact angle ofliquids in air and plotted it against the liquid
air surface tension, all for a fixed temperature. In this manner he noticed 
a straight-line relationship yielding a wetting transition from incomplete 
to complete at what he called the critical surface tension, his measure of 
the surface energy of the substrate. 

* Note that this is potentially a non-thermal-equilibrium phenomenon. 
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Fig. 9 Contact angle, 6, for methanol + cyclohexane at liquid-liquid coexist
ence at the vapor/liquid interface versus added water concentration. (From Ref. 
12; copyright 1980 by the AAAS.) 

Much of the early theoretical work following Cahn focused attention 
on critical wetting transitions [15]. Not only was a new universality class 
discovered, but it had the intriguing feature that the critical exponents 
depended on a nonuniversal parameter. Finally, the transition's upper 
critical dimensionality was found to be three. It was expected that the 
corrections to mean field behavior would be unusually strong. By con
trast, if a wetting transition is first order, then by comparison with the 
case of critical wetting, the effects of thermal fluctuations are insignificant 
and the transition should have mean field behavior [11]. It is thus very 
important to be certain of the order of wetting transitions .. It can in fact 
be seen that the Moldover-Cahn transition of Fig. 9 is first order by virtue 
of the discontinuity of the slope [16] in cos e versus water concentration 
(we follow Moldover and Cahn and take the shaded region to correspond 
to cos e = I). 

Schmidt and Mold over ( 17] pursued the question of the order of wetting 
in an experiment that provided the first direct look at the thickness of the 
wetting layer undergoing a Cahn transition. They performed an ellipso
metric measurement of the interface between a mixture of perfluoro
methylcyclohexane + isopropanol at liquid-liquid coexistence and its 
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vapor. The results of measurements of the thickness of the wetting layer 
as a function of temperature while the bulk liquid was at liquid-liquid 
coexistence for two different vertical heights of the spectator phase are 
shown in Fig. 10. The increase in wetting layer thickness with decreasing 
vertical height of the spectator phase is significant since it is evidence for 
gravity thinning of the wetting layer. As pointed out by Kayser et al. in 
Ref. 7, this is no mean feat. 

An alternative experimental attack on the Cahn transition in a binary 
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Fig. 10 Thickness of wetting layer of isopropanol-rich phase at the liquid/vapor 
interface of the isopropanol + perfluoromethylcyclohexane binary liquid at liq
uid-liquid coexistence versus temperature. The jump at "" 39°C is a Cahn tran
sition. Lis the vertical height of the spectator phase. The greater Lis, the greater 
the cost in gravitational energy to form the wetting layer. (From Ref. 17.) 
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liquid mixture at liquid-liquid coexistence was pioneered by Pohl and 
Goldburg (18] using the method of capillary rise. The idea is to turn the 
substrate of interest into a hollow cylinder, then immerse it completely 
in the binary liquid mixture under study, with the vertically oriented tube 
passing through the free liquid-liquid interface. As soon as you say the 
words "sap rises up a tree," one can find from Ref. I 9 the difference in 
the height of the liquid-liquid interface inside the tube and far from it to 
be given by 

h = 2a cos 6 
LlpgR 

(2) 

where Ll p is the mass density between the lower and the upper liquid 
phases and R is the inner radius of the tube. This result is valid only for 
h P R. Pohl and Goldburg compared the rise in the system 2,6-lutidine 
+ water on borosilicate glass with what the rise would have been had 
the substrate been completely wet. They accomplished this by measuring 
the shape of the liquid-liquid interface inside the tube. This provided a 
direct measurement of ai(Llpg), which could then, by substitution into 
Eq. (2), give the rise expected from a completely wet system. Note that 
a completely wet system has the rise with the greatest possible absolute 
magnitude for a given temperature. Pohl and Goldburg found that closer 
than about 15 K to the critical mixing temperate, the system switched to 
complete wetting, being incompletely wet at further distances in temper
ature. It is worthwhile to note the apparent extreme sensitivity in the state 
of wetting to the nature of the substrate. While Pohl and Goldburg found 
that the wetting layer was composed of the water-rich phase, other re
searchers [20,21] have found wetting by the lutidine-rich phase on other 
silica-based systems. 

A next important step in capillary rise work was the realization by Sigl 
and Fenzl (22] of a test of the connection between the Cahn transition 
and the critical mixing transition. They used the s.~me system that was 
studied by Pohl and Goldburg with the addition of a salt. The idea was 
to exploit the following scaling hypothesis (3,23]: 

(3) 

The assumption is that there is a short-range interaction between substrate 
and liquid of strength h1 which is responsible for the attraction of the 
wetting material to the substrate (the letter h is used to recall the equiv
alent Ising model magnetic problem). We further assert that the scaling 
function behaves in the manner expected for small values of its argument 
(23], F(x) - x up to the transition point, beyond which F(x) = I, since 
the system is in the completely wet state. Using this reasoning, Sigl and 
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Fenzl discovered a value for the exponent ~ 1 that was consistent with 
renormalization group calculations. They had found that by adding po
tassium chloride to the 2,6-lutidine + water system, the wetting transition 
temperature could be brought to the critical temperature. This provided 
as wide as possible a temperature range to test the scaling prediction. 

Another test of the above "short-range" scaling hypothesis was pro
vided in subsequent capillary rise experiments by Durian and Franck [24]. 
In this work the wetting transition of carbon disulfide + nitromethane on 
borosilicate glass was studied over a wide range of wetting transitions 
produced by gradually altering the surface chemistry of the substrate. The 
scheme was to change the degree of short-range attraction for the surface 
by replacing with nonattractive groups, surface sites attractive to nitro
methane. The chemical procedures followed were originally used to con
trol the adsorption properties of surfaces used in chromatography. The 
capillary rise results are shown in Fig. 11. The interpretation was as fol
lows: The chemically unaltered surface gives a reference system that is 
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Fig.11 Product of the capillary rise and the inner capillary radius versus distance 
in temperature from the critical point for carbon disulfide + nitromethane on 
borosilicate glass. The small symbols correspond to chemically unaltered surface. 
This is taken to indicate complete wetting at all temperatures. Each type of large 
symbol corresponds to a surface dosed with hexamethyldisilazane by a different 
amount in order to reduce the attraction of the nitromethane. The joining of the 
rise versus temperature plots into the complete wetting reference curve are the 
signatures of Cahn transitions. (From Ref. 24.) 
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completely wet at all the temperatures measured .. If we fix the temper
ature, we see that chemical alteration of the substrate over (probably) 
less than a monolayer pushes the system into an incompletely wet state 
(less than "complete" capillary depression). However, as the temperature 
is raised toward the critical temperature, the rise observations for each 
particular preparation shown return to the completely wet reference state, 
in a second Cahn transition. To check the scaling hypothesis, Eq. (3), a 
replacement had to be found for the unmeasured quantity, h1. This was 
accomplished by recognizing that the Cahn transition itself must occur 
at a universal value of the argument of F. That is, h1 tw-A, is a constant, 
where tw = (Tc - T w )ITc is the reduced wetting transition temperature, 
T w being the wetting transition temperature itself. This relationship allows 
one to find h 1 by knowing T w· Figure 12 shows the scaling plot resulting 
from this philosophy. The collapse of the data (on a straight line) is in 
agreement with the scaling hypothesis. With the additional assumption 
that F(x) - x, the slope of the line gives the scaling exponent <1 1 in good 
agreement with the Sigl and Fenzl experiment and renormalization group 
theory. Note that the abrupt change in slope ofF at the transition point 
indicates that the transitions are clearly first order since they have a dis
continuity in the slope of cos e as a function of a thermodynamic control 
parameter. 
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Fig. 12 Scaling plot of the same data as in Fig. 11. T w is the wetting transition 
temperature. (From Ref. 24.) 
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Fig. 13 Exponents extracted for acetic anhydride + cyclohexane on a chemi
cally altered glass as a function of the difference between the wetting transition 
temperature T wand the critical temperature. The value of the universal exponent 
(D.d, indicated with its uncertainty by the dashed lines, is measured by the ni
tromethane + carbon disulfide experiments. Note that this universal behavior 
occurs in acetic anhydride + cyclohexane when the wetting transition temper
ature is the furthest from the critical temperature. (From Ref. 24.) 

Durian and Franck got a surprise when the examined a second binary 
liquid mixture, acetic anhydride + cyclohexane, on similar substrates. 
Not only did highly modified surfaces show a crossover from wetting by 
one phase to wetting by the other, but in the final approach to the tran
sition, the scaling hypothesis failed in a very suggestive manner. They fit 
the results for the incompletely wet state to a power law as it was about 
to undergo a transition. The exponent thus extracted is plotted in Fig. 13 
as a function of the wetting transition temperature. They found the in
triguing result that the universal exponent is not reached when the wetting 
transition is close to the critical point, but rather, appears to be obeyed 
when the wetting transition is furthest from the critical point. These ob
servations are as yet unexplained in the literature. 

Most of the early theoretical work on wetting was directed to systems 
with short-range interactions only. But as the experimental evidence for 
the importance of long-range forces in the approach to complete wetting 
presented in Section II was accumulating, parallel theoretical effort was 
made to understand what effect long-range forces had on the Cahn tran-
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sition. One very clear message was given by de Gennes [25] and Night
ingale and Indekeu [26]: a long-range force unfavorable to wetting was 
expected to eliminate the completely wet state. Possible evidence for this 
effect was found by Abeysuriya et al. [27], in measurements of highly 
altered glass surfaces with capillary rise experiments using nitromethane 
+ carbon disulfide. These authors interpreted the alteration of the surface 
chemistry by the addition of methyl groups in place of hydroxyl groups, 
as changing the sign of the surface field h 1 • They interpreted the disap
pearance of Cahn transitions as evidence for the long-range force effect 
cited above. However, airtight application of the theoretical ideas is made 
difficult by our lack of knowledge as to the nature of the long-range in
teractions for these chemically altered surfaces. In related work, Durian 
and Franck [28] found evidence for the remnant of a Cahn transition 
suppressed by a long-range force. Consistent with the prediction of Ebner 
and Saam [29], they found evidence of what could happen to a Cahn 
transition between incomplete and complete wetting when a long-range 
force unfavorable to wetting was introduced. It could transform into a 
transition between two states of incomplete wetting. 

Thus far our experimental discussion of wetting transitions has been 
limited completely to behavior when the bulk is at two-phase coexistence 
between the wetting and spectator phases. In his original work, Cahn 
already recognized that a first-order wetting transition could not exist in 
isolation on the bulk coexistence line, but rather, must be attached to a 
line of first-order incomplete-incomplete wetting transition extending into 
the bulk two-phase region. To this date, this line of "prewetting" tran
sitions has remained undetected, presumably because the line of pre
wetting transitions is so short and/or it hugs the bulk coexistence curve 
so closely. The strongest experimental effort has been that of Schmidt 
and Moldover, in which special care was taken to discriminate between 
possible prewetting transitions and the bulk phase separation transition 
[30]. 

In summary, the concept of transitions between different states of wet
ting has provided an exciting period of activity. Even now, the wetting 
phase diagram remains a very incomplete picture from the point of view 
of both observation and theory. 

IV. THERMAL FLUCTUATIONS AND WETTING: 
EFFECT OF BULK CRITICALITY 

The free energy of a wetting system includes contributions besides the 
direct intermolecular forces discussed in Section II. The effect we con
sider in this section is that due to thermal fluctuations. While the hope 
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of discovering thermal fluctuation effects in the form of critical wetting 
transitions and capillary waves (as presented in Ref. I 1) on the interface 
between the spectator and wetting phases has remained unfulfilled, an 
exciting branch of wetting research was opened up when Fisher and de 
Gennes [31] considered the effects of bulk criticality on wetting layers. 
We have already met this problem, most recently in the connection es
tablished in Section III between wetting transitions and bulk critical tran
sitions. Now we confront it head on by studying the behavior of wetting 
layers as the bulk phase is brought to its critical point. The Fisher-de 
Gennes theory was a natural extension of bulk scaling theory through 
introduction of the surface contact field of strength h 1 that we discussed 
earlier. Most of the experiments we discuss will be optical measurements 
along the lines of the earlier measurements of the thickness of wetting 
layers. We can argue that the boundary liquid will be in for a dramatic 
effect in its spatial extent. To see this, consider what is occurring in the 
bulk fluid while it approaches the critical point from the disordered side. 
Throughout the fluid the average value of the order parameter is zero. 
Assume that the boundary forces the order parameter to be nonzero at 
the point of contact with the bulk fluid. Now, just as the healing length 
for spontaneous (and transient) fluctuations in the bulk order parameter 
is the correlation length, ~. we Would expect the boundary disturbance 
to trail off into the bulk phase with the same characteristic length. A vital 
difference between the two problems is that in the wetting system, the 
fluctuation is not transient, but is sustained. As the critical point is ap
proached, we would expect this wetting structure, called critical adsorp
tion, to grow in spatial extent as~ diverges. We will describe the structure 
in terms of the average order parameter, m, as a function of perpendicular 
distance from the substrate, z. It is worthwhile first to compare the ex
pected structure of critical adsorption with that of complete wetting when 
the bulk is at two-phase coexistence between the spectator and wetting 
phases. In the latter case, there are distinctive regions over which the 
order parameter (e.g., chemical concentration in a binary liquid mixture) 
is unchanging. This trend is well described in Fig. 7 for the case were the 
temperature is closest to the coexistence temperature. By contrast, the 
critical adsorption profile is expected to be continuously varying over all 
regions of space where it is appreciably different from the bulk. Fisher 
and de Gennes predicted that there would be two spatial regimes in the 
critical adsorption profile. For z much greater than ~' they expected m 
- exp(- zl~), the exponential regime, and for z smaller than ~. a power
law regime with m - z -J3Iv, where 13 and v are the bulk critical exponents 
for the order parameter and correlation length as a function of reduced 
temperature, respectively. 
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In subsequent experimental activity, the critical adsorption feature was 
detected by Beaglehole [32], Beysens and Leibler [33], and Franck and 
Schnatterly [34] in binary liquid mixtures, with vapor, glass, and glass 
substrates, respectively. The Beaglehole and Franck-Schnatterly exper
iments used reflected light as the probe, in ellipsometry and reflectivity 
measurements, respectively. The Beysens-Leibler experiment used an 
interesting twist: A light wave confined to the liquid-solid interface was 
used to excite fluorescence radiation from one of the components of the 
boundary liquid. The fluorescence was then monitored. In each of these 
experiments, the idea was to sweep the temperature into the bulk critical 
regime, monitoring the optical signal. It was clear from the interpretation 
of the Franck-Schnatterly experiment that the feature being detected was 
the long-range exponential feature of the profile. Recent ellipsometry 
measurements by Schmidt [35] have given a close look at the adsorption 
at the liquid-vapor interface of methylcyclohexane + perfluoromethyl
cyclohexane as the critical mixing point is approached, as shown in Fig. 
14. The measured optical quantity, the ellipticity, is the difference of the 
phase shifts of light polarized in and perpendicular to the plane including 
the incoming and outgoing wavevectors of light. The angle of incidence 
was tracking Brewster's angle. Ellipticity is particularly sensitive to in
terfacial structure. As explained by Beaglehole [36], this is because it 
directly measures the deviation of the profile from a perfect step. The 
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Fig. 14 Ellipsometric measurements of the adsorption of the binary liquid mix
ture methylcyclohexane + perfluoromethylcyclohexane approaching its bulk crit
ical point at the vapor/liquid interface. The ellipticity (discussed in the text) is 
measured as a function of the reduced temperature. System is at the critical com
position. (From Ref. 35.) 
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Fig. 15 Critical adsorption under control of surface chemistry. An increase (de
crease) in the reflectivity indicates critical adsorption in the direction of the ni
tromethane (carbon disulfide) richness in the mixture as it approaches the bulk 
critical point. (From Ref. 39.) 

interpretation of these experiments by Schmidt [35] and Liu and Fisher 
[37] involved a complete numerical solution to Maxwell's equations for 
an inhomogeneous dielectric (as was the case in the earlier wetting re
flected light studies mentioned here). In the analysis of these data by Liu 
and Fisher [37], it was found that the preferred interpretation included 
the power-law regime of critical adsorption. These authors also found that 
their best interpretation of the experiment was consistent with a response 
of the fluid to the substrate that was saturated in the sense that increasing 
the strength of h 1 would not increase the magnitude of the critical ad
sorption. 

Ripple et al. demonstrated [8] that away from the critical point, critical 
adsorption etiects can successfully compete with long-range forces due 
to dispersion. This is demonstrated by the agreement with the expected 
critical adsorption signal with the measurement of the salted sample in 
Fig. 6. The modification of critical adsorption effects by long-range forces 
is in need of investigation, although early theoretical work asserted that 
it was not too significant [38]. 

In another avenue of study of critical adsorption, Dixon et al. [39] 
showed that control of the surface field by surface chemistry exercised 
in the capillary rise experiments discussed earlier could be used to reverse 
the sign of the order parameter in critical adsorption. Figure 15 shows 
the result that making a glass surface switch from hydroxyl to methyl 
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character was enough to change the long-range distortion of the order 
parameter from one component of the mixture to the other. Such control 
of the surface field may prove useful for future critical adsorption studies. 

Besides these microscopic observations of the structure of the fluid 
near a boundary, a macroscopic adsorption experiment near the liquid
vapor critical point of sulfur hexafluoride absorbed on graphite by Blume! 
and Findenegg [40] has also tested the theory of Fisher and de Gennes. 
The intriguing result is that although a clear power law adsorption at a 
fixed density was found, it was not in a agreement with the theory. The 
experiment was performed ingeniously as follows: In order to keep the 
experimental system of fluid + absorbent at a fixed density, while the 
temperature was scanned, a closed reference cell of fixed volume and 
hence fixed density (the system was always in the bulk single-phase re
gime of pressure and temperature) was installed in the same thermostat. 
The experimental cell was adjustable in volume. The volume was set to 
keep the pressure in the two cells the same. Since it is possible to make 
a very sensitive null differential measurement of pressure, the trajectory 
of the system could be made to carefully follow a constant density as 
temperature was scanned. When the data were .converted to adsorption 
on the substrate as a function of reduced temperature [t (T - Tc)!Tc], 
they found the result given in Fig. 16. The exponent for the power law 
expected by the authors was v !3 = 0.31; instead, they found an ex
ponent of 0.504 ± 0.005 at a density that was I .007 times the critical 
density. A possible reason for the discrepancy is that the theory is correct, 
but the range of the experiment included the exponential regime of decay 
at long distances compared to the correlation length. As the authors point 
out, this would give rise to a larger exponent than that measured, so this 
does not seem likely. Another issue to be examined is the condition of 
the substrate. Since the graphite sample is not a single sheet, but rather, 
a collection of platelets, perhaps new physics takes over when the size 
of the adsorbed layer reaches a distance scale on the order of the distance 
between platelets. 

To summarize, the most thoroughly investigated experimental aspect 
of the effect of thermal fluctuations on wetting has been the study of 
boundary fluids while the bulk is approaching criticality. The scaling the
ory of Fisher and de Gennes, which has received support from renor
malization group calculations [41] and analytic calculations in two di
mensions [42], has passed a recent quantitative optical test of the structure 
of critical adsorption but not an earlier adsorption test. As Liu and Fisher 
(37] point out, there is much more opportunity for experimental work on 
the problem; 
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Fig. 16 Adsorption of sulfur hexafluoride on graphite versus reduced temper
ature. This system is close to the critical density. (From Ref. 40.) 

V. WETTING OUT OF EQUiliBRIUM 

Finally, we turn to nonequilibrium wetting phenomena. We are concerned 
first with how wetting layers of the sort we described in Section II, i.e. 
completely wet, can be taken out of thermal equilibrium by fluid motion 
and changes in temperature. Second, we examine transport experiments 
that demonstrate the role of wetting in controlling dissipative fluid motion. 

Kayser, Moldover, and Schmidt [7] argued that motion of the bulk fluid 
could upset the thermal equilibrium of a wetting system at bulk coexis
tence because of the delicacy of the gravity-produced chemical concen
tration and pressure gradients that controlled the thickness of the wetting 
layer. Their idea was that by stirring the liquid, the effective vertical height 
of the spectator phase was reduced to the size of the region of diffusion
dominated (instead of convection dominated) transport close to the sub
strate. To test this, and better understand earlier experiments, Wu et al. 
[43] measured the thicknesses of the gravity-thinned wetting layers in a 
stirred binary liquid mixture. They found that higher stir rate gave a 
thicker wetting layer, as Kayser et al. [7] had predicted. 
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Durian and Franck [44] found another means of perturbing wetting 
layers from thermal equilibrium: by sudden changes in system tempera
ture. They found that the wetting layer thickness responded with a slow 
but dramatic change m magnitude in response to slight temperature 
changes. As shown in Fig. 17, successive temperature jumps could be 
used to perturb and keep the wetting layer out of thermal equilibrium. 
The results were interpreted in terms of diffusion-limited growth, follow
ing the theory of Lipowsky and Huse [45]. The asymmetric response to 
temperature changes suggested that the wetting layer was being perturbed 
sufficiently far from its free-energy minimum so as to detect the anhar
monicity in the effective potential in which the wetting layer-spectator 
liquid interface was trapped. 

In hydrodynamic transport measurements, Stokes et al. have dem
onstrated the importance of wetting structures in controlling dissipation 
and fluctuations in fluid motion [46]. The elegant observation that a par
tially wet interface in the form of a contact line dragging across a substrate 
must at some small length scale violate the no-slip boundary condition of 
hydrodynamics [47] has been a major factor in attracting interest to this 
problem. 

Recognizing the similarity of the behavior of a moving contact line and 
the response of a charge density wave (CDW) with respect to depinning 
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Fig. 17 Wetting layer thickness and temperature versus time for the nitrometh
ane + carbon disulfide system at bulk coexistence wetting a glass surface. (From 
Ref. 44.) 
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Fig. 18 Velocity of an interface between two pure liquids: decane pushing into 
water in a glass bead pack. The bulk dissipation has been subtracted away. We 
see the conducting as well as pinned behavior. Inset is an analogous current
voltage relation for a charge density wave conductor. (From Ref. 46.) 

and hysteretic friction, they carried out an innovative series of wetting 
transport measurements patterned after the electrical measurements of 
the CDW systems. We will examine two of their experiments: the study 
of the depinning phenomena in liquid-liquid interfaces moving through 
random media and the generation of broadband noise by de biasing. 

The first experiment was performed with a substrate consisting of a 
pack of 0.5-mm glass beads. A non wetting fluid, decane, was pushed into 
a wetting fluid, water, in which the beads were initially immersed. Figure 
18 shows the remarkable similarity in the velocity versus pressure curve 
with the current-voltage relation for a charge density wave. In both cases 
we witness a depinning phenomenon. In the fluid experiment, the dissi
pation due to ordinary Stokes dissipation of the liquid far from the in
terface has been discounted. 

In the second Stokes, Kushnick, and Robbins experiment, they "lis
tened" to the broadband noise generated in the same fluid system when 
the system was depinned and set to run at a fixed velocity. Again in perfect 
analogy with the generation of voltage noise in a de current-biased charge 
density wave conductor, the system exhibits pressure fluctuations with 
time. Figure 19 shows this observation. 

In summary, non equilibrium wetting experiments on binary liquids at 
liquid-liquid coexistence are exploiting the extreme sensitivity of these 
systems to driving forces. Also, a new class of fluid experiments has 
appeared in the form of transport measurements. 
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Fig. 19 Noise power spectrum for pressure fluctuation in the same system as 
in Fig. 18. The system is set to have constant liquid velocity. We see results for 
different velocities. (From Ref. 46.) 

VI. FUTURE EXPERIMENTAL WETTING RESEARCH 

In each of the areas of activity we have examined we have seen that major 
research opportunities exist. The problem of characterizing intermolec
ular forces with wetting is as rich as the variety of such forces. Answers 
to these questions are needed to help us complete the phase diagram of 
wetting with particular preparations. The possibility then exists that we 
could design our way into discovering both critical wetting transitions and 
prewetting (see Ref. [48]). The problem of thermal fluctuation effects in 
wetting is still in need of experiments to study critical adsorption. In 
addition, new fluctuation phenomena in wetting layer structure and in 
wetting transitions are still to be observed. The area of nonequilibrium 
studies beckons, with many systems that are easily driven out of equi
librium. The effects of wetting on transport has led to a new methodology 
in wetting experiments. Finally, with regard to sample preparation, wet
ting experimenters dealing with bulk liquids will have to invent a lot of 
new techniques to match the level of the ultrahigh vacuum surface sci
ence. But any single new technique, whether it be the liquid scientist's 
version of a pump (and filter) to purify the sample, or a new analytic probe 
of surface composition such as Raman spectroscopy, will give us new 
opportunities to make interesting wetting experiments. 
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I. INTRODUCTION 

ln this chapter a general approach to improving existing homogeneous 
liquid theories and extending them to the case of inhomogeneous fluids 
is presented briefly. Although the approach is general as to the type of 
fluid, in most of the chapter emphasis is given to charged liquids. As an 
application of this general approach. the structure of a hard-sphere fluid 
and an electrolyte inside a slit and a cylindrical pore is surveyed. In par
ticular, the force between two charged plates in an electrolyte is analyzed. 
From the structure of a confined electrolyte its transport properties can 
be calculated. The transport coefficients of an electrolyte in a narrow slit 
are analyzed in terms of the electrolyte structure inside the slit. 

To study homogeneous liquids, two main approaches have traditionally 
being used: hierarchy equations and the Omstein-Zemike (OZ) equation 
[I-4]. In hierarchy equations such as the Born-Green-Yvon (BGY) equa
tion, the n-particle distribution function is expressed in terms of the 
(n + I)-particle distribution function. A shortcoming of this approach is 
that a superposition approximation has to be used to solve the equation. 
In the Ornstein-Zernike equation an approximate closure for the direct 
correlation function is used. From the analysis of the graphical expansion 
of the direct correlation function, depending on which types of clusters 
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are ignored, different liquid theories are obtained [1-4]. Particularly, for 
charged fluids the hypernetted chain (HNC) approximation compares bet
ter than others with computer simulation results (5-9]. In the HNC equa
tion the so-called bridge diagrams are not taken into account. Efforts to 
include bridge diagrams have been made [10, II]. However, the graphical 
analysis is quite involved and the correction terms are difficult to cal
culate. 

Another approach to the study of homogeneous liquids is the modified 
Poisson-Boltzmann (MPB) equation [12-14]. In every case the liquid is 
defined through a mathematical model (i.e., the particle interaction po
tential must be given). The particles can be of a single species or a mixture. 
All of the various approaches (to the study of classical fluids) mentioned 
above are quite general in relation to the type of the particle interaction 
potential and the number of species in the fluid. The various microscopic 
liquid theories are basically mathematical manipulations of the species 
probability densities, starting from a conservation equation or a proba
bility density definition. These facts have been used in the past by 
Lozada-Cassou and others to extend, in a straightforward manner, ex
isting homogeneous liquid theories to be applicable to a fluid in an external 
field of planar [5,6,15,16], cylindrical [17-19], and spherical (20] geom
etries. The idea behind these extensions is really very simple: Since there 
are almost no restrictions in the various theories as to the type of particle 
interaction potential, and/or the number of species, and/or their concen
trations for homogeneous liquids, one can consider the external field in 
an inhomogeneous fluid to be just another particle. Thus an n-species 
inhomogeneous fluid can be taken as an (n + I)-species homogeneous 
liquid and a homogeneous liquid theory used. The new "interparticle" 
potential will in general introduce geometrical factors which have to be 
taken into account. This procedure of deriving inhomogeneous liquid the
ories has been called the direct method (DM) [ 15, 16]. 

The opposite is also true: One can think a particle in a homogeneous 
liquid as being a source of an external field. This equivalent approach has 
been used by Percus to study inhomogeneous fluids [21], through a "turn
ing on" of the external field procedure, and very successfully by Hen
derson et al. [5,6,22-24], through an asymptotic procedure in which one 
of the species in the fluid becomes infinitely large while its concentration 
goes to zero. However, these limit procedures or asymptotic methods 
(AM} are in general somewhat more mathematically involved [15,16]. It 
is apparent from the above that from the point of view of existing liquid 
theories, it is to some extend artificial to talk of an inhomogeneous liquid 
theory. In fact, often, inhomogeneous liquid theories are simple restate
ments of already existing homogeneous liquid theories. This is the case 
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of the Stillinger-Kirkwood inhomogeneous liquid theory (25], which is 
equivalent to the Kirkwood-Poirier theory for homogeneous liquids 
[15,26], the BGY equation [27-31], the one-particle distribution function 
OZ equation [15,16,21-23], and as shown by Outhwaite et al., the MPB 
equation [32,33]. 

Another way of taking advantage of the freedom one has to define the 
interparticle interaction potential is to define artificially a species (at in
finite dilution) made of clusters of two or more particles taken from the 
fluid. Thus an n-species homogeneous fluid will become an (n + I)
species homogeneous fluid, where the new species is taken to be at infi
nite dilution. In this way we gain a better microscopic description of the 
system: That is, this procedure provides a simple way to calculate the 
unsymmetrical (n + l)th-particle distribution function for a homogeneous 
fluid, when a cluster of n particles is considered. The unsymmetrical 
(n + I)th-particle distribution function is proportional to the probability 
of finding the (n + l)th particle at a certain position with respect to the 
position of the other n particles, provided that the relative positions of 
the first n particles are fixed. These ideas, together with those in the 
paragraphs above, have been used in the past to obtain integral equation 
theories for a fluid inside a slit [34-38], by defining in the fluid a "dumbbell 
particle" made of two infinite plates, and a fluid around two colloidal 
particles [39], by defining in the fluid a "dumbbell" made of two large 
spheres. 

Another approach to the study of a fluid inside a slit is through the 
inhomogeneous two-particle OZ (OZ2) equation, where the external field 
is produced by the two plates [40]. If in a homogeneous fluid the OZ2 
equation is applied, by assuming that one of the regular particles in the 
fluid is the source of the external field, the unsymmetrical three-particle 
distribution function can be calculated. This is a particular application of 
the ideas given in the paragraphs above. Attard has successfully used this 
approach to calculate the three-particle Percus-Y evick (PY) distribution 
function for a hard-sphere fluid [41]. 

Recently, the DM has been used to derive the inhomogeneous one
particle OZ equation for a hard-sphere fluid inside spherical [42] and cy
lindrical [43] pores. Depending on the type of fluid (e.g., hard spheres, 
Lennard-Jones fluid, electrolyte, liquid crystal), the structure of a con
fined fluid (e.g., in a slit or a spherical or cylindrical pore) is relevant to 
the study of colloidal stability [34-40,44-47], electrokinetic phenomena 
[48-55], and/or optical properties of some materials, as for example in 
liquid-crystal devices. If the confined fluid is an electrolyte, two electro
lyte models have been studied extensively: the point-ion model (PIM) and 
the restrictive primitive model (RPM). In the point-ion model the ions are 
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taken as point charges, whereas in the RPM the ions are taken as charged 
hard spheres of diameter a. In both models the solvent is taken through 
a uniform dielectric constant, E. Most of the discussion in this chapter is 
given in terms of the point-ion and restrictive primitive models. 

In confined fluids the atomic or ionic size plays a relevant role. How
ever, only recently have studies of confined RPM fluids been made. From 
the structure of an electrolyte inside a slit the force between the walls 
can be calculated. On the other hand, the application of pressure and/or 
electrical potential gradients across charged capillaries, in equilibrium 
with a reservoir containing an electrolyte solution, gives an origin to elec
trokinetic phenomena. The Onsager transport coefficients can be calcu
lated from the electrolyte structure inside the slit or pore, provided that 
the system has sufficiently small Reynolds numbers. In this chapter we 
study the force between two charged walls immersed in an electrolyte 
and the electrokinetic properties of an electrolyte inside a charged slit, 
as well as the electrolyte structure inside a cylindrical pore. As a limit 
situation a confined hard-sphere fluid is also studied. 

II. GENERAl APPROACH TO liQUIDS 
STRUCTURE: HOMOGENEOUS AND 
INHOMOGENEOUS liQUIDS 

As pointed out in Section I, most of the existing homogeneous liquid 
theories can easily be extended to the study of the structure of a fluid 
next to an external field of arbitrary shape. As examples of the general 
procedure, in this section the inhomogeneous one-particle OZ equation 
for a RPM electrolyte next to electrical fields of differents geometries will 
be obtained. Emphasis will be given to the hypernetted chain/mean spher
ical (HNC/MS) approximation. As particular cases, the HNC/MS equa
tions for an electrolyte between two charged plates and inside a charged 
cylindrical pore will be obtained. From these equations, the corresponding 
equations for a point-ion electrolyte or a hard-sphere fluid can be trivially 
obtained by making the ionic size or ionic valence, respectively, equal to 
zero. 

A. Homogeneous liquid 

For simplicity, let us consider a three-species homogeneous liquid. The 
OZ equations for this fluid are 

3 

hu(r2t) = Cu(r21) + L Pm J Cjm(rn)him(r23) dv3 
m=l 

iJ = 1 ,2,3 (l) 
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where hu(r) [ gu(r) J] is the total correlation function [gu(r) is the 
radial distribution function], cu(r) is the direct correlation function, Pm is 
the bulk concentration of species m, and dv3 is the volume element around 
particle 3. Pmg1m(r) gives the local concentration of particles of species 
m at the distance r of a particle of species i. 

To be able to do anything with (1), a closure for the direct correlation 
function has to be given. Different nonexact closures have been proposed 
in the past [1-4]. Among them are 

( ) 
_ f(r)g(r) 

c r - e(r) 

c(r) [3U(r) 

c(r) h(r) - In g(r) - [3U(r) 

(2) 

(4) 

where f3 ll KT, K is the Boltzmann constant, Tis the temperature. U( r) 
is the panicle interaction potential, 

e(r) = e f3U<rl 

and 

e(r) - I 

Equations ( (3), and (4) are referred to as the Percus-Yevick (PY). 
mean spherical (MS), and hypernetted chain (HNC) approximations, re~ 
spectively. f(r) is called the Mayer /-function. 

If in (I) r) is approximated through (4), and c.im(r13 ) is approxi-
mated through (3) or (4), the HNC/MS or HNC/HNC integral equations 
are obtained, respectively. Other combinations are, of course, possible. 
The PY IPY approximation has proved to be better for a hard-sphere fluid 
[I-4], and the HNC/HNC [56,57] and the HNC/MS [7] for an RPM elec
trolyte. 

Density expansions of the direct correlation function, the radial dis
tribution function, and the total correlation function can be made. These 
expansions can be expressed in terms of diagrams [3,4]. In the diagram
matic language, the various approximated integral equations theories cor
respond to keep different sets of diagrams out of the total of them, in the 
exact expansion. The density expansion for the radial distribution function 
of a homogeneous one-component fluid is given by 

(6) 

In Fig. 1, the diagrams (or graphs) corresponding to the first two terms 
in the density expansion are shown. In the HNC aonroximation onP cli::1-
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I 

Figure 1 Diagrams involved in the first two terms of the density expansion for 
the radial distribution function of a homogeneous one-component fluid. 

gram is missing. and in the PY approximation two diagrams are missing, 
with respect to the exact expansion. The diagram missing in the HNC 
column belongs to a class of diagrams called bridge diagrams, whereas 
in the PY column the bridge diagram and a product diagram are missing. 
At all orders in the density expansion, in the HNC approximation bridge 
diagrams are missing, whereas in the PY approximation in addition to the 
bridge diagrams. product diagrams are missing. In standard diagrammatic 
nomenclature [3]. bridge diagrams are those h-allowed diagrams with no 
cutting points and with product diagrams excluded, and product diagrams 
are those whose value is the product of two or more simpler diagrams. 
Although the HNC approximation has more diagrams than the PY ap
proximation, it is not necessarily better than the PY approximation. Par
ticularly, as mentioned earlier, the PY approximation is better than the 
HNC approximation for hard spheres [1-4]. This is probably due to a 
cancellation of errors. Nevertheless, the HNC approximation is better if 
applied to charged liquids. Therefore, depending on the system studied, 
a liquid theory with more diagrams included is not necessarily better. 

For a three-species RPM electrolyte, the HNC equations can be ob-
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tained from (1) and (4): That is, 

J3Uii(r21) 

+ ± Pm J Cjm(rn)h;m(r23) dv3] 
m+l 

where 

Uif(r2d = U(}(r2d + U'[/(r2d 

U(;(r21) = {~ r21 <a 
r21 >a 

U'f/(rzd = r21 >a 
er11 

iJ = 1,2,3 
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(7) 

(8) 

(9) 

(10) 

where e is the proton's charge and and z1 are the ionic valence of sp!':cu~s 
i and j, respectively. U(}(r2d is the hard-sphere part of the potential and 

r=d is the electrostatic part. 
Since in the RPM the ions are taken as charged hard spheres. the 

volume element in IS m coordinates: 

sin 0 dO d~.p dr3 (ll) 

If we conveniently choose particle 2 to be in the coordinates' origin. 

and (7) can be written as 

J3e 2
Z;Z; 

Er21 

such that r21 > a and 

sin 0 dO d~.p dr23 

In bipolar coordinates, using the relation 

(12) 

iJ = 1,2,3 (13) 

(14) 

(15) 
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Equations (12) and (14) become 

(16) 

and 

(17) 

respectively. If the MS approximation is used in (17), an analytical expres
sion is obtained. However, if the HNC approximation is used, (17) has 
to be evaluated numerically. In both cases numerical methods have to be 
used to solve (!3) [58]. In (13) and (17). the hard-sphere potential, (9), is 
implicitly taken into account in the integration limits. 

In the limit of point ions the HNC/MS equation reduces to the PB 
differential equation [59]. ln fact, for point ions. ( 13) is the integral version 
of the PB differential equation. 

In the MPB integrodifferential equation, the PB equation is modified 
to take into account the fluctuation terms due to the ionic size. In these 
equations, boundary conditions given by the size and charge of the central 
ion are needed to solve them. In (13) these conditions are implicit in the 
ionic electrostatic potential. first term in the exponentiaL and in the hard
sphere potent1al. lower integration limit of the second term in the expo
nential. 

B. Inhomogeneous Fluids 

In the introduction it was pointed out that since, in general, in liquid 
theories there are no restrictions on the particle interaction potential and 
the species concentration. an external field can be taken as just another 
particle (DM). To illustrate this, let us first briefly outline the procedure 
to obtain from (13) the HNC equations for an electrolyte next to an ex
ternal field of spherical. cylindrical. and planar geometries. 

l. Spherical Electrode 
If one assumes species 3 to be large charged spherical particles of radius 
R at infinite dilution, the ions of species l and 2 have the interaction 
potential given by (9) and (10). However, their interaction with a particle 
of species 3 is given by 

{: 
a 

rz1 < R + 2 
a 

r21 > R + 2 
(18) 
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and 
a 

r21 > R +-
2 
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j = 1,2 (19) 

where (j is the surface charge density on the spherical electrode. From 
(7), (18), and (19) we find that 

g3J(r21) = exp[ 

j = 1,2 (20) 

where {vm(r21 ,r23 ) is given by ( 14) or ( 17). Since species 3 has been taken 
at infinite dilution, the sum in the exponential of (20) is only over the two 
ionic species. and decouples from those for the ionic solution, which 
are given by ( 13 J but with I As \\'e shall see later. under certain 
conditions. this is an (20) has been solved in the 
HNC/MS case 

2. Planar Electrode 
For a planar external field. 3 is made of infinite plates of width 

density u. and it is at infinite dilution. Thus the 

{

X 

rzd = 

0 

and by applying Gauss's law. 

U3)(rzd = -

d a 

2 
d +a 

2 

d +a 
r21 2:---

2 

(21) 

(22) 

where cr is the surface charge density. In cylindrical coordinates dv3 = 
z dz dr23 d<fl, where dr23 and dr.p are the length and angle elements along 
and around, respectively, an axis perpendicular to the plate. z is measured 
along an axis parallel to the plate. In these coordinates, and taking ad
vantage of the symmetry of the system, 

(23) 

Hence, in bipolar coordinates, 

(24) 



312 Lozada-Cassou 

Therefore. from (7) and (21) to (24) we find that 

[
1341TaezJ 

exp r21 
E 

+ m~ I Pm J~ oc h3m(r2l njm(r2l .r23) dr23 J j = 1,2 (25) 

In these coordinates, (17) becomes 

SJm(r21 h3) = 21T {"" rnCjm(rl3) dr13 
J1rn- rnl 

(26) 

Equation (25) for the HNC/MS [5,6] and HNC/HNC [24] approximations 
has been solved numerically. The solution is independent of the width d 
of the plate, and thus the solution is equivalent to that obtained with the 
AM [15,16]. 

3. Cylindrical Electrode 
For a cylindrical external field. species 3 is made of infinitely long cyl
inders of radius Rand surface charge density a. and it is at infinite dilution. 
The ion-cylinder potential is given by 

{: 
and 

a 

a 
r2 < R + 

2 

(28) 

Equation (28) is easily obtained by applying Gauss's law to the charged 
cylinder. In cylindrical coordinates dv3 = r13 dr23 dz dc.p, where dz and 
dif' are the length and angle elements along and around the cylinder. re
spectively. In these coordinates, 

+ + rn cos c.p (29) 

From the equation for the cylindrical double layer is 

g3j(r2d exp[ (~41T~aezJ)tn r21 

+ ± Pm {"' h3m(r2d~)m(r21 ,r23) dr2] 
m=l JR+a/2 

j l ,2 (30) 
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The kernel is given by 

(31) 

In all the expressions for the kernels of the nonlinear integral equations 
so far discussed [Eqs. (14), (17), (26), and (31)], care should be taken of 
considering in the integration limits the ion-ion exclusion volume due the 
hard-sphere interaction. Equation (30) has been solved for the HNC/MS 
approximation [ 17, 18]. 

4. Slit Pore 
To obtain the HNC equation inside and around a slit pore, species 3 is 
made of dumbbell particles formed by two infinite plates of width d each, 
separated by a distance ,. . and it is at infinite dilution. The ion-dumbbell 
electrostatic interaction potential is given by [34-38] 

[(r21 + l + d + I r:1 
E 

t I 
I (32) 

for 0 :5 r21 t or t d r21. where t and <Tout and <:r;n are the 
densities on the outside and inside surfaces of the plates. respec~ 

. The ion-dumbbell hard sphere/hard wall interaction is infinite 
whenever the volume of an ion of diameter a and a hard wall of width d 
overlap, and zero elsewhere. 

As for the planar electrode, dv3 = z dz d~.p. where is measured 
an axis parallel to the plates and dr23 and d~.p are the length and 

angle elements along and around, respectively, an axis perpendicular to 
the plates. The origin of the coordinate r21 is taken at half the distance 
between the plates (see Fig. 2). In this geometry, (23) and (24) are still 
valid, and, therefore, from (7) the HNC equations for the slit pore are 

g3j(r21) = exp[ -f3Ujj(r2t) 

+ mtl Pm J:= h3m(r21 )(,jm(r2t.r23) dr23 J j = 1,2 (33) 

The kernel Lm(r21 ,r23 ) has the same general expression as for the planar 
electrode, (26). However, because the boundary conditions for these two 
systems are different, the integral in (26) will in general give different 
results [37,60]. 

Associated with the charge densities <:rout and <:Tin are the surface mean 
electrostatic potentials \Po and \jlo, respectively. Sometimes the boundary 
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Figure 2 Geometry for a slit pore. 

conditions are given in terms of the surface potentials instead of the sur
face charge densities. To find the relations among these quantities. as well 
as with those that characterize the five different regions shown in 2. 
the Laplace and Poisson equations of the electrostatic theory have to be 
integrated. that is. 

0 

E 

(34) 

(35) 

where ljl(x) is the local mean electrostatic potential and Pc(x) is the local 
charge density, defined by 

(36) 
m m 
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For simplicity in the notation, let us define x = r2., y = r23 , and s == r13 • 

From (34) and (35) some of the relations that can be found are [37] 

\PO 

4Jo 

ezj(ji(x) 

w(x) 

41T foc 
- (l + d - Y)Pc(Y) dy 

E t+d+a/2 

<ro 
41T<Tin 47rd it-a/2 + -- d +- pc(y) dy 

E E 0 

41Td r·, 
'Po d ~- Pc(Y) dy 

E E t-r dTa/2 

U~)(x) 21TeZj J:"" - -- (x + y + I x + y l)pc(y) dy 
E 0 

Wo 
21T ir-a/2 
- (x + v 

E 0 . -

27r (t a/2 

E Jo y 

T + I X - y i)p,(y) dy 

y \)pAY) dy 

(37) 

(38a} 

(38b) 

(39) 

(40) 

(41) 

where ~ t!J(t - a/2), and the last two equations are valid for 0 ::s x ::s 
a/2. For this system the electroneutrality condition is 

crin + Cfout -a/2 Pc(J} dy- f~.ha2 p,(y) dy (42) 

In studies of these types of systems a boundary condition that is often 
imposed is either <Po wo or <T;n <Tout· If <ro == Wo, from (38) and (42) 
it is found that 

(43a) 

and 

CTout - fx p,(y) dy 
t+d+a/2 

(43b) 

That is, the electrolyte inside the slit neutralizes the electric field produced 
by the inside surfaces of the slit, and the electrolyte outside the slit neu
tralizes the electric field produced by the outside surfaces of the slit. This 
is not true for every situation if the condition <Tin <Tout =F 0 is imposed; 
then the more general electroneutrality condition (42), should be used. 
Although many chemists would expect (43) to be valid always, it should 
be remembered that the electroneutrality condition, and for that matter 
the chemical potential, are in part ruled by the competition between the 
counterion-counterion repulsion and the counterion-wall attraction. The 
physics of the model clearly indicates that even if the counterion-coun-
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terion repulsion is disregarded, the maximum number of counterions (of 
diameter a) that can be put inside a slit (of width T) will not be able to 
neutralize a fixed and sufficiently high value of cr;n. It is possible, of 
course, that such a value of <Tin might be unphysically high. Apparently, 
most studies of electrolytes confined in slits have not taken this fact into 
consideration. If the condition $0 $0 is imposed to (33), it can be shown 
[34,37] that the electrolyte structures inside and outside the slits are in
dependent of each other and of the parameter d, whereas if the condition 
<T;n = IT out is imposed. they are not independent of each other and of the 
parameter d. 

If we define the short-range functions C5 (s) and cD5R(s) by writing the 
ion-ion direct-correlation function as 

then using (39) and (44), after some algebra, (33) becomes 

g3j(x) = exp[ -(5ez1<!J(x) fil1(x)] 

(44) 

(45) 

where Jj{x) is a potential that contains the short-range contributions to 
the total ion-slit potential of mean force. 

The function Jj(x) can conveniently be given in terms of sum and dif
ference functions, 

where 

I:SJD(x) 

ps(x) 

f
t+d~a/2 rr-a/2 

21Tpy -a/
2 

K(x,y) dy - 2Tr Jo K(x,y)ps(y) dy 

21T J:-a/2 L(x,y)pD(Y) dy 

2: Pmh3m(X) 
m 

m 

m 

The kernels in the integrals are defined as 

K(x,y) = ('"' C5 (S)s ds 
Jtx-yf 

L(x,y) = {"' CDSR(s)s ds 
Jtx-yf 

(46) 

(47) 

(48) 

(49) 

(50) 

(51) 

(52) 

(53) 
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To solve (45), an approximation for cs(s) and cDsR(s) has to be given. 
The analytical expressions for K(x,y) and L(x,y), if the MS approximation 
is used, are given in Ref. 37. 

It is straightforward to see that for point ions, since in this case 
cs{s) = cDsR(s) 0, the kernels K(x,y) and L(x,y) are zero and Jj(x) 
vanishes. By construction, the mean electrostatic potential, tfi(x), satisfies 
the exact Poisson equation, (35). Therefore, for point ions, substitution 
of (45) in (35) gives the Poisson-Boltzmann equation for a point-ion elec
trolyte inside and around a charged slit. Equation (45), with Jj(x) 0, is 
the integral version of the PB differential equation. The function Jj(x) can 
be looked at as a particular way of taking into account the fluctuations 
terms. Different ways of taking these terms into account give origin to 
the different versions of the MPB integrodifferential equations [32.33, 
61.62]. 

Equation ( 45) has been solved numerically for the case in which 'Po = tfio. 
U . no Monte Carlo (MC) data are available for this sys
tem. Apparent I y. it is more difficult to obtain MC for this case than for 
the constant charge case (cr;n cr001 ). However, (45) reduces to the planar 

in the limit of infinite separation between the 
. and in this case agreement with MC data is good [5.6]. If z1 ;:2 = 0 

and 1!10 0. reduces to the HNC equation for a hard-sphere fluid . 
. molecular (MD) calculations for a hard-sphere fluid 

confined between two hard walls have been obtained [63] and compared 
to those from (45). The results are good, even though, as is well known, 
the HNC approximation is not the best for a hard-sphere fluid. In Section 
IlL results for an electrolyte confined by a charged slit are shown. 

5. Cylindrical Pore 
As a last application of the DM to the OZ equation to obtain inhomo
geneous liquid theories, the HNC equation for an electrolyte inside and 
around a cylindrical pore will be now derived. As in the previous cases, 
in (7) a suitable species 3 is defined. For a cylindrical pore, species 3 is 
taken to be made of hollow, infinitely long cylinders of internal and ex
ternal radius oft and t + d + a/2, respectively, where d is the thickness 
of the solid part of the hollow cylinder. The cylinders are charged on both 
surfaces and are at infinite dilution. 

By application of Gauss's law, the ion-hollow cylinder electrostatic 
potential is given by 

2'1TCZ· 
--" {(t + d)crout ln[x2 + (! + d)2 

E 
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for 0 ::::; x < t or t + d < x, and x is measured perpendicular to the cylinder 
axis (we have defined x = r21 ). In cylindrical coordinates dv3 = y dy dz 
d<p, where dz and d<p are the length and angle elements along and around 
the cylinder, respectively, andy= r23 (see Fig. 3). 

Therefore, from (7) and (54), the HNC equations for a cylindrical pore 
are 

exp[ -13V3)(x) 

+ j.l Pm L"' h3m(Y)~jm(X,y) dy J j = 1,2 (55) 

where the general expression for the kernel ~1,(x,y) has the same general 
expression as for the solid cylinder case, (31). 

From the integration of (34) and (35) for this system. we find that l64J 
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Figure 3 Geometry for a cylindrical pore. 
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41T f"' t + d cr>o = - ln -- Pc(Y)Y dy 
E t+d+a/2 y 

(56) 

41T<Tin f + d 41T t + d lt-a/2 
1\!o = cr>o +--tIn--+ ln -- Pc(y)v dy (57a) 

E t E t 0 • 

41Tcr out l + d 
cr>o - -- (t + d) In --

E t 

411" ( + d lx 
--In-- Pc(y)y dy 

E l t+d-a/2 
(57b) 

(58) 

(59) 

Equation (59) is valid only for 0 ::s x ::s t - a/2. For this geometry the 
electroneutrality condition is 

- L~ pc{y)y dy (60) 

q;0 and 1!10 are the mean electrostatic potentials on the outside and inside 
surfaces of the hollow cylinder. respectively, and crom and cr1n are their 
corresponding surface charge densities. As for the slit case. if \{10 <;o. 

and 

_ , r,_ 
pc(y)y dy 

{ - () 

1 f"' 
(}out = - --d pc(y)y dy 

f + r+d+a/2 

If the condition Gout Gin is imposed, (60) should be used. 
Using (44) and (58), (55) can be written as 

(6la) 

(61b) 

(62) 

where Ij(x) is a potential that contains the short-range contributions to 
the total ion-hollow cylinder potential of mean force. Although (62) looks 
identical to (45), for the slit pore, it is analytically different and its solution, 
of course, is in general different to that for the slit pore. Analytical expres
sions for Ij(x), when the MS approximation is used, as well as a full 
account of the equations relevant for this system, will be presented later 
elsewhere [64]. Nevertheless, some results are shown in Section IlL The 
DM has also been applied by Zhou and Stell [43] to the OZ homogeneous 
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equation to obtain the PY/PY and HNC/PY equations for a hard-sphere 
fluid in a cylindrical pore. 

As for all the other geometries, in the limit of point ions, (62) reduces 
to the PB equation, and in the zero charge limit it reduces to the HNC 
equation for a hard-sphere fluid in a cylindrical pore. 

C. Three-Point Extension to Integral 
Equation Theories 

The OZ equation for a one-component bulk fluid of species i is given by 

hu(rzt) = cu(rzd + p; J cu(rn)hu(rz3) dv3 (63) 

If artificially we assume this one-component fluid to be made of two spe
cies, one of which is the species i and the other, say species a, is made 
of dumbbells. at infinite dilution. formed by two particles of the species 
i, fixed at a certain center-to-center distance T between them, the OZ 
equation for this system is 

where c11(r 13 ) can be obtained from (63). The vector notation in r21 and 
r 23 is introduced to emphasize that the distribution of particles of species 
i around particles of species a will, in general, not be spherically sym
metric. Any of the existing closures for the direct correlation function 
can be taken for ca1(r21 ;-r) and cii(r 13 ). If, for example, we use the HNC 
approximation, we find that 

(65) 

and 

Ca;(rzr) = ha~(fzt ;-r) - In g"',(r21 ;-r) - f3Ua,(r2l ;-r) (66) 

An important difference between (65) and (66) is in their interaction po
tential functions, which, in general, will be different. If (66) is substituted 
in (64), we obtain 

goArzl ;-r) = exp( -13Ua;(r21 ;'T) + p, J C;;(rn)ha;(rzJ;T) dv3J (67) 

Equation (67) look very much like the usual homogeneous multicompo
nent HNC equation. However, it is not. Note that although ga;(rzt ;-r) can 
be taken as a regular molecular two-particle distribution function, because 
the dumbbell is made of two regular particles of the fluid, it is also the 
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unsymmetrical three-particle distribution function, defined as propor
tional to the probability of finding a third particle at a given distance of 
two other particles, which are at a fixed distance between them [65]. In 
mathematical notation, the unsymmetrical homogeneous three-particle 
distribution function gf/;1(r, ,r2 ,r3) of three given particles I, 2, 3 is de
fined as 

g~/P(rt.fl,r3) 
g},;:l(r,h) 

(68) 

where g)f.\rt ,r2 ,r3 ) is the homogeneous three-particle distribution func
tion and g~[>(rt ,r2) is the homogeneous two-particle distribution function. 
Therefore, from (67), the unsymmetrical three-particle distribution func
tion can be calculated, within some approximation. However. one would 
like to have the two-particle distribution function for particles of spe
cies i. 

The BGY equation is an exact theorem which relates the two-particle 
distribution function with the unsymmetrical three-particle distribution 
function [ 1 ,3 ,4,65]: 

l d (2) 
a d ln[g;, (r21 )] 
tJ ,21 

where e is the angle formed by the position vectors r 21 (= r 2 - rd and 
r 3 1 r 3 - r 1 ). In the notation of (67). (69) can be written as 

I d 
l3 d,- ln[g u( T)] (70) 

From (67), gaAr21 ;•) can be calculated. Then, after a simple integration, 
from (70) the mean force, Fii(T). between two particles of species i can 
be obtained: 

d 
- W(•) 
d 

If 

T 

l d 
13 dT !n(g;;(T)] (71) 

After solving (67) for a sufficient number of values of the parameter'· a 
numerical integration of (70) can be made, and thus g;;(T) can be obtained. 
This approach has been used to calculate the force between two charged 
plates [34-38] and between charted spherical particles [39]. 

The extension of this approach to a multicomponent fluid is straight
forward. Suppose now that we have a nine-component fluid with species 
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l, 2, 3 and au, with i,j = 1,2,3, such that au aji, and the au species. 
at infinite dilution, are made of dumbbells formed by a particle of specie~ 
i and a particle of species j (a distance Tu apart from each other). Then 
(67) and (70) become 

ga,;k(r21 ;Tu) = exp[- J3Uauk(r21 ;Tu) 

+ mtl Pm f Ckm(r13)ho.um(r23;Tu) dv3 J 
and 

1 d 
-d ln[gu(Tu)J 

J3 Tu 

i,j,k = 1 ,2,3 (72) 

i,j I ,2,3 (73) 

Through Ckm(r 13 ) all the equations are coupled. An important simplifi
cation to (72) and (73) can be achieved if p3 = 0, and c",(r13 ) is calculated 
through the usual HNC equation for a two-component fluid, (7). Then the 
only dumbbell that survives is the species a = a 33 , and (72) and (73) 
become 

exp[- I3Uaj(r21 ;T) 

+ L Pm J Cjm(rl3)h,,.,,(rz3;T) dv3] 
m I 

j 1,2 (74) 

and 

For two large charged spheres, species a., immersed in a point-ion 
electrolyte, (74) reduces to the integral version of the PB equation. From 
(74) the electrolyte structure around the two spheres is obtained, and from 
(75) their mean force can be calculated. Thus this is the integral equation 
version of the Verwey-Overbeck (VO) [44) theory. Exact numerical so
lution to (74) and (75) for this system has been obtained [39). The differ
ential nonlinear PB equation for this system had been solved in the past 
only in an approximated manner or in a very restricted way [66-69]. 
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If in (74) species 1 and 2 are taken as a two-species RPM electrolyte, 
and a is taken to be made of two charged infinitely large plates of width 
d (DM). we again get the HNC equation for the electrolyte structure in 
and around a slit pore, (33). For this model the force between the two 
plates of the slit can be calculated through (75). In Section III some results 
for this force will be shown. 

Equation (25) for a RPM electrolyte next to a planar electrode has been 
found to fail for very high electrode's surface charge density a. While 
this fact might be irrelevant for real system studies. since the values of 
a above which (25) fails are probably unphysically [60], it is aca
demically relevant. The problem is that in (25) a bulk pair correlation 
function is used in the expression for Lm(r21 ,rz3) [Eq. (26)]. Therefore, 
no angular or concentration dependence of the direct-correlation function 
as a function of particle distance to the electrode are taken into account. 
To solve this shortcoming of (25). Nielaba and Fortsmann {70} have used 
a local density approximation in place of the bulk direct-correlation func
tion. They have obtained very good results. However. a shortcoming of 
their theory is the use of an adjustable parameter. Piischke and Henderson 
[7l and Kjellander and have solved 
the two-particle inhomogeneous OZ (0Z2) equation. In this equation the 

and concentration dependence on the ion-ion direct-correlation 
function as a function of their distance to the electrode are taken into 
account. Up to now. the OZ2 results are the more accurate. Unfortu-

' because of the equation· s complexity, their numerical solution 
demands very large computer resources. and for some values of the pa
rameters. a numerical solution is difficult or impossible to achieve. Mier 

Teran et al. [76-78] have solved (25) through a nonlocal free-energy 
density functional approach, where different nonlocal hard-sphere models 
for the weighting functions [79-8 J] of the generic density functional pro
posed by Percus [82,83] are used. Of them, that of Tarazona [80] seems 
to be the most successful. An advantage of this approach is its relatively 
low computer resource demands. A shortcoming is neglect of the angular 
and concentration dependence of the Coulombic part of the ion-ion direct
correlation function. Also. a better model for the hard-sphere weighting 
functions is needed. However, results of this theory are comparable in 
accuracy to those of Plischke and Henderson and Kjellander and 
Marcelja. 

If in (72), the a-species is chosen to be made of dumbbells, at infinite 
dilution, formed by a charged infinitely large plate, of width d, and an 
ion, a two-particle distribution function next to a plate (i.e., the inhom
ogeneous two-particle distribution function) is obtained. This equation 
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will be comparable in accuracy to that of Plischke and Henderson. From 
(73), the one-particle distribution function can be calculated. To improve 
further the accuracy in calculation of the electrolyte structure next to a 
plate, the a-particle can be taken to be formed by a cluster of two (three, 
etc.) ions joined to a plate. This approach provides a systematic way of 
improving a given homogeneous liquid theory [34-39) and its correspond
ing inhomogeneous liquid theory. Clearly, this approach reduces to the 
conventional liquid theories if the a-particle is made of just one particle 
of the fluid. 

In the context of the PB or MPB theories, this approach is equivalent 
to solving the PB or MPB differential equations with a boundary condition 
that increasingly takes into account more ions as fixed at a certain distance 
from the electrode. If two ions are taken into account, the two-particle 
inhomogeneous distribution function will be obtained. and so on. 

Apparently. the larger the number of particles in the a-species, the 
better the accuracy of a given liquid theory (homogeneous or inhomo
geneous). This conclusion seems to be supported by recent calculations 
where a-particles made of one and two particles of the fluid are compared 
[38] and by the fact that OZ2 comes out to be better than OZ in electrical 
double-layer studies [71-73}. 

Let us now introduce the following notation. If the a-particle procedure 
is applied to a given theory such that the a-particle is made of two particles 
of the system, we will call this new approximation the three-point exten
sion (TPE) to that theory. If the a-particle is made of three particles of 
the fluid. we will call the approximation the four-point extension (FPE), 
and so on. For example, if the TPE is applied to the HNC approximation 
for homogeneous liquids. this new approximation will be called the TPE 
HNC. This notation comes after the implications that this approach has 
in terms of the diagrammatic representation of the distribution function 
density expansions. As an example of these implications, let us take the 
TPE HNC approximation. Let us assume that we have a one-component 
homogeneous fluid of species i. Then, in the TPE. the a-particle is made 
of a dumbbell formed by two particles of species i. For this system the 
HNC closure is given by (66), and the TPE HNC equation is given 
(67). In (66) and (67), particle 2 is the a-particle and particles I and 3 are 
of species i. In diagrammatic notation, particles 2 and l are root (or white) 
points and all the other particles in the fluid are field (or black) points. 
Since particle 2 is really made out of two regular particles in the fluid, a 
two-root-point diagram in the two-component system becomes a three
root-point diagram, where two of these root points represent particle 2 
and one root point is for particle 1. This is the origin of the term three
point extension. After integration of g";(r21 ;7) through (73), the root point 
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of particle I becomes a field point, and a new bond is defined as 

d 
d ln(l + j(r13)] cos e = o -- - o 
ru 1 3 

Note that for a one-component fluid of species i, (73) becomes 

d 
d-r Uii(T) 

325 

(76) 

(77) 

After this process, the HNC approximation becomes the TPE HNC 
approximation. It is interesting that although the HNC approximation 
does not include bridge diagrams, the TPE HNC does. As an example, 
let us see how the first-order expansion diagram. and some of the 
second-order. for the HNC approximation are modified by (67) and (77). 
In the HNC approximation we have two diagrams: one shown in Fig. 1, 
with no direct bond between the two white circles, and corresponding, a 
second with a direct bond between the two white circles (6)]. These 

are shown in 4a. In 4b, the 
the TPE is are shown. In 
diagrams after integration through (77) are shown. In Fig. 4c the lower 

Unfortunately, there does not seem to be a 
of these diagrams only in terms off-bonds. In 

4d, e. and f, the corresponding modifications due to the TPE in some of 
the second-order density diagrams are shown. 

Ill. CONFINED FlUIDS 

In Section ll.C it is shown that the accuracy of a given liquid theory for 
homogeneous fluids can be improved systematically by increasing the 
number of fluid particles in the clusters of the a-species. Thus, through 
the direct method (DM) presented in Section Il.B, the accuracy of the 
corresponding liquid theory for inhomogeneous fluids can also be im
proved systematically. From the discussion of Section II it is perhaps 
clear that a homogeneous fluid can be looked upon as an inhomogeneous 
fluid and vice versa, depending on the scope with which one looks at the 
fluid structure. For example, in a homogeneous dilute lyophobic colloidal 
dispersion one can look at the electrolyte structure around one colloidal 
particle as an inhomogeneous fluid around, say, a spherical external field, 
and if two colloidal particles are sufficiently close to each other, the ex
ternal field would be that produced by a charged dumbbell. The electrolyte 
structure around one colloidal particle is called the electrical double layer 
(EDL), and as two such colloidal particles approach each other, one talks 
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Figure 4 (a) HNC first-order density expansion diagrams for the radial distri
bution function: (b) resulting diagrams after the three-point extension (TPE) is 
introduced through (67); (c) resulting diagrams after the integration indicated in 
(77) is made; (d) some of the HNC second-order density expansion diagrams for 
the radial distribution function. Their corresponding transformations due to the 
application of the TPE as in (b) and (c) are shown in (e) and (f), respectively. 

of EDL interactions. If a spherical colloidal particle is very the 
spherical EDL becomes a planar EDL, and the interaction of two such 
particles can be studied through the interaction of planar EDLs. The elec
trolyte between the two very large spheres can be taken as a confined 
fluid in chemical equilibrium with the bulk electrolyte (i.e., the electrolyte 
in a slit). Study of the force on the slit walls for different slit widths is 
relevant in the study of equilibrium conditions of colloidal dispersions, 
whereas the electrolyte structure inside a slit or cylindrical pore is relevant 
in the study of transport properties of electrolytes in porous media, among 
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other applications. In Section III.A the HNC and TPE HNC predictions 
for the force between planar EDLs will be compared and analyzed. In 
Section III.B. the structure of an electrolyte inside a cylindrical pore will 
be shown and compared to that of an electrolyte in a slit. 

A. Slit Pore 

For a colloidal dispersion of spherical colloid particles immersed in a two
species RPM electrolyte, the HNC equations are given by (13). If, for 
simplicity. the colloidal particles are taken to be at infinite dilution, (13) 
become 

gu(r2t) = exp[ + 
EI':J 

expr-r21 l 
L Er21 

+ 
Er21 

n~ l Pm L" h;,n(r23){.;m(r21 h3) dr23 J 
2 

2: Prn 
rn I 

2 

2: Pm 
tn= l 

l,J 1.2 (78) 

J~·) dr2 , J 
j 1.2 

~ 
012 

h,m(r23)~3m(r21 .r23) dr2:. J 
(80) 

where R is the colloidal particle radius and a is the ionic diameter. Equa
tions (78) and (79) are decoupled from (80) because p3 0. However, for 
significantly values of p3 , {13) must be solved. Beresford-Smith and 
Chan [84-85] have solved ( 13) for a concentrated colloidal dispersion 
dispersed in a point-ion electrolyte. Patey [86] has solved (78) to (80) for 
a RPM electrolyte dispersion medium. Medina-Noyola and McQuarrie 
[87) have solved the equivalent of (78) to (80) for the MS approximation. 

From (80) one obtains the colloid-colloid potential of mean force, 
W33 (r2 J) [see (71)]. From the analysis of the colloid-colloid interaction 
potential, the stability conditions for a colloidal dispersion can be found. 
A well-established theory for the study of colloidal stability is the Der
yaguin-Landau-Verwey-Overbeek (DLVO) theory [44]. In this theory, 
the colloidal particles are taken to be at infinite dilution. Thus the inter
action of only two of such colloidal particles is analyzed. The ions are 
taken to be point ions, and their structure around the colloidal particles 
is calculated through the PB equation. Between the two colloidal particles, 
two types of forces are considered: electrostatic forces and London-van 
der Waals (LVW) forces. For this model, the electrostatic forces, cal
culated through the VO theory, are always repulsive, whereas the LVW 
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forces are attractive. In Patey's calculations, for two spherical colloidal 
particles in a RPM electrolyte [86], no L VW forces were taken into ac
count. However, he did found an attractive region for W33 (r21 ). This im
plies that long-range attractive forces of electrostatic origin are present. 
If this force is real, the traditional approach in colloidal stability studies 
would have to be reviewed. 

In the limit of point ions, the HNC equations for a bulk electrolyte 
[Eq. (78)] and the spherical EDL [Eq. (79)] reduce to the PB equation 
[20]. This is also the case in planar and cylindrical geometries [17). How
ever, Teubner [88) showed that (80) does not reduce to the PB equation 
in this limit. This was puzzling and raised some doubts about the existence 
of this long-range attractive force. Nevertheless, experimental evidence 
of the existence of this force has been found by lse et al. [89-92]. On the 
other hand, as has been pointed out before, the TPE HNC for the inter
action of two colloidal particles, (74), does reduce to the PB equation. in 
the limit of point ions, and (75) gives the electrostatic force of the VO 
theory, in the same limit. The DLVO theory reduces to the VO theory if 
no attractive LVW forces are considered. The TPE HNC equation has 
not been solved for two spherical colloidal particles in a RPM electrolyte. 
Therefore, no direct comparison with Patey's results has been made. 
However, if the colloidal particles are taken to be flat plates. the TPE 
HNC equations are much simpler to solve. 

If in (74) and (75) and (78) to (80), the MS approximation is taken for 
the ion-ion direct-correlation function, the TPE HNC/MS and HNC/MS 
equations are obtained. respectively. The force between two charged 
plates immersed in a RPM electrolyte has been calculated through the 
TPE HNC/MS and HNC/MS equations [36-38]. To obtain the force be
tween the plates from (80), the spatial derivative of w33(r2!) must be taken. 

For two plates the TPE HNC/MS equation is given by (74) and (75) 
such that the electrostatic part of UaJ(r21 ;T) is given by (32), and that of 
U33(T) and U3m(rl3) are given by [34] 

and 

27TA 
-- (CTin + 

E 

27TeZm ( 
- CTin + 

E 

(81) 

(82) 

where A is the area of the plates. The hard sphere-hard plate part of the 
interaction potential is taken as usual [34]. For two plates, the HNC/MS 
equations can be derived by applying the DM to (79) and (80). If species 
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3 is taken to be made of charged plates, (79) becomes (25), and (80) be
comes 

(83) 

where Tis the plate separation, r 13 and r23 the ion distance to each of the 
two plates, d the width of the plates, cr the plate surface charge density, 
and W33 (T)/A the plate-plate potential of mean force per unit area of the 
plates. To be noted is that, apparently, (83) has not been deduced through 
the AM described in the introduction. because of the difficulties involved 
in taking the limit of R---+ oo in (80). In the TPE HNCIMS equation two 
charge density parameters, O";n and CTout. are necessary, since when one 
plate approaches the other, charge polarization occurs. as is. of course. 
to be expected. A shortcoming of the HNC/MS equations is that no such 
polarization appears on the plates. Thus just one charge density parameter 
is necessary (i.e., in the HNC/MS equations cr; 11 <Tout = cr). 

Equation is the exact BGY equation. If a superposition approxi-
( 68) J. 

(84) 

and are the ionic distribution around plates 1 and 
"' If the solution to is used together with (75) and (84). 
the plate-plate force obtained from the superposition of HNC/MS EDLs 
can be calculated. In this superposition approximation, <75) for the two 
plates interaction becomes 

811cr2 ~ fx dU3,(rt,) 
+ L... Pm d , . cos 0 g3rn(r13)g3m(rz3) dr23 

E m·l -"' rl3 
(85) 

Let us call this approximation the BGY/HNC/MS approximation. On the 
other hand, the point-ion limit of the TPE HNC/MS, HNC/MS, and BGY/ 
HNC/MS approximations will be referred to as the VO, PB, and BGY/ 
PB theories, respectively. Note that in (83), c3m(r13) and h3m(r23) are 
obtained from (25). Thus in both HNC/MS equation (83) and BGY/HNC/ 
MS equation (85), the EDLs of each plate are simply convoluted, although 
through different recepies. 

In Figs. 5 and 6, respectively, TPE HNC/MS and VO counterion and 
co-ion distributions inside a slit for different plate separations are shown. 
The plate separation, T, is given in terms of ionic diameters (see Fig. 2); 
x' is the distance to one of the plates. Only half of the profile is shown, 
since the other half is, by symmetry, its mirror image. The counterion 
concentration increases as T decreases. The opposite is true for co-ion 
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shown. since the other half is, by symmetry. its mirror image. (From Ref. 37.) 

concentration. For plate separation larger than 7 a, the density and po
tential profiles change very little. In fact, the profiles for the region outside 
the plates (i.e .. forT-+ x) are for many purposes indistinguishable from 
that forT lOa. For a sufficiently large plate separation the single EDL 
profile is reached (i.e., for large separations there is no EDL interaction). 
The lower the bulk electrolyte concentration, or the higher the surface 
potential, the larger the plate separation should be to reach the single 
EDL limit. In general. the calculated surface charge density is less sen
sitive than the plate-plate force to plate separation (see Figs. 7 and 8). 
TPE HNC/MS theory predicts a higher counterion concentration and a 
lower co-ion concentration inside the slit than its point-ion limit, the VO 
theory. From HNC/MS theory no such profiles can be calculated in a 
natural way since these profiles are basically three-particle distribution 
functions and HNC/MS theory is a two-particle distribution function the-
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ory.In HNC/MS theory, only the ionic structure around each of the plates 
can be calculated. As pointed out before, in the point-ion limit the TPE 
HNC/MS equation becomes the integral equation version of the PB dif
ferential equation for the distribution of ions around two plates (i.e., VO 
theory}. In V 0 theory, the PB differential equation is solved for boundary 
conditions given by the presence of the two plates. Therefore, the ionic 
profiles obtained from VO theory are, in fact, three-particle distribution 
functions. This is also the case for MPB theory. The larger the number 
of particles in the a-species in (74), the larger the number of particles that 
must be taken as boundary conditions in the PB and MPB differential 
equations, to give as a result the same order in the hierarchy of the 
n-partide distribution functions. 

In Fig. 7, the inside surface charge density, crin, is shown as a function 
of plate separation. The TPE HNC/MS results are higher than the VO 

5. 
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Figure 7 density on the inside surface of the cr,n(T) as a function 
of the distance between the plates. The continuous and dashed curves correspond 
to the TPE HNC/MS and VO results, respectively. All the curves are for a model 
monovalent electrolyte (a = 4.25 A, z+ I z_ I I, T = 298 K, E = 78.5). 
The bulk electrolyte concentration, the surface potential tjl0 , and the charge den
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C/m2
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, 

TPE HNC/MS, and 0.1578 C/m2
, VO; (d) 2M, 80 mV. and 0.1804 C/m2 TPE 

HNC/MS, and 0.1360 C/m2
• VO. (From Ref. 37.) 

results and are nonmonotonic, showing the charge polarization. The out
side surface charge density, a out. is constant. In the limit of large plate 
separation, a;n- aout· The lower the bulk electrolyte concentration or 
the higher the surface potential, the larger the polarization effect. This is 
clearly related to the width of each plate EDL and the strength of their 
interaction. 

In Fig. 8, the net force per unit area of the plates, Pn(-r), is shown as 
a function of plate separation. The net pressure is defined as the difference 



Figure 8 Net pressure between two charged plates as a function of the distance 
between the plates. The calculation is for a 1: l, 1 M bulk electrolyte concentra
tion. The surface potential is indicated in the figure. The solid and dot-line curves 
are the TPE HNC/MS and VO results, respectively. The dashed curve I!J0 = 

0 mV is equivalent to a hard-sphere fluid of p* ""'pa 3 = 9.247 x 10- 2
• The scales 

for Pn and 'ria are sinh- 1 scales. (From Ref. 37.) 

of pressures on the inside and outside faces of the slit plates and is given 
by (75). In the figure the 0-mV curve corresponds to the TPE HNC/MS 
solution for a hard-sphere fluid between two hard noncharged walls. A 
long-range attractive force is predicted by TPE HNC/MS theory, whereas 
the VO results are always repulsive and monotonic. In a TPE HNC/MS 
calculation, ionic size is taken into account, whereas in YO theory it is 
not. Therefore, the attraction has an ionic size origin. However, there 
does not seem to be a direct correlation between the attractions predicted 
in a hard-sphere fluid and those for a charged fluid. The pressure on the 
outside part of the slit is constant. Variations in net pressure are due to 
variations on the pressure on the inside surfaces of the slit. For a hard
sphere fluid outside the slit, the excluded volume is always constant, 
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whereas inside the slit this volume changes depending on how many 
spheres can be accommodated between the walls. In principle a relative 
minimum of the excluded volume exists for plate separation which is a 
multiple of the hard-sphere diameter. This implies a maximum in the ac
cessible volume, and therefore a minimum in the inside pressure and in 
the net pressure. The higher the hard-sphere concentration. the more 
important this effect should be (see Fig. 9). 

In Fig. 9, the net pressure between two hard plates immersed in a hard
sphere fluid with a reduced bulk concentration p* = pa 3 = 0.8 is shown. 
The hard-sphere diameter is taken to be 3 A, to resemble roughly the size 
of a water molecule. Qualitative agreement with some macroscopic plate 
interaction experiments [93] is remarkable good. This. of course. shows 
the relevance of taking into account solvent molecular size in colloidal 
interaction studies. However, as shown in Fig. 8, size effects on the force 
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Figure 9 Net pressure between two noncharged hard plates as a function of the 
distance between the plates. The liquid is a hard-sphere fluid (a = 3 A, p* = 
0.8, T = 298 K). The curve represents TPE HNC/MS results. (From Ref. 37.) 
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can be greatly modified by the charge, and simple superposition of the 
solvent origin force between the plates with a force of ionic origin might 
not be a good approximation. 

Since for the force between the two plates in (75) the plate-ion un
screened interaction potential U3m(r13 ) is separated into a hard plate
hard sphere part and a Coulombic part, the net force can be analyzed in 
terms of a hard-sphere force and an electrostatic force. In the exact equa
tion (75) the total plate-plate force is given in terms of the unscreened 
plate-plate Coulombic force, dU33(-r)Mr, plus, by definition of average 
quantity, the average hard plate-hard sphere force plus the average 
charged plate-ion force. The sum of the unscreened plate-plate Coulom
bic force with the average charged plate-ion force gives the Maxwell 
stress tensor contribution to the force between the plates. Although the 
hard-sphere contribution and the Maxwell stress tensor contribution are 
not really independenL an analysis of the two contributions allows a better 
understanding of the origin of the attractive force. 

The TPE HNC/MS hard-sphere and Maxwell stress tensor components 
of the net force are shown in I 0 as a function of the 
As can be seen, for some slit separation the Maxwell stress tensor com
ponent dominates. and for some others the component dom
inates. For lower bulk electrolyte concentration. the MaX\\eil stress ten
sor component seems to be responsible for the attraction region observed 
[37]. In general, however, it is perhaps somewhat inaccurate to attribute 
the of the long-range attractions observed in colloidai dispersion 
forces only to the electrical charge [89-92]. since for point ions this force 
is always repulsive. 

Although the TPE HNC/MS is not expected to give its best results for 
hard-sphere fluids, since the PY approximation is known to be better than 
the HNC approximation for this type of system, it is encouraging that the 
TPE HNC/MS density profiles for a hard-sphere fluid between two hard 
plates have in general good agreement with MD calculation (63]. In Fig. 
II, such a comparison is shown for two plate separations, an~ a given 
average concentration of the hard-sphere fluid inside the slit, p* = 0.2. 
In this figure a very good agreement of the TPE HNC/MS results with 
the MD calculations is shown. 

In Fig. 12, the TPE HNC/MS [Eq. (75)], the HNC/MS [Eq. 83)], and 
the BGY/HNC/MS [Eq. (85)] predictions for the net pressure between 
two charged plates are shown. Also shown are the results of their point
ion limit theories (i.e., the VO, PB, and BGY/PB). The fluid is a 1:1, 
10- 2 M electrolyte and the surface potential on the plates is 50 mV. For 
this low potential and electrolyte concentration the ionic size effect should 
be nee:lie:ihle. Therefor<> thP RPM r<>lrnlc.t;r'ITH <'hAnlrl r;nroo n-:th tk~:-
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Figure 10 The Maxwell stress tensor (--- -) and hard-sphere (- · -) net 
contributions to the net pressure(-) between two charged plates as a function 
of the distance between the plates. The curves are the TPE HNC/MS results. 
(From Ref. 37.) 

corresponding point-ion limits. This is observed in Fig. 12. The force is 
always repulsive and of long range (i.e., the force is different from zero 
for relatively large plate separations). A long-range interaction can be 
expected since for low electrolyte concentrations the EDL of each plate 
is thick. The HNC/MS force is in excellent agreement with the TPE HNC/ 
MS force for large plate separations. For small values of -r, an important 
quantitative disagreement exists. The BGY/HNC/MS results are in poorer 
agreement with the TPE HNC/MS force even for large values of -r but 
are in good agreement with the HNC/MS force. 

In Fig. 13, results for a higher surface potential are shown. At this 
higher potential the ionic size effect should be noticeable, at least for 
small values of -r, since the counterion concentration near the plates is 
much higher [37]. This effect explains the observed small disagreement 
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of the RPM theories with their corresponding point-ion theories forT < 
3a. More important is the fact that the HNC/MS, BGY/HNC/MS, and 
their point-ion limits predict a wide and strong attractive region. This 
finding is not surprising since the HNC&-fS force between two large 
spheres has also been found to be attractive [86]. The fact that the PB 
result is also attractive has been used by Teubner [88] to suggest that the 
attraction predicted by HNC/MS theory is not real. At this point, the TPE 
HNC/MS results support Teubner's suggestion. Note that although the 
HNC/MS and BGY/HNC/MS agree qualitatively, the HNCIMS is in ex
cellent agreement with the TPE HNC/MS for sufficiently large values 
of •· 

In Figs. 14 and 15, results for a higher electrolyte concentration and 
for two surface potentials are shown. In Fig. 14, for a very low surface 
potential, tjl0 lO mV, almost perfect agreement among the three RPM 
theories, on the one hand, and among the point-ion theories, on the other 
hand, is observed. Note that in opposition to the point-ion results shown 
in Fig. 13, in Fig. 14 the PB and BGY/PB forces are always repulsive. 
The three RPM theories predict a long-range attractive region. In Fig. 15, 
results for a much larger surface potential, t!Jo 105 m V, are shown. The 
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plates for the HNC/MS and PB calculations is taken to be zero. (From Ref. 38.) 

three point-ion theories predict a repulsive force for all values ofT. This 
is in agreement with a Bell and Levine [94] result in which from free
energy consideration it is shown that for point ions the force should always 
be repulsive. The agreement of the PB force with the VO force is very 
good. The agreement of the HNC/MS force with that from TPE HNCi 
MS theory is excellent, but for small values ofT. In the region where they 
agree, the two theories predict the existence of an attractive force region. 
However, both the HNC/MS and BGY/HNC/MS predict apparently non
existent attractive regions for small values ofT. 

In the HNC/MS and BGYIHNC/MS theories the EDLs of the two 
plates are simply convoluted [see (83) and (85)], whereas in the TPE HNC/ 
MS the EDL of a dumbbell formed by two plates is used to calculate their 
interaction force [see (75)]. HNC/MS and BGY/HNC/MS are two-particle 
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distribution function theories, whereas TPE HNC/MS is a three-particle 
distribution theory. In HNC/MS theory bridge diagrams are not taken 
into account. In TPE HNCIMS theory many classes of these type of 
diagrams are included. Both the HNC/MS and BGY/HNC/MS theories 
use some type of superposition approximation for interaction of the EDLs 
of each plate or colloidal particle. The lower the electrolyte concentration 
and/or the higher the surface potential, the wider and/or more concen
trated the EDLs, and hence the worse the superposition approximation 
would be. This is corroborated by the results of Figs. 12 to 15. 

In the limit of point ions, the HNC/MS theory reduces to the PB theory. 
For large values ofT and/or low surface charge or potential, the PB equa
tion for the distribution of ions around a colloidal particle can be line
arized. The solution to the linear PB equation is the Yukawa potential 
(84,85,95]. These Yukawa EDLs have been used extensively to study 
colloidal dispersions [84,85,95-103]. Even MC and MD dynamics studies 
that corroborate Yukawa potential theories have been made [104,105]. 
From the discussion above, it is clear that all these theories neglect ionic 



340 lozada-Cassou 

8 
11-10 

6 
I xiO 

4 
N lx 10 E 

u 
"'-.. 2 
({) I X 10 
(J) 

c: 
>, 

D 0 
o__ 

2 
-I xiO 

4 

-1 :dO 

0 • 

A 

2 3 

r Jo 

0 • .. 

6 

• .. 
0 . .. 

10 

I I 

IM 

yr
0 

= 10 mV 

Figure 14 Net pressure between two charged plates as a function of the distance 
between them. The meaning of the curves is as in Fig. 12. (From Ref. 38.) 

size effects and use a strong superposition approximation in the region 
of small values ofT. Even if the average distance in a dilute colloidal 
dispersion is sufficiently large to presume the validity of a superposition 
approximation, in statistical mechanical theories an average over all in
terparticle distances is implicit. The use of these theories to predict col
loidal phase transitions is perhaps too optimistic, since near a phase tran
sition, long-range correlations appear. Thus the use of an effective or 
renorrnalized potential that does not take into consideration changes in 
the correlation of the small particles around the large particles might be 
a too strong assumption. Therefore, perhaps a more careful analysis of 
the regions of validity of these widespread theories should be made. Fi
nally, it should be pointed out that predicting the general features of ex
perimental structure factors does not seem to be a strong test to the theory. 
Apparently, any theory that correctly takes into account the long-range 
limit behavior of an interaction potential is in reasonable agreement with 
experimental structure factor measurements [%-102, 105}. Theories of 
renorrnatized potentials, which include long-range attractive potentials, 

2C 
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between them. The meaning of the curves is as in Fig. 12. (From Ref. 38.) 

might be more realistic [ 106]. TPE studies could be used to evaluate their 
adjustable parameters. All the renormalized theories share the advantage 
of their simplicity, and therefore their value for practical applications. 
Their validity for low-charge colloidal systems and/or high electrolyte 
concentrations seem to be supported by the results shown in Figs. 12 
to 15. 

B. Cylindrical Pore 
Through the DM, the equations for an electrolyte inside a charged cylin
drical pore can easily be derived from the equations for a homogeneous 
electrolyte solution [64]. Equations (55) and (62) are equivalent and are 
the HNC/MS equations for an electrolyte in a charged cylindrical pore. 
In the limit of point ions the HNC/MS equation reduces to the integral 
version of the PB differential equation [Le., in (62), lj(x) = 0]. In the limit 
of zero charge, the HNC/MS equation for a hard-sphere fluid in a cylin
drical pore is obtained. Using the DM, Zhou and Stell [43] have obtained 
and solved the PY equation for a hard-sphere fluid in a cylindrical pore. 
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Equation (33) for a slit pore, Eq. (55) for a cylindrical pore, and Eq. 
(74) for two spheres in a fluid differ only in the geometry of the external 
field. However, in terms of the homogeneous fluid approach presented 
in this chapter, (33) and (74) are in fact three-particle distribution function 
equations, and (55) is a two-particle distribution function equation. Hence 
(33) and (74) are referred to as TPE HNC/MS equations, whereas (55) 
will be referred to as a HNC/MS equation. Due to the peculiar geometry 
of a cylindrical pore the HNC/MS equation for a cylindrical pore has, to 
some extend, the same level of approximation as the TPE HNC/MS equa
tion for a slit pore, before integration of the third particle through (75) is 
made. 

A numerical solution to (55) has been obtained [64]. In Fig. 3, the 
geometry for a cylindrical pore is shown. In Figs. 16 and 17, the HNC/ 
MS and PB counterion and co-ion reduced density profiles for an elec
trolyte inside a charged cylindrical pore are shown for two cylinder di
ameters. • 3a and 6a, respectively. The TPE HNC/MS and YO results 
for a slit pore are included for comparison. The bulk electrolyte concen
tration and hence the chemical potential of the salt is the same in both 
the cylindrical pore and the slit pore. 

The smaller the value of T, the larger the counterion concentration. 
This effect is much more pronounced in the cylindrical pore than for the 

Figure 16 Reduced counterion and co-ion density profiles for a cylindrical pore 
(c) and a slit pore (s). The diameter of the cylindrical pore and the width of the 
slit pore have the same value, T = 3a. The fluid is a l: 1. I M electrolyte (a = 

4.25 A. T 298, E = 78.5). The potential on the surfaces of both the cylinder 
and the slit is ll!o 105 mY. The continuous lines are the HNC/MS (c) or the 
TPE HNC/MS (s) results. The dashed curves are the PB (c) or VO (s) results. 
The density profile is given on a sinh 1 scale. Only half of the profile is shown 
since the other half is, by symmetry, its mirror image. 
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(c) and a slit pore (s) for a cylinder diameter and slit width of -r 6a. The symbols 
are as in Fig. 16. Only half of the profile is shown since the other half is. by 
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slit. The RPM counterion profile for the cylinder is higher than that for 
the slit. However, due to the geometry of the systems. the average elec
trolyte concentration in the slit is in general higher than that for the cyl
inder. This can be seen from the counterion adsorption values, which for 
the slit arc --0.15498 Clm2 for -r 3a and -0.1488 C/m2 forT = 6a, 
whereas for the cylinder they are 0.126 C/m2 forT = 3a and -0.1363 
Clm 2 forT = 6a. For the point-ion electrolyte the counterion adsorption 
is much higher in the slit than in the hollow cylinder; counterion adsorp
tions in the slit are -0.4037 C/m2 forT 3a and -0.3955 C/m2 forT = 

6a, whereas for the cylinder they are -0.0883 C/m2 for T = 3a and 
-0.1051 C/m 2 forT = 6a. Note that while in the cylinder the RPM coun
terions are more absorbed than the point counterions, in the slit the op
posite is true. In Figs. 16 and 17, the RPM counterion profiles are seen 
to be larger in cylindrical geometry than in planar geometry. The opposite 
is true for the point counterion profiles. From the results presented here, 
larger values of T imply lower counterion adsorption for a slit but larger 
counterion adsorption for a hollow cylinder. The point ion electrolyte 
seems to overestimate the counterion adsorption. In all cases presented 
here, the co-ion adsorption is usually an order of magnitude lower than 
its corresponding counterion adsorption. These results could be of interest 
in catalysis studies. 

For the slit pore, in the limit of zero charge the HNC/MS equation, 
(55) becomes the HNC/MS equation for a hard-sphere fluid in a cylindrical 
pore. The HNC/MS equation density profile for a hard-sphere fluid in a 
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Figure 18 Reduced density profile for a hard-sphere t1uid in a cylindrical hard 
pore of diameter T 6a. The average reduced density inside the pore is 0.2. The 
solid line is the HNC/MS profile and the dots are the MC data. Only half of the 
profile is shown since the other half is, by symmetry, its mirror image. 

cylindrical pore is compared to MC calculations in Fig. 18. Very good 
agreement is found at this relatively low bulk concentration. The agree
ment of the HNC/MS results with the MC data shown in Fig. 18 seems 
to be at least as good as that shown by the PY /PY calculation of Zhou 
and Stell [43]. However, their calculations are for higher bulk fluid con
centrations. Extensive HNC/MS comparisons with MC data will be pre
sented later elsewhere. 

IV. TRANSPORT COEFFICIENTS FOR AN 
ELECTROLYTE IN A SLIT 

The application of a pressure gradient P z and/or an electrical potential 
gradient Ez in the z direction across a charged slit immersed in an elec
trolyte solution, [i.e., in a direction parallel to the plates (see Fig. 2)} gives 
origin to a net volume flux of solution V and the appearance of a net 
electrical current/. Both of these quantities can, in principle, be measured 
experimentally. If Ez and Pz are not too large, 1 and V can be assumed 
to have a linear dependence and to be coupled through a set of Onsager 
transport coefficients Lmn, 

V = L11Pz + L12Ez 

1 = L21Pz + L22Ez 

(86) 

(87) 



Fluids Between Walls and In Pores 345 

For a laminar steady-state flow between the parallel plates, under the 
stresses E:r. and Pz, the one-dimensional Navier-Stokes equation of a vis
cous fluid is 

(88) 

where U(x) is the flux velocity profile, x the distance to the midplane, 11 
the viscosity coefficient to the bulk electrolyte solution, and the total 
charge density Pc(x) is defined by (36). 

The velocity U(x) inside the pore must satisfy the boundary conditions 

U(x) = 0 

dU(x) = 
0 

dx 

for 

at x = 0 (89) 

(90) 

where x 0 corresponds to the midplane and x = :±: ( t 8) corresponds 
to the so-called nonslipping planes. Since the exact location of these hy
drodynamic planes is somewhat ambiguous, the simplifying assumption 
that 8 = a/2 is often made [18,107,108] (i.e., the nonslipping planes co
incide with the planes of closest approach of the hydrated ions to the 
walls). As a consequence, the zeta potential will correspond to the mean 
electrostatic potential at x a/2; that is, the zeta potential is taken as 
~ = w(a/2) and is given in terms of p,Cr) by (40). 

Integrating (88), using the fact that dljl/dx = 0 and ljJ !; at x = 

(-r - a)/2, we get 

U(x) = Up(X) (91) 

where Up(x) is the Poiseuille velocity component, 

pz 2 2 Up(x) = - - (x - h ) 
2TJ 

(92) 

and U E(x) is the electro-osmotic velocity component, 

(93) 

where h (-r - a)/2 and M = E/,;/(41TTJ). 
The total volume flow per unit width, V, is obtained by integrating 

U(x) between the plates 

f
h 

V = -h U(x) dx (94) 
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By comparison with (86), we find that 

L11 = 2_ h3 

3Tj 

and 

where 

Lfz 2hM 

and 

G :~ Lh t(l(x) dx 

Lozada-Cassou 

(95) 

(96) 

(97) 

(98) 

C 2 corresponds to the ratio VIEc for Pz 0 in the Smoluchowski limit 
(i.e .. h"""""""" x). 

Under applied electrical potential and pressure gradients, the velocity 
of the ions of species j in the electrolyte solution has three components: 

(99) 

where the first two terms on the right-hand side correspond to the flow 
velocity of the entire solution. given by (92) and (93). The last term is the 
transport velocity due to the ionic mobility m1 of the charged species j 
under the electrical field Ez, namely 

T Zj 
U; (x) = I Z; I m;Ez 

The total current is then 

where 

I = 2 rh 2: Zjepj(x)U;(x) dx 
Jo i 

fcP + feE + [y 

fcP 2 Lh pAx)Up(x) dx 

feE 2 J:' Pc(x)UE(X) dx 

[y 2 Lh ::Z.:: Zjepj(x)U/(x) dx 
J 

(100) 

(lOl) 

(102) 

( 103) 

(104) 

(105) 
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Using (35), (89), (90), (92), and (103} it is found that 

(106) 

where L 21 turns out to be identical to L 12 , given by (96), as expected from 
the Onsager reciprocity principle. Similarly, from (93) and (104), 

(107) 

where 

lc = * Lh pAx{ l - q,~x)] dx (108) 

In terms of the ionic conductivities a-j = pj l 4 !mje, the transport current 
is 

( 109) 

So far no approximations have been introduced in the theory other 
than those inherent to the application of hydrodynamics to narrow pores 
and to the fact that the total electric field in the solution is taken to be 
simply the sum of the applied electric field and the EDL electric field. 
For small Reynolds numbers these two assumptions are justified. At this 
point. however, let us assume that the ionic transport numbers for the 
ions inside the slit are nonlocal and equal to those for the bulk solution. 
That is, the ionic transport number of species j, is defined as 

(110) 

where cr-r ~a-j is the total salt conductivity of the bulk solution. 
Equation (1 09) can now be written as 

(Ill) 

where 

I lh Kr = - "" t h(x) dx h 0-L..JJ 
J 

(112) 

In terms of the Onsager coefficients, the total current I is given by 
(87), with 

(I 13) 

where L22 2ha-r and K is the capillary conductance coefficient, com-
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monly referred to as the surface conductance in the classical colloidal 
literature. K has convective and ionic transport contributions 

K = Kc + KT 

where KT is given by (I 12) and 

K = Liz J 
c L2z c 

(I 14) 

(ll5) 

The potential difference Ez produced when a pressure gradient Pz is 
applied across a capillary under conditions of zero current is referred to 
as the streaming potential and is obtained from (87) as 

Ln 
Estr = -- P. L22 . 

From (96) and (113) it is found that 

where Eif:/(47T'TJO"T) is the Smoluchowski limiting value and 

I - G 
F=--

1 + K 

(116) 

( 117) 

(I 18) 

is the factor that corrects the streaming potential for finite micropores. 
Defining an apparent zeta potential {, as 

(119) 

the form of the Smoluchowski formula for the streaming potential can be 
preserved. 

In a stationary regime under an applied pressure gradient, in the ab
sence of an applied electrical field, an induced streaming potential will 
be established. Under a zero-current condition, from (86) and (116), the 
volume flux V is given by 

Equation (120) can be written as 

2h3 

V = -Pz 
3'T]a 

(120) 

(121) 

where an apparent viscosity coefficient, 'Tla, has been defined, in order 



Fluids Between Walls and In Pores 349 

to maintain the form of the Poiseuille formula for the volume flux [see 
(95)]. 

From (95) to (97), (113), and (120) and (121) it is found that 

(122) 

where 

~* = (123) 

(124) 

and 

In the formulas above for the electrokinetic nr''"'"rt 
inside a the local 

the RPM TPE HNC/M:S local 
can be obtained. In 

version of the PB 
equation. in this the VO local 

profile can be obtained. In 
and VO density profiles are shown for a constant surface potentiaL In 
this section, results for the electrokinetic properties of a RPM and a point
ion model electrolytes will be shown within the TPE HNC/MS and VO 

respectively. The results are for situations in which a constant 
zeta potential is given. 

The TPE HNCIMS and VO (or PB) reduced mean electrostatic poten
tial profiles for a l: l, IM electrolyte are shown in Fig. 19. Two different 
separations between the walls and two different values of the ~ potential 
are considered. The absolute value of the reduced electro-osmotic ve
locity profile is indicated on the right-hand scale (93)]. As a general 
rule, the higher the ~ potential and/or the plate separation, the deeper the 
potential well [55]. The TPE HNC!MS potential curve is always deeper 
than the corresponding PB curve. For sufficiently high ~ potentials and! 
or electrolyte concentrations, the TPE HNCIMS curves become oscil
latory and/or negative, whereas the PB curves are always positive and 
monotonic. 

The deeper the reduced potential profile, the smaller the area under 
the potential curve. From (98} it is clear that a smaller area under the 
reduced potential curve implies a smaller value of G and thus a larger 
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Figure 19 Reduced mean electrostatic potential profile for two slit widths. • 
4a and lOa, and two~ potentials,~ 40 mY and 50 mY. The fluid is a I: I, 0.1 
M electrolyte (a 4.25 A. T 298 K, E 78.5). On the right-hand scale the 
absolute value of the reduced electro-osmotic velocity profile is indicated. The 
dashed lines are the point-ion model. YO results. The solid lines are the TPE 
HNC/MS results for the RPM. (From Ref. 55.) 

value of (I G). Thus larger values ofT and/or s imply higher values 
of (1 G) (see Fig. 20). Although no results for the potential profile 
as a function of the electrolyte concentration are presented, higher 
electrolyte concentrations imply deeper potential wells and hence 
higher values of (1 G) [55]. Larger values of (l G) produce a 
larger negative contribution to the net volume flux and net electrical 
current [Eqs. (86) and (87)] of the so-called electrical double-layer 
strength On sager coefficient, L12 . 

For infinite plates separations, the width of the EDL associated with 
each plate is defined as the distance from the plate, where the counterion 
(co-ion) concentration is maximum (minimum), to the point in the solution 
where the electrolyte concentration becomes equal to that of the bulk 
electrolyte (i.e., where the electrode's electric field is neutralized by the 
electrolyte). For narrow slits the electric field is zero at the center of the 
slit, although the electrolyte concentration at that point is in general dif
ferent from that of the bulk. Hence for narrow slits the EDL width is 
given by half the distance between the plates. In every case, a measure 
of the EDL strength is given by the slope of the potential profile. A steeper 
w(x) curve implies a stronger attraction of the counterions to the walls 
and therefore a narrower, more concentrated EDL. In Fig. 19, the nor
malized potential profiles I!J(xlh) are steeper for larger values of h. How
ever, tjl(x) has the opposite behavior. Thus, in general, the larger the 
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Figure 20 Reduced EDL coefficient as a function of the slit width for 
~ 25, 40, and 50 mV. The fluid is a I: LIM electrolyte {a = 4.25 A, T = 298 
K. E = 78.5). The solid and dashed lines are the TPE HNC/MS and VO results, 

(From Ref. 55.) 

bulk concentration and/or the higher the ~ and/or the 
narrower the the stronger and more concentrated the EDL. This can 
be seen in 21, where the TPE HNC/MS and VO reduced average 
cnunterion concentrations are shown as a function of the distance between 
the for ~ 40 m V and three different bulk electrolyte concentra-

800~ 
i 

0 

r~40mV 

M 

2 3 4 5 10 
T/o 

Figure 21 Reduced average counterion concentration inside the slit as a function 
of the slit width for~ = 40 mV and 1:1, 0.1 M, 1 M, and 2M electrolytes (a 
4.25 A, T 298 K, E = 78.5). The solid and dashed lines are the TPE HNC/MS 
and VO results, respectively. (From Ref. 55.) 
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tions. The average concentration of species i is defined as 

p; llh - p;(x) dx 
t 0 

026) 

The average co-ion concentration is in general much lower than the coun
terion concentration, and is not shown. In Fig. 21, important quantitative 
and qualitative differences can be seen between the TPE HNC/MS and 
VO results. 

The negative contribution of the electro-osmotic velocity to the volume 
flow per unit width is equal to 2h multiplied by the average electro-osmotic 
velocity [see (86), (93), and (94)]. For very wide slits, the electro-osmotic 
velocity goes from zero at x ± h to a terminal constant velocity at the 
point where the EDL completely vanishes [i.e .. W(x) = 0]. Therefore, for 
a sufficiently wide slit, toward the middle of the slit there is a region 
where the electro-osmotic velocity becomes constant. Hence for very 
wide slits the average electro-osmotic velocity will be approximately 
equal to this terminal velocity. For narrower slits, however, the friction 
with the walls will become important and the average velocity will de
crease: that is. the second term on the right-hand side of (93) will become 
significant (see. e.g., the' lOa curve of Fig. 19). This implies a lower 
average electro-osmotic velocity with respect to the very wide slit case. 
However, since the Poiseuille flux decreases with h3

• in fact, the electro
osmotic retardation will become more significant. and a larger flux re
tardation will be observed. For still narrO\ver slits. the EDLs on each side 
of the slit interact with each other. As a result. the mean electrostatic 
potential profile increases and thus the electro-osmotic velocity de
creases. This is so because although the counterion concentration in
creases for narrower slits (see Fig. 21) and this favors an increase in the 
electro-osmotic velocity, the friction with the walls becomes even more 
important. The L 12 Onsager coefficient is proportional to the average elec
tro-osmotic velocity. Thus it will have a similar behavior. 

The contribution of theE: convection current [Eq. (107)) and the con
tribution of the transport current [Eq. (109)] to the net current [Eq. (87)] 
are taken into account through the L22 Onsager coefficient [Eq. (113)]. 
Applying the mean value theorem for integrals to (108), it can be shown 
that the convection current is equal to pc(x0 )-(l - G), where 0 < Xo < 
h. Hence Pc(x0 ) is proportional to Pc. defined through (36) and (126). As 
pointed out before, dominates over p:-, for small values of 1. There
fore, the value of Kc as a function of,., given by (115), is expected to be 
proportional to _, shown in Fig. 21. On the other hand, from (112) and 
(126), 
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t p: 
Kr = -2: tr2 - 1 

h 1 Pi 
(127) 

Since the transport coefficients, t + 0.5 are taken to be constant, 
Kr as a function ofT is also expected to be proportional to the average 
number of counterions in the slit (i.e., to p). Therefore, K, given by 
(114), is expected to be a function ofT similar to that of . That this is 
indeed the case can be seen in Fig. 22. In both the P- and I + K curves 
a maximum is observed in the region of small values ofT. L22 12h can be 
taken as a generalized conductivity. Thus the effect of ionic size is to 
increase the electrolyte conductivity considerably for narrow slits. For 
macroions one would expect this effect to be even larger. 

In Fig. 23 the reduced apparent ~ potential, F, is shown as a function 
ofT for a l: I. 1M electrolyte. The behavior of the curves can be inferred 
from Figs. 20 and 22 [see (118)]. The physically relevant quantities in 
(117) are the P, convection current [Eq. (106)] and a generalized resistance 

. For narrow a higher ~ potential and/or bulk electrolyte con· 
centration mcreases both the P~ convection current and the Onsager 
coefficient, different proportions. A higher conductivity, im· 

a lower resistance. 1 Hence the resistance IIL22 and the P: 
convection current. I ,r. compete in 017) to produce a higher or lower 
streaming . with values of the ~potential and/or bulk 
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Figure 22 Reduced Onsager coefficient L22 /D22 as a function of the slit width 
for~ = 25, 40, and 50 mV. The fluid is a 1:1, 1 M electrolyte (a = 4.25 A. T = 

298 K, E = 78.5). The solid and dashed lines are the TPE HNC/MS and VO 
results, respectively. (From Ref. 55.) 
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Figure 23 Reduced apparent ~ potential as a function of the slit width for ~ = 
25, 40, and 50 mV. The fluid is a I: I, I M electrolyte (a = 4.25 A, T = 298 K, 
E = 78.5). The solid and dashed curves are the TPE HNC/MS and VO results, 
respectively. (From Ref. 55.) 

electrolyte concentration. The result is that, in general, the streaming 
potential increases with decreasing bulk electrolyte concentration and can 
increase or decrease with increasing ~ potentiaL In Fig. 23, a higher ~ 
potential implies a higher streaming potential for large values of h, and a 
lower streaming potential for small values of h. 
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Figure 24 Reduced apparent viscosity coefficients as a function of the slit width 
for~ = 25, 40, and 50 mV. The fluid is a l: I, l M electrolyte (a = 4.25 A, T = 
298 K, E = 78.5). The solid and dashed curves are the TPE HNC/MS and VO 
results, respectively. (From Ref. 55.) 
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Under an applied pressure gradient and zero-current condition, a gen
eralized Poiseuille volume flux can be defined through (121). From (120), 
this volume flux can be written as 

(128) 

The first term on the right-hand side of (128) is the Poiseuille flux, which 
is retarded by the electro-osmotic flux produced by the induced streaming 
potential {i.e., the second term on the right-hand side of (l28)J. There
sulting flux would appear to be that of a more viscous fluid. From the 
previous discussion on the average electro-osmotic velocity (i.e .. the L 12 

Onsager coefficient), I L 12 j increases with increasing bulk concentration 
and ~ potential and decreases with decreasing h. On the other hand, Esrr 
decreases with increasing bulk concentration and decreasing value of h 
and does not have a simple dependence with the ~ potential. 

For very wide slits. L 12 E_<~r becomes a constant multiplied by h [see 
(%) and (117) and Figs. 20 and 23]. Thus the flux retardation becomes 
negligible compared to the Poiseuille flux, which increases with h3

, and 
the apparent tends to the bulk fluid viscosity. For narrower slits. 
the retardation flux becomes more important and the apparent viscosity 
increases. Finally. for very narrow slits the apparent viscosity goes to a 
maximum and decreases as the streaming potential and I L 12 1 decrease 
faster with decreasing h. This behavior of the reduced apparent viscosity 
~~ shown in 24. ln the limit of point ions the results of Levine et al. 
[51] are obtained. 
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I. THEORIES OF FREEZING 

In this chapter we adopt the point of view that a crystal is a very inho
mogeneous liquid, albeit one with a high degree of symmetry. It may seem 
surprising at first that this point of view has anything to recommend it. 
Nevertheless, over the last decade the density functional (DF) theory of 
classical statistical mechanics [I] has been developed by Ramakrishnan 
and Yussoff [2] and Haymet and Oxtoby [3,4] to describe successfully 
the freezing transition from exactly this point of view. The theory exploits 
advances in both the density functional formalism, reviewed by Evans in 
Chapter 3 of this volume, and advances since 1960 in describing the struc
ture of bulk homogeneous liquids with workable theories. 

The goal of the DF freezing theory is to predict the thermodynamic 
conditions under which a liquid will freeze and to predict the symmetry 
and density of the crystal with which the liquid coexists. Central to the 
theory for both one-component and multicomponent systems is a ther
modynamic functional Taylor series expansion of the free energy of the 
crystal about the free energy of the liquid. Implicit in this expansion is 
the assumption of a similarity between the local environments of the crys
tal and the liquid phases along the coexistence line. Quantitatively, the 
similarities in the local environments can be measured in terms of a co-
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ordination number, the number of nearest neighbors around a particle, 
which is often the same for both phases. For multicomponent systems, 
the local environment depends not only on the location and number, but 
also the species, of nearest neighbors. 

Starting in 1983 [5], the DF freezing theory has been applied numeri
cally to many one-component systems, such as hard spheres [5-12], the 
Lennard-Janes liquid [19,20], the hard-core Yukawa fluid [21-25], water 
[26}, mixtures [27], hard ellipsoids and dumbbells [28], and even refor
mulated for quantum liquids [29-31]. Over the years, a number of review 
articles have appeared [13-18]. In this chapter we discuss in detail ap
plications of this DF theory to quantum systems, to classical hard- and 
soft-sphere systems using newly formulated functionals [22}, and to the 
calculation of the vacancy density in the equilibrium crystal at melting 
[32]. 

The freezing theory requires as input the correlation functions of the 
liquid and a choice of crystal symmetry. Freezing theory can thus be split 
into two independent steps, summarized by 

vu(r)--? cu(r)---" phase diagram (1) 

The potential energy vu between each pair of species i and j is used to 
calculate the direct correlation functions cu, which in turn are used in the 
density functional to predict the phase diagram. A wide variety of modern 
methods of liquid-state chemistry can be used to generate the required 
input, and in addition, experimental structure factor data can be used 
directly. 

The outline of this chapter is as follows. In Section II a brief guide to 
density functional methods is presented by picking up results and methods 
derived in Chapter 3 by Evans. In Section III the quantum theory is 
derived, and a review of the first application-to the freezing of liquid 
helium-is presented in Section IV. Modern classical methods, which go 
beyond a second-order perturbation approach, are summarized in Section 
V together with applications by several groups to single-component and 
binary hard-sphere systems, and to the prediction of the vacancy con
centration in equilibrium crystals at the melting point. Some prospects 
for future research are collected in Section VI. Note that this chapter has 
strong connections with Chapters 3, 10, and 11. 

II. BRIEF GUIDE TO THE DF LITERATURE 

The first density functional calculation for the freezing of a monatomic 
liquid using accurate liquid input was presented in 1983 [5]. Following 
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related ideas from gas-liquid coexistence theory, developed among others 
by Yang et al. [33] and Saam and Ebner [34], the functional used in this 
work is 

Llf3Dv[p] = Jvdr 1 [p(ri)ln p~~)- Llp(r 1)] 

- ~ fv dr1 fv drz c(l r1 

(2) 

where PL is the density of the liquid, p(rd is the spatially varying density 
of the crystal, Llp(ri) = [p(rd - pd, and c(r 12) is the direct correlation 
function of the liquid. Upon minimizing the functional Llf3Dv, one obtains 
the grand potential difference Ll [30 between the coexisting liquid at crystal 
phases at temperature T and chemical potential J.L. 

Density functional methods were introduced into classical statistical 
mechanics around 1963 [35-37], but were somewhat underutilized until 
the 1970s. In the context of freezing, calculations by a number of different 
groups show that the density functional theory of freezing has made sub
stantial progress in the long-standing question of liquid-crystal phase co
existence. Before proceeding to the details of some representative cal
culations, it is perhaps appropriate to summarize the shortcomings of this 
approach. 

Since the density functional theory is by its very construction a mean
field theory, it suffers the same problems as does any such theory when 
fluctuation effects become dominant. For example, Evans (1, 18] has sum
marized the problems in the analogous gas-liquid theory near the critical 
point. In two dimensions, the DF theory in its simple form does not predict 
the algebraic decay of correlation functions in two-dimensional crystals 
(although it still has some practical uses). In the isotropic-nematic tran
sition in liquid crystals (see Chapter 11), the DF theory, together with 
any mean-field theory, cannot predict the small entropy change at this 
very "weak" first-order transition. It is important to remember that these 
interesting examples do not negate the central problem of describing the 
"usual," "strong" first-order transitions found in most materials. 

The only approximation in the DF theory is the truncation of a Taylor 
series expansion of the (grand) free-energy functional. The vexing ques
tion of analyticity of the functional at a first-order transition remains. Most 
researchers agree that the fact that there is a weak singularity does not 
prevent the application of theory to practical problems. At least one fully 
nonperturbative freezing theory has been proposed [38], although any 
such approach involves much more computational work. 
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Optimization of the free-energy functional is an extremely active and 
promising area of research [22 ,23,39-41]. In practical applications one is 
forced (usually, by ignorance of higher-order correlation functions in the 
liquid) to truncate the above-mentioned Taylor expansion at second order. 
Given this constraint, at least two independent methods for improving 
the DF theory are available. Very recently it has been realized that the 
ideal system, which underlies the derivation of the DF theory, can be 
chosen to minimize higher-order contributions. For example, in all the 
early DF calculations, the ideal system was chosen (almost by default) 
to be the usual, classical ideal gas of point particles. This is a sensible 
choice since it implies that the liquid correlation function c(r) in the func
tional is the usual Ornstein-Zernike direct-correlation function. But the 
recent work shows that other choices of the ideal system are possible and 
even preferable. The initial calculations have been made for quantum 
freezing (e.g., for helium) but the applications to freezing of polymers 
[43] and other complex liquids are immediate. In simple terms, the pro
cedure is simply to choose the ideal system to minimize higher-order 
contributions to the functional. 

The alternative approach, which has become popular very recently, is 
the approximate inclusion of higher-order terms in the functional. Most 
recently, at least four groups [22,41 ,48,97] have proposed different "in
finite-order'' functionals, which at the present time appear to possess very 
different properties. Originally, Tarazona [II] used smoothed density ap
proximations to build into the functional partial inclusion of higher-order 
terms, involving higher-order liquid correlation functions. This approach 
is related to an earlier fine-grained generalized van der Waals theory of 
Nordholm and co-workers [44,45], and has been generalized and improved 
in important calculations by several groups. Other empirical or semiem
pirical choices can be made: for example, by choosing a polynomial 
weighting function such that for hard spheres either the Carnahan-Star
Iing equation is recovered or thermodynamic consistency is enforced. The 
great value of this approach has been demonstrated by Tarazona, who 
has presented a functional that displays three-phase coexistence at the 
tri pie point. 

The activity in the extensions of DF theory indicates that the renais
sance of density functional theory in statistical mechanics, especially 
phase transitions, is far from complete. The most important mathematical 
properties of the functional remain unknown, and opportunities for ex
tension to dynamical questions and nonsimple molecules (such as poly
mers [43]) are abundant. 
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Ill. PATH INTEGRAL FORMULATION OF 
GENERAL QUANTUM THEORY 

A. Quantum DF Theory 

367 

The DF theory for the freezing of quantum liquids at T :ft. 0 has been 
developed by McCoy et al. [29-31] to predict the freezing of quantum 
liquids, such as helium. As summarized above, the freezing of a wide 
variety of classical liquids has been described by the density functional 
(DF) theory of statistical mechanics. By choosing a new ideal system, a 
new DF theory is constructed that addresses directly many of the unusual 
features of the freezing of liquid helium, such as the weakly modulated 
liquid pair correlation function g(r) at freezing densities. The quantum 
theory combines DF techniques with the Feynman path integral formu
lation of quantum mechanics to include dispersion effects. In classical 
DF theories, the density and external field of the ideal system are con
nected by a Boltzmann relation p(r) ex exp[- j3 Vext(r)]. In the quantum 
DF theory, one relates the density and external field of the ideal system 
through the Feynman path integral representation, in which the quantum 
particle is represented by a classical ring polymer of P beads. The classical 
DF theories fail for helium because they employ an ideal system that is 
too far removed from the interacting system. For a class of simple but 
interesting problems, the density path integral of the ideal system can be 
performed in closed form, leading to a compact, physically descriptive 
theory. The full theory has been applied to the freezing of helium-4 [31], 
and as summarized in Section III.B, it yields good results. 

Although the density functional theory of freezing has been applied 
successfully to a variety of classical liquids [2,3,5, 13, 14], it does not work 
for helium [46], a liquid with significant quantum character. Classical DF 
freezing theory demonstrates that liquids freeze when they are strongly 
correlated, as measured, for example, by the pair correlation function or 
structure factor, in accord with empirical freezing rules [47 ,85]. When 
helium freezes, the pair correlation function is not strongly modulated, 
which implies that factors other than classical intermolecular correlations 
are important. 

The quantum DF theory takes a different approach and treats suc
cessfully the quantum swelling (dispersion) of particles, which results in 
freezing of quantum systems at densities which by classical standards are 
extremely low. This quantum swelling is quantified by the single-particle 
self-correlation function discussed below. 
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The core of the density functional theory of freezing is a functional 
Taylor series of the excess Helmholtz free energy '?fex, an expansion that 
is truncated after the term second order in the singlet density difference 
Ap(r). The convergence (or otherwise) of this expansion is discussed at 
length below. The point of quantum DF theory is that it chooses a better 
ideal system, which reduces significantly higher-order contributions to 
the excess free energy. For a workable theory, this ideal system should 
be solvable and tractable. To date, the ideal system has been chosen to 
include (quantum) dispersion in the representation of noninteracting par
ticles, instead of the usual (classical) noninteracting point particles. 

The quantum aspects of the problem are treated using the Feynman 
path integral techniques. Because of the ring-polymer representation of 
the quantum molecule, the quantum freezing theory naturally has features 
in common with the freezing theory for polyatomic molecules. The nu
merical tests of the quantum theory are summarized in Section III.B 
[29,31]. 

The theory may be developed as follows. First, the grand potential 
functional for an arbitrary ideal system is derived. This result is used to 
determine the free-energy functional for an ideal system that is a non
interacting quantum system with dispersion. One can also recover the 
classical theory. Finally, the second-order contribution to the quantum 
free energy is calculated. 

B. Free-Energy Density Functionals 

The central quantity in the theory is the grand potential function D, which 
is derived here via the total differential of the thermodynamic energy of 
a system in an external field. Legendre transformation is then used to 
switch among the various, equivalent thermodynamic potentials. The 
most important step in the derivation is the functional Taylor expansion 
of the excess Helmholtz free energy '?f ex = '?f - '?fict about the (reference) 
liquid state in powers of the singlet density difference. Here '?f denotes 
the total Helmholtz free energy of the actual system, and '?fict the free 
energy of an ideal system, in the notation of Evans in Chapter 3 [1 ,18]. 
The remaining steps are (l) the selection of an ideal system, and (2) the 
approximation of the functional by truncation of the Taylor series after 
second order. McCoy et al. [30] argue that this approach is superior to 
an attempt to evaluate higher-order terms in the classical reference sys
tem. The final step of the derivation is a Lengendre transform to the grand 
potential. 
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The differential form of the thermodynamic energy U is 

dU = T dS P dV + fL dN + fv dr p(r) 8 Vext(r) (3) 

where Tis the temperature, S the entropy, P the pressure, V the volume, 
fL the chemical potential, N the number of particles, p(r) the singlet density 
(possibly spatially varying), Vext(r) the external field, and 8Vex1(r) the 
variation in Vex1(r). Note that N is related to the other variables via N 
= f v dr p(r). This expression is consistent with the energy functional 
used in quantum field theory [49]. The natural variables of U are S, V, 
N, and Vex1(r). It is convenient to transform to an intermediate ther
modynamic energy au defined to be 

au = U- fv dr p(r)Vex1(r) 

In differential form this is 

dUU = T dS P dV + fv dr u(r) op(r) 

(4) 

(5) 

where u(r) = fL Vex1(r) and the constraint on p(r) is thereby removed. 
The Helmholtz free energy is 

:lf = au - TS (6) 

and the grand potential 

0 = :lf Jv dr u(r)p(r) (7) 

Two important relations should be noted at this point. From (5) to (7), 

o:lf oo 
-- = u(r) and -- = - p(r) 
op(r) ou(r) 

(8) 

The excess Helmholtz free energy, truncated at second order in the 
density difference, becomes 

J3:lfex = J3:lfex.L + fv dr [f3uL(r) - {3U;ct,L(r)] .llp(r) 
(9) 

where 13 = llkT, the subscript L indicates the liquid state, the subscript 
id indicates the ideal state, and .llp(r) = p(r) - PL· The direct correlation 
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function c(r1 - rz) 
tions, 

c<2l(r1 ,rz) is one of the family of correlation func-

(nJ _ - (3on(~ - ~;d) 
c (rl' ... ' r n) - <;, ( ) ( ) up r1 ···op rn 

(10) 

For the liquid state, both p and uL are constants. Since p(r) is a natural 
variable of ~, the expansion is straightforward, and the transform to the 
grand thermodynamic potential yields 

(3tlD = (3tl~;d + fv dr[f3uL - (3u(r)]p(r) - Jv dr (3u;d.L Llp(r) 

- ~ Jv dr1 fv drz c(r1 - r 2 ) Llp(r1) tlp(r2 ) 

(II) 

where tl D = D - DL and tl ~id = ~id - ~id,L. 
Since u(r) is a natural variable of D, and p(r) is the variable conjugate 

to u(r), D is a minimum with respect to variations in p(r). One would 
usually treat D as a functional ofT, V, and u(r) with p(r) defined by these 
variables, but one can also consider D to be a functional of T, V, u(r), 
and p(r), with an added condition that fixes the value of p(r), namely that 
p(r) is determined by D being minimized for fixed T, V, and u(r). The 
quantum DF theory exploits this second approach. The functional which 
is not yet minimized, namely when p(r) is still a free variable, is denoted 
by a generalization of the notation due to Evans [1], Dv[p]. With the 
definition tlflv = Dv - Dv.L, one obtains from (1 I) 

(3tlflv = (3tl ~id + Jv dr [(3uL - (3u(r)]p(r) 
(12) 

A specific ideal system must be chosen before this equation can be applied 
to a specific system. Two ideal systems can now be considered: (1) the 
classical Boltzmann ideal system, which will be delayed until the dis
cussion ofnonperturbative functionals, and (2) the Feynman ideal system. 

C. Quantum Mechanics: The Feynman 
Ideal System 

For liquid helium, classical DF theory does not predict freezing at any 
density [46, 105], even though formally the classical functional is correct 
to second order in the density. Quantum corrections to the classical func-
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tiona! contribute greatly beyond second order-in fact, so greatly that 
freezing does not occur if they are omitted. 

The resolution of this difficulty is to use an ideal system that is closer 
to the true nature of the quantum system. One is then able to incorporate 
the major quantum effects from the beginning and to derive a quantum 
functional that predicts the helium phase diagram [29,31]. The singlet 
density is related to the quantity Uict(r) for the case of noninteracting 
quantum particles [50-52]. 

+ ( (P))J --yP(r 1(1>-r 1m)2 -~P(r 1 m-r 1 <3JJ2 -~P(r,<P>-r 1(1J)2 • • • Uict r1 e e ' · · · e ' 

(13) 

where -y = (21T2 ml!3h2
), m is the mass of a particle, his Planck's constant, 

and P is the number of beads in the ring-polymer isomorphism. 
To calculate the quantum ideal free energy 9foict, one can no longer use 

equation (8) because (14) cannot be inverted to give Uict(r) as a functional 
of p(r). Instead, one obtains Dict through (8) and performs the Legendre 
transform using (7) to obtain !39foict. Substitution into (13) yields 

!3LlDv = I + !39foict + fv dr [!3uL - !3u(r)]p(r) 

- J dr p(r) In PL - ~ J drt J drz c(! r1 - rz j) Llp(rt) Llp(rz) (14) 

where uid(r) is given implicitly by (14). 
The second-order term in this equation is evaluated most readily by 

exploiting the periodic nature of the singlet density and expanding Llp(r) 
in the Fourier series Ll p(r) = Lkp(k)eik·r, where the sum is over the 
reciprocal lattice vectors (RL V s) of the crystal [30]. 

To be useful in freezing calculations, one must be able to minimize 
Llilv[p(r)] [Eq. (15)] with respect to p(r). However, Uict(r) cannot be ob
tained explicitly. Therefore, it is more convenient to consider Llilv as a 
functional of both p(r) and Uict(r). To interpret D[p(r),uict(r)], defined in 
(15), as the grand potential, the two equations 

oDv = 0 and oDv = 0 
op(r) OUict(r) 

(15) 

must be satisfied. For this choice of ideal system, the function c(rt - r2 ) 

' is related to the direct correlation sometimes used in interaction site 
models (ISM) of molecular liquids. 
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D. Quantum Direct Correlation Function 

The quantum direct correlation function is defined in (10). This definition 
is a generalization of the classical definition in which 2i';ct in (10) is the 
free-energy functional of the Boltzmann system. McCoy et a!. [30] discuss 
in detail the definition of c(r 1 ,r2), in particular its relation to the mea
surable particle-particle correlation function x(r1 ,r2 ) and the form it takes 
when 2i';ct is the Feynman free-energy functional. 

Following Percus [53], one finds that 

8p(r1) 

i3x(r 1 ,rz) = 8u(r2) (16) 

This is the probability [less the mean field contribution of p(r 1)p(r2 )] that 
a particle exists at position r 1 and simultaneously a particle, either the 
same particle as at r 1 or at different one, exists at r 2 • If a classical particle 
exists at r 1 , that particle exists only at r 1 , and the classical "self' con
tribution to the particle-particle correlation function is proportional to a 
delta function. For the ideal Boltzmann system, 

(17) 

A quantum particle is more complicated and interesting. Because of un
certainty in the position, a particle "existing" (in the quantum sense) at 
r 1 may also exist at r 2 ""' r 1 • McCoy et al. [30] have shown that for the 
ideal Feynman system in the liquid state 

where -y 
pected, 

1 e -4-y(n- n)Z 

- r2! 
(18) 

Ti/A2 and A is the de Broglie wavelength. Note that, as ex-

lim XF0 (ri - r2) = Xs0 (ri - r2) (19) 
...,.-.oo 

It is customary to split x(r 1 ,r2 ) into self and a distinct particle contri
butions via 

(20) 

where h(r1 ,r2) is the so-called total correlation function and 2:(ri ,r2) is 
the self-correlation function. Note that the relevant correlation functions 
here differ from the correlation functions usually calculated via path in
tegral techniques. Usually, only the diagonal (same imaginary time) terms 
are calculated, since these terms contribute to the partition function. The 
correlations that concern us here involve both diagonal and off-diagonal 
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terms. The off-diagonal terms arise from considerations of linear response 
theory embodied in (16). In fact, these off-diagonal interactions are central 
to the success of a quantum theory of freezing [31]. 

From (16) and (8) one obtains 

8213@' ---'------ = X 1(rt,rz) 
8p(rt)8p(rz) 

{21) 

where X - 1(rt ,rz) is the functional inverse of x(r 1 ,r2 ). A short deviation 
shows that [30] the Fourier transform of the quantum direct-correlation 
function is 

(22) 

The definition of the quantum c(r) has been constructed so that it reduces 
to the usual classical limit. In the quantum theory 2:(r - r') is no longer 
a delta function, and use of the Boltzmann ideal system in the freezing 
theory would have caused a huge second-order contribution to the free 
energy in (13) from the term involving Ll2:- 1(k). The general principle 
stated and applied by McCoy et al. is that the ideal system should be 
chosen so that this ,1.2: 1 contribution to c(k) is eliminated or at least 
minimized. In numerical work, Rick et al. [31] have explored one method 
for doing this, namely the choice of an effective mass for the ideal system 
such that 2:;d(r) = 2:(r). 

E. Gaussian Approximation: Quantum 
Systems 

The equations above constitute a complete freezing theory which one 
expects will work well for quantum systems. Solution of these equations 
is a nontrivial computational problem, and it is worthwhile exploring sim
plified, yet accurate versions of the general theory. One simplified version 
is the quantum analog of the Gaussian approximation often used in clas
sical freezing theory [13,14]. 

For classical systems, the Gaussian approximation is straightforward. 
One assumes that the crystal singlet density is of Gaussian form (and 
hence spherically symmetric) about each lattice site, and then searches 
for the Gaussian with the lowest free energy. In other words, one performs 
a partial minimization of,:).[! with the constraint that the density is Gaus
sian. This has proved to be a very good approximation [6,7] for close
packed crystals. One sees that for the quantum case, where the expres
sions for both p(r) and u;d(ir) are needed, it is easier to assume an equiv-
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alent form for u;d(r) and solve (14) for p(r) rather to assume a form for 
p(r) and solve for u;d(r). 

If the function c(k) can be obtained for any liquid density (which is a 
purely liquid-state problem separate from the minimization of ~Dv, which 
is the focus here), the course is clear: One assumes a reasonable form 
for u;d(r) and uses (14) to find the corresponding form of p(r). McCoy et 
al. assumed that u;d(r) has a parabolic form in each unit cellj3u;d(r) = a 
- br2

, where r is the distance from the nearest lattice point. The nor
malization of p(r) yields parameter a as a function of b, and both parameter 
b and Ps will be obtained by minimization of the free energy. This form 
for j3u;d(r) makes the system identical to a system of harmonic oscillators, 
and following Feynman [50], the density takes the form 

( ) 

3/2 

p(r) = ea ~ e 2a(C-I)r2 (23) 

where C = cosh J, f = (b/-y) 112
, and 

(2bmlj3) 112
1r 

a. = 
hsinh(f) 

(24) 

Normalization of p(r) to one particle per unit cell gives a = In [(2-y( C -
l)/1T?

12
] and hence 

(25) 

Clearly, p(r) is of Gaussian form, although the relation between p(r) and 
u;d(r) is more complicated that it is in the classical case. However, the 
classical limit (i.e., a.~ oo) is recovered correctly since lima-"' 2a.(C -
1) band lima-= p(r) (bi1T) 312

e-b'
2

. The final form of the quantum 
grand potentialj3~D is 

13~D [ 3 [2-y(C - I)J -V = PL - Ps I + In PL - 2 In 1T (26) 

+ 
4
a.( ~b _ I) J - ~ Ps2 ~ c(k)p

2
(k) 

where the Gaussians are assumed to be nonoverlapping. Again, (26) has 
the correct classical limit [5]. The derivation above provides the quantum 
analog of the classical Gaussian approximation for ~D, which is known 
to work well for classical close-packed systems. It turns out [29,31] that 
this simplified quantum form is also successful in predicting the freezing 
of liquid helium. 
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F. limitations of the T =/= 0 Formalism 

The quantum freezing theory described above includes the dispersive na
ture of the particles to all orders in singlet density by including these 
effects in the ideal system. Application of the old classical freezing theory 
[5] to a quantum system would include dispersion only to second order 
and add Boltzmann contributions at higher orders. Exchange is included 
in both types of freezing theories only to second order: The liquid pair 
correlation function (if exact) has exchange as well as dispersion effects 
included in it, so it is only the extra exchange effects (if any) that are 
present in the crystal but not in the liquid which are neglected by these 
theories. In this version of the quantum theory, exchange has not been 
included in the ideal system because-as a many-body effect-one ex
pects that is can be handled accurately in the same manner as the pair 
potential interactions. It is possible by dimensional analysis to include 
approximate exchange effects in the ideal system according to Thomas
Fermi theory [49]. 

It is interesting to examine the direct correlation function as one passes 
from a classical system to a quantum system. In the classical system, 
h(k) ~ 0 and 2-:Ck) ~ PL in the large k limit, while in the quantum case 
both h(k) and L(k) ~ 0. This has a large effect on the second-order 
contribution to the free energy via the function c(k). For the classical 
system, one can see from (22) that c(k) goes as h(k) for large k. On the 
other hand, in the quantum system both the denominator and the nu
merator approach zero. This produces an amplifying effect on h(k) at large 
k. Hence a relatively featureless h(k) can have a dramatic impact on the 
free energy if the self term decreases rapidly with distance. In summary, 
to second order in perturbation theory, it may be stated that it is this fact 
which causes the freezing of quantum systems. It is a direct consequence 
of the quantum self-correlation function. 

G. Quantum Freezing at T = 0 

Subsequent to the development of the T =/= 0 quantum theory, at least 
three independent groups have developed versions of a T = 0 theory [54-
57). The most complete of these is due to Ashcroft and co-workers [54], 
who consider the freezing of the Bose hard-sphere liquid at T = 0. Unlike 
helium-4, Bose hard spheres freeze into a face-centered cubic (fcc) crystal 
at T = 0. Although these authors do not identify the separate contributions 
of the self and distinct terms to the direct-correlation function [denoted 
v(k) in their paper], it is easy to show that their T = 0 functional is the 
zero-temperature limit of the quantum functional derived above (with a 
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slight modification to include the modified weight-density functional dis
cussed below). Most interestingly, there is a deep and important con
nection between the T = 0 quantum freezing problem and classical flux
lattice melting, which arises, for example, in theories of high-temperature 
superconductivity, as discussed by Nelson [58]. This is beyond the scope 
of this chapter. 

IV. APPLICATION OF QUANTUM DF THEORY 
TO HELIUM 

A. liquid Helium 

The path integral density functional theory of quantum freezing has been 
used to study the freezing of 4He and 3He. Rick et a!. [31] examined the 
crystal-liquid phase diagram over the temperature range 8 to 204.4 K and 
studied the isotopic shift in the liquid-crystal coexistence line. They con
cluded that mass effects rather than quantum statistics are important in 
the freezing transition at these temperatures. 

The phase diagram of helium has many unique properties. It is the only 
element without a triple point; there is no point in phase space where the 
liquid, crystal, and gas phases are all in equilibrium. Also, unlike any 
other element, helium remains a liquid at the lowest temperatures and I 
atm pressure. Pressure needs to be applied for helium to form a solid at 
any known temperature [63]. 

For the purposes of this calculation, perhaps the most important feature 
of the helium phase diagram is the significant difference between the liq
uid-crystal coexistence curves of helium and those of other noble gases. 
The phase diagrams of neon, argon, krypton, and xenon can be modeled 
fairly well as a system interacting via the classical, two-parameter Len
nard-lones potential (see below). The two parameters are an energy pa
rameter, e, and a size parameter, a. The phase diagram of the Lennard
lones system has been calculated using density functional theory [19,6]. 
Figure 1 displays the calculated liquid-crystal and gas-liquid coexistence 
lines (dashed lines). The triple points of neon, argon, krypton, and xenon, 
determined experimentally [64], are also plotted. The points are all scaled 
by the appropriate Lennard-lones parameters [65-67]. The triple point 
of the Lennard-lones system is the intersection of the crystal-liquid and 
gas-liquid coexistence regions, which is in the same region as the noble 
gas triple points. This is true even for neon, which displays some quantum 
behavior. However, because quantum effects are much more important 
for helium, 4He (the solid line) has a vastly different phase diagram, and 
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Fig. 1 Phase diagrams for helium, the (classical) Lennard-Jones system, and 
the noble gases: experimental data for 4He (solid line) [68,69]; density functional 
theory calculations for the Lennard-Jones system (dashed line) [6]; and experi
mental data for neon (circles), argon (squares), krypton (triangles), and xenon 
(diamonds). 

two features are apparent: helium freezes at a much lower density, and 
the density change upon freezing is much smaller [68,69]. 

Even the phase diagrams of the helium isotopes, 3He and 4He, differ. 
For example, 3He always freezes at a lower density (although not always 
at a lower pressure [68] !). Except for very low temperatures, these dif
ferences can be attributed to the difference in mass, which affects the 
quantum dispersion of the atoms. Dispersion is related to the uncertainty 
principle; it is the reading out of the probability of finding an atom at a 
particular position. The effects of dispersion decrease slowly with in
creasing temperature as liT (as shown below), so they remain important 
for helium up to relatively high temperatures. These effects are also pro
portional to the inverse mass of the atoms and will be greater for 3He 
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than 4 He. It is shown below that this causes 3He to freeze at a lower 
density. 

There is also a difference in the type of statistics obeyed by each iso
tope, since 3He is a fermion and 4He is a boson. As explained in Ref. 30, 
these effects are not included in the present choice of the ideal system. 
The ideal system here consists of noninteracting quantum particles (with 
dispersion), which obey Boltzmann statistics. Exchange effects are im
portant only if the distance over which dispersions cause the atoms to be 
read is comparable to the typical interparticle distance, when there can 
be significant overlap between the two atoms. For the temperatures con
sidered here, above 8 K, this is never the case, and the effects of exchange 
should not be important. 

To study lower temperatures, especially the strange behavior of the 
liquid-crystal phase diagram as the temperature approaches absolute 
zero, exchange should be included in calculation of the liquid pair cor
relation function g(r), which is the input for the present freezing theory 
[30]. A correct treatment of Bose-Einstein or Fermi-Dirac (rather than 
Boltzmann) statistics is nontrivial. It can be done for bosons with quantum 
Monte Carlo techniques developed by Pollock and Ceperley [70,71], who 
have calculated a g(r) value for 4 He at 2 K both with and without exchange 
and find essentially no measurable difference. Since this is true at 2 K, 
it is safe, at least to second order in the free-energy expansion, to neglect 
exchange at higher temperatures. 

The crystal-liquid coexistence line for 4He and also partially for 3He 
can now be calculated, proceeding as follows. First, the methods used to 
calculate the liquid-phase input needed to start the quantum freezing cal
culation are described. The predicted phase diagrams, for both 3He and 
4He, are then compared with experimental results. 

B. liquid Phase Input 

To study the phase diagram of helium with the quantum DF theory, the 
pair correlation function g(r) and the self-correlation function 2.:(r) for 
the liquid are required as input. The first calculation [29] used readily 
available integral equation methods, coupled with helium pseudopoten
tials, to examine quickly quantum freezing theory. A more thorough ex
amination using the best available liquid input data was presented sub
sequently [31). To calculate these data, one may use quantum Monte Carlo 
simulations which have been developed and described in detail by others 
[70]. This entire subsection is concerned with the details of this liquid
phase input rather than with freezing theory per se. However, certain 
unusual or unfamiliar functions are required by freezing theory. 
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The quantum Monte Carlo method may be summarized as follows. 
Neglecting exchange, the partition function for N atoms with Hamiltonian 
'!Je is found by taking the trace over a density matrix for each atom, 

Z = J dr1 .. ·drN ( r1 I e-f3'X I r1 > ··· ( rN I e-f3'X I rN) (27) 

where I r n > is an eigenfunction of particle n in the position representation, 
(3 is llk8 T, Tis temperature, and ks is Boltzmann's constant. 

The Hamiltonian may be written as the sum of a free-particle term '!leo 
and a potential energy V = 2/;/= 1 V nUl. Assuming that the potential energy 
is pairwise additive and of Lennard-Jones form, then 

N-1 N 

" " 1 (j) L1 L.J p Uu(rnm) 
n=I m=n+l 

(28) 

where 

uu(r) = 4E [ (~) 
12 

- (~) -
6

] (29) 

r<J/n = I rnUl - rmUl /, and for helium Elks = 10.22 Kanda = 2.556 A. 
The partition function may be simplified [31] to 

Z= 

(30) 

where"' = mksT/2h2 and rn(PT 0 = rn(l)· 

This form of the partition function demonstrates the well-known iso
morphism between a system of quantum particles and a classical ring 
polymer with P monomer units or beads [51]. From this starting point it 
is straightforward to simulate the liquids. The jth bead on an atom is 
coupled to beadsj - I andj + 1 on the same atom with a spring constant 
2P"'If3, and it interacts only with thejth bead on other atoms through the 
interaction potential V(r)/P. 

Since the movements of the beads are strongly correlated due to the 
nearest-neighbor springs, it is convenient to calculate the normal modes 
or diagonal elements of the free-particle contribution to the density ma
trix. The normal modes are by definition independent of each other, so 
one can move the beads more efficiently by moving the normal modes 
[72]. A Monte Carlo move consists of (l) moving the entire atom (i.e., 
the entire necklace of beads) a random distance uniformly distributed 



380 Haymet 

within a cube of length 6.X, then (2) moving each normal mode uniformly 
within a cube of a length dependent on the normal mode. The new po
sitions of the atom and its beads are then calculated and the move accepted 
or rejected according to the usual Metropolis algorithm [73]. The param
eters in the simulation are adjusted to give an acceptance ratio of about 
30%. 

C. Quantum Liquid Pair Correlation 
Function 

The liquid pair correlation function may be calculated from the equation 

1 \N- 1 

N P P ) 
g(r) = _ 2 L L L L o[r - (rnUJ - r,< 0)] (31) 

N(N l)P n=I m=n+I i=Ij=I 

and the self-correlation function from 

(32) 

where (-··) denotes the ensemble average. These correlation functions 
include correlations between different imaginary times as well as the same 
imaginary time. However, for liquid helium the g(r) given by (31) is very 
similar to the same imaginary time pair correlation function. The pressure, 
p, is calculated from the virial equation, which for this system is 

P = PLksTP - ~ PLksTy ~ (~1 j~l (rnW - rnU+ 0
)

2
) 

(33) 

\

N- 1 N P ~ ( Ul )) 
_ ~ ""' ""' ""' U) aliLJ rnm 

L..J L..J L..J r nm Ul 
3NP n= t m=n+ t j= t ar,m 

where PL = N/V is the number density of the liquid. 
To obtain the required input into the quantum DF theory, Rick et al. 

performed simulations with 500 particles, with P = 10 beads per atom 
for temperatures below 21 K and P = 3 at higher temperatures. Additional 
simulations were run with many more beads to check the convergence 
of their simulations. 

There are two principal computational limitations of path integral simu
lations. First, there is a finite limit to the number of beads P for each 
atom. Second, the total number of atoms is finite. These limitations com
promise the simulations in different ways and demand the introduction 
of additional approximations. 

The finite bead approximation restricts the accuracy of the calculation 
of the self-correlation function 2:(r), but not the pair correlation function 
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g(r), since it converges rapidly with increasing P. Unfortunately, "2::Cr) 
converges very slowly. It turns out that the second moment of the dis
tribution, ( r 2 

), converges very slowly as 1/P at any nonzero temperature 
and mass. This demonstrates that dispersion effects go to zero as 1/T, 
since -y is proportional to temperature. It is reasonable to expect the self 
term with interactions to converge in terms of P in a similar manner. This 
fact prohibits the approximation of the infinite P limit of the self-corre
lation function 2:Cr) with any reasonably sized finite P system. One simple 
resolution of this difficulty is to approximate 2:Cr) with the infinite-P limit. 
As shown by Rick et a!. [31], this method is very effective. One may also 
approximate this quantity as an infinite-P ideal L(r) with an effective 
mass m*. This idea has been investigated by calculating (r/) from a simu
lation at a particular temperature and density for a number of different 
values of P, and adjusting m*(P) so that the ideal (r/) equals the simu
lation (r/). One then extrapolates m*(P) to infinite P. 

The second limitation of the liquid simulations, finite box size, does 
not affect the short-range 2:Cr) but does affect g(r). In particular, long
wavelength information about the system cannot be obtained. As shown 
by Rick et a!., this problem can be ameliorated by using an effective 
potential, coupled with classical integral equation theory to yield a pair 
correlation function for all distances, which agrees with the simulated 
Monte Carlo g(r) at small distances. It is this pair correlation function 
that is used as input into the quantum DF theory. Analogous problems 
must be overcome to provide the input for the freezing of Bose hard 
spheres at T = 0 [54]. 

D. Results: Freezing of Helium 

Rick et a!. [31] have calculated the crystal-liquid phase existence points 
of 4He at the temperatures 8, 20, 51.1, 102.2, and 204.4 K. For 3He, a 
low-temperature point at 20 K, a point in the middle of the temperature 
range at 102.2 K, and a high-temperature point at 204.4 K have been 
calculated to show that the theory is capable of investigating isotopic 
effects on freezing. Comparison of the results for the two isotopes is a 
good test of the approximations in the theory. By examining isotopic 
differences, one can judge the importance of features neglected in this 
theory, such as exchange. 

Table l displays the calculated [31] 4He phase coexistence properties, 
the temperature T, the coexisting liquid and crystal densities PL and ps, 
the Gaussian width parameter b, the fractional density change on freezing 
11 = (ps - pL)IpL, and the pressure p. These results were obtained by 
Rick with the self-correlation function L(r) approximated by the ideal 
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Table 1 Liquid-Crystal Phase Coexistence Properties for 4He 

T PL Ps b p 

(K) <A -3) <A -3) (A -z> Tj (kbar) 

8.0 0.0409 0.0505 45.3 0.236 0.45 
20.0 0.0546 0.0646 60.7 0.183 1.72 
51.1 0.0732 0.0864 71.4 0.180 7.74 

102.2 0.0898 0.1022 63.0 0.137 21.97 
204.4 0.1090 0.1209 58.8 0.109 61.34 

function 2:0 (r). The effective mass approximation for 2:(r), investigated 
at a temperature of 51.1 K, yielded only slightly poorer agreement with 
experiment than did the full calculation. 

Experimentally, the stable crystal in this temperature range is face
centered cubic (fcc) above 14.9 K and hexagonal close-packed (hcp) for 
lower temperatures [75]. The present (Gaussian) theory always predicts 
fcc to be slightly more stable than hcp even at 8 K. The resolution of this 
tiny free-energy difference is a demanding problem even for a classical 
theory. In Fig. 2 the results are compared with the experimental phase 
diagram [68,75,76]. The exact placement of the points is sensitive to the 
values of the Lennard-Jones parameters, and the calculations are sen
sitive to the form of the pair potential itself. To implement the freezing 
theory the "standard" literature values for the parameters [70,71] have 
been used. Nevertheless, the agreement is very good. Less accurate is 
the predicted crystal density, which is overestimated just as in classical 
density functional theory [6]. This is probably not the result of neglected 
quantum effects, since the density change is fairly uniform over the range 
of temperature. It is more likely a consequence of the truncated free
energy expansion and also, to a lesser degree, the Gaussian approximation 
for the crystal density. 

The 3He results are shown in Table 2. The predicted stable crystal 
phase at both temperatures is again found to be fcc. Experimentally, the 
stable phase at 20 K is fcc; the fcc-to-hcp transition occurs at 17.73 K 
[78]. Apparently, the melting curve for 3He has not been measured above 
30 K, but the melting curve for both isotopes has been studied through 
other theoretical methods [79 ,80]. One very interesting feature of the 3He 
and 4He phase diagrams is the isotopic shift in the pressure at the freezing 
point, IJ.p = p1 eHe) - p1 ( 4 He), at a fixed temperature [68]. At low 
temperatures, IJ.p is positive, indicating that although 3He freezes at a 
lower density, it has a higher pressure than does 4He at its slightly higher 
freezing density. This is perhaps not surprising, since the lighter mass of 
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Fig. 2 4He phase diagram: experimental results for the liquid-crystal coexis
tence curve (solid line) [68,75-77], the gas-liquid coexistence line (dashed line) 
[69], and the DF calculations (squares) [31]. 

3He will cause a higher pressure through the second term in the virial 
equation (33). The dispersion term of (33), (2.:2:(rYl - rnU+ n), will be 
greater for 3He than for 4He, but when multiplied by -y, which is propor
tional to the mass, the second term will have a smaller magnitude and 
the 3He pressure will be greater. On the other hand, at higher tempera
tures, 3He still freezes at a lower density, dispersion terms diminish, and 

Table 2 Liquid-Crystal Phase Coexistence Properties for 3He 

T PL Ps b p 
(K) cA -3) cA -J) cA -z) , (kbar) 

20.0 0.0535 0.0632 61.2 0.181 1.82 
102.2 0.0892 0.1005 58.2 0.127 21.93 
204.4 0.1086 0.1209 68.7 0.113 60.85 
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the other terms in the virial equation dominate. This causes the melting 
pressure of 3He to be less than 4 He. Very recent Monte Carlo studies of 
Barrat and co-workers [79], which calculated the free energies of liquid 
and crystal using an approximate technique, estimate that the crossover 
from positive to negative 6.p occurs at 100 K. 

The quantum OF calculations predict that t:.p is 0.10 kbar at 20 K, in 
good agreement with the experimental value of 0.11 kbar [ 68]. Also in 
good agreement is the isotopic shift in the freezing density, -0.0011 A - 3 

compared to the experimental value -0.0009 A - 3
• This is a positive in

dication that the quantum properties relevant to the freezing transition 
have been treated correctly in the theory. In this temperature range, the 
isotopic shift is caused by the differences in mass, not statistics. The 
theory shows that, more precisely, the isotopic shift is due to differences 
in the self-correlation functions. 

At 102.2 K one finds that the pressure difference t:.p is -0.04 kbar, 
indicating that t:.p changes sign at a temperature slightly less than 102.2 
K. At 204.4 K, the calculations predict that t:.p is -0.51 kbar. The isotopic 
shift in the freezing density decreases monotonically with increasing tem
perature. The isotopic shift in the pressure as a fraction of the freezing 
pressure, 6.p/p, is also decreasing, and eventually both isotopes should 
freeze at the same pressure, but this will occur at a relatively high tem
perature. It is interesting that isotopic effects on the phase diagram persist 
to such high temperatures. 

E. Empirical Rules for Quantum Freezing 

These results can be used to reflect upon simple, empirical models of 
melting and freezing. The Sutherland [81]-Lindemann [82] ratio ;£is the 
average root-mean-square deviation of a particle in the crystal from its 
lattice site, measured in units of the nearest-neighbor distance, dnn· For 
the Gaussian density given by (3.2) of Ref. 30, the ratio;£ is 

2£. l 2 3 l ;£ nn = peak dr r p(r) = 4 a(C- 1) (34) 

The Sutherland-Lindemann empirical rule [81] states that a crystal will 
melt when ;£ exceeds 0.1 and seems to hold for a number of simple crys
tals. It is certainly not true for helium (Table 3), in which ;£ is as large 
as 0.28 for 4He and 0.38 for 3He at low temperatures [83] This is, in fact, 
a measure of the large zero-point motion of helium. The calculated ;£ 
ratios are smaller than the experimental values but (correctly) larger than 
the values calculated from classical density functional theory for the Leu
nard-Jones system. The standard version of classical density functional 
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Table 3 Magnitude of the Sutherland-
Lindemann Ratio and Standard Deviation 
of the Crystal Singlet Density 

T s 
(K) :£ (A) 

4He 8.0 0.145 0.255 
20.0 0.112 0.189 
51.1 0.0979 0.144 

l02.2 0.0915 0.127 
204.4 0.0840 0. I 14 

3He 20.0 0.124 0.202 
102.2 0.0990 0.138 
204.4 0.0838 0.114 

theory also predicts Sutherland-Lindemann ratios consistently smaller 
than those observed [6]. 

The crystal density profile about a fixed lattice site for 4He at different 
temperatures can be compared with the classical Lennard-lones result 
[6] as shown in Fig. 3. The low-temperature helium density is in fact very 
broad. The crystal singlet densities display a strong temperature depen
dence, although this is not apparent from the value of the Gaussian width 
parameter b. The standard deviation, s, of the density is s = [a(C -
or 112/4, and this does indeed have a strong temperature dependence. 
This implies that while the effect of the neighboring particles is relatively 
constant over a wide range of temperatures, the response of the central 
particle to that effect is strongly temperature dependent. 

Another empirical rule, the Verlet [84] or Hansen-Verlet rule [85], 
states that the first peak of the structure factor of a liquid at its freezing 
point takes a value from 2.85 to 3.05. This rule is also not obeyed by 
helium. Table 4 documents the position of the first peak, kq, and the value 
of the structure factor at the peak, S(kq), from the calculations. The low
temperature values demonstrate that the structure factor is much weaker 
at the freezing point than the empirical rule would claim. 

There is an interesting generalization of this rule to the quantum case. 
When used as input into the freezing theory [29], the structure factor is 
amplified by the self-correlation function. To study this amplification, it 
is useful to consider an effective structure factor, Se(k) = LL(k) + 
PL 2h(k)]!,L)k), where L(k) is PL times the Fourier transform of_L(r) and 
h(k) is the Fourier transform of [g(r) - 1]. In the classical limit, Se(k) 
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Fig. 3 Crystal singlet density profiles for 4He at T = 8 K (solid line), 20 K 
(dotted line), 204.4 K (dot-dashed line), and classical Lennard-lones results for 
k1;TI E = 2 (dashed line), normalized as described in the text. 

Table 4 Location and Amplitude of the First Peak of 
the Structure Factor, S(kq), and Effective Structure Fac-
tor, S e(kq), at the Predicted Freezing Point 

T kq 
(K) (A -I) S(kq) Se(kq) 

4He 8.0 2.5 1.90 2.68 
20.0 2.7 2.51 3.15 
51.1 3.0 2.70 3.04 

102.2 3.2 3.03 3.24 
204.4 3.4 3.35 3.47 

3He 20.0 2.7 2.34 3.13 
102.2 3.2 2.97 3.25 
204.4 3.4 3.32 3.52 
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reduces to the usual structure factor S(k). The values of the first peak of 
SeCk) are also shown in Table 4. The etiective structure factor does more 
or less conform to the empirical rule. It is important to emphasize that 
even at the higher temperatures, it is the self-correlation function that 
drives the freezing process. Without it, helium remains liquid. 

F. Prospects for the Quantum Theory 

The spatial extent of the self-correlation function can be measured from 
the magnitude of (r2

), which averages over the squared distance between 
each pair of beads on a single atom. This quantity is similar to, but distinct 
from, the radius of gyration about the center of the atom, R 0 , which 
averages the squared distance between each bead and the center of mass 
of the atom. In terms of the correlation functions described above, (r2

) 

= f dr r22:(r) and R 0
2 = f dr r2 Lcm(r). As the density is increased 

isothermally, (r2
) will decrease due to interparticle interactions. This de

pendence has been shown clearly by Rick et al. [31]. As the temperature 
is decreased, (r2)

112 has a more pronounced density dependence, and the 
approximation of the self term by the ideal self term is better at higher 
temperatures. A potential cure for this difficulty at low temperatures, the 
effective mass approximation, reproduces the self-correlation function 
accurately, but nevertheless does not predict freezing at the lowest tem
peratures investigated by Rick et a!.. 

It may be anticipated that removal of the Gaussian approximation will 
improve the results of freezing theory significantly. Due to the very low 
density of the crystal, especially by comparison with classical crystals, 
it is extremely unlikely that the crystal density is spherically symmetric, 
as assumed in the Gaussian approximation. In particular, a more exact 
parameterization of the crystal, for example by Fourier expansion, should 
decrease the fractional density change and improve the calculations of 
other properties as well. Unfortunately, this improvement comes at a high 
price: Considerable numerical complexity is reintroduced when the Gaus
sian approximation is removed, especially in performing the path inte
grals. 

The results for 4He and 3He presented above show that the quantum 
density functional theory is a useful and accurate method for studying 
the phase diagram of quantum liquids. Calculations in the high-temper
ature region provide useful information for comparison with both high
pressure experiments and large-scale computer simulations of all possible 
phases. From a practical perspective, use of a helium pseudopotential 
produces accurate pair correlation functions g(r) without the need for 
computer simulation of each phase point. This provides the basis for in-
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teresting studies not only of helium but for other quantum liquids an 
mixtures [86]. 

V. RECENT FUNCTIONALS FOR ClASSICAl 
SYSTEMS 

A. Original Classical Density Functional 

The derivation of quantum DF theory appears to differ considerably fron 
the earlier classical presentations [2,3,5, 13, 14], and hence it is now helpfu 
to recover conventional DF theory. This also provides the starting poin 
for more recent, alternative generalizations of classical DF theory. 

The classical DF theory is recovered by defining the classical idea 
system through the relation between the singlet density p(r) and Uict(r) 
For monatomic liquids such as inverse power potentials, hard spheres 
and Lennard-Jones systems, DF theory uses the Boltzmann relation fo 
noninteracting particles in an external field, namely, 

p(r) = A -3ef3u;d(r) 

where A is the DeBroglie thermal wavelength. 
From (35) and (8), the classical ideal free energy is then 

J39'ict[p] = Jv dr p(r)[A3 In p(r) - I] 

Substitution into (13) leads to 

13~flv = 1 + Jv dr p(r) [In (p::>) - 1 J 
+ Jv dr [J3uL - J3u(r)]p(r) - ~ Jv dr 1 Jv dr2 c(r1 

(35 

(36 

By setting u(r) = uL(- J.L) in a zero external field, and minimizing ~fl~ 
with respect to p(r), one obtains the grand potential difference ~flv be· 
tween the system under study (the crystal) and the liquid reference systerr 
at the same chemical potential. The liquid chemical potential is varied 
(usually via the liquid density) to find a liquid reference system that sat· 
isfies ~fl = 0; that is, one finds the thermodynamic conditions undei 
which the liquid and solid are in equilibrium. Note that with this choice 
of the ideal system, the function c(r 1 - rz) reduces to the usual direct 
correlation function introduced by Ornstein and Zernike. 
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It is worth emphasizing that a practical expression for the excess free 
energy is unknown, in general, for inhomogeneous or homogeneous sys
tems. Hence the central task of any statistical mechanical theory may be 
viewed as the approximation of this quantity. For example, quests for the 
so-called bridge function in integral equation theories can be viewed in 
this light, with profit [87]. 

The family of nonperturbative or weighted-density functionals intro
duced by Tarazona [10, 11] is introduced most conveniently by returning 
to the canonical ensemble. The total (Helmholtz) free energy efr[p) is the 
sum of the ideal efrid[p) above, and a nonideal (or excess) contribution 
efrex[p], which arises from interparticle interactions: efr[p] = ;?Fid[p] + 
efrex[p]. The classical theory above yields an excess free energy 

f39'eAPL] - c(l)(pL) Jv dr1 Llp(rt) 

(38) 

This is the free energy that was used in the first full calculation of hard
sphere freezing via the density functional theory [5]. For the Leonard
Jones (LJ) system, this level of theory generates the phase diagram shown 
in Fig. I, as calculated by Marshall et a!. in 1985 [ 19]. This theory has 
the advantages of simplicity and clarity: The only approximation is to 
truncate the functional Taylor series expansion of efrex[P] (assumed ana
lytic) at second order. Even eight years after the first HS calculation, it 
is still somewhat hard to accept that such a straightforward theory can 
generate results such as the LJ phase diagram reproduced above. It is 
interesting to plot the pressure-density phase diagram from the Leonard
Jones system (here at the reduced temperature T* = 1). Figure 4 displays 
the pairs of liquid and crystal states, which have the same temperature 
and chemical potential f..L, linked by the dotted lines. Note that the unique 
pair, which in addition share the same pressure, comprise the coexistence 
point. This plot is the analog of the Maxwell construction in the grand 
ensemble. 

B. Methods for Improving Perturbation 
Theory 

It is now helpful to summarize methods for going beyond second-order 
perturbation theory while retaining the simplicity of the DF formalism: 

I. Choose a "better" ideal system, to minimize the difference be
tween the reference system and the system under study. This is the ap-
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Fig. 4 Pressure versus density phase diagram for the LJ system at T* = 1.0, 
calculated from density functional theory. Pairs of liquid and crystal points with 
the same temperature and chemical potential f.L are linked with dotted lines. 

proach advanced in quantum DF theory, and in the author's view the 
option with the best long-term prospects. 

2. Keep higher-order terms in the straightforward perturbation ex
pansion. This is the most obvious choice, which was investigated partially 
even in the original papers [5]. For example, the next term in the per
turbation expansion for the excess free energy [3;¥ ex is 

(39) 

where c(3) is the next member of the family of n-body direct correlation 
functions, c<n)(r 1 ,- • • ,r n ;[p]), defined by functional derivatives of 2i'= ex[P] in 
(10). 

For two reasons, this line of development is less promising than the 
other two options listed here. First, the higher-order correlation function 
c<n) are unknown even in the bulk liquid, except perhaps for the triplet 
case n = 3 [93,100]. In fact, recent progress in the field of bulk high-order 
correlation function is based on adopting an approximate free energy de-
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scribed in option 3 below and using (10) to approximation correlation 
functions. Second, and more important, nothing is known about the con
vergence (or lack of it) of the functional Taylor series expansion. Ex
perience from critical phenomena and quantum mechanics shows that 
perturbation expansions are unlikely to be useful unless they work at 
second order, and in fact it is not wise to push these expansions further. 

A purely empirical modification of the second-order perturbation the
ory was proposed by Baus and Colot, who call it the effective-liquid ap
proximation (ELA) [9]. This approximation is to replace the liquid density 
PL in the excess free-energy functional 39 with an effective density PetT 
chosen (arbitrarily) such that the first peak of the Fourier transform of 
c<2l coincides with the first nonzero reciprocal-lattice vector of the crystal. 
We know of no justification for this type of empiricism. 

3. Avoid perturbation theory and invent a direct approximation to the 
full, infinite-order excess free energy. In the context of freezing, this 
approach was invented by Tarazona [ IO], although his work is not always 
cited. Rosenfeld [48] has also pioneered the fundamental understanding 
of this approach. 

C. Approximate Weighted-Density 
Functionals 

There are many versions of the weighted-density approach. All consider 
a weighted density Perr(r), which is a nonlocal functional of the actual 
density 

Perr(rJ) = fv drz w(r1 - rz,Petr(rl))p(rz) (40) 

where w is a weighting function to be specified. The excess free energy 
may then be written 

(41) 

where <jl(p) is the excess Helmholtz free energy per particle of a homo
geneous system of density p. Usually, the weighting function w is chosen 
such that the known (reference) bulk liquid direct correlation function is 
recovered upon differentiating (41). 

Laird and Kroll have shown [22] the systematic relationship between 
the wide variety of approximate weighting functions. There is a close 
connection between the freezing theories and earlier local density ap
proximations for inhomogeneous liquids [44,45]. In the context offreezing 
it is customary to average the local density of a small region of space, as 
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shown in (40). The goal of this class of approximate theories is to choose 
a weighting function that describes accurately the crystal phase [88-94]. 

There are two subclasses of weighted-density functional theories: (I) 
those with spatially varying weighted density, and (2) those with constant 
weighted density. Unfortunately, each subtheory has come to be labeled 
by a set of letters. Class (l) theories, represented by the weighted density 
approximation (WDA) of Curtin and Ashcroft [8], are more computa
tionally demanding and are not discussed here. This simpler and equally 
accurate class (2) theories are represented by the modified WDA of Den
ton and Ashcroft [42], which by a considerable margin is to date the most 
numerically successful of the weighted-density theories. The MELA (9] 
and GELA (97] approximations of Baus and co-workers are closely re
lated but have severe limitations documented by Laird and Kroll [22]. 

In the MWDA of Denton and Ashcroft (42], the weighting function w(r, 
- r2 ,Peff) is chosen such that both the free energy and the two-particle 
direct correlation function c<2

) are recovered in the homogeneous limit. 
The excess free energy of the crystal phase is approximated by the excess 
free energy of the liquid, evaluated at a spatially independent weighted 
density: 

~ex[P] = NtjJ(perr) 

where the weighted density is defined by 

(42) 

PerrN = J dr, p(rJ) J dr2 p(rz) w(r, - r2,Peff) (43) 

Applying the two constraints used to choose the weighting function leads 
to an algebraic equation for the weighting function, 

1 [ Pefff3tjJ"] 
w(r, - r2,Peff) = - 2f3tjJ'(Peff) c(rt - r2;Perr) + -V- (44) 

Note that the class (I) theories with spatially varying weighted densities 
lead to a complicated differential equation instead of an algebraic equa
tion, but for the examples investigated to date lead to essentially the same 
numerical predictions (22]. 

Other variants of the weighted-density approach can be derived by 
starting from the definition of the direct correlation function in integrated 
form, 

- J dr1 J drz L1 

dt... L)\. dt...' p(r1)p(rz) c<2)(r1 ,rz;['A'p]) 

(45) 
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Lutsko and Baus [97] assume that the correlation functions in the crystal 
can be approximated by those in the liquid at some effective density, and 
approximate the last factor in (45) by c<2l(r 1 - r2 ;Perr(l\.'p]), where 
c<2l(r;p.,rr) is now the two-body direct correlation function for a homo
geneous system with density Peff· The form of this functional is such that 
the sum rules for higher-order direct correlation functions are automat
ically satisfied. The approximate weighting functional is now determined 
by requiring that the reference liquid that was used above to approximate 
the correlation functions also determine the thermodynamics, which leads 
to 

w(r1 - rz,Perr) = !3 -ttT) t dl\.l'A dl\.' c<2l(rt - rz;Perr(l\.'p]) (46) 
tjJ Peff Jo o 

This weighting function is called the GELA; the related MELA approx
imation replaces the functional Perr[l\.p] in (46) by 1\.perr[p], which leads to 
a computationally simpler approximation but one that does not recover 
the correct liquid direct correlation function in the homogeneous limit. 

The WDA and MWDA approximations described above were intro
duced originally by defining a priori the weighting functions. Laird and 
Kroll [22] have derived these approximations by expanding the exact 
functional '!fo about a reference liquid and then choosing a well-defined 
optimal reference density. Their derivation not only unifies the derivation 
of all the approximations above (and related ones), but also shows the 
correspondence with the approximation introduced by Groot and van der 
Eerden [102] in their modification of the weighted-density functional the
ory of Meister and Kroll [103]. 

D. Comparison of Weighted-Density 
Function a Is 

Laird and Kroll [22] have compared many versions of the density func
tional theory for single-component systems. In particular, they investi
gated purely repulsive, inverse power potentials of the form 

(47) 

the phase diagrams of which depend on a single dimensionless parameter 

(kT) -3
/n 

"Yn = pa3 
-

E 
(48) 

The freezing of these inverse power potentials has been investigated ex-
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tensively by computer simulations by Hoover and collaborators and hence 
provide crucial test for the density functional theory. 

The set of freezing calculations used a Gaussian approximation for the 
crystal single-particle density, 

( )

3/2 

p(r) = ~ _2: exp[- E / r + Rj /2 ] 
E {Rj} 

(49) 

where £ measures the width of the Gaussian peaks, and {R) is the set of 
real-space lattice vectors of the crystal under study, here the face-cen
tered cubic (fcc) structure. [Important considerations concerning the body 
centered cubic (bee) phase are discussed by Laird and Kroll.] The ac
curacy of this approximation has been tested by Laird et al. [6]. With this 
parameterization, the ideal free energy is given by 

f33Fit~(E) = ~In(;) + 3 In A-~ (50) 

and for each fixed liquid density PL, minimization of the full functional 
is required only with respect to E. 

The values of "'/Land "'Is at phase coexistence, together with the fraction 
density change and Sutherland-Lindemann parameter:£, are collected in 
Table 5 and indicate that the density functional theory is an extremely 
useful and accurate theory for predicting phase diagrams. The MWDA 
theory is probably the "best" theory, although in many aspects, for ex
ample the Sutherland-Lindemann ratio:£, it does no better than the orig
inal second-order perturbation theory (5]. 

There are many more properties of interest that the DF theory can 
calculate. For example, Laird has shown [24] that the MWDA, general
ized to include a less restrictive Gaussian crystal singlet density, repro
duces almost exactly the hard-sphere fcc elastic constants c 11 , c 12 , and 
c44 measured in computer simulations by Frenkel and Ladd (61]. These 
calculations also shed light on the absolute limit of mechanical stability 
of the HS fcc crystal as the density is lowered. 

E. Binary Mixtures of Hard Spheres 

The phase diagram of a binary mixture of hard spheres has been examined 
by a number of groups (27 ,31 ,86,95, 10 1] and reexamined very recently 
by two groups using the weighted-density methods described above 
[40,41]. The second-order perturbation theory density functional is gen-
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Table 5 Laird-Kroll Comparison of FCC Freezing Results for Inverse-Power 
Potentials 

.:\p 

n Method "/L 'Ys Ps 

00 MWDA£421 0.910 1.036 0.13 
GELA£971 0.945 1.041 0.10 
MELAr971 0.970 1.070 0.084 
ELA£91 0.99 1.08 0.09 
Perturbr6

•
981 0.967 1.147 0.18 

Haymetf51 0.976 1.035 0.06 
Simulation£1041 0.939-0.948 1.036-1.045 0.09-0.11 

12 MWDA£221 l.l94 1.252 0.046 
GELAr221 No minima 
MELA£221 No minima 
ELA£981 1.305 1.380 0.06 
Perturbr981 1.28 1.37 0.07 
Simulationl99J 1.15 1.19 0.035 

6 MWDAr221 2.666 2.720 0.020 
GELAl221 No minima 
MELAr221 No minima 
ELAr981 3.33 3.39 0.02 
Perturbl981 3.43 3.52 0.026 
Simulationf991 2.18 2.21 0.013 

4 MWDAr221 8.176 8.238 0.0075 
GELAf221 Not attempted 
MELAr221 Not attempted 
ELAr981 11.34 11.43 0.007 
Perturbr981 12.30 12.47 0.014 
Simulationf991 5.54 5.57 0.005 

eralized easily to a v-component system, to give 

- ! :± J dr1 J drz cu(rt - rz) Llp;(rt) 6.pj(r2) 
2 iJ= l 

and the weighted-density methods are generalized similarly. 

:;e 

0.097 
0.095 
0.099 
0.07 
0.06 
0.06 
0.126 
0.096 

0.07 
0.07 
0.15 
0.074 

0.07 
0.07 
0.17 
0.07 

0.07 
O.D7 
0.18 

(51) 

Binary mixtures display a rich variety of phases, of which five are 
considered here: (1) the substitutionally disordered fcc crystal, which has 
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the different atoms of the solid mixture disturbed randomly on a common 
lattice, in this case a fcc lattice; (2) the ordered cesium chloride symmetry, 
which consists of two interpenetrating simple cubic lattices, one for each 
type of atom; (3) the ordered sodium chloride structure, which consists 
of two symmetrically placed interpenetrating fcc lattices; (4) the ordered 
zincblende structure, which also consists of two interpenetrating fcc lat
tices, but with one displaced from the other along the body diagonal of 
the cubic cell by one-fourth of the length of the diagonal; and (5) the fast 
sphere phase, which is Smithline and Haymet's terminology for a crystal 
with the larger atoms fixed on a lattice, in this case a fcc lattice, and the 
smaller atoms free to flow through the lattice of the larger atoms. This 
phase is analogous to a fast ion phase, although hard spheres of course 
have no charge. Denton and Ashcroft call this a sublattice melt. 

In Fig. 5 we reproduce the binary hard-sphere phase diagram calculated 
by second-order perturbation theory [86] and the MWDA theory [41]. 
Similar results are obtained from the effective liquid free-energy model 
(ELFEM) of Zeng and Oxtoby [39,40], which in their CAl approximation 
reduces to MWDA. The phase diagrams are very similar; the MWDA 

· should be regarded as providing slightly more accurate predictions, al
though by comparison with recent computer simulations [62], both appear 
to be deficient in predicting that the disordered fcc crystal is always more 
stable than any substitutionally ordered phase. 

Zeng and Oxtoby [ 40] have calculated the same diagram, and in addition 
plotted the temperature-comparison (T-x) diagrams for three typical 
cases: (l) spindle, (2) azeotrope, and (3) eutectic phase diagrams. These 
are reproduced in Fig. 6 from top to bottom, respectively. 

Rick and Haymet have made a complete study of the freezing of Leo
nard-Jones binary mixtures [86], including comparison with experimental 
data for argon, krypton, and methane mixtures, and also calculated freez
ing of charged mixtures in their recent review [60]. These calculations, 
together with the figures reproduced here, indicate that the DF theory is 
a simple and workable theory for studying mixture phase diagrams. Ter
nary and more complex liquids remain to be studied in detail, although 
freezing of an "infinite" number of components, in the sense of polydis
perse liquids, has already been studied successfully [59,96]. 

F. Vacancy Concentrations in the 
Equilibrium Crystal 

The density functional theory of freezing has recently been extended by 
McRae et a!. [32] to predict the .equilibrium concentration of vacancies 
in the crystal. The vacancy density in the crystal at phase coexistence is 
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Fig. 5 Binary hard-sphere crystal-phase diagram. Plotted is the crystal density 
of large spheres, which coexists with a 1: l liquid, for the radius ratio u = asmanl 

a1arge as a function of the reduced density of large spheres, as calculated (top) 
originally by Rick and Haymet [86] and (bottom) from MWDA theory by Denton 
and Ashcroft [41]. 
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Fig. 6 Binary hard-sphere mixture temperature-composition phase diagrams, 
calculated by Zeng and Oxtoby [40] for the radius ratios from top to bottom 0.95, 
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predicted to be approximately 5 X w-s for the Lennard-Jones model 
systems near the triple point, which is comparable to concentrations mea
sured in real systems, such as argon and krypton. McRae et al. also in
vestigated the dependence of the vacancy density on the temperature and 
pressure of the system. They also calculated the concentration of vacan
cies in the hard-sphere crystal at coexistence and found it to be very small. 
The perfect crystal approximation used in all the work described above 
and all previous calculations was found to be very accurate for both the 
hard-sphere and Lennard-Jones systems. 

For close-packed crystals of simple substances, one may assume that 
vacancies are the primary point defect and that the number of vacancies 
in the crystal, n, is much smaller than the number of particles in the 
crystal, N, so that N + n = N. Recent experimental measurements in 
various noble-gas solids show this to be a valid assumption. Since the 
vacancies are present in such low relative densities, vacancy-vacancy 
interactions are assumed to be negligible. A direct consequence of these 
two assumptions is that any arrangement of the vacancies on the crystal 
lattice has the same energy and thus the same probability of occurrence. 
This is not strictly true in real crystals, where a divacancy (for example) 
certainly has a different energy than that of two isolated monovacancies. 
However, divacancies are thought to account for less than 2% of the 
vacancies in noble-gas solids, with larger vacancy clusters accounting for 
an even smaller fraction. Also neglected are any effects due to interstitials, 
since the concentration of interstitials in close-packed noble-gas solids is 
very low relative to the vacancy concentration. Line defects such as dis
locations are generally considered to be nonequilibrium (albeit important) 
defects and are not treated by this theory. 

The free-energy functional is generalized by adding the contribution 
to ':J' ex due to all possible arrangements of vacancies on the lattice under 
consideration. The details are straightforward but lengthy [30]. The final 
expression may be written, in the dilute vacancy limit, as the above-grand 
potential difference A 13!1/Pcl, now with the superscript (pc) to indicate 
the perfect crystal, plus additional terms due to the vacancies, 

Al3!1v = Al3f!v(pc) + PpcV[alna +(I- a)ln(l- a)]+ PvVWv (52) 

where Ppc = NpciV is the density of the (hypothetical) perfect crystal, a 
= p/ppc ::5 I, and 

Wv = - r dr p(r ,0) [ln p(r ,O) - I J - c(O) + Ppc 2: c(k)p 2 (k) Jv ~ 00 (53) 
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where the hats denote Fourier transforms. Neither Llflv(pcJ nor wv depends 
on Pv, and therefore one can minimize with respect to Pv to obtain an 
expression for the (dilute limit) equilibrium vacancy density, 

(54) 

This calculation shows that earlier imperfect crystal approximations, 
which assumed that the singlet density is periodic but with a normalization 
of a ¥= I particles per unit cell, are incorrect. 

Using the structural information about the Lennard-Janes liquid, 
c(k), the equilibrium vacancy density Pv may be predicted as a function 
of temperature and density along the calculated solid-liquid coexistence 
curve of the LJ liquid. The results of such a calculation at several co
existence points are displayed in Table 6, and the logarithm of the vacancy 
density along the coexistence line is plotted as a function of temperature 
in Fig. 7. At the reduced temperature T* = 1.0, the value predicted by 
the DF theory is 4.7 x 10- 5

, which is within the plausible range one 
would deduce from experimental measurement on real rare-gas solids. 
Many-body effects, which are neglected in this calculation, are thought 
to contribute significantly to the energy difference between the perfect 
crystal and the crystal with vacancies. McRae et al. have also calculated 
the LJ vacancy density along other paths in the Tp-plane [32]. 

The extended DF theory of freezing described above provides a simple 
method for computing the concentration of vacancies in crystalline states 
at or near liquid-phase coexistence. The formalism for calculating vacancy 
related properties is capable of further extension, such as the inclusion 
of lattice relaxation about the vacancies. The first numerical calculations 
using this DF theory predict a vacancy concentration that decreases rap
idly as the density is increased along the phase coexistence line. 

Table 6 Vacancy Density Along the Lennard-lones Freezing Line 

T PL E Ps logw(P)Ppc) 

1.00 0.8630 0.0668 1.0226 -4.35 
1.25 0.9303 0.0661 1.0715 -6.04 
1.50 0.9791 0.0657 1.1140 -7.07 
1.75 1.0192 0.0654 1.1524 -7.78 
2.00 1.0542 0.0651 1.1878 -8.34 
2.50 1.1130 0.0646 1.2500 -9.24 
3.00 l.l626 0.0638 1.3048 -9.74 
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Fig. 7 Logarithm of the relative vacancy concentration versus temperature along 
the liquid-crystal phase coexistence line for the Lennard-lones liquid [32]. The 
scale on the left is log10 and on the right is the natural log. 

By taking advantage of the near-equilibrium metastable states located 
by DF theory, one can investigate the variation of the vacancy concen
tration on the temperature, and independently the pressure, of the system. 
The ratio of the vacancy density to the particle number density, p) Ppc, 
is found to be an exponentially decreasing function of pressure (at con
stant temperature) and an exponentially increasing function of tempera
ture (at constant pressure). For hard spheres, the theory predicts a va
cancy concentration that is several orders of magnitude less than the 
concentration in a Lennard-Jones crystal of comparable reduced density 
on the phase coexistence line. Finally, the predicted vacancy densities 
for the hard-sphere system and the Lennard-Jones system are both so 
low relative to the respective particle densities that the effect on the bulk 
density and Gaussian widths of the crystal in equilibrium coexistence with 
the fluid is negligible for both systems. The perfect crystal approximation 
used in previous freezing calculations is a very accurate approximation 
for the density functional theory of freezing, at least in simple systems 
that freeze preferentially into close-packed crystal structures. 
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VI. CONCLUSIONS AND FUTURE PROSPECTS 

The calculations above demonstrate the strength and usefulness of the 
DF approach. The present limitations of the theory have been summarized 
in Section I. Certainly, there is a great deal of activity at present con
cerning non-close-packed crystal structures and the freezing of ever
more-complicated molecules, such as water, polymers, and liquid crys
tals. At the time of writing there are a number of promising investigations 
of the freezing of inverse-sixth-power liquids and other liquid models, 
such as rubidium, which freeze into bee structures, and it is likely that 
this long-standing limitation of DF theory will have been removed by the 
end of 1992. At the same time, reasons for the predictive value of weighted 
density methods for hard-core systems are being uncovered. These de
velopments reinforce the observation that the great value of DF theory 
is that it can be generalized readily to problems of ever-increasing diffi
culty. Now under construction are workable dynamical theories designed 
to describe not only nucleation and spinodal decomposition, but the time 
dependence of these phenomena and crystal growth. The beginning of 
this exciting field is reviewed in Chapter 10. 

ACKNOWLEDGMENTS 

All of our research on freezing has been supported by grants from the 
Petroleum Research Fund, administered by the American Chemical Soci
ety, and NSF and Ford Research through the PYI program. It is also a 
pleasure to acknowledge many helpful discussions over many years with 
Professor David Oxtoby and Drs. John McCoy, Shep Smithline, Brian 
Laird, Robin McRae, and Chris Marshall. Current research is supported 
by the Australian Research Council (ARC) Grant No. A29131271. 

REFERENCES 

1. Evans, R. (1979). Adv. Phys. 28: 143. 
2. Ramakrishnan, T.V., and Yussouff, M. (1979). Phys. Rev. B 19: 2775. 
3. Haymet, A. D. J., and Oxtoby, D. W. (1981). 1. Chern. Phys. 74: 2559. 
4. Oxtoby, D. W., and Haymet, A. D. J. (1982). J. Chern. Phys. 76: 6262. 
5. Haymet, A. D. J. (1983). 1. Chern. Phys. 78: 4641. 
6. Laird, B. B., McCoy, J.D., and Haymet, A. D. J. (1987). 1. Chern. Phys. 

87: 5449. 
7. Laird, B. B., McCoy, J.D., and Haymet, A. D. J. (1988). 1. Chern. Phys. 

88: 3900. 
8. Curtin, W., and Ashcroft, W. (1985). Phys. Rev. A 32: 2909. 
9. Baus, M., and Colot, J. L. (1985). Mol. Phys. 55: 653. 



Freezing 403 

10. Tarazona, P. (1984). Mol. Phys. 52: 81. 
II. Tarazona, P. (1985). Phys. Rev. A 31: 2672. (1985). Erratum, Phys. Rev. 

A 32: 3148. 
12. Jones, G., and Mohanty, U. (1985). Mol. Phys. 54: 1241. 
13. Haymet, A. D. J. (1987). Annu. Rev. Phys. Chern. 38: 89. 
14. Baus, M. (1987). J. Stat. Phys. 48: 1129. 
15. Baus, M. (1990). J. Phys. Condens. Matter 2: 2111. 
16. Oxtoby, D. W. (1990). Nature 347: 725. 
17. Oxtoby, D. W. (1990). In Liquids, Freezing and the Glass Transition, Les 

Houches, Session L1 (J.-P. Hansen, D. Levesque, and J. Zinn-Justin, eds.), 
Elsevier, Amsterdam. 

18. Evans, R. (1989). In Les Houches Summer Lectures, Session XL VIII, 1988 
(J. Chavolin, J. F. Joanny, and J. Zinn-Justin, eds.), Elsevier, Amsterdam. 

19. Marshall, C. H., Laird, B. B., and Haymet, A. D. J. (1985). Chern. Phys. 
Lett. 122: 320. 

20. Curtin, W., and Ashcroft, N. W. (1986). Phys. Rev. Lett 56: 2775. (1987). 
Erratum, Phys. Rev. Lett. 57: 1192. 

21. Kloczkowski, A., and Samborski, A. (1988). J. Chern. Phys. 88: 5834. 
22. Laird, B. B., and Kroll, D. M. (1990). Phys. Rev. A 42: 4810. 
23. Laird, B. B., and Kroll, D. M. (1990). Phys. Rev. A 42: 4805. 
24. Laird, B. B. (1992). J. Chern. Phys. (submitted). 
25. Renkin, M., and Hafner, J. (1991). J. Chern. Phys. 94: 541. 
26. Ding, K., Chandler, D., Smithline, S. J., and Haymet, A. D. J. (1987). 

Phys. Rev. Lett. 59: 1698. 
27. Smithline, S. J., and Haymet, A. D. J. (1987). J. Chern. Phys. 86: 6486. 

(1988). Erratum, J. Chern. Phys. 88: 4104. 
28. Smithline, S. J., Rick, S. W., and Haymet, A. D. J. (1988). J. Chern. Phys. 

88: 2004. 
29. McCoy, J.D., Rick, S. W., and Haymet, A. D. J. (1989). J. Chern. Phys. 

90: 4622. Note that in this reference the self correlation function is denoted 
S(r), rather than .2;(r) as used here. 

30. McCoy, J. D., Rick, S. W., and Haymet, A. D. J. (1990). J. Chern. Phys. 
92: 3034. 

31. Rick, S. W., McCoy, J.D., and Haymet, A. D. J. (1990). J. Chern. Phys. 
92: 3040. 

32. McRae, R., McCoy, J. D., and Haymet, A. D. J. (1990). J. Chern. Phys. 
93: 4281. 

33. Yang, A. J. M., Fleming, P. D., and Gibbs, J. H. (1977). J. Chern. Phys. 
67: 74. 

34. Saam, W. F., and Ebner, C. (1977). Phys. Rev. A 15: 3566. 
35. Lebowitz, J. L., and Percus, J. K. (1963). J. Math. Phys. 4: 116. 
36. Stillinger, F. H., and Buff, F. P. (1962). J. Chern. Phys. 37: 1. 
37. Mermin, D. (1965). Phys. Rev. 137: Al441. 
38. McCoy, J. D., and Haymet, A. D. J. (1989). Int. J. Thermophys. 10: 87. 
39. Zeng, X. C., and Oxtoby, D. W. (1990). J. Chern. Phys. 93: 2692. 
40. Zeng, X. C., and Oxtoby, D. W. (1990). J. Chern. Phys. 93: 4357. 



404 Hay met 

41. Denton, A. R., and Ashcroft, N. W. (1990). Phys. Rev. A 42: 7312. 
42. Denton, A. R., and Ashcroft, N. W. (1989). Phys. Rev. A 39: 4709. 
43. McCoy, J.D., Honnell, K. G., Schweizer, K. S., and Curro, J. G. (1991). 

J. Chern. Phys. 95: 9348. 
44. Nordholm, S., and Haymet, A. D. J. (1980). Aust. J. Chern. 33: 2013. 
45. Nordholm, S., Johnson, M., and Freasier, B. C. (1980). Aust. J. Chern. 

33: 2139. 
46. Smithline, S. J., and Haymet, A. D. J. (1986). Unpublished. 
47. Verlet, L. (1968). Phys. Rev. 165: 201. 
48. Rosenfeld, Y. Phys. Rev. A 43: 5424. 
49. March, N. H. (1983). In Theory of the Inhomogeneous Electron Gas (S. 

Lundqvist and N. H. March, eds.), Plenum Press, New York. 
50. Feynman, R. P. (1972). Statistical Mechanics: A Set of Lectures, W. A. 

Benjamin, New York. 
51. Feynman, R. P., and Hibbs, A. R. (1965). Quantum Mechanics and Path 

Integrals, McGraw-Hill, New York. 
52. Chandler, D., and Wolynes, P. G. (1981). J. Chern. Phys. 74: 4078. 
53. Percus, J. K. (1964). In The Equilibrium Theory of Classical Fluids (H. L. 

Frisch and J. L. Lebowitz, eds.), W. A. Benjamin, New York. 
54. Denton, A. R., Nielaba, P., Runge, K. J., and Ashcroft, N. W. (1990). 

Phys. Rev. Lett. 64: 1529. 
55. Chui, S. T. (1990). Phys. Rev. B 41: 796. 
56. Senatore, G., and Pastore, G. (1990). Phys. Rev. Lett. 64: 303. 
57. Miller, M. D., Mullin, W. J., and Guyer, R. A. (1978). Phys. Rev. B 18: 

3189. 
58. Nelson, D. R., and Seung, S. (1989). Phys. Rev. B 40: 6763. 
59. McRae, R., and Haymet, A. D. J. (1988). J. Chern. Phys. 88: 1114. 
60. Rick, S. W., and Haymet, A. D. J. (1990). J. Phys. Chern. 94: 5212. 
61. Frenkel, D., and Ladd, A. J. C. (1987). Phys. Rev. Lett. 59: 1169. 
62. Kranendonk, W. G. T., and Frenkel, D. (1989). J. Phys. Condens. Matter 

1: 7735. 
63. Keller, W. E. (1969). Helium-3 and Helium-4, Plenum Press, New York. 
64. Pollack, G. L. (1964). Rev. Mod. Phys. 36: 748. 
65. Sherwood, A. E., and Prausnitz, J. M. (1964). J. Chern. Phys. 41: 421. 
66. Clifford, A. A., Gray, P., and Platts, N. (1977). J. Chern. Soc. Faraday 

Trans I 73: 381. 
67. de Boer, J., and Michels, A. (1938). Physics 5: 945. 
68. Grilly, E. R., and Mills, R. L. (1959). Ann Phys. (N.Y.) 8: 1. 
69. Roach, P. R., and Douglas, D. H., Jr. (1967). Phys. Rev. Lett 19: 287. 

Roach, P. R. (1968). Phys. Rev. 170: 213. 
70. Pollock, E. L., and Ceperley, D. M. (1984). Phys. Rev. B 30: 2555. 
71. Ceperley, D. M., and Pollock, E. L. (1986). Phys. Rev. Lett. 56: 351. 
72. Runge, K. J., and Chester, G. V. (1988). Phys. Rev. B 38: 135. 
73. Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and 

Teller, E. (1953). J. Chern. Phys. 21: 1087. 



Freezing 405 

74. Allen, M. P., and Tildesley, D. J. (1987). Computer Simulations of Liquids, 
Oxford University Press, Oxford. 

75. Dugdale, J. S., and Simon, F. E. (1953). Proc. R. Soc. London A 218: 291. 
76. Mills, R. L., Liebenberg, D. H., and Bronson, J. C. (1980). Phys. Rev. B 

21: 5137. 
77. Loubeyre, P. (1989). In Simple Molecular Systems at High Density (A. 

Polian, P. Loubeyre, and N. Boccara, eds.), Plenum Press, New York. 
78. Franck, J. P. (1961). Phys. Rev. Lett. 7: 435. 
79. Barrat, J. L., Loubeyre, P., and Klein, M. L. (1989). J. Chern. Phys. 90: 

5644. 
80. Young, D. A., McMahan, A. K., and Ross, M. (1981). Phys. Rev. B 24: 

5119. 
81. Sutherland, W. (1890). Philos. Mag. 30: 318. 
82. Lindemann, F. A. (1910). Phys. Z. 11: 609. 
83. Daniels, W. B. (1989). In Simple Molecular Systems at High Density (A. 

Polian, P. Loubeyre, and N. Boccara, eds.), Plenum Press, New York. 
84. Verlet, L. (1969). J. Chern. Phys. 7: 591. 
85. Hansen, J.P., and Verlet, L. (1969). Phys. Rev. 184: 1501. 
86. Rick, S. W., and Haymet, A. D. J. (1989). J. Chern. Phys. 90: 1188. 
87. Ichiye, T., and Haymet, A. D. J. (1990). J. Chern. Phys. 93: 8954. 
88. Jacobs, R. L. (1983). J. Phys. C 16: 273. 
89. Baus, M., and Colot, J. L. (1986). Mol. Phys. 57: 809. 
90. Igl6i, F., and Hafner, J. (1986). J. Phys. C 19: 5799. 
91. Haymet, A. D. J. (1986). Prog. Solid State Chern. 17: 1. 
92. Haymet, A. D. J. (1985). Chern. Phys. Lett. 122: 324. 
93. Haymet, A. D. J. (1985). J. Phys. Colloq. C9 46: 27. 
94. Sachdev, S., and Nelson, D. R. (1985). Phys. Rev. B 32: 1480. 
95. Barrat, J. L., Baus, M., and Hansen, J. P. (1986). Phys. Rev. Lett. 56: 

1063. 
96. Barrat, J. L., and Hansen, J.P. (1986). J. Phys. 47: 1547. 
97. Lutsko, J. F., and Baus, M. (1990). Phys. Rev. Lett. 64: 761. 
98. Barrat, J. L., Hansen, J.P., Pastore, G., and Waisman, E. M. (1987). J. 

Chern. Phys. 86: 6360. 
99. Hoover, W. G., Ross, M., Johnson, K. W., Henderson, D., Barker, J. A., 

and Brown, B. C. (1970). J. Chern. Phys. 52: 4931. 
100. Barrat, J. L., Hansen, J. P., and Pastore, G. (1987). Phys. Rev. Lett. 58: 

2075. 
101. Barrat, J. L., Baus, M., and Hansen, J.P. (1987). J. Phys. C 20: 1413. 
102. Groot, R. D., and van der Eerden, J.P. (1985). Phys. Rev. A 31: 4155. 
103. Meister, T. F., and Kroll, D. M. (1985). Phys. Rev. A 31: 4055. 
104. Hoover, W. J., and Ree, F. M. (1968). J. Chern. Phys. 49: 3609. 
105. de Kuijper, A., Vos, W. L., Barrat, J. L., Hansen, J. P., and Schouten, 

J. A. (1990). J. Chern. Phys. 93: 5187. 





10 

Nucleation 
David W. Oxtoby 
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I. INTRODUCTION 

Phase transitions in fluids do not always occur under equilibrium con
ditions. Although the equilibrium freezing point or normal boiling point 
of a liquid can be measured to high precision, most fluids can readily be 
undercooled or superheated and held indefinitely in metastable states if 
they are carefully purified in advance. Water can easily be undercooled 
to - l5°C and in tiny capillary tubes to below - 30°C; liquid gallium sus
pended as small droplets in oil can be undercooled by 140°C below its 
normal freezing point of 30°C. This kinetic stability of states of matter 
that are unstable thermodynamically arises from the fact that the crys
tallization and evaporation of a liquid (or the reverse processes of melting 
of a crystal or condensation of a vapor) are first-order transitions that 
have kinetic barriers to be overcome. Nucleation is the term given to the 
first localized appearance of a new stable phase in a metastable state; the 
rate of nucleation usually controls the rate of appearance of the new phase 
on a macroscopic level. 

Phase transitions are described by order parameters, quantities that 
characterize the difference between the two states of matter. In the con
densation of a vapor, the density is the obvious order parameter; the 
crystallization of a liquid can be described as the appearance of long-

407 
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range periodic order in the average density, and an appropriate order 
parameter in this case is a Fourier component of the density evaluated 
at a reciprocal lattice vector of the crystal. The dependence of the grand 
canonical free energy D on an order parameter p is shown schematically 
in Fig. I. At a given temperature T and chemical potential J.L, this free 
energy shows a double-minimum structure in mean field theory. At the 
thermodynamic phase transition (Fig. la) the values of D are equal in the 
two phases; in Fig. lb, state A has become metastable relative to B; 
finally, in Fig. lc, state A loses even its local stability. Loss of local 
stability occurs when the spinodal is crossed, so that the system becomes 
unstable to arbitrarily small fluctuations in the order parameter and the 
new phase appears rapidly throughout the sample. 

How does a metastable state (state A in Fig. lb) evolve into a stable 
state? The double-minimum-plus-barrier structure of the free energy sug
gests that some kind of thermally activated barrier crossing is necessary, 
and that is true, but the nature of this process is more complicated than 
is implied by the figure. The figure shows the variation of the free energy 
for uniform systems in which the order parameter has a constant value 
everywhere in space. Although in principle it is possible for the order 
parameter to change everywhere at the same time so that the system 
follows the curve shown in Fig. 1 b toward state B, the resulting fluctuation 
in free energy at the top of the barrier is prohibitively costly in free energy. 
Instead, the order parameter changes locally in some region of space, 
forming a small portion of the new phase that can then grow to fill the 
system. The barrier to nucleation occurs in a state that is inhomogeneous, 
with a spatially varying order parameter, and cannot be represented on 
a one-dimensional plot such as in Fig. I. 

n n n 

ww 
A 8 B 

8 

p p p 

(a l Equilibrium coexistence (b) Metastable region (c) Spinodal 

Fig. 1 Variation of the grand potential !1 with an order parameter p in three 
regions. 
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Fig. 2 Variation of the grand potential D with cluster radius R. The solid line 
shows conditions farther from the equilibrium phase transition line than the 
dashed line. 

Consider a large spherical region of radius R of the new phase B sur
rounded by phase A. The free energy of this state can be estimated as 
the sum of a bulk term proportional to the volume of the sphere and an 
interfacial term proportional to its surface area: 

t.f!(R) = 1 7rR 3 (f!s - f!A) + 47rR 2cr 

The first term is negative because creation of new bulk B lowers the free 
energy, but the second term is positive because it costs an amount cr per 
unit area to create an interface. A graph of tl.f!(R) (Fig. 2) has a maximum 
at a critical radius R*, and the height at this point, tl.f!*, gives the barrier 
to nucleation under these conditions. The cluster of radius R is referred 
to as the critical nucleus. Close to the coexistence curve, the coefficient 
of the R 3 term is small (because [!A and f! 8 are nearly equal), the critical 
nucleus is very large, and the barrier is very high. The barrier height 
drops and the rate of nucleation increases rapidly as the system penetrates 
farther into the metastable region. 

The calculation just presented of the critical nucleus free energy is 
referred to as classical nucleation theory or the capillarity approximation 
[1-3]. It assumes that even a very small nucleus can be described in 
macroscopic terms as contributing a bulk and a surface term to the excess 
free energy. Nucleation can be either homogeneous (occurring in the bulk 
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of a pure phase) or heterogeneous (occurring about an impurity or at a 
surface). In this chapter we expand on the classical theory of homoge
neous nucleation and compare it with experiment, and then examine more 
microscopic approaches to calculating free energies of nuclei using com
puter simulations and density functional theory. In Section II we follow 
this program for the gas-liquid transition and in Section III tum to the 
liquid-solid transition. In Section IV we examine nucleation in binary 
systems and in Section V take a brief look at heterogeneous nucleation. 

II. VAPORIZATION AND CONDENSATION OF 
liQUIDS 

A. Classical Nucleation Theory 

Statistical mechanical calculations of phase transitions (especially those 
using density functional methods) are carried out most conveniently in 
the grand canonical ensemble, for which the grand potential !1 is a natural 
function of T, V, and fL· For a single-phase system, 

!1 = - pV 

where p is the pressure and V the volume, and for a two-phase system 
with a planar interface 

!1 = -pV + uA 

where A is the area of the interface. In vapor nucleation experiments, a 
more convenient potential is the Gibbs free energy, a natural function of 
pressure p, number N, and temperature T. It is related to !1 through a 
Legendre transform, 

where Pv is the number density in the vapor. Rearranging this gives 

G - f.L(Pv)N = !1 + p(pv) V 

Because f.L(Pv)N is the Gibbs free energy of a uniform vapor of density 
Pv. and -p(pv)V is the grand potential for the same uniform system, the 
two excess quantities must be equal: 

t:.G = 6.!1 

The nucleation free-energy barrier can be calculated in the grand ensem
ble. 

Now consider a spherical droplet of liquid with radius R surrounded 
by vapor. The pressure at the center of the liquid droplet p 1 will differ 
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from the pressure of the vapor Pu· In the capillarity approximation the 
grand potential is 

il = -p1V1 -puVu + 41TR 2cr 

where V1 and Vu are the volumes of liquid and vapor: 

VI = 41T R 3 

3 

V = V-
4

1T R 3 
u 3 

From this the excess grand potential to create the droplet is 

41T 
Llil = -- R 3 Llp + 41TR 2cr 

3 

where Llp = p1 - Pv is the pressure difference between the center of the 
liquid droplet and the bulk vapor. For a planar gas-liquid interface, a is 
the surface tension, which is measurable by independent means. The as
sumption of the capillarity approximation is that the same value of a can 
be used for small, curved droplets in nucleation. If the liquid is assumed 
to be incompressible, 

Llp = Pl(j-t. - f.l.sat) 

relates the pressure difference to the chemical potential difference be
tween the supersaturated vapor and the saturated vapor. If the vapor is 
an ideal gas, 

j-1. - f.l.sat = kB T In (~) = kB T In S 
Psat 

where kB is Boltzmann's constant, Psat is the saturated vapor pressure at 
the temperature T of the experiment, and Sis the relative supersaturation. 

To make contact with more microscopic calculations of free energies, 
it is convenient to replace the radius R with the discrete variable n (number 
of molecules in the liquid droplet), which is the product of the liquid 
number density and the droplet volume. The excess grand potential then 
has the form 

Llil = -nkBT InS + (361T) 113 p1-
213crn 213 

The maximum of Ll n occurs at 

* _ 321TCT3 

n - 3pl{kBT)3 (ln S)3 
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and the height of the barrier is 

* _ 16Tirr3 

6.0 - 3p?(ksT)2 (ln Sf 

As S increases from its value of 1 at coexistence, the height of the barrier 
falls. 

So far, we have calculated only equilibrium quantities, albeit for a 
metastable state. To predict the nucleation rate, a dynamical theory is 
needed. In the original Beeker-Doring theory, the number of critical nu
clei per unit volume (those of size n*) was taken to be proportional to 
exp(- 6. 0 *I ks T); the rate of nucleation was written as the product of this 
number density and the rate at which single gas-phase molecules impinge 
on the surface of the liquid droplet, a quantity that can be estimated from 
gas kinetic theory. The resulting nucleation rate is 

J = Joexp (-k~~*) 
where the preexponential factor J 0 is given by [ 4] 

lo = a [j_ Pvz r:; 
\j-; PI \j~ 

Here a is the sticking probability of molecules on the liquid surface (taken 
to be unity here) and m is the molecular mass. 

The simple theory outlined above can be improved in many ways. First, 
an equilibrium distribution of nuclei up to the critical size has been as
sumed, whereas in fact the populations of clusters change according to 
kinetic equations. If clusters are assumed to grow or decay by gaining or 
losing single molecules, and if each gain or loss is assumed to occur in
dependently of the past history of the cluster, the rate of change of the 
number N n of clusters of size n will be 

The ratios of rate constants for gain and loss of molecules, kn- 11kn.n-I, 
are equilibrium constants that can be related to changes in free energy 
as given by the capillarity approximation or by some other theory. The 
forward rate constants kn-l,n can be estimated from collision rates of 
monomer with clusters of size n (at least for larger clusters). The result 
is a dynamical theory that can be solved for a given initial condition. In 
the steady state, the rate at which critical clusters react has the same 
form as the quasi-equilibrium theory, but with an additional quantity Z, 
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called the Zeldovich factor, multiplying the preexponential ]0 and reduc
ing the rate by one to two orders of magnitude [3]. Another correction 
to the preexponential has been described by Courtney [5]. Changes in the 
preexponential by even several orders of magnitude have a much smaller 
effect than changes in the exponential factor, however, and do not sig
nificantly perturb the critical supersaturation Sc at which a given rate of 
nucleation is achieved. 

One of the more extensively discussed corrections to the classical 
Beeker-Doring theory has been proposed by Lothe and Pound [6]. They 
argued that the overall translational and rotational motion of the critical 
nucleus gives a contribution that must be added to the free energy, in
creasing rates by factors on the order of 1017

• Such a large effect certainly 
could be detected, but Reiss and co-workers [7] have argued rather con
vincingly that the Lothe-Pound correction is not justified. Their approach 
gives a correction to the capillarity approximation, but its effect on the 
rate is much smaller. A better theory than the classical one must also 
address such questions as the effect of curvature and finite size on the 
surface free energy. Because the free energy of the critical nucleus ap
pears in the exponential of the rate, such effects can be very large. 

B. Experimental Results 

There is space here only to mention a few experimental results; a complete 
survey will not be attempted. It is first appropriate to describe briefly two 
types of experimental methods used to obtain quantitative information 
about nucleation rates. One is the upward thermal diffusion cloud chamber 
described by Katz [8]. In this apparatus a liquid at the bottom of a con
tainer is heated from below to vaporize it partially. The upper surface of 
the container is held at a lower temperature, so that a temperature gradient 
is established from top to bottom. The total pressure of gas in the container 
(background carrier gas plus nucleating gas) is approximately uniform, 
but the partial pressure of nucleating gas falls linearly with height in the 
chamber. The saturated vapor pressure, however, depends exponentially 
on temperature and falls much more rapidly with height. The result is that 
the local supersaturation has a rather sharp peak at a height about three
fourths of the way up in the chamber. The temperatures at the bottom 
and top of the chamber are then adjusted so that the maximum nucleation 
rate is on the order of 1 em- 3 s- 1 ; drops form only in the narrow band 
where the supersaturation S passes through a maximum. As droplets form 
and grow, they fall under the int1uence of gravity, and vapor-phase mol
ecules are replenished by evaporation of the liquid. This experiment is 
run in steady state, and supersaturation is calculated by solving heat and 
mass transport equations for the t1uid in the chamber. 
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A second experimental technique is the fast expansion chamber de
scribed by Schmitt [9]. Here a gas is expanded abruptly and adiabatically 
by a large amount. As it expands, it cools and reaches a supersaturated 
state with a predetermined value of S. The vapor is held for a short time 
in this state (typically 0.01 s), allowing critical nuclei to form. Then the 
gas is compressed to a final state in which S is small enough that further 
nucleation does not take place, but in which growth still occurs because 
S is larger than 1. After the droplets have become large enough to be 
seen, they are counted. This technique is time dependent (not steady state) 
but has the advantage that the temperature and partial pressures are uni
form throughout the chamber during the nucleation process. It also mea
sures a large range of nucleation rates of up to I 05 em- 3 s- 1 or higher. 

One of the most extensively studied substances is n-nonane, C9H20• 

Figure 3 illustrates the results obtained for its nucleation in a plot of the 
ratio of measured to classical (Beeker-Doring) rate for a series of tern-
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Fig. 3 Ratio of the measured to the classical (theoretical) nucleation rate. Only 
at one temperature (near 275 K) do the two agree. (From Ref. 10.) 
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peratures. Several things should be noted in this figure. First, various 
techniques employed by different groups give results that are consistent 
with one another over a large range of rates (the actual measured rates 
range from 10- 4 to 1010 cm- 3 s 1

• Second, the critical supersaturations 
(those for which .J 1 em - 3 s 1

) are predicted reasonably accurately 
by the classical theory. Third, however, the classical theory does not give 
the correct temperature dependence of the nucleation rate. It ranges from 
being several orders of magnitude too low at low temperatures to being 
several orders of magnitude too high at high temperatures. Simple modi
fications of the classical theory give no improvement in this regard. Many 
other substances have been studied less extensively but agree at least 
qualitatively with the classical prediction of critical supersaturation. This 
is true for the condensation of steam to water, for example. 

For other substances, the classical prediction of critical supersaturation 
is significantly in error, leading to rates that are in error by tens of orders 
of magnitude. In some cases, there are understandable reasons for the 
discrepancies. Gaseous styrene nucleates far faster than classical theory 
predicts, a fact that has been explained [II] by the spontaneous thermal 
gas-phase polymerization of very small numbers of short-chain styrene 
polymers, which then heterogeneously nucleate the liquid phase at low 
supersaturations. Gaseous mercury also nucleates much earlier than is 
expected classically, but this can be explained by noting that small clusters 
of mercury are distinctly nonmetallic, so that their effective suri'ace free 
energy will be very different from that of metallic bulk mercury [12]. 

Leaving aside these explainable exceptions, there remain a number of 
cases in which large discrepancies with classical theory are seen. Some 
of these give critical supersaturations 30 to 40% lower than predicted [3]. 
On the other hand, some dipolar molecules appear to nucleate at signif
icantly higher critical supersaturations than predicted [13]. It seems clear 
that a better first-principles theory of nucleation is needed. 

C. Computer Simulations 

The most straightforward way to simulate nucleation of a gas-liquid tran
sition on a computer, at least in principle, would be to start with a uniform 
supersaturated gaslike configuration and use molecular dynamics to solve 
Newton's equations of motion. Under favorable circumstances, a liquid 
drop would appear after a certain time. Averaging over a series of runs 
would give the average nucleation rate J, and the temperature and initial 
gas density could then be varied systematically to study their effect. Such 
simulations have indeed been used to see homogeneous gas-phase nucle
ation on a computer [14], although the type of systematic study just de-
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scribed has never been carried out. There are two ways in which these 
differ significantly from laboratory experiments, however. First, typical 
simulation volumes are on the order of 10- 20 cm3 and simulation times 
are on the order of 10 10 s, so the nucleation rates that result (if anything 
is to be seen) must be 1030 em 3 s- 1

, 30 orders of magnitude larger than 
those typical in the laboratory. Higher supersaturations than normal must 
therefore be simulated. Second, as a cluster condenses its temperature 
will tend to rise as the heat of condensation is given off. In the laboratory, 
this is controlled by having a large excess of a background gas to carry 
off the heat through collisions with the growing cluster. In the simulation, 
changes in temperature can be prevented only by artificially scaling ve
locities, a procedure that may not be equivalent. 

Under realistic experimental conditions, critical or near-critical clus
ters are very rare objects surrounded by a nearly ideal gas of monomer. 
An attractive idea is therefore to simulate an isolated cluster of a given 
size to determine its free energy. The variation of that free energy with 
number of particles can then be used in nucleation theory to relate forward 
and backward rate constants, or at least to estimate the height of the free
energy barrier to nucleation. The problem is to define a cluster and how 
to keep it intact long enough to determine its average properties. If the 
temperature is moderately high and the volume large enough, atoms will 
evaporate from the surface of the cluster and move away, changing its 
identity. The problem is especially acute with near-critical clusters, which 
by definition are unstable: they tend spontaneously to gain or to lose 
particles to reach the more stable gas or liquid states. 

Lee et a!. [15] carried out a Monte Carlo simulation of such physical 
clusters. They defined a cluster of size n by the constraint that all n 
particles lie within a sphere of radius Rc centered on the center of mass 
of the cluster [7]. This corresponds to placing the cluster inside a rigid 
spherical container. Clearly, Rc cannot be made too large, or many con
figurations of the n-particle system will have widely separated particles 
that will not look at all like clusters. Nor can Rc be too small, or clusters 
will be artificially forced to be more compact than they would be in free 
space. The hope is that there will be a range of values of Rc over which 
the cluster properties are insensitive to the particular choice made. The 
Monte Carlo simulations of Ref. 15 focused on such constrained clusters 
of Lennard-Jones particles, looking most extensively at 87-atom clusters. 
For low enough temperatures (below about 0.65ew) a plateau region was 
seen in the variation of free energy with constraining volume, but this 
was not true at higher temperatures. For smaller clusters, even lower 
temperatures were necessary to see a plateau. 

Reiss and co-workers [16] have made a significant advance in nude-
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ation theory that has the potential for allowing accurate simulation of 
cluster free energies. They retain the definition of a physical cluster just 
described (involving a sphere of volume v about the center of mass) but 
they make the crucial physical observation that such a sphere not only 
constrains then particles to remain inside, but also constrains all the other 
particles to remain outside. This second aspect contributes an extra term 
to the work W(n,v) to create a cluster of size n in volume v, in addition 
to the term from the configurational integral of the cluster itself. W is now 
a function not of one but of two variables, and the saddle point that 
determines the nucleation barrier is found by setting the derivatives of W 
with respect to both n and v equal to zero. The critical cluster is then in 
unstable "material" equilibrium with respect to the surrounding gas (be
cause the second derivative of W with respect to n is negative, just as in 
the classical capillarity approximation) but in stable mechanical equilib
rium (because the second derivative is positive with respect to v). In 
Reiss's approach, the shell about the cluster is no longer a constraint but 
a procedural device for organizing the theory. Quantitative results from 
this new idea should prove very interesting. 

D. Density Functional Theory 

In classical nucleation theory, the density at the center of a cluster is 
assumed to be equal to the bulk liquid density, and the shape and free 
energy of the surface are taken to be identical to those of a planar inter
face. There is then only one parameter needed to define a spherical clus
ter: its radius R (or, equivalently, its particle number n). The critical 
nucleus is then located by setting the derivative of the grand potential n 
with respect to this single parameter equal to 0: 

dD = O 
dR 

at r = R* 

In general, of course, there is no reason why the density at the center of 
a cluster should be constrained to equal the bulk liquid density, nor is 
there any reason why the density profile should match that at a planar 
interface. By symmetry, a spherical profile should still give the lowest 
free energy, but the density p(r) in that profile should not be constrained 
other than to require that it approach the bulk vapor density at large 
distances. The grand potential is now afunctional Dv of that density, and 
the nucleation condition is now that the functional derivative be equal to 
zero: 

f>Dv = O 
8p(r) 

at p(r) = p*(r) 
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A functional relation can be pictured as the dependence of a quantity 
(here flv) on an infinite number of variables (here the density at all pos
sible points in space). This multidimensional free energy has a minimum 
at the uniform vapor density and a second, lower minimum at the uniform 
liquid density. Between these two minima there is a saddle point that can 
be found by setting the functional derivative to zero. The matrix of second 
derivatives of the functional evaluated at this saddle point has a single 
negative eigenvalue, corresponding to the direction of motion over the 
barrier. 

One can define a similar functional derivative to identify the planar 
equilibrium gas-liquid interface exactly at two-phase coexistence. Here 
the boundary conditions are that the density approach the vapor or liquid 
density as z approaches ± oo. Such an interface is thermodynamically 
stable (unlike the critical nucleation profile), so the matrix of second de
rivatives has no negative eigenvalues. It does, however, have a zero ei
genvalue, corresponding to uniform translation of the interface in the z
direction, an operation that costs no free energy in the grand ensemble. 
This zero eigenvalue turns into the negative eigenvalue in supersaturated 
vapor nucleation. Density functional calculations of equilibrium interfaces 
were discussed more extensively in Chapter 3. 

The grand potential functional is related to the Helmholtz free-energy 
functional by a Legendre transform: 

flv = F - 11-N = F - 1L J dr p(r) 

The functional derivative equation that gives the density profile in the 
critical nucleus is then 

SF 
-- = IL 
op(r) 

at p(r) = p*(r) 

It remains to choose a reasonably accurate Helmholtz free-energy func
tional and use it to solve this equation. The choice of F[p(r)) has been 
discussed elsewhere in this book (see in particular Chapter 3), so we 
confine our attention to those few choices that have actually been used 
in nucleation calculations. 

The first density functional calculation of nucleation was published by 
Cahn and Hilliard [17] in 1959. Their calculation actually applied to nu
cleation of phase separation in a binary mixture, but the problem is for
mally identical to gas-liquid nucleation with the substitution of the one
particle density p(r) for the concentration profile c(r). We make that sub
stitution in presenting their results below. Cahn and Hilliard took a square-
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gradient form for the free energy: 

F[p(r)J = J dr[fu(p(r)) + K(vp(r))2
] 

Here f u(P) is the Helmholtz free energy per unit volume of a uniform 
system with density p everywhere in space; it is a local function rather 
than a nonlocal functional. A term such as fu must be evaluated in some 
kind of mean field theory because, strictly speaking, uniform densities 
within the coexistence region cannot exist at equilibrium. Nonlocal terms 
are approximated by the second, square-gradient term, whose coefficient 
K is allowed to depend on the local density as well. Evaluating the func
tional derivative then leads to the differential equation 

which must be solved for the radial geometry of the nucleation problem. 
Cahn and Hilliard were interested in nucleation of binary mixtures, and 

so took f u from a regular solution theory of mixtures. It has the double 
minimum structure of Fig. 1 and should apply at least qualitatively to 
single-component fluids as well. They showed that near the coexistence 
curve, the results go over to classical nucleation theory, in that the critical 
nucleus then becomes very large, the density at its center becomes equal 
to the bulk liquid density, and that density stays almost uniform until the 
edge of the droplet is reached. The density through the interface is then 
close to that of a planar interface. As the spinodal is reached, however, 
the behavior is quite different in this "nonclassical" theory. First, and 
most important, the barrier to nucleation vanishes as the spinodal is ap
proached, as it must in any correct theory (it does not in classical theory). 
Second, the nature of the critical droplets changes as the spinodal is ap
proached. As the metastable region is penetrated, the radius of the critical 
nucleus first decreases (as in classical theory), but then it begins to in
crease and in fact diverges as the spinodal is approached. At the same 
time, the density at the center of the nucleus approaches the vapor den
sity. Near the spinodal, then, the critical nucleus is large in extent but 
small in amplitude. 

The nature of nucleation near a spinodal has been reexamined more 
recently by Unger and Klein [18]. They considered the case in which the 
range of interactions becomes asymptotically large and showed that this 
limit gives qualitatively different behavior from that seen for nucleation 
with short-range potentials, as implied by the Cahn-Hilliard model. In 
particular, for dimensions below 6, the critical nucleus becomes highly 
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ramified (fractal) near the spinodal and growth occurs preferentially near 
its center, not at its surface. The authors calculated critical exponents, 
such as that for the vanishing of the free-energy barrier as the spinodal 
is approached. Subsequent work verified their theoretical predictions with 
Monte Carlo simulations of Ising systems [19]. 

Oxtoby and Evans [4] have investigated another nonclassical density 
functional model for nucleation. They focused their attention not near the 
spinodal or near coexistence, but on conditions accessible to experiment, 
namely those in which the nucleation rate J is on the order of 1 em- 3 

s- 1
• They took as their interaction potential the sum of a hard sphere of 

diameter u and a Yukawa attractive tail 

() 
-ail.3 exp(-il.r) 

<f>att r = 41TAr 

The free-energy functional they used was then 

F[p(r)] = J dr fh(p(r)) + i J J dr dr' p(r)p(r')<f>att(J r - r' J) 

where fh(p(r)) is the free-energy density of a uniform hard-sphere fluid, 
treated locally. The effect of the attractive potential was included in per
turbation theory but not in the more restrictive square-gradient approx
imation used by Cahn and Hilliard. For this model the equation of state 
depends only on the hard-sphere diameter u and on the potential strength 
parameter a; the inverse range parameter 11. affects only interfacial prop
erties (but, as we shall see, in a very significant way). 

The functional derivative equation to be solved for the properties of 
the critical nucleus then has the form 

f.Lh[p(r)] = J.L - J dr' p(r')<f>au(J r - r' J) 

where J.Lh(p) is the hard-sphere chemical potential, a known nonlinear 
function. Note that this is an integral equation, as opposed to the differ
ential equation that arises in the square-gradient theory. Integral equations 
have some significant advantages, especially in the ease in incorporating 
the proper boundary conditions. This integral equation was solved by 
guessing an initial droplet profile (such as p. step function with a certain 
radius R 0 ) and inserting it into the right side. The function f.Lh(p) was then 
inverted over a grid of distances r from the center of the nucleus to cal
culate a new density profile, which was then reinserted into the right side 
and the iteration continued. When applied to a planar interface at equi
librium, this iteration process converges to the stable solution. For nu-
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cleation, however, there is an interesting difference because the equilib
rium is an unstable one. If R0 is chosen too small, iteration causes the 
droplet to disappear, giving a uniform vapor; if it is too large, iteration 
causes it to grow indefinitely in extent, giving a uniform liquid. For the 
proper choice of R 0 in between, iteration gives an almost convergent 
density profile (whose free energy can then be calculated) before the nu
cleus again falls off on one side or the other of its saddle point. 

The calculation of Ref. 4 revealed a very strong dependence of nucle
ation behavior on the range of the attractive potential 'A.. For the choice 
'A. = 1 (in units of a I) the variation of barrier height with vapor density 
is compared in Fig. 4 with the result of classical nucleation theory. Note 
that the classical theory involved exactly the same free-energy functional 
as that used for the nonclassical theory. The nonclassical theory properly 
gives a vanishing barrier at the spinodal, and the horizontal line shows 
the point where the barrier height is 7 I k8 T; under these conditions clas
sical theory predicts a rate of I em- 3 s I. Clearly, the predicted critical 
supersaturations are very different in classical and nonclassical theories. 
In fact, they are too different, because, as we have stated, experiment is 
in at least rough agreement with classical theory. This observation led to 
an investigation of the role of the range parameter 'A.. Figure 5 shows the 
ratio of nonclassical to classical rates as a function of 'A., under conditions 
where the classical rate is 1 em- 3 s- I. For 'A. = I, the nonclassical rate 
is much larger (19 orders of magnitude) than the classical. An increase 
of 'A. to 1.5 (which corresponds to a decrease in the range of the potential 
by only 33%) brings the two into agreement, within experimental error. 
The Yukawa potential is not a good representation of actual intermolec
ular interactions, but if the experimental surface tension or its temperature 
derivative is used to estimate an appropriate value of 'A., values of 1.5 to 
1.9 result. For these choices the nonclassical and classical theories are 
in approximate agreement at this temperature. In other words, the success 
of classical nucleation theory is an accident: if real attractive forces had 
slightly longer ranges, very large nonclassical effects would be seen. 

The reverse transition of bubble formation in a liquid (cavitation) was 
also studied in Ref. 4. Here, the nonclassical effects were predicted to 
be even larger and should easily be visible for realistic choices of the 
parameter 'A.. Cavitation is studied by exerting a tensile force (negative 
pressure) on a liquid and measuring the point at which the liquid finally 
breaks apart through nucleation of bubbles. The prediction is that the 
liquid will have a lower limiting tensile strength than that from classical 
theory. There are experiments on liquid tensile strengths [1], some of 
which do give lower values than classical, but other factors may be con
tributing as well. Any impurities that can nucleate cavitation heteroge-
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Fig. 5 Ratio of the nonclassical to the classical rate of critical droplet formation, 
expressed as a function of the range parameter A at which the classical rate is I 
em -J s- 1

• The experimentally accessible range of values for A is indicated. T = 

0.6Tc. (From Ref. 4.). 

neously could cause similar trends, and impurities are much harder to 
eliminate from liquids than from gases. 

The free-energy functional employed in Ref. 4 is quite a simple one, 
but earlier work [20] showed that when a similar functional was applied 
to stable clusters, it gave rather good agreement with molecular dynamics 
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simulation. For a quantitative comparison of the nonclassical nucleation 
theory of condensation with experiment, a better interaction potential and 
density functional are needed. For example, a Lennard-lones potential 
gives a better representation than a Yukawa potential and has been treated 
in hard-sphere perturbation theory [20a], matching the temperature de
pendence shown in Fig. 3. The local approximation to the hard-sphere 
free energy could be replaced by a nonlocal weighted density approxi
mation like those discussed in Chapter 3. Finally, the effect of the at
tractive tail could be treated more accurately by multiplying the product 
of densities at two points r and r' by the hard-sphere pair distribution 
function ghs(l r - r' j) evaluated at a suitable average density. 

The approach of Ref. 4 focused on the free-energy barrier and used 
the simple Beeker-Doring preexponential to find actual rates. A more 
complete and consistent theory would use a time-dependent generaliza
tion of density functional theory to calculate the preexponential as well. 
Such a theory has been proposed by Langer and Turski [21] for use near 
the critical point. They show that the nucleation rate has the form (in our 
notation) 

J = 2: Po exp ( -k~~*) 
Here .6.!1* is the barrier height that we have been calculating, and the 
prefactor has been divided into two parts. Po is a statistical factor, a 
measure of the phase-space volume of the saddle-point region; it is a 
generalization of the Zeldovich factor discussed earlier for classical nu
cleation. It can be related to the eigenvalues of the second functional 
derivative matrix of D with respect to p(r), evaluated in the metastable 
vapor state (where all are positive) and at the saddle point (where one is 
negative and three are zero, corresponding to uniform translation of the 
droplet). This factor can be evaluated for a given model of the free-energy 
functional, although not without difficulty. The dynamical prefactor K 

gives the rate of exponential growth of the unstable mode of the critical 
nucleus and depends on transport processes in the liquid, not just on the 
free energy. Langer and Turski suggest some approximate ways to esti
mate this factor near the critical point, but a general theory is lacking. It 
will also be of interest to calculate the dynamical prefactor for the case 
of cavitation. In this case there is no simple kinetic model for the growth 
of cavities in a liquid, in contrast to the situation for accretion of particles 
by droplets in the gas phase, which can be approximated by gas kinetic 
theory. A major challenge is to develop an accurate and consistent dy
namical extension of density functional theory for nucleation. 



Nucleation 425 

Ill. CRYSTALLIZATION OF LIQUIDS 

A. Classical Nucleation: Theory and 
Experiment 

The classical nucleation theory of Becker and Doring described in Section 
II.A has been extended to the liquid-to-crystal transition by Turnbull and 
Fisher [22]. The nucleation rate is again taken to have the form 

( ilO*) 
1 = J 0 exp ksT 

and the variation of barrier height with number of particles n in the crystal 
nucleus has the form 

ilO(n) = n Llfl. + (361T)li3Ps-2/3as/n2/3 

where Llf-L is the difference in chemical potential (or Gibbs free energy 
per particle) between bulk solid and bulk liquid, Ps the particle density in 
the bulk solid, and a 51 the solid-liquid surface free energy. 

There are several important differences between the gas-liquid and the 
liquid-solid transition that make the latter more difficult to study: 

1. It is much less obvious how to identify the size n of a crystalline 
cluster. Even in the case of a liquid droplet forming from a su
persaturated vapor, we have seen in Section II.C that there is some 
uncertainty in how to identify which particles form part of a cluster; 
for a crystalline cluster in a liquid the distinction between the two 
phases is even smaller and there is no simple criterion for saying 
which particular particles are crystalline. 

2. The prefaetor lois rather different from that in the gas-liquid tran
sition. In the simplest picture, the dynamics involve not molecules 
moving in nearly ideal gases, but rather "jumping" across the in
terface to attach. It is not clear whether this jumping occurs at a 
characteristic phonon frequency or at a significantly smaller fre
quency given by the rate of diffusion of molecules over intermo
lecular distances. Some rearrangement of configurations occurs at 
the interface, but actual transport of material is not necessary in 
a single-component fluid. 

3. Llf-L is less accessible to experimental measurements than the cor
responding quantity for the gas-liquid transition, namely the su
persaturation S. Near equilibrium freezing, 

Llfl. = -Llh + T Lls = -Lls(Tm - T) 
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where Tm is the equilibrium melting temperature and !::.h and As 
are the enthalpy and entropy of fusion per molecule at T m. Fre
quently, nucleation occurs hundreds of degrees below Tm, how
ever, and it is not evident whether this expression can be extrap
olated so far. To correct it, heat capacity measurements on the 
undercooled liquid are needed. 

4. The solid-liquid surface free energy is much more difficult to mea
sure than the gas-liquid surface tension. Reference 23 identifies a 
small number of liquids for which CJ'st has been directly measured 
and discusses some different theoretical models that have been 
employed to estimate it. Because it is much smaller in magnitude 
than the corresponding gas-liquid or gas-solid surface free ener
gies, the uncertainties in its value are much larger. 

Combining all the factors just discussed and including a Zeldovich fac
tor to take into account the difference between an equilibrium and a 
steady-state distribution of nucleus sizes leads to the following result in 
the classical model for the nucleation rate per unit volume [24]: 

J _ 213 r;;:; ksT ( !::.Ga) [ -161m
3 J 2Ps V~hexp - RT ptVexp 3p/ksT(!::.s)2(Tm- T)2 

Here his Planck's constant and R the gas constant; (ksTih) exp( -!::.Gal 
RT) is an estimate of the jump rate of particles across an activated barrier 
as they join the crystalline nucleus. As the temperature is brought below 
Tm, the nucleation barrier height !::..0* drops rapidly from infinity. For 
most simple liquids, this second exponential dominates the temperature 
dependence, and because it varies so sharply, the nucleation rate changes 
from being negligibly slow to being unmeasurably fast over a small tem
perature range. In this case a well-defined undercooling limit can be iden
tified. From a rough estimate of the preexponential factor, the temper
ature Tn at which the nucleation rate becomes I em- 3 s- 1 is 

t::.O*(Tn) = 
76 

ksTn 

In some cases, the temperature dependence of the first exponential, exp 
(-!::.. Ga!RT), becomes important as the liquid is undercooled. This is par
ticularly true near a glass transition. In this case the nucleation rate can 
pass through a maximum as the temperature decreases; if this maximum 
rate is small enough, crystallization will be bypassed and a glass will form. 

In nucleation experiments, extraordinary care must be taken to exclude 
impurities that may catalyze heterogeneous nucleation. It is not enough 
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merely to purify the samples studied because catalytic impurities occur 
at concentrations well below the limits of detection. The method devel
oped by Turnbull [25) is to form an emulsion of the undercooled liquid 
in oil by using a high-speed blender to break the liquid into tiny drops. 
If the drops are small enough, many of them will not contain nucleating 
impurities and may nucleate homogeneously. As the emulsion is cooled, 
the process of crystallization is followed by measuring the volume of the 
suspension or by detecting the heat evolved during crystallization. Some 
droplets crystallize at higher temperature about impurities, but the tem
perature at which all the remaining droplets crystallize is identified as the 
homogeneous nucleation temperature Tn. 

As mentioned above, the surface free energy CJs1 is known for rather 
few systems. As a result, rather than test classical nucleation theory, what 
is usually done is to assume that it is correct and use the measured un
dercooling limit Tn to calculate CJ51 • Turnbull studied a variety of liquid 
metals in this way [25,26] and proposed the following correlation between 
CJ51 and the enthalpy of fusion !::..h: 

CJsf = 

Here f is a factor that relates the area A per surface atom to the density 
in the bulk crystal 

It is equal to 1.12 for the bee (110) face and 1.09 for the fcc (Ill) face. 
Turnbull found that values for the proportionality constant a clustered 
around 0.45 for metals and around 0.32 for water and semimetals. His 
observed relative undercoolings (T m - Tn)1Tm ranged up to 0.25 and clus
tered around 0.18. 

More recent work has succeeded in obtaining larger undercoolings be
fore nucleation takes place. For example, Bosio and co-workers [27] un
dercooled gallium droplets suspended in ethanol by 140 K, nearly 50% 
of Tm. Since 1980, Perepezko and co-workers have studied a variety of 
metals. In the case of bismuth, for example, they extended the measured 
undercooling limit from 90 K (16% of Tm) to 227 K (41% of Tm) [28]. 
These results show that at least some of the early measurements were 
not of homogeneous nucleation. Rather, it is likely that the nucleation 
was catalyzed by the surface of the droplet where the metal makes contact 
with the oil and where some oxidation takes place. Different emulsion 
compositions can give different undercooling limits. In fact, Perepezko 
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argues that most, if not all, observed undercooling limits represent such 
surface-catalyzed heterogeneous nucleation. One additional intriguing ob
servation is that deep undercooling in gallium can lead to the formation 
of metastable crystalline phases instead of the thermodynamically stable 
phase [28,29]. Reference 23 discussed additional experimental work in 
this area. 

As mentioned earlier, independent measurements of as1 are available 
for only a few substances. One of these is water, for which as1 = 0.029 
J m- 2 (30]. A study by Wood and Walton [31] was able to determine the 
temperature dependence of the nucleation rate over a range of 2 to 3°C 
in the vicinity of- 36°C. A two-parameter fit of the preexponential factor 
and of as1 gave as1 = 0.020 J m - 2 and a preexponential factor larger than 
classical theory by a factor of 1015

• Because the barrier height is pro
portional to the surface free energy raised to the third power, it is clear 
that routine use of classical nucleation theory disagrees with experiment 
in this case [23]. 

The temperature dependence of nucleation can be studied most directly 
in glass-forming liquids. Most of these are liquid mixtures rather than one
component liquids, but we nonetheless discuss their behavior here. Angell 
et al. (32] studied nucleation in solutions of LiCI in water with a differential 
scanning calorimeter. This work directly determined the temperature of 
maximum nucleation rate and measured the variation of the rate about 
that temperature. They found that the observed maximum rate was limited 
by the rate of growth of critical nuclei to fill the droplet, so that nuclei 
that form at lower temperatures grow too slowly to be observed. Near 
and below the glass-transition temperature, it may take a long time for a 
steady-state cluster distribution to be established. In this case, a time
dependent theory of nucleation is needed (33], and slow crystallization 
may arise not from a small value of 1 (steady state) but from a long 
transient time. In favorable cases the number of nuclei forming as a func
tion of time can be measured and classical nucleation theory tested [34]. 
Weinberg and Zanotto [35] have pointed out that if the transient time and 
steady-state rate are both measured, a clean test of classical nucleation 
theory is possible that does not rely on assumptions about the form of 
the preexponential factor. Their study showed that the temperature de
pendence of nucleation in certain silicate glasses was not well explained 
by classical theory. 

B. Computer Simulations 

Computer simulation of crystal-to-liquid nucleation faces a different set 
of problems from those discussed in Section III.C for gas-liquid nude-
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ation. Because the number of particles in a crystalline nucleus seems 
impossible to define, simulations that calculate the free energies of con
strained clusters of particular sizes appear unlikely (see, however, Ref. 
35a). Nucleation of crystals is readily observed in molecular dynamics 
simulations of undercooled liquids, although of course the extent of un
dercooling is much larger than that typical for laboratory experiments. 
The first observation of nucleation was a simulation by Mandell et al. [36] 
of a Lennard-Jones liquid that nucleated into a (metastable) bee crystal 
instead of an fcc crystal. They estimated the critical nucleus to contain 
40 to 70 atoms and identified the time of its appearance by randomizing 
the velocities of the particles at a series oftimes and determining whether 
crystallization still took place. A number of other simulations of nucle
ation are summarized in Ref. 23. Nucleation seems to occur so readily 
on the computer that those investigating glass transitions have to go to 
some pains to avoid crystallization. 

A crucial question, however, is whether computer-simulated nuclea
tion is truly homogeneous or whether it is determined by the periodic 
boundary conditions used on the computer. This question was raised in 
a study by Honeycutt and Andersen [37]. The rate of homogeneous nu
cleation should be proportional to the size of the sample and should in
crease with the number of particles. Instead, these authors found that the 
nucleation rate continued to decrease as the system size increased, even 
out to the largest sizes studied (1500 atoms). This indicates that the bound
ary conditions have a large effect on the crystallization. Many of the 
earlier results must be reinterpreted in the light of this observation. 

C. Density Functional Theories of the 
Crystal-Melt Interface 

Before we use density functional theories to look at nucleation of crystals 
from the melt, we consider a slightly simpler inhomogeneous liquid-crys
tal system: the equilibrium planar interface between a crystal and its melt. 
Recall from Chapter 9 that in density functional theory a crystal is con
sidered a highly nonuniform liquid, and that its free energy is estimated 
from properties of the liquid. In the case of a planar interface there is 
now an additional complication: the order parameters themselves change 
in the direction perpendicular to the interface. We describe here two theo
retical calculations of the structure and free energy of a crystal-liquid 
interface. One [38,39] is based on a fairly drastic approximation to the 
free-energy functional, but within that functional is a rather accurate cal
culation of the surface properties; the second [40] employs a more ac
curate functional but is an approximate variational calculation within that 
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functional. Reference 41 gives a fuller treatment of density functional 
theories of liquid-solid systems. 

The grand potential functional has the form (Chapter 3) 

131-L J dr p(r) 

where ;y;ict[p] is the Helmholtz free-energy functional for an ideal (non
interacting) fluid with density p(r), given by 

13;y;id[p] = J dr p(r)[ln(i\3p(r)) - 1] 

where i\ is the thermal de Broglie wavelength of the particles. ;y;ex is the 
difference between the actual Helmholtz free energy and the ideal part. 
In studying crystallization, we are only interested in the difference be
tween the grand potential of the (nonuniform) solid and that of the uniform 
liquid at density p1• At constant chemical potential, this difference is 

I3Llflv = 13;y;id[p) - 13;y;id[Pt) + f3;y;ex(P) 

13J..L J dr (p(r) - p,) 

In Refs. 38 and 39, the excess free energy was written as a functional 
perturbation expansion about the liquid density. Recall from Chapter 3 
that the second functional derivative evaluated in the liquid state has the 
form 

?J29' _
13 

ex 
op(rd op(rz) 

in terms of the pair direct correlation function of the liquid. If the ex
pansion of ;y;ex is truncated at second order (ignoring c(3l and higher-order 
terms), the grand potential difference becomes 

l3ilflv = J dr1 p(rJ) In P~'d - J dr1 Ap(ri) 

-i J dr1 drz c(r1z) Ap(r1) Ap(r2 ) 

where 

Ap(r) = p(r) - Pt 

For a uniform solid, the density can be written as a Fourier expansion: 
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Here the k,. are the reciprocal lattice vectors of the solid (plus k0 = 0) 
and the J.L; are the crystalline order parameters, equal to zero in the liquid 
state. For a solid-liquid interface, the order parameters depend on the 
z-coordinate perpendicular to the interface, so that 

Llp(r) = PI L J.L;(z)eik;·r 
i=O 

Although the density itself varies extremely rapidly through space, it is 
a plausible assumption that the order parameters vary more slowly. Thus 
we make a square-gradient approximation for the nonlocal part of the free 
energy, writing 

and inserting this into the expression for fjLlD. The resulting equations 
include terms such as 

If J.L; changes on a distance scale large relativ.e to exp(ik,.·r1 )-an as
sumption implicit in the square-gradient approximation-then the only 
important contributions come from kj = - k,.. After several further trans
formations [ 41], the final result is 

LlDv = LlDv(locall[p(r)] -l J dr1 ~ (k;·zlfc11
(k;) I ::

1

1
1

2 

This expression has the usual square-gradient form, in which the 
"local" terms are evaluated for a crystal with the local values of the order 
parameter throughout space. This first term is always positive, because 
the free energy of the liquid and the crystal are minima, and any order 
parameters in between must give higher free energies. Near a peak in the 
structure factor, the second derivative of the Fourier-transformed direct 
correlation function, C

11 (k), is negative, making an additional positive con
tribution to the excess free energy. Together, the two terms give the 
excess free energy to create a planar interface. The first term is minimized 
by the sharpest possible order parameter profile (to minimize the amount 
of space in which LlDvoocao is nonzero), and the second by the broadest 
possible one (to make the gradients of the order parameters as small as 
possible). The resulting compromise between the two terms gives the 
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actual interfacial width and free energy. It is evident that if terms for 
which c"(k) is positive are to be included, the square-gradient approxi
mation can no longer be made. To find the order parameter profiles, the 
functional derivative of the free energy with respect to each order pa
rameter is set to zero. The result is a set of coupled differential equations: 

a!.lnvoocan cf-
- l(k' ')2 "(k) -J.Li __ a_J.L_;__ - - :z t z c ; dz2 

Analogies to coupled equations of motion for interacting particles are 
discussed in Ref. 41. 

The expression just developed for the free energy of an interface in
volves an infinite sum over reciprocal lattice vectors. In Ref. 39 this sum 
was approximated further by including only contributions from ko = 0 
and from the first set of reciprocal lattice vectors k 1 • This is a qualitatively 
reasonable approximation for a body-centered-cubic-forming liquid, in 
which the first peak in the structure factor is much larger than the sub
sequent peaks, because it consists of setting c(k) equal to zero beyond 
the first peak. Furthermore, the second derivative of c(k) at k = 0, which 
appears to have very little effect on the free energy, was set to zero. After 
making these approximations, the three resulting coupled algebraic and 
differential equations were solved numerically. The order parameter pro
file through the interface and the interfacial free energy were calculated 
for the (100) and (Ill) surfaces of sodium and potassium, using experi
mental structure factors for these liquids to calculate c(k). The interface 
was found to be rather broad (on the order of 16 to 20 A), suggesting that 
the interface between the two phases consists of partially ordered liquid 
and disordered crystalline layers. The two surfaces showed only a small 
difference (3%) in free energy, and the surface free energy obtained cor
related reasonably well with trends predicted on the basis of the density 
and enthalpy of fusion of a series of metals. 

The approximations to the free-energy functional just described were 
rather drastic: both the perturbation expansion and the sum over recip
rocal lattice vectors were truncated at low order. A more accurate func
tional was used by Curtin in Ref. 40 to study the surface free energy of 
a hard-sphere and a Lennard-lones interface. He used a weighted density 
approximation of the type described in Chapters 3 and 9 and parametrized 
the uniform solid as a sum of Gaussians: 

[ 
-(r- R?J ps(r) = (7r€_2)-3/2 L exp z ' 

R; E 

where e is a width parameter and R; denotes a lattice site in the crystal. 
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This corresponds to a Fourier expansion 

ps(r) = PI _2: J.L;e'"k;·r 
k; 
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in which the values of J.L; in the uniform crystal, J.L/, are determined by 
the value of the single parameter E, which is in turn determined varia
tionally. Through the interface, the density was assumed to have the form 

Ps(r) = PI _2: J.L/"J;(z)e'"k'·r 
k; 

where the "switching functions" f;(Z) were parametrized as 

/;(z) = I~ [ 1 + cos (, z ~z,w) J 
z < Zo 

Zo < z < Zo + !:lz; 

zo + !:lz; < z 

The widths over which each order parameter changes from solid to liquid 
were taken to be 

Once the equilibrium crystal structure is calculated, if zo is held fixed, 
there are two parameters that define the density profile: v and !:lzo. These 
were determined variationally, and the resulting interface was somewhat 
narrower than that found in Ref. 39, having a thickness of four layers. 
The surface free energies for the fcc (100) and (Ill) interfaces differed 
by less than 5%. The calculated values were in reasonable agreement with 
simulation results. 

D. Density Functional Theory of Crystal 
Nucleation 

The only density functional calculation of crystal nucleation was carried 
out by Harrowell and Oxtoby [42]. It was based on the same truncated 
density functional described above for the planar interface and introduced 
in Refs. 38 and 39. The coupled differential equations that result from the 
square-gradient approximation are now radial ones and have the form 

a!:lD.v(local) { ' cfJ.L• A 1 dJ.L·} 
aJ.Li = - k"(k;) (kd? dr21 + [1 - (ktf)ZJ ; drl 
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Here L1 Dv<Iocall is the uniform grand potential for an undercooled liquid, 
in which the solid minimum is now deeper than that of the liquid. These 
equations, which describe the critical nucleus at the saddle point in func
tion space, can be solved by a "shooting" method in which boundary 
conditions at r = 0 are guessed and the protiles integrated out. The bound
ary conditions at r = 0 are then modified until the correct asymptotic 
boundary conditions are recovered. 

As noted in Section III.C, this free-energy functional is such a drastic 
approximation that quantitative results cannot be expected. However, it 
is still of considerable interest to compare the nonclassical nucleation that 
results from the density functional theory with the classical predictions 
calculated consistently using the same free-energy functional (i.e., the 
thermodynamic properties and the surface free energy are calculated as 
in Ref. 39). The nonclassical critical nucleus turns out to be qualitatively 
similar to the classical one; in particular, the order parameters at its center 
are quite close to those of the bulk crystal, and the interfacial profile is 
close to a planar one. This similarity appears to arise from the absence 
of a spinodal in the undercooled liquid: There is no evidence for an in
stability in the liquid, which would be signaled by a diverging structure 
factor at some value of k. There are important quantitative differences 
between the nonclassical and classical predictions, however, as illustrated 
in Fig. 6 by the variation with undercooling of the height of the nucleation 
barrier. The nonclassical theory predicts that deeper undercooling will 
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Fig. 6 Calculated free energy of the nucleus in nonclassical theory (solid line) 
compared with the result from the classical theory (dashed line). 
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be possible than is given in the classical theory. These results raise the 
question of whether it is correct to use classical nucleation theory in fitting 
observed undercooling limits for liquids. 

The theory of Ref. 42 calculated only the free-energy barrier to nucle
ation and estimated the preexponential from classical theory. Grant and 
Gunton [43] used a generalization of the Langer-Turski [21] theory to 
estimate this preexponential factor using time-dependent density func
tional theory. The result was close to that from classical theory. 

IV. NUCLEATION IN BINARY MIXTURES 
The single-component nucleation theory discussed so far must be gen
eralized to treat binary mixtures. In this section we concentrate on ex
tensions of classical nucleation theory to the binary case and some com
parisons with experiment. 

The pioneering theory of binary nucleation in the gas-liquid transition 
is due to Reiss [44]. He used both kinetic and thermodynamic arguments 
to show that the nucleation rate is determined by passage over a saddle 
point in a space of droplet compositions. Recall that a liquid droplet is 
now characterized by the number of particles n1 that it contains of each 
of two types. In classical theory, the work to create the droplet from the 
vapor is 

AD = n1 AJ.Lt + n2 AJ.Lz + a(n1,n2)A 

Here A 1-lt and A J.Lz are the differences between the chemical potentials 
of bulk liquid and gas for the two components and can be calculated using 
an ideal solution model, a is the surface tension, and A is the area of the 
interface. For a spherical nucleus in which the partial molar volumes v 1 

and v2 are independent of pressure, this area can be rewritten as 

A = (36rr) 11\n 1 v1 + n2 v2 )
213 

Reiss also generalized the classical theory calculation of the preexpo
nential factor to the binary case [44]. 

The major controversy in binary nucleation theory has revolved about 
the proper way to find the particle numbers nf and nf that define the 
saddle point in passing from gas to liquid. The natural expectation is that 
one must set the derivatives of A fl with respect to n 1 and n 2 equal to 
zero. In Reiss's original work these derivatives were evaluated at constant 
surface tension; in other words, the composition dependence of a was 
not included in evaluating the two partial derivatives. This gave a pair of 
equations of the form 

A 2av1 __ 
0 Ll.J.l; + R 
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where R is the droplet radius. Subsequently, Doyle [45] used Reiss's 
approach but added the extra terms involving daldn 1 and daldn2 • The 
resulting "classical" theory apparently dominated the field for some 20 
years; it gave good agreement with some experiments but not with certain 
water-alcohol mixtures. 

In 1981, Renninger et al. [46] pointed out that including the terms with 
the compositional derivative of the surface tensions is thermodynamically 
inconsistent. Wilemski [47] has confirmed this in a clear presentation, 
which shows that if one takes into account surface adsorption, the effect 
in a thermodynamically consistent theory is to eliminate the additional 
terms. His revised classical theory, which is thus a return to the original 
approach of Reiss, given better agreement with experiment in cases where 
the surface tension varies significantly with composition. Flageollet-Dan
iel eta!. [48] have presented another thermodynamically consistent theory 
in which the extent of surface adsorption is calculated using a lattice 
model. The theory gives good agreement with experiment in cases in 
which the Doyle theory failed (Fig. 7). There is still a need for a first
principles microscopic approach to go beyond the classical model, how
ever. Zeng and Oxtoby [48a] recently extended the nonclassical density 
functional theory to binary systems and applied it to Lennard-lones mix
tures. 

Fig. 7 Comparison of theory and experiment (circles) for the binary mixture 
water/n-propanol at 298 K. The solid line shows the results of the theory of Ref. 
48, including surface enrichment, and the dashed line is the result of a theory like 
that of Ref. 45, which is not consistent thermodynamically. (From Ref. 48.) 
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Binary nucleation of crystals from the melt has been studied by met
allurgists interested in the rapid solidification of alloys. Perepezko and 
co-workers have studied a large number of low-melting alloys of lead, tin, 
bismuth, gallium, and other metals; a list of references is given in Ref. 
23. They find a general correlation between the dependences of nucleation 
temperature and equilibrium liquidus temperature on composition. How
ever, they do see metastable phases forming in some deeply undercooled 
melts, and they also caution that the nucleation they observe may be 
heterogeneous, occurring at the surface of the liquid metal droplets. In 
the Cu-Te alloy, which has a deep eutectic, the nucleation temperature 
falls faster than the liquidus temperature and glass formation occurs over 
a limited composition range [49]. Thompson and Spaepen [50] used clas
sical nucleation theory for alloys to analyze the observed behavior. They 
assumed that the composition of the critical nucleus was the same as that 
of the bulk stable phase and took the surface free energy to be a linear 
combination of the two single-component surface free energies. Both of 
these assumptions are open to question [23]. An important aspect that 
has not been addressed is under what conditions the thermodynamically 
stable crystal forms as opposed to a metastable solid solution (with a 
composition close to that of the melt). Such "partitionless solidification" 
has been seen for Bi-Sn alloys [29]. It seem likely that nucleation may 
play a role in determining the types of phases seen under rapid solidifi
cation (nonequilibrium) conditions, but this problem has not been ex
plored. 

V. HETEROGENEOUS NUCLEATION 

In the real world, most nucleation is heterogeneous. It is this fact that 
causes phase transitions to occur close to thermodynamic equilibrium and 
prevents highly metastable states from forming. Controlled experiments 
on heterogeneous nucleation are much more difficult to do than on ho
mogeneous nucleation, however, and for this reason our understanding 
of such processes is much less advanced. 

One type of heterogeneous nucleation involves formation of a new 
phase about a single impurity ion or molecule. This could be described 
as a limiting case of binary nucleation in which the amount of one of the 
components is reduced to a very small value, but it is probably more 
useful to describe it as the formation of a new phase under the influence 
of a fixed "external" potential from the impurity. This additional potential 
can significantly lower the free-energy barrier to nucleation. One area of 
obvious interest is the effect of ions on nucleation of water and ice from 
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Fig. 8 Contact angle of two phases a and 13 with substrate. 

the vapor present in the atmosphere [1]. Turnbull [51] has shown that 
impurities can significantly change the preexponential factor in nucleation 
even in cases where they have no effect on the magnitude of the barrier. 
Another type of "impurity"-induced nucleation has been mentioned ear
lier in this chapter: the role of short-chain gas-phase polymers in inducing 
droplets of monomer to condense [11]. 

A second type of heterogeneous nucleation occurs when a new phase 
forms on the surface of a foreign body, such as on the wall of the container 
or on an aerosol particle. Such surfaces can be flat or can have inden
tations. Porous media can induce nucleation inside thick or thin channels. 
Gas-phase aerosol particles that induce nucleation can be large, or they 
can be small and highly curved, so that the critical nucleus actually forms 
by enveloping them with a thin layer of material. They can even be highly 
ramified (fractal) objects. The geometry of the nucleating surface is almost 
never known, however, so most treatments assume the limiting case of 
a flat surface. This is the only case we consider here. 

Turnbull [52] extended classical nucleation theory to heterogeneous 
processes occurring on rigid solid substrates. Consider the geometry 
shown in Fig. 8. Two phases of a substance (a and J3) are in contact with 
a substrate s. These two phases can be vapor and liquid, or liquid and 
crystal. At equilibrium, there will be a contact angle e where they meet 
the substrate. Because there are now two interfaces present, the change 
in free energy to create this droplet (containing n particles) on the surface 
will be 

..:lD = n ..lf.L As13 (as!3 - asa) + Ao.J30"o.J3 

where ..:1 J.L is the bulk chemical potential difference between phases a and 
J3, As13 and Aa13 are the areas of contact of phase J3 with substrate and 
with phase a, and the au are the respective interfacial free energies. For 
a given value of n, the shape that minimizes ..:lD is a spherical sector, 
with the contact angle e given by 

cos e 



Nucleation 439 

The height of the barrier to nucleation is 

where the only difference from homogeneous nucleation theory 1s the 
factor f(S), defined by 

f(S) 
(2 + cos e)(I - cos e? 

4 

Let us examine the form of this result for the case in which a represents 
the vapor phase and 13 the liquid. Consider first the situation when 

asa asj3 < aaj3 

In this case, a naive application of the equations above would give 
cos e < I, which is impossible. This simply means that under these 
conditions a droplet attached to the surface will not form, because the 
substrate actually causes its free energy to be higher than that of a droplet 
in free space (this can also be seen by noting that as e ~ 180°, the critical 
nucleus simply detaches itself from the substrate). In this case the situ
ation returns to one of homogeneous nucleation. The second case is de
fined by the conditions 

asj3 < aaj3 

Over this range a finite contact angle will be seen and the barrier height 
to nucleation will be reduced by the factor f(S), which is less than 1. The 
third and final case occurs when 

Here the contact angle has reached oo and the "droplet" becomes a thin 
layer spread on the substrate. This is the situation where the liquid "wets" 
the substrate (see Chapter 3) and the barrier to nucleation disappears. 

The contact angle e is a macroscopic surface property of a three-phase 
equilibrium, and the same questions about the validity of making mac
roscopic approximations for droplets of molecular size arise as in the case 
of homogeneous nucleation. Unfortunately, nucleation experiments have 
not generally been carried out in cases where all the parameters in the 
classical theory are known, in order to test the theory. In most cases, e 
is used simply as a fitting parameter to bring the theory into accord with 
experiment. It is clear that there is much theoretical and experimental 
work to be done in order to understand heterogeneous nucleation. 
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I. INTRODUCTION 

A principal objective of the description of fluids through the use of sta
tistical mechanics is to understand the relationship between microscopic 
intermolecular interactions and the macroscopic properties of the stable 
ordered phases. In this chapter I review recent progress that has been 
made toward this goal using results from the theory of inhomogeneous 
fluids. A chief result of the last few years, and the one that will be dealt 
with in this chapter, is the demonstration that for a variety of model fluids, 
approximations to the Helmholtz free energy for the inhomogeneous fluid 
can be used to compute the stability and structure of ordered phases, in 
quite reasonable agreement with results from computer simulations. 

An important class of models (indeed, the class that will be discussed 
almost exclusively here) incorporates only "hard-core" interactions (i.e., 
all nonoverlapping configurations of particles have equal statistical 
weight); those with overlapping molecules are disallowed. A fundamental 
property of such a fluid of spherical hard cores of diameter D is that it 
undergoes a first-order freezing transition at a density N/V = 0.9D- 3 [1]. 
The structural details (e.g., the Lindeman ratio at freezing, lattice constant 
at melting in terms of the hard-core diameter D) of this freezing-phase 
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transition are remarkably similar to structural details of freezing in liquids 
composed of spherical particles with short-range interactions. For non
spherical particles, the analogous problem is to understand the relation
ship between the shape of constituent molecules and the stability of var
ious ordered phases with various combinations of broken orientational 
and translational symmetries. 

The modern version of the density functional approach [2] to this prob
lem offers a description of freezing by means of functional expansion of 
the thermodynamical potentials in powers of the one-body density about 
the isotropic fluid phase. This constructive approach is a natural route to 
a free-energy functional that can then be minimized with respect to the 
expectation value of the one-body density to obtain the canonical mean
field description of the ordered phases. In principle, the dispersion of the 
free energy around this mean-field description gives a Landau-Ginzberg
Wilson field theory that can be used to study elastic properties, and ul
timately the effect of fluctuations. 

In this chapter this program is outlined, and particular attention will 
be paid to recent applications of the approach to the study of liquid
crystal phases of fluids composed of hard cores of anisotropic shape. 
Section II begins with a discussion of these models and reviews the avail
able exact and simulation results. In Section III, the density functional 
approach to theories for liquid-crystalline ordering will be discussed, with 
a major objective being to relate the Landau parameters of the usual 
theories for simple liquid-crystal phase transitions explicitly to static liq
uid structure. In this discussion we introduce the basic ideas and em
phasize the crucial requirement of accurate liquid structure information. 
We also present an approach that allows one to include contributions to 
the density functional expansion from higher orders in perturbation the
ory. 

In Section IV we focus on summarizing what we know about the liquid 
structure of anisotropic hard cores. These pieces are put together in Sec
tion V, where the results that have been obtained for various types of 
phase transitions are discussed. Where possible, comparison is made with 
computer experiments. Finally, in Section VI we summarize the current 
state of the theory. 

II. MODELS, EXACT RESULTS, AND 
SIMULATIONS 

The freezing of a liquid into a solid is a ubiquitous physical phenomenon. 
A model that displays all of the essential qualitative properties of this 
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phase transition is that of spherical particles that interact through a purely 
exculsion interaction. These "hard spheres" were first observed to crys
tallize in simulations of Alder and Wainright [3] and have since been the 
focus of much simulation work [I]. For liquids composed of anisotropic 
particles, transitions that break various combinations of translational and 
orientational order are possible, including transitions to liquid-crystal 
phases, which have lower symmetry than the isotropic liquid but higher 
symmetry than the high-density crystalline states. 

Liquid-crystal mesophases have anisotropic elastic and optical prop
erties which are distinct from the isotropic liquid and crystal phases. We 
describe these phases in terms of their symmetries: An isotropic liquid 
is invariant under any rotation or translation. The crystal phase is typically 
invariant under a smaller set of transformations: translations by a set of 
lattice vectors and some subgroup of the rotation group consistent with 
the lattice symmetries [4]. The nematic liquid-crystal phase is transla
tionally invariant but differs from the isotropic phase in not being invariant 
under rotations, due to the orientation of the constituent molecules along 
some direction. Typically, nematic phases are observed at lower tem
peratures or at higher pressures than the isotropic liquid. 

Before the formation of the crystal at low temperatures or at high pres
sures, smectic phases may be observed: the simplest of these, the smectic 
A phase, has in addition to the broken orientational symmetry a peculiarly 
broken translational symmetry. The smectic A is invariant under trans
lations in the plane perpendicular to the direction of molecular orientation 
(the "director"), but only under translations out of this plane that are 
multiples of some distance, the smectic wavelength. Many types of smec
tics are possible, depending on, e.g., the relationship between the molec
ular orientation and the orientation of the smectic "layers"; a rather com
plete discussion of the classification of these phases is that of Pershan 
[5]. No complete review of all of the liqu,id-crystal phases that have been 
observed, let alone the entire field of l{quid crystals, can be attempted 
here; the reader is urged to consult one of the excellent standard texts 
[6,7]. 

A central problem is that of identifying suitable model systems that 
will display the essential features of simple liquid-crystal phases. Onsager 
discovered that there could be a stable nematic state in a system of elon
gated particles interacting via strictly hard-core interactions [8], and over 
the past few years it has become apparent that such systems also possess 
smectic A phases [9]. This discovery suggests that one should try to un
derstand the behavior of hard-core models and then take account of 
longer-range interactions of finite strength perturbatively, an approach 
that has been successful in the description of dense simple liquids [10]. 



446 Marko 

A. Models and Ordered Phases 

We will consider N molecules confined inside a three-dimensional box of 
volume V, which in addition to a translational degree of freedom r de
scribing the location of their centers of mass, possess orientation degrees 
of freedom. The orientation of a molecule can be expressed using a vector 
e on the surface of the unit sphere to specify the orientation of one of the 
body axes, and an additional angle x to specify rotation around that axis. 
The vector e will often be described in terms of the polar and azimuthal 
angles a and <P with respect to a Cartesian coordinate system: the z-axis 
will generally be taken to be parallel to the director of orientationally 
ordered phases. For axially symmetric particles, the axial angle x can be 
ignored. The combination of degrees of freedom for a molecule 
(r,e,x, ... ) will be referred to with the notation X. The orientation of the 
positional variable r can be described by the unit vector f = r/l r I . Fi
nally, we note that integration over all configurations will be denoted by 

J J l
21T Jl l21T d<!> 

dX = d 3r dx d(cos 8) -
8 2 v 0 -l 0 1T 

(1) 

The total integral of configurations is J dX = V. 
The shape of any convex hard core (and many nonconvex hard cores) 

can be specified using the function D(X,X'), which specifies the distance 
of closest approach of the centers of masses for two hard cores at co
ordinates X and X'. This distance is the value of I r - r' I at which the 
hard cores touch, given the orientations (f,e,x) and (f',e',x'). For I r -
r' I < D(X,X'), the two cores overlap. If we consider the intermolecular 
potential to be the sum of pair interactions of the form 

U(X,X') = O,l r - r' I > D(X,X') (2) 
CtJ,I r - r' I < D(X,X') 

then any overlapping configuration has infinite potential, while any state 
free of overlapping hard cores has zero potential. This hard-core inter
action can of course be supplemented by additional finite-strength pair
wise or multiple-particle interactions. 

A central approximation is to disregard any momentum dependence to 
the interactions between particles, which results in anN-particle Ham
iltonian of the form 

N 

2: T(P;) + 2: U(X;,Xj) (3) 
i=l j<i 

where T(P) is the kinetic energy of the momenta P conjugate to X (here 
we have included only the pair interactions described above). For the 
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degrees of freedom described above, 

T(P) = pz + u-tL 
2m 2 

(4) 

where m is the particle mass, p the linear momentum, I the moment of 
inertia tensor, and L the angular momentum conjugate to the orientational 
degrees offreedom. The tensor I is taken to have eigenvalues / 1 , 12 , and 
h; we define the geometrical average of these as I = (/1]zh)l/3. 

The grand canonical partition function, including a one-body potential 
(essentially a chemical potential that is a function of X) J.L(X), is thus 

w ~ l ITN (J dP;dX;) J ' e- = N~oN!i=l ~ exp(-13HN({X;,P;}) + 13 dXJ.L(X)p(X)J 

(5) 

where h is Planck's constant, 13 = (kT)- 1
, - W l3pV, p is pressure, 

and the classical one-body density operator is defined as p(X) = 2:)':, 1 

o(X - X;). The momentum integration is unrestricted, while the spatial 
integration over r; is over the system volume V, and the orientation in
tegration is over all the angles (of total angular volume 81T2

). After trans
forming the angular momentum to components along the principal axes 
of the inertia tensor /, we note that all the momenta can be integrated, 
giving 

e-w = ~ ;,q{J dX;exp[- f dXu(X)p(X) -13~ U(X;,Xj)J} (6) 

where the effective one-body potential is u(X) = -13J.L(X) + 3 log A + 
3 log A,, A = [h 2/(21TkTm)]l12 is the thermal wavelength, and Aa = [h 2

/ 

(21TkT/)] 112 is the thermal angle. Thus the partition function reduces to a 
sum over configurations of the particles. 

Since the quantities A and Aa contribute only additively to the total 
grand potential W, any expectation values concerning static (configura
tional) structure are independent of m and J. We will ignore these quan
tities for the remainder of this chapter. Additionally, if the pair potential 
U is of the hard-core form above, we can ignore the factor 13 in front of 
it. This removes any dependence on temperature from the configurational 
integral and vastly simplifies the problem. All phase transitions, and more 
generally, all of the thermodynamics, are independent (except for trivial 
details) of temperature. Our strategy in this chapter is to consider these 
as purely entropic models, which apparently will have only lyotropic 
phase transitions (the stability of ordered phases depends only on the 
volume fractions of the constituent particles). Typically, we will present 
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phase diagrams in terms of dimensionless parameters describing the shape 
of the particles, and the number density, in units of inverse particle volume 
(density in these units is often referred to as the packing fraction). 

Examples of the models of this sort that we will focus on are motivated 
by particular ordered phases. The idea is that by breaking the rotational 
symmetry of the underlying molecular interactions, we can induce the 
spontaneous breaking of a global symmetry (i.e., induce a phase transition 
to an ordered phase). We introduce several models that have been studied 
along with the relevant ordered phases. Figure 1 shows the hard-core 
shapes, while Fig. 2 schematically shows the structure of the ordered 
phases. 

l. Spheres. This simple case has a constant D(X,X') equal to the 
sphere diameter. In three dimensions, the fluid phase freezes and becomes 
a close-packed (cubic) solid (Fig. 2a). That this should happen is not 
immediately obvious; what is obvious is that there is no coupling of ori
entational degrees of freedom of the molecules, and there are never ori
entational correlations in the system. The hard-core shape can be de
scribed by a single parameter, the sphere diameter D. 

2. Ellipsoids of revolution. If we elongate or compress a spherical 
hard core we obtain either prolate or oblate ellipsoidal hard cores. This 
change in symmetry induces interactions between the orientational and 
translational molecular degrees of freedom. Thus it is possible to have a 
fluid (no orientational or translational order), a nematic liquid crystal (no 
translational order, but orientational order, shown in Fig. 2b), a plastic 

g +8 -o- .... 28~ 
~0 

-o-
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~~ 
-o-

t 0 L 
t 
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-o--o-
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Fig. 1 Hard-core shapes: (a) sphere; (b) prolate ellipsoid of revolution; (c) cyl
inder; (d) spherocylinder; (e) oblique cylinder; (t) dumbbell. 
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Fig. 2 Structure of various liquid-crystal and crystal phases. (a) Close-packed 
crystaL The structure shown is a face-centered cubic (fcc) crystal of spheres, with 
long-range translational order. (b) Nematic liquid crystaL There is long-range 
orientational order but no positional order. (c) Plastic crystal. The structure shown 
is an fcc crystal of hard ellipsoids with translational order and with orientational 
order consistent with the rotational symmetries of the crystaL (d) Oriented solid. 
Again, hard ellipsoids are shown; however, now the lattice is tetragonally dis
torted fcc, and the orientational distribution consequently has lower symmetry 
than in the plastic phase. (e) Smectic A liquid crystal. There is orientational order, 
and cylinders are organized into regularly spaced planes orthogonal to the director 
axis. There is no long-range translational order in the planes. (f) Smectic C liquid 
crystal. There is again only one-dimensional translational order, but now the di
rector axis makes an angle 13 with the normal to the smectic planes. Elliptocy
linders are shown. 

solid (cubic translational order but no orientational order beyond the cubic 
point group as in Fig. 2c), and an oriented solid (e.g., tetragonal trans
lational order with corresponding uniaxial orientational order, as in Fig. 
2d). The hard core is described by the axial diameter, 2A, and the diameter 
perpendicular to the axis of rotational symmetry, 2B. The single dim en-
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sionless parameter AlB describes the shape: The core is prolate or oblate 
if A> B orB> A, respectively. 

3. Cylinders and spherocylinders. A cylindrical hard core has the 
same symmetry as a prolate ellipsoid, but it is of interest because for 
strong elongation, there may be a smectic A phase, consisting of layers 
of orientationally aligned molecules (i.e., translational order along one 
direction) but with no translational order in the plane of these layers (see 
Fig. 2e). Again two parameters describe the shape, the diameter D and 
the length of the cylindrical section L; again the single parameter LID 
describes the shape. Often the cylinder is topped with a hemisphere of 
diameter D as shown in Fig. ld (a shape referred to as a spherocylinder). 

4. Elliptocylinders. We can imagine breaking the rotational symmetry 
of a cylinder by making its cross section elliptical; this might prompt the 
appearance of a phase with biaxial orientational symmetry (i.e., there 
might be a transition to a nematic or smectic phase where particles have 
long-range correlations in their axial angles x). The parameters describing 
this core are the two diameters of the elliptical cross section, 2A and 2B, 
1nd the length L. We might choose to use dimensionless parameters 2AI 
L and AlB to describe the system. 

5. Oblique cylinders. By cutting the ends of a cylinder with planes 
1ot perpendicular to the axis, we introduce the possibility of tilted phases. 
fhe example important here is the smectic C phase, which is identical to 
he smectic A phase except that the molecules are tilted some angle with 
·espect to the smectic layers (Fig. 2f). The parameters describing the 
nolecules are the cylinder length L and diameter D, as well as the angle 
x shown in Fig. le. 

6. Dumbbells and other shapes. Spheres may be fused together to 
·arm shapes with low symmetries; for example, two spheres fused to
~ether form a dumbbell with an aspect ratio between 1 and 2. Such an 
>bject is attractive because the D(X,X') can be constructed exactly from 
hat for two spheres. For dumbbells, we specify the shape with the sphere 
liameter D and the distance L between the sphere centers (Fig. lf). 

7. Models with constrained degrees offreedom. Often, calculation or 
.imulation of some system of molecules with low symmetry is facilitated 
'Y the constraint of some of the degrees of freedom. For example, one 
night study the nematic to smectic A transition by constraint of the ori
:ntational degree of freedom along the z-axis. The justification for such 
. study would be that near theN-SA transition, the nematic order would 
•e well established, and the orientational fluctuations might not strongly 
ffect the transition. Such models might also be directly relevant, for 
xample, in the case where transitions are studied in strong fields that 
trongly align the molecules. 
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8. Softer interactions. At this point the rather more complicated 
world of softer interactions has been studied to a limited extent. We note 
that work has generally proceeded using potentials that depend on the 
separation of the centers of mass of the molecules (e.g., a r- 6 attraction 
at long ranges), or on some combination of electric multipole interactions. 

These models, although somewhat arbitrarily chosen, represent the 
geometrically simple hard-core shapes that lead to various ordered 
phases. One should not take the point of view that these models represent 
actual materials that show these phases. The models are meant only to 
be tools to be used to develop techniques for studying phase transitions 
in dense molecular systems; they must be generalized to make them rep
resent particular materials more faithfully. 

B. Exact Results 

There are a limited number of exact results concerning these sorts of phase 
transitions, but the ones that exist are informative. An important piece 
of information was provided by Onsager regarding the isotropic-nematic 
transition in a system of long, hard spherocylinders [8). By considering 
the density expansion for the free energy of such a system, Onsager 
showed that as the length-to-diameter LID ratio of fluid of hard sphero
cylinders is taken to infinity, there is an instability toward nematic or
dering, and that this I-N transition density (in units of the inverse of the 
molecular volume) tends to zero as DIL. This transition is strongly first 
order; the difference in densities of the nematic and isotropic phases at 
the transition is about 27% of the density of the isotropic phase. The cause 
of this transition in such a dilute gas of hard cores is purely due to entropy: 
In a dilute gas of highly elongated particles, a given molecule enjoys a 
greater number of allowed configurations in a system with nematic order 
than it would in an orientationally disordered environment. In Section III 
the Onsager theory is constructed. 

If one imposes perfect orientational order on a system of hard ellipsoids 
of revolution (prolate or oblate), one might imagine that there would be 
some interesting mesophases (i.e., smectic A). Such a system consists of 
hard ellipsoids with their axis of rotational symmetry aligned along some 
preferred direction; Lebowitz and Perram [11] noted that by rescaling 
space along this direction, one can reduce the partition function to that 
for a system of hard spheres. Since hard spheres have only a freezing 
transition, the only transition in a system of aligned ellipsoids is therefore 
also a freezing transition to an oriented solid phase, at a packing fraction 
of 0.7. This is rather surprising in light of the fact that this rescaling 
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argument applies to all elongations! Evidently, the rounded shape of the 
molecules precludes any possibility of a smectic A or other mesophase 
(since the ellipsoids in such a system are parallel, the low-density, dis
ordered phase is a perfectly aligned nematic). 

This result may be understood in the light of a recent argument by Wen 
and Meyer [12], suggesting that there is a stable smectic A phase in a fluid 
of orientationally aligned hard rods. For definiteness, consider long cyl
inders with their axes aligned along the z-axis. Wen and Meyer start by 
considering the fully ordered smectic, which consists of planes separated 
by the smectic wavelength d, on which molecules have their centers of 
mass. The distribution of molecules in each plane is considered to be 
uniform, and molecules in different planes are presumed not to interfere 
with each other. Now consider the possibility that a molecule (of length 
L <d) is allowed to fluctuate out of a layer; if it moves a distance vertically 
larger than d - L but less than L, it will interfere with the configurations 
of molecules in an adjacent layer, reducing the overall configurational 
entropy of the system. The conclusion is that there may be a transition 
to the smectic because the two-dimensional fluid layers have larger con
figurational entropy than does the disordered (nematic) state for some 
packing fractions. Although this argument has not been proven with an 
exact calculation, Wen and Meyer present an estimate of the free energy 
based on this idea, and find that indeed, the smectic phase becomes more 
stable than the nematic at a packing fraction of 0.223. For the case of 
prolate ellipsoids, the tapering of the ends of the ellipsoids causes a less 
drastic loss of configurational entropy in neighboring planes; the result 
is that the smectic is never stable, in agreement with the exact result. 

A final class of interesting exact results are those for models of fluids 
in one dimension. In one dimension, many problems can be solved due 
to the limited number of ways that particles can interact; this advantage 
is offset by the fact that for short-range interactions, there are never phase 
transitions in one dimension [13]. Nevertheless, the results have been 
useful, particularly in building intuition about the behavior of correlation 
functions in the dense liquid phase. Tonks [14] first solved the problem 
of hard rods in one dimension; these results were expanded by Wertheim 
[15], who noted that the Percus-Yevick closure of the Ornstein-Zernike 
equation was exact for any mixture of hard cores of different lengths in 
the case of one dimension. He thereby obtained not only the free energy 
but also the pair distribution. Marko [16] noted that this result could easily 
be modified to solve certain one-dimensional problems involving mole
cules with both orientational and translational degrees of freedom, and 
to obtain the direct correlation function in closed form. The thermody
namics of similar systems have been studied by transfer-matrix techniques 
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[ 17, 18] and via this route, much useful information concerning the equa
tion of state and one-particle distributions has been obtained; in principle, 
this approach can be applied to calculation of the correlation functions 
as well. Some of these results are discussed in Section IV. 

C. Simulations 

With the explosion of computer power over the last decade we have seen 
a similar explosion of work on simulational approaches to the statistical 
theory of fluids. Here, we restrict the discussion to a summary of the 
main results obtained from simulations of hard-core models presented in 
Section Il.A. We skip any detailed discussion of the seminal work con
cerning freezing of the hard-sphere fluid [I] as it is discussed elsewhere 
in this volume. However, we note [19] that the transition occurs from the 
isotropic liquid phase at a density of 0.94D- 3 (D is the sphere diameter) 
and is first order. The crystal phase is likely a (close-packed) face-centered 
cubic crystal; at coexistence, the crystal has a density of l.04D- 3

. The 
entropy difference per particle between the two coexisting phases is l.l6k, 
and the Lindemann ratio (the ratio of the rms fluctuations of particles 
about lattice sites to the nearest-neighbor spacing) is about 0.13. A striking 
fact about the crystal is that the one-particle fluctuations are well de
scribed by Gaussian distributions centered on sites of a fcc lattice for 
densities near the melting point [20]; this is surprising in light of the highly 
anharmonic interparticle interaction. 

As noted above, elongation or compression of spherical hard cores 
results in prolate or oblate hard ellipsoids of revolution. Simulation of 
such a system of particles is difficult due to the large number of degrees 
offreedom. However, Frenkel, Mulder, and McTague have been able to 
compute the phase diagram and isotherms (i.e., the pressure versus den
sity) for the hard ellipsoid fluid via constant-pressure Monte Carlo simu
lation [21]. Their phase diagram is pictured in Fig. 3; the ordinate is the 
aspect ratio, the ratio of the major semiaxis A to the minor semiaxis B 
of the ellipsoids. Spheres have AlB = 1, needles have AlB ~ 1, and 
platelets have AlB = 0. The abscissas of Fig. 3 is the number density p 
in units of 8AB 2

; the quantity 8AB 2 p is 61-rr times the packing fraction 'Tl· 
The maximum packing fraction that can be attained for such a system is 
believed to be that for a close-packed oriented crystal (similar to the close
packed version of Fig. ld), for which 8AB 2 p = v'2. 

First-order transitions (involving coexisting phases of different den
sities) are indicated as shaded regions in Fig. 3. For small anisotropies 
(AlB = 1), the first transition is from the isotropic liquid (/) to a plastic 
crystal phase (P). The density at which the isotropic liquid freezes in-
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Fig. 3 Phase diagram of hard ellipsoids of revolution. Transition densities in 
molecular units 8AB 2p = 6'T]/1T is shown versus anisotropy AlB. Coexistence re
gions are indicated with shading; the plastic-solid transition is indicated by a 
dashed line. Points are Monte Carlo results. (Adapted from Ref. 21.) 

creases as AlB is made either slightly larger or smaller than I. It is im
portant to realize that this crystal phase, although often described as or
ientationally disordered, consists of particles whose orientational one
particle distribution function is not invariant under arbitrary rotations. 
The crystal lattice introduces a cubic field, which results in the orienta
tiona! distribution being invariant only under symmetry operations of the 
underlying lattice (i.e., cubic rotations). The one-particle orientational 
distribution becomes fully rotationally invariant only for the case of 
spheres (AlB~ 1). 

As the plastic crystal phase is compressed, a point is reached at which 
there must be a transition to a crystal phase with ellipsoids aligned along 
one direction. Such an oriented solid phase (S) has the structure indicated 
in Fig. ld; the lattice is tetragonally distorted fcc, with x and y lattice 
constants c and a z lattice constant of c'. The ellipsoids have their axis 
of rotational symmetry preferentially aligned with the z axis. For the case 
of hard spheres, the P-S transition never occurs, of course, but for small 
elongations it must occur at some density less than V2 (we presume that 
the state of highest density is a perfectly aligned close-packed configu-
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ration and that there is no state with the symmetry of the plastic phase 
that can achieve this density). In fact, the simulations show transitions 
from the plastic to the solid phase at a packing fraction that drops as 
anisotropy is made different from AlB = I. Interestingly, this transition 
is observed to be either weakly first-order, or perhaps second-order; the 
phase boundary is shown as a dashed line in Fig. 3. The results are not 
conclusive concerning this point, as the number of particles simulated 
was small ( = lOO), and thus the orientational correlations could not be 
observed to become gradually long-ranged, as would be the case for a 
second-order transition. 

At an aspect ratio of about AlB = 1.25 on the prolate side, and at about 
AlB = 0.8 on the oblate side, the plastic-solid transition line meets the 
isotropic-plastic coexistence region. For anisotropies slightly larger than 
AlB = 1.25 or slightly less than AlB = 0.8, there is a first-order transition 
from the isotropic liquid directly to the oriented solid. Exactly what the 
nature of the I-P-S coexistence point is, is not clear; possibilities include 
a triple point (if the P-S transition is first order, or if there is a tricritical 
point along the P-S transition line) and a critical endpoint (if P-S is 
continuous). 

At yet more prolate or oblate aspect ratios, there occurs a triple point 
between the isotropic, solid, and the nematic (N) phases. Beyond these 
points (at about AlB = 2.7 on the prolate side and AlB = 0.35 on the 
oblate side), the sequence of transitions that is seen as density is increased 
is I-N-S, with both transitions first order. Although no simulations have 
been done for AlB > 3, Onsager's results [8] indicate that as AlB- a:;, 

the transition is first order, and that the transition packing fraction tends 
to zero as BIA. It seems likely that the I-N transition line for prolate 
ellipsoids can be smoothly extrapolated to AlB = a:; as shown. 

In the extreme oblate limit AlB- 0, we obtain platelets. Frenkel and 
Eppenga determined [22] that for A = 0, zero-volume hard platelets 
undergo a first-order transition from the isotropic liquid at density 8B3 p 
= 3.78 to a nematic of density 8B3 p = 4.07. These results are for zero 
density; we conclude that if A is slightly larger than zero, the I-N co
existence region will be between densities 8AB2p = 3.78AIB and 4.07AI 
B. Reasoning thus, Frenkel extended the I-N line to zero density for AI 
B- 0 as in Fig. 3. 

The phase diagram (more exactly the densities demarcating the co
existence regions for various anisotropies) comprise one component of 
the MC information. However, we note that the MC results also include 
accurate isotherms (grand potential, or pressure versus density for dif
ferent AlB) for all of the phases, and some information concerning ori
entational correlations. A remarkable result concerning the data as a 
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whole is the apparent symmetry between ellipsoids of aspect ratio AlB 
and BIA (Fig. 3 has as abscissas AlB for AlB < I and BIA for AlB > 1), 
a result that is not present in the viral series beyond second order [21). 
This symmetry is apparent not only in the phase diagram but also in the 
isotherm data. If the pressure is scaled with the molecular volume and 
temperature, it is found that 8AB 2 PlkT versus 8AB 2 p differs for ellipsoids 
with aspect ratios AlB and BIA by at most 7% for all cases considered. 
This surprising (albeit approximate) symmetry has no explanation. Fi
nally, we note that no smectic phases have been observed in computer 
simulations of ellipsoids of any anisotropy. 

Similar large-scale simulation work has been done on spherocylinders. 
The computationally simpler case of up to 1080 parallel spherocylinders 
of cross-sectional diameter D and cylindrical section length L was studied 
by Stroobants et al. (23]; in such a system, the low-density phase is of 
course the nematic, as all of the axes of the molecules are lined up by 
fiat along the z-axis. At high densities, we expect a freezing transition to 
a close-packed crystal; the case LID = 0 is, of course, again that of hard 
spheres, which has only this phase transition. The maximum density pos
sible in the system is presumed to be Pep = v'21[D 3 (l + V3fiLID)], that 
of the tetragonally distorted fcc lattice. 

The phase diagram that resulted from this study is shown in Fig. 4; 
indeed, the nematic appears at low density and there is a freezing tran
sition (to a phase again designated solid, or S) to an oriented close-packed 
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Fig. 4 Phase diagram of hard parallel spherocylinders. Transition densities in 
units relative to the maximum density Pc (of the oriented solid) are shown versus 
the ratio of the length to the diameter of the cylindrical section LID. Coexistence 
regions are shaded, and simulation results are indicated with points. (Adapted 
from Ref. 23.) 
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crystal for small LID. However, for LID> 0.5, a layered phase is ther
modynamically stable; this phase is a hard-core smectic A. The transition 
appears to be continuous, which suggests that the N-A-S point in this 
system is a critical endpoint. The N-A transition at LID = 0.5 is at a 
reduced density plpcp = 0.6 and drops to near 0.45 for LID 5. The case 
LID oo can be mapped onto a system of parallel cylinders; the N-A 
transition is seen at plpcp = 0.39. For aspect ratios above LID = 3, a 
columnar phase has also been observed; for finite LID the smectic-co
lumnar phase transition is first order, but for LID = oo, it appears to be 
continuous. The crystalline solid phase has been observed at high den
sities for LID < oo; the columnar-solid transition is first order. 

The phase diagram of spherocylinders with both orientational and 
translational degrees of freedom has also been studied. Simulation of 576 
spherocylinders with LID = 5 led Frenkel et al. to the conclusion (9,24] 
that a sequence of transitions I-N-A occurred as density was increased. 
Additional work by V eerman and Frenkel [25] has resulted in the phase 
diagram shown in Fig. 5. Again, the density is in reduced units plpcp; for 
low densities the isotropic liquid is the stable phase. For LID < 2, there 
is a first-order freezing transition from the isotropic to the close-packed 
solid phase. Near LID = 3, the simulations suggest, in succession as 
anisotropy increases, a I-A-S coexistence point and a I-N-A coexist
ence point. The I-A and A-S transitions appear to be first order; thus 
the I-A-S point is a triple point. The only N-A transition studied is that 
at LID = 5; so far it is not clear whether the transition is weakly first 
order or if it is continuous. The orientationally constrained and free spher
ocylinder phase diagrams are notably different; in the former (Fig. 4) the 
liquid-crystal (N,A) phases are found for all LID> 0.5. This apparently 
is a result of the strong alignment constraint since in the unconstrained 
case (Fig. 5) the A and N phases do not appear for LID < 4 or so. 

We conclude this section by mentioning that there have also been pi
oneering efforts by Allen and Frenkel [26] to compute the Frank elastic 
constants of the nematic liquid-crystal phases of hard ellipsoids and hard 
spherocylinders via computer simulation. We also note that anisotropic 
hard-core systems in two dimensions may show intriguing behavior. Fren
kel and Eppenga have simulated a system of hard "needles" (lines) of 
length Lin two dimensions and report evidence that the isotropic-nematic 
transition is near L 2 p = 7 (as in the case of platelets, the transition for
mally is at zero packing fraction since the lines have zero volume) (27]. 
They also find that the nematic has algebraically decaying orientational 

· correlations, suggesting that the I-N transition for needles in two di
mensions may be of Kosterlitz-Thouless type. Analysis of the behavior 
of topological defects near the transition supports this picture. 
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Fig. 5 Phase diagram of hard spherocylinders with orientational and transla
tional degrees of freedom; data are presented as in Fig. 5. (Adapted from Ref. 
25.) 

Ill. DENSITY FUNCTIONAL THEORY OF LIQUID 
CRYSTALS 

An alternative, analytical approach to understanding the systems de
scribed in Section II is available through a functional expansion of the 
thermodynamical potential about the isotropic liquid state, in powers of 
the deviation of the one-body density from the constant density of the 
isotropic phase. In the remainder of this chapter we will be concerned 
with the application of this method, commonly termed the density func
tional approach, to models described in Section II.A. In Section III.A we 
summarize the basic density functional formalism (treated in greater detail 
elsewhere in this volume). In Section III.B the problem of carrying out 
calculations to high order in perturbation theory is addressed; we present 
a description of a weighted-density approximation appropriate for liquid
crystal systems. The parametrization of ordered phases are discussed in 
Section III. C. Finally, in Section III.D we present application of these 
methods to the description of transitions to the nematic and smectic A 
liquid-crystal phases. This will include a derivation of Onsager's theory 
of the isotropic-nematic phase transition [8] and will indicate the micro
scopic origin of the Landau coefficients in the mean-field theory of ne
matic and smectic A liquid crystals. 

A. Density Functional Expansion for 
Anisotropic Particles 

We begin by considering the grand-canonical potential (6), which can be 
written as 
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- W = f3pV =log(~~! If {J dX; exp( -u(X;) - 13 1~ U(X;,X1)]}) 

(7) 

The potential W is intrinsically a functional of the dimensionless one-body 
potentialu(X), which is the chemical potential associated with a particle 
with position and orientation described by X. Since u is coupled linearly 
to the density operator, it is seen to generate the density distribution 
functions of the system: 

p(X) = (p(X)) 

(p(X))(p(X' ))[g(X,X') - 1] 

3W 

ou(X) 

= (p(X)p(X')) - (p(X))(p(X')) = 

and so on. 

(8) 

ou(X) ou(X') 

The potential associated with W that is an intrinsic functional of the 
one-body density p(X) is obtained by Legendre transformation: 

!3F = max[W - f dX u(X)p(X)] 
u(X) 

(9) 

where, of course, F is the usual extensive Helmholtz free energy. If there 
were no interactions, namely if U(X ,X') 0, the Helmholtz free energy 
thus defined would be just the entropy of an inhomogeneous ideal gas: 

f39'lu~o[p] = f39'ict[P] = f dX p(X)[log p(X) - 1] (10) 

We define the remainder of the Helmholtz free energy as the excess po
tential via 9' = 9'ict + 2i'ex and examine the functional derivatives of the 
excess Helmholtz potential with respect to the one-body density: 

OS 
op(XJ)···op(Xs) f32i'ex(P] -c<s)(XJ, ... ,Xs;p) (11) 

A bit of computation shows that for the isotropic liquid with f.L(X) = f.L 
and p(X) = p0 , c<o = log p0 - f3f.L, and that C(2) = cis related to the 
pair distribution function defined above by the Ornstein-Zernike equa
tion: 

g(X,X') - 1 = c(X,X') + Po f dX"[g(X,X') - l]c(X",X') (12) 

This allows us to identify the functions c<s) as the direct correlation func
tions of the isotropic liquid. We pause to remark that the Mayer expan-
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sions of these objects involve only one-particle irreducible graphs and are 
thus rather short range. It should also be noted that the c(s) can be defined 
via (11) in an inhomogeneous system. 

Noting the inverse of the transformation (9) 

W = min(f3~ + J dX u(X)p(X)] 
p(X) 

(13) 

and assuming that the direct correlation functions are known in the uni
form state of density Po, we can functionally expand W. In this expansion, 
p(X) and u(X) are treated as independent functional degrees of freedom: 
They are later linked through the functional minimization in (13). For the 
purposes of this work, there will be no external potential and equal chem
ical potentials for all configurations of the one-body distribution. This 
leads to the expansion for the grand potential: 

W - W0 1 J [ p(X) J ~ w = = 1 + - dX p(X) log - - 1 
~v ~v ~ 

co 1 
2: -v I J dXt· .. dXs c<s)(Xt, .. . ,Xs;Po)[p(Xt) - Po]···[p(Xs) - po] 
s=zPo S. 

(14) 

where W0 is the grand potential of the isotropic fluid of density p0 . The 
p(X) that minimizes this expression is the stable equilibrium configuration 
of the system, and when two local minima switch global stability, there 
is a (generally first-order) phase transition. 

The role that the various terms of (14) play is reasonably clear; the 
ideal-gas entropy always favors the disordered state p(X) = p0 . The sum 
of direct correlation function integrals measures the effect of interactions; 
for hard-core systems, this will strongly discourage the overlap of hard
core regions [ c(sl in the dense fluid regime is large and negative when its 
s arguments correspond to overlapping configurations of cores]. This ten
dency to avoid overlapping configurations drives phase transitions by 
making the uniform state p(X) = p0 have higher grand potential than some 
ordered state which (generally) satisfies [p(X) - p0 ][p(X') - p0 ] < 0 for 
I r - r' I < D(X,X'). 

It should be noted that the formal density functional expansion of the 
grand potential (14) is strictly valid only when the isotropic liquid is the 
stable thermodynamical state, since the existence of isotropic liquid direct 
correlations is assumed. An additional limitation is our knowledge of di
rect correlation functions; for the hard-sphere liquid, arguably the best 
characterized of simple liquids, we know little about C(3), and basically 
nothing about higher-order direct correlations. However, the existence 
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of a functional W[p,u] from which the stable state pis computed by global 
functional minimization is guaranteed by the density functional theorem 
[28]; the idea of the density functional approach is to attempt to find as 
good an approximation to this (unknown) functional as possible. 

One approach to approximate the free-energy functional is simply to 
truncate the expansion (14) after the c<Zl term; unfortunately' for crys
tallization transitions, there is evidence that the higher-order terms in the 
expansion are not small [29]. We shall refer to the expansion (14) truncated 
at second order as the RY theory, after Ramakrishnan and Yussouff. In 
Section III.B we discuss a nonperturbative approach to this problem 
which results in a free-energy functional that makes use of the functional 
relationships between the different direct-correlation functions to avoid 
these problems. 

B. Weighted-Density Approximation for 
Anisotropic Particles 

In Section III.A we discussed the basic functional expansion of the free 
energy around the isotropic liquid; via truncation of this expansion, an 
approximation for the free-energy functional for inhomogeneous states is 
obtained. Unfortunately, we possess such limited information about C(3) 
and higher-order direct correlations that it is difficult to improve on the 
second-order RY theory by including higher-order terms. However, it is 
possible to formulate a nonperturbative approach to the problem: Here 
we describe such an approach related to that introduced by Curtin and 
Ashcroft [19] and independently by Tarazona [30]. 

We focus on the description of the fluid in the canonical ensemble, 
where the number of particles f dX p(X) = N is fixed. The approach 
begins with the partition of the Helmholtz free energy into ideal and excess 
portions: '§ = '§;ct + '§ex, with '§;ct the free energy of an inhomogeneous 
noninteracting gas, defined as in (10). We can express the excess free 
energy as an integral over a local excess free energy f: 

'§ex = J dX p(X)f(X;[p]) (15) 

In analogy to the local density approximation used in the theory of 
electronic structure, the local density approximation (LDA) for f is 

f(X;[p]) = fo(p(X)) (16) 

where f 0 (p) is the (assumed known) excess Helmholtz free energy per 
particle of the isotropic fluid state of density p. Although this approxi
mation may be suitable to study inhomogeneities induced in a fluid by a 
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weak external potential, the LDA obviously cannot lead to a theory for 
ordering in a fluid due to intermolecular interactions. 

If we instead introduce a new effective density p(X), we can rewrite 
(15) as 

J dX p(X)fo(p(X)) (17) 

In principle, the right choice of p will recover the exact excess potential 
(15). In practice, Curtin and Ashcroft [19] studied the case where the 
effective density is written as a weighted average: 

p(X) J dX' p(X')w(X,X' ;p(X)) (18) 

This theory is generally referred to as the weighted-density approximation 
(WDA). 

The form of w is set by requiring that in the homogeneous limit p(X) 
~ p, the known properties of the uniform liquid of density pare recovered. 
This limit applied to (18) reveals that 

J dX' w(X,X' ;p(X)) = 1 (19) 

Imposing that the second functional derivative of the excess potential with 
respect to the density p(X) in the homogeneous limit gives the second 
direct correlation function of the liquid, that is, that 

c<2l(X ,X'· p) = - (3 lim ;•;l;g; ex([p]) 
' p(X.J--p 8p(X) 8p(X') 

(20) 

leads to a set of integrodifferential equations that determine w uniquely. 
This approach has been extremely successful in the study of a variety 

of phase transitions in fluid systems where the particles interact via spher
ically symmetric interactions [19,31]. The WDA does a better job in pre
dicting the localization of particles near lattice sites at the freezing tran
sition (the RY theory typically predicts Lindemann ratios that are a factor 
of 4 too small for hard-sphere freezing) and gives a better account of the 
entropy difference between the coexisting liquid and solid phases at the 
freezing point. The WDA also has the virtue of being a suitable technique 
for studying the ordered phase [31]. The practical implementation of the 
WDA is aided by the fact that for crystallization transitions, the effective 
density (18) is everywhere significantly lower (> 30%) than that the or
dered phase average density, which are densities where liquid structure 
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is well understood. In contrast, the RY theory requires knowledge of the 
liquid structure at the freezing point, where it may not be well defined. 

An attractive feature of the WDA is that it is an approximate summation 
to all orders of the density functional expansion (14). This comes about 
due to the feedback of p(X) in the definition of the effective density (18). 
In the homogeneous limit, p(X) ~ p, which leads to p(X) ~ p, the WDA 
satisfies the following infinite set of sum rules [19]: 

-fjfdX3· .. dXs lim os;!F~DA([p]) = as-
2

2
C(2)(X

1
,X

2
:p) 

p(x)->p op(Xt)···op(Xs) aps- (21) 

= J dX3 ... dXsc<sl(Xt. ... ,Xs;p) 

for s = 2, 3, 4, ... Thus, for small inhomogeneities, the WDA has as its 
limiting form the RY theory to second order in p(X) - p, plus higher
order terms that use approximate liquid structure information which sat
isfy all the sum rules (21). This situation contrasts markedly with the 
situation for the R Y theory, where after two functional differentiations, 
the remaining excess free energy is independent of the ordered phase 
density and vanishes after further functional differentiation. 

Unfortunately, extension of the WDA to phase transitions involving 
nonspherical particles is impractical because of the necessity of solving 
five-dimensional nonlinear integrodifferential equations for the weight 
function. One possibility is simply to specify the weight function [32]. 
Alternatively, one might replace the inhomogeneous effective density 
with a homogeneous effective density. This kind of approach has been 
used to study nonspherical particles by two groups [33,34]. Here we de
scribe a theory similar to the WDA due to Denton and Ashcroft [35] which 
retains many of the desirable features of the WDA without leading to a 
large numerical calculation. It uses a homogeneous effective density and 
can be used to study anisotropic particles [36]. 

This modified WDA (MWDA) considers the excess Helmholtz free 
energy to be derived from that of the liquid at a single effective density 
p: 

9F~WDA[p] = J dX p(X)fo(p) = NfoCfi) (22) 

This effective density is written as a complete contraction of the physical 
density over a weight function w: 

p = N- 1 J dX p(X) J dX' p(X')w(X,X' ;p) (23) 
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In the homogeneous limit, we recover the normalization condition (19), 
but now the weight function w is determined by (20) without any trouble 
as 

w(X X'. ) = - pf"(p) - c<zl(X,X' ;p) 
' ,p 2Vf'(p) 2~f'(p) (24) 

The form of the MWDA is much simpler than the WDA, but again, 
due to the feedback of p in the definition of the effective density, all the 
sum rules (21) are exactly satisfied. For the freezing of hard spheres, the 
MWDA gives results that are essentially identical to those obtained by 
the WDA with a large reduction in the complexity of the numerical cal
culations [35]. This agreement is due to the fact that in addition to having 
the same second-order density functional expansion and satisfying the 
same infinite set of sum rules, the MWDA and WDA are identical in two 
limits, the homogeneous limit and the limit of infinitely localized particles 
(delta functional distributions). 

Calculation of phase transitions using the MWDA follows a route sim
ilar to that for the RY theory; the main difference is that the WDA and 
MWDA are concerned with the Helmholtz free energy; one proceeds by 
thus minimizing 9F[p(X)] over p(X) subject to the constraint that J dX p(X) 
= p. This reduces the number of free parameters in the variation, which 
is desirable. The MWDA calculations require the two-point direct cor
relation function and also the excess free energy per particle of the liquid 
as a function of density. The latter requirement is simply obtained from 
calculation of the zero-momentum, zero-angular-momentum part of c<2>; 
from the definition of the direct correlations, this is essentially the inverse 
compressibility, which can be integrated to yield the pressure and free 
energy (see Section IV). 

In these calculations it is convenient to carry out the minimization in 
the canonical ensemble and then to calculate phase coexistence by com
puting the grand potential for the ordered phase and solving for when it 
equals the grand potential of the liquid at a chemical potential equal to 
that corresponding to the ordered phase. For reference, the relationship 
between the Helmholtz free energy 9F, the chemical potential f.L, and the 
grand potential W is 

a ~9F 
W = ~9F - ~f.LN = - V p2 

- -ap N 
(25) 

where p = NIV is the average density. We discuss in Section V some 
results of calculations for phase transitions of anisotropic particles using 
the RY and the MWDA theories. 
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C. Parametrization of Ordered Phases 

Having described approaches to construction of the free-energy func
tional, we now discuss the problem of parametrizing its functional ar
gument, the one-body density p(X). The one-body density is the order 
parameter in a density functional theory of phase transitions. One must 
suitably parametrize p(X) to obtain a tractable numerical calculation; the 
choice of parametrization must obviously be motivated by the structure 
of the ordered phases one is concerned with. 

A general expression for a real-valued p(X) in terms of complex-valued 
expansion coefficients aJ:t is 

p(X) = 2: 2: 2: al:r eik·r D;,n(6,<J>,x) (26) 
k 1=0 mn 

where k are a set of momenta suitable for describing the inhomogeneous 
state, al;t = (- l)n + m a:. "kr- n, the D;,n are the rotation matrices as dis
cussed by Gray and Gubbins [37), the summations over m and n are from 
-I. to I, and *denotes complex conjugation. Evidently, we can compute 
the aJ;t from a given p(X) using the orthogonality of the D's: 

21 + 1 f akin = -V- dX e-ik·rD:;In(6,<J>,x)p(X) {27) 

Our approach will be to parametrize p(X) in terms of some small set of 
variational parameters (four or five is a practical number of parameters). 
The local ideal gas term ;g;ict is generally easily computed directly; how
ever, it is useful to resolve pinto its components akin in order to perform 
the multiple integrals of the excess free energy. 

The two-point contribution to the excess free energy of the RY theory 
(14) and the MWDA effective density (23) involve integrals of the form 

y-t f dX dX' p(X)p(X')c(X,X') (28) 

where c is the pair DCF of the isotropic liquid and is invariant under 
translations and rotations of the coordinates. The pair DCF c can be 
expanded as 

c(Xt ,X2) = 2: 2: 2: (2lt + 1)(2/2 + l)(li/2/j m1m2m) 

where {1 1/ 2/j m 1 m2m) are Clebsch-Gordan coefficients, the Y1m is a 
spherical harmonic, and the angles e and <j> are those describing the vector 
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r 1 r2 • The c?,1;1. may be extracted from c(X1 ,X2 ) via 

_ I) = f d(cos e) d(cos el) d(cos ez) d<P d<P1 d<Pzdx1 dxz 
rz 641T4 (/Ilz/l 000) 

x DS~',(OJ ,<!>1 ,xl)DS~;(ez,Q>z,xz)Yfo(e,Q>)c(Xl ,Xz) 
(30) 

Using the decomposition of a plane wave into spherical harmonics, 
I 

eik.·r = 41T 2: 2: i],(kr) Yb,(k) Ytm(i-) (31) 
1=0 m= -I 

we can write (28) as 

2: 2: 2: al:l:n•a~2kliYim(k)(lJlz/l mlmzm)c?.1~'l(k) (32) 
kim lJmlnt lzmznz 

where the unit vector k denotes the angles corresponding to the vector 
k, r = I r I , k = I k I , and where 

c?.1;N k) = 41T(- i)' fo'"' dr r 2Nkr)c?.1;1(r) (33) 

It is often possible to make an approximation that simplifies the cal
culations. If we are studying an inhomogeneous state p(X) where particles 
are relatively localized in space, often it is a good approximation to de
couple the translational and orientational and distributions: 

(34) 

This is a good approximation for many states such as crystalline solids, 
where the particles are strongly localized to lattice sites, or for simple 
smectics, where the orientational distribution does not vary much be
tween the smectic layers. The benefits of this decoupling are large. The 
coefficients in (27) decouple: 

(35) 

and the ideal gas free energy (1 0) also decouples additively into contri
butions from the translational and orientational distributions [38]. We 
adopt the convention that when such a decoupling is used, the normali
zations will be I dX Ptr(X) = N, I dX Por(X) = V. 

We now discuss parametrization schemes suitable for various ordered 
phases. 

1. Positional Distribution for Crystalline Phases 
To characterize a crystalline phase, we need to specify the lattice, lattice 
constants, and information concerning the localization of particles to !at-
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tice sites. For many purposes, a one-particle distribution consisting of a 
lattice of Gaussian distributions is suitable. Even dense hard-core solids 
possess nearly Gaussian lattice-site distributions [1], and the form is con
venient for these calculations. Such a distribution might be written as 

Ptr(r) = Pt Ll'TT- 312a- 3 2: exp( -a- 2 (r - s]Zl (36) 
sET 

where Pt is the average density of the solid, Ll the volume per lattice site, 
a the localization length, and T the real-space lattice. This can be written 
in terms of Fourier components as 

Ptr(r) = p t L e- (o-klzJ
2 
eik·r 

kEU 

(37) 

where now U is the inverse lattice ofT. Distorted unit cells can easily be 
obtained by performing the transformation 

Ptr(r) ~ det M Ptr(Mr) 

r~Mr 

s~Ms 

k~M 1k 

(38) 

where M is a matrix that performs the desired transformation. We note 
that such a distortion does not affect the ideal gas free energy (10) since 
we can change integration variables back to the undistorted ones. 

2. Positional Distribution for Smectics 
We shall discuss smectic A and C phases, which are described in terms 
of a single mass density wave, which we will take along the z-axis. The 
positional distribution is invariant under translation in the xy-plane, and 
thus we write 

c 
Ptr(r) = Pt a1r 112 2: exp(- a- 2 (z - sc f] 

s 

= Pt L e-<TraklcJ2ez.rrikzlc 

k= -oo 

(39) 

which is useful in both the strongly localized (a~ c) and the delocalized 
(a P c) regimes. For the latter case the distribution reduces to 

[ 
21T7 J Ptr(r) = Pt 1 + b cos-; + 0(b 4

) (40) 

where the smectic order parameter b = e- (7ralcJ2. 
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3. Uniaxial Orientational Distribution 
For the nematic and smectic A phases, the orientational order is uniaxia 
with the director along the z-axis. The state p(X) is independent of th 
angles a and <1> in this case, and a suitable orientational distribution is 

Por(a) = exp(ao + azj..L2 + a4j..L4 + ···) (41 

where f..L = cos a, and where the normalization ao is chosen so that f d; 
Por(a) = V. Oriented crystal phases have strongly uniaxial orientation< 
distributions that are well approximated by such a distribution. Such 
distribution can of course be written as 

Por(a) = I - (42 
1=2,4,6,··· 

but the exponential form is useful for cases where the orientational 01 

dering becomes strong, as is the case in hard-core smectics or oriente• 
crystals. 

4. Tilted Orientational Distribution 
We note that for the smectic C, the director c makes a nonzero angle , 
with the normal to (or smectic planes). In this case this tilt will be du 
to a lack of symmetry of the molecule under rotation about the x-axi~ 
Without lack of generality, we suppose that cis in the xz-plane. In thi 
case a suitable orientational distribution is 

Por(a,<J>,x) = exp(ao + azf..L/ + a4f..Lc4 + ... ) exp(bt cos X (
43 

+ dt sin x + hz cos 2x + dz sin 2x + ··· 

Here f..Lc = sin a sin e cos <)> + cos a cos a is the dot product of the uni 
vector described by the angles e and <l> and the director axis. The x de 
pendence has been decoupled from that on a and <)>. We note that if th• 
molecule is symmetric under x-.. - x. the coefficients d 1 = d2 = · · · = 
0. 

5. Orientational Distribution for Crystalline Phases 
We close by noting that in any phase with translational symmetry, th• 
orientational distribution will be invariant under a set of orientationa 
symmetry operations that form a subgroup of the point group of the lattice 
For example, in the plastic solid phase of a system of hard ellipsoids, th• 
lattice is face-centered cubic, and thus is invariant under the cubic (oc 
tahedral) point group. The orientational distribution Por(6,<j>) should alsc 
be cubic invariant. 
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D. Onsager Theory of Isotropic-Nematic 
Phase Transition 

469 

An important requirement of any theory is that it must reproduce known 
exact results. How can we make contact with the Onsager theory of the 
I-N transition in a dilute gas of elongated, hard particles? The link be
tween the theories is straightforward and was first pointed out by Sluckin 
and Shukla [39]. 

The functional order parameter for a uniaxial nematic is of the form 

p(X) = pon(!J.) (44) 

where - 1 < 1-L < 1 is the cosine of the polar angle describing the molecular 
orientation. The density of the ordered phase is PN if we use the nor
malization 

I I dj.L PN 
- n(!J.) =-

-I 2 Po 
(45) 

The terms involving cc•J are of (s - l)th order in PN; thus we may ignore 
all but the one involving C(2). In this limit of low density, the pair direct 
correlation function reduces to its lowest-order (zeroth-order) graph, 
which is just the Mayer function f: 

C(2)(X,X' ;po) = f(X,X') = exp[- [3U(X,X')] - 1 (46) 

For hard-core interactions, f(X,X') is -I for forbidden configurations 
[i.e., I r - r' I< D(X,X')] and vanishes for all other configurations. Thus 
we rewrite (14) in the form 

Po - PN J1 dj.L A w = + -
2 

n(!J.) log n(~J.) 
Po -I (47) 

Pol + 
2

V dX dX' n(cos 6)n(cos 6') 
[r-r[<D(X,X') 

This functional for the grand potential can be transformed to the canonical 
ensemble via (9); we are interested in the case where the chemical po
tential per particle is the same in either phase, and also where Po = PN· 
We are led to the difference in Helmholtz free energies of the two phases, 

(48) 

Pol + 
2

V dX dX' n(cos 6)n(cos 6') 
[r-r'[<D(X,X') 
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where now n has the normalization f I_ 1 (d,.d2)n(f.L) = 1, which is the result 
due to Onsager [8,6]. 

E. Jsotropic-Nematic-Smectic Phase 
Transitions 

In this section the connection between the density functional and Landau 
theories of phase transitions is made explicit. We then describe the ap
plication of the theory to the transitions between the isotropic liquid, 
nematic, and smectic A phases [39-41]. Returning to the general case 
(26), we note that the functional order parameter is p(X) - p0 , where Po 
is the density of the isotropic phase. We introduce the dimensionless order 
parameters 

(49) 

The grand potential difference between the isotropic and ordered phases 
(14) can then be expanded in these order parameters as 

= 1 
11 W = 2: - 2: 2: 2: 2: br,~7'·· ·bJ::./;s Wk~).':':k~i",'~~:&'···ns(po) 

s=2 s! kt, .... ks li ..... ls rnt ..... ms n!, .... ns 

(50) 

where the w<sl's are given by 

[ J d cos e d <1> dx 1 1 
X fs S1r2 D,i"n,(e,<b,x)···D,;,snsCe,<t>,x) 

(51) 

-Po~-! J dXt···dXsc<sl(Xt, ... Xs;po) 

X Hk,·r, +···+k ·r·'D'' (8 -~. ) D' (8 "- )] e , s s m1n1 1 ,'+'I ,xi . . . ~tns s ,'fJs ,xs 

and where 

ds 
fs = -d [(1 + x) log(l + x) x]x~o xs 

W(2) can be obtained rather explicitly: 

(2) [< -l)m' +ni o,,,2om,, -m20n,, -m 
wk,~);h2nlm(po) = ok,,-k2 2/t + 1 

(52) 

- Po 2: Y,m(kt)Utl2lj mtm2m)c?,~;l(kt ;po)] 
lm 
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We note the explicit form of W(2) since it is the only W involving DCFs 
in the second-order R Y theory; a similar expression is required to compute 
the effective density in the MWDA theory. The second-order term also 
determines the stability limit of the isotropic phase, since the isotropic 
phase becomes unstable when an eigenvalue of W(2) crosses zero. At p0 

= 0, all eigenvalues of W(2) are positive. In the case of the instability 
toward the nematic, we consider only k 1,k2 = 0 and n 1 ,n2 ,m 1 ,m2 ,m = 
0; the Clebsch-Gordan coefficient causes W(2) to be explicitly diagonal: 

(Z)~ Ou' [ Woou (po) = 
21 

+ 
1 

1 - Po( 

Here the k1 are compressibilities associated with distortions of the system 
with zero momentum, but with nonzero angular momentum I; k0 is the 
compressibility kT dp/dp and k2 is the static Kerr constant [42]. These 
constants can also be written as 

(54) 

When one of these kt- 1 becomes zero, there is an instability to the nematic 
phase. 

For axially symmetric molecules and the uniaxial orientational sym
metry of the I-N-A phases, all of the components of c and p are zero 
except for those with m n = 0. In addition, if the molecules have 
inversion symmetry, only terms with l's even appear. For the I and N 
phases, only the k = 0 component appears; for smectic A, only k 
= 2Trnz!A for n = 0, :±: 1, :±: 2, ... need be considered, where 'A is the 
smectic wavelength. For the case where only n = -I, 0, 1 and angular 
momenta I = 0, 2 are included, a rather complete Landau theory can be 
developed, with all coefficients determined in terms of the direct corre
lations. Connections with specific mean-field theories have been dis
cussed by Sluckin and Shukla [39], Singh [ 43], and Lipkin and Ox toby 
[41]. 

IV. HOMOGENEOUS-PHASE liQUID STRUCTURE 

As we have seen in Section III a density functional theory for liquid 
crystals requires knowledge of static liquid structure. From a practical 
standpoint, this means knowledge of at least the two-point direct corre
lation function (DCF) of the dense isotropic phase over a range of densities 
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near the ordered phases. In principle this requires the solution, at least 
approximately, of a strongly interacting many-body problem and is a topic 
whose even partial treatment is totally beyond the scope of this section. 
Here we endeavor merely to give the reader an overview of what is known 
about the DCFs of isotropic liquids composed of anisotropic particles. 

Much attention has been paid to integral equations for the correlation 
functions, and in particular to the Ornstein-Zernike equation (12), which 
relates the pair distribution g to the DCF c. Approximate closures of this 
equation are of great interest, as they allow a nonperturbative solution 
of the problem of determining the correlation functions [44]. One such 
closure is the Percus-Yevick approximation, which is easily stated in the 
case of a hard-core potential: 

c(X,X') = 0, ir - r'l > D(X,X') (55) 

Once this approximation is made (which is reasonable due to the fact that 
it is known from simulations that the magnitude of c is much smaller 
outside the hard-core overlap region than inside) we can write the OZ 
equation in terms of a single continuous function T = g - c. This reduces 
the problem to the solution of a quadratic integral equation. (See Chapter 
4 for more on this topic.) 

We note that for dense fluids composed of particles interacting via 
spherically symmetric interactions, a good deal is known (10] about the 
static correlation functions. In particular, we are fortunate to possess a 
closed-form solution to the Percus-Yevick (PY) closure of the Ornstein
Zernike equation (12) for the case of hard spheres in three dimensions 
[45]. This is important because the solution is relatively simple in structure 
and leads to correlation functions and thermodynamics in good agreement 
with existing simulation data. The resulting DCF has been used success
fully to treat freezing of hard spheres [46,47] as well as freezing in systems 
with longer-range interactions (see Chapter 9). 

A. Density Expansions 

An important result is simply the density expansion for the pair DCF [48], 
c(X,X'). This expansion is shown graphically in Fig. 6, where a bond 
between vertices i andj represents the Mayer function f ij = e- uUJVkT -1, 
where v is the pair interaction potential. The form of this expansion is 
not dependent on the types of degrees of freedom or the dimension as 
long as aU of the interactions are additive pair potentials. We use the usual 
notation where filled vertices represent points that are integrated over all 
configurations and where each graph is multiplied by a factor p = N/V 
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Fig. 6 Density expansion for the direct correlation function c( l ,2). A bond be
tween vertices i and j represents a term exp[- v(i J)l kT] - 1, where v is the pair 
interaction potential. Filled vertices are integrated over all configurations, and 
each graph is multiplied by a factor p for each filled vertex. 

for each filled vertex. The open vertices are of course the external points 
corresponding to the two configuration arguments of the two-point DCF. 

For hard-core potentials the bonds are -1 if the particles at the vertices 
overlap, and are 0 otherwise. We see that the first term (of order 1) merely 
contributes a jump from 0 to - 1 when the two external points begin to 
overlap. The second term also is zero when the external points do not 
overlap, but when they do, the contribution (of order p) is obtained by 
integrating over all mutually overlapping configurations of a third particle. 
This results in a negative contribution that, for spheres, grows in mag
nitude as the external points are brought together. These two terms allow 
us to understand the behavior of integral equation and simulation results 
for the DCF for hard spheres; the DCF is nearly zero if the two spheres 
do not overlap, there is a negative jump at contact, and then as the spheres 
increase their overlap, the DCF monotonically becomes more negative. 
The DCF for overlapping configurations becomes steadily more negative 
as the density is increased. 

For anisotropic particles we must consider the dependence of the DCF 
on the orientations as well as the positions of the two external points. 
The zero-order term in the expansion again is simply - 1 or 0 for over
lapping or nonoverlapping configurations, respectively. The second term 
is now more complicated. Suppose that the particles are extremely elon
gated (e.g., cylinders with LID = 10). If the two external points have 
parallel orientations, we find that the volume of the overlap region in
creases as the particles are brought together. This is approximately pro
portional to the contribution of the first-order graph since for most ori
entations of the integrated particle, its long axis is not parallel to the 
external points. Conversely, for perpendicular configurations, the volume 
of the region of overlap of the external particles increases only while one 
particle is "pushing through" the other. Thus the overlap increases to 
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some maximum value, and then is roughly constant for all configurations 
beyond the point where one cylinder has pushed completely through the 
other. The value of the graph is again proportional to the overlap volume 
since most orientations of the integrated particle are out of the plane of 
the external points. 

This argument suggests that at least for prolate particles, the behavior 
of the two-point DCF at low densities will be quite different for parallel 
and antiparallel configurations of the arguments. We note that precisely 
the behavior described above is observed in a simple, exactly soluble one
dimensional model for a fluid of anisotropic hard cores [16]. This model 
consists of rectangular hard cores constrained to have one of their body 
axes on a line, as indicated in Fig. 7; the cores can thus be translated 
along the line and can take on either of two orientations. The model is 
solved by noting that the graphs that are omitted from the expansion of 

(a) --j]---{]-
(b)~ 

(c) 

(d)--P-
(e) Fr---
(f) ~f---

Fig. 7 Orientational configurations and different regimes of DCF behavior. (a), 
(b) Parallel configurations. DCF jumps from zero at core contact and becomes 
more negative as the overlap of the cores increases (as particle separation de
creases). (c)-(t) Perpendicular configuration. (c) Hard-core contact. DCF jumps 
from zero to a finite negative value. (d) Partial overlap. DCF becomes steadily 
more negative as overlap increases. (e) Maximum overlap configuration. All par
ticle separations smaller than this [e.g., (t)J have the same direct correlation. 
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the correlation functions by the PY approximation all vanish; the solution 
to the PY equation is therefore the exact solution. 

The result is that for all densities (there are, of course, no phase tran
sitions) the two-point DCF jumps from zero to some negative constant 
at hard-core contact, and for the parallel cases (Fig. 7a and b) becomes 
steadily more negative as the particle centers are brought together. For 
the perpendicular case, there is again a jump at contact (Fig. 7c) and an 
initial increase in the strength of the DCF as the overlap increases (Fig. 
7d). At the point where the overlap stops increasing (Fig. 7e), the DCF 
stops increasing in strength also; it is constant for all smaller particle 
separations (as in Fig. 7t). For all nonoverlapping configurations, the DCF 
is zero. This result can be extended to certain cases involving continuous 
orientational degrees of freedom [I6], and the results are similar. 

This is interesting as it verifies the argument above for the behavior 
of the DCF for a one-dimensional case; we note that for strongly prolate 
particles, the arguments for the behavior of the first-order term presented 
above become more believable in high dimensions (since there are more 
orientations out of the plane formed by the long axes of the two external 
particles) and can be applied to the higher-order terms in the DCF density 
expansion. These sorts of results might be useful for studying problems 
such as the Onsager transition, which can be pushed to arbitrarily low 
densities by elongating the particles. However, apart from cases that per
mit exact summations, the density expansion cannot adequately address 
the problem of liquid structure for a dense fluid. 

B. Geometrical Approximations 

A heuristic approach to the problem of obtaining liquid structure for an
isotropic hard cores is to attempt to define scaling parameters in order 
to find a mapping to a hard-sphere problem. One such prescription was 
proposed by Pynn and later studied by Wulf [49]; on the basis of the 
agreement with the results of a variational study of the PY -OZ equation, 
it was proposed that the hard-sphere DCF, with the sphere diameter D 
replaced by the orientation-dependent distance-of-closest approach 
D(X,X'), and the sphere packing fraction TJ = 7rD 3p/6 replaced by the 
packing fraction TJ = pv, where v is the molecular volume, would be a 
good approximate DCF for anisotropic particles. Pynn's original calcu
lations were done with an approximate D(X,X') for ellipsoids of revo
lution due to Berne and Pechukas [50]: 

, _ [ (r·e)2 + (r·e? - 2x(r·e)(r·e')(e·e')J -
112 

D(X,X ) - 2B I - X I 2 ( •• ,)2 (56) - x e·e 
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where x = (A 2 - B 2 )/(A 2 + B2
) is a parameter describing the anisotropy 

of the ellipsoids of minor axes 2A and rotational symmetry axis 2B. Pynn' s 
calculations agree well with this form for the case that he studied, AlB 
= 1.4. 

The zeroth-order term of the DCF density expansion is, of course, 
given exactly by this ansatz. However, this approximation does not have 
the property (see Section IV.A) of the DCF being different in behavior 
for parallel and perpendicular configurations, as the scaling makes no 
reference to the overlap volume. Nevertheless, if one computes the pres
sure as a function of density by integrating the compressibility, one finds 
good agreement with Monte Carlo results for relatively high densities ( TJ 
= 0.4) even up to an anisotropy of AlB = 3 [40]. The pressure of the 
isotropic liquid obtained from the Pynn-Wulf DCF as a function of pack
ing fraction TJ = pv can be obtained in closed form: 

4TJ - 2TJ2 + TJ3 
fjPv = TJ + (1 _ TJ)3 F(x) 

The excess free energy per particle can also be obtained: 

f3f = G (I - TJ)- 2 
- ~ - log(! - TJ)]F(x) 

where v = 4-rrA 2 B/3 is the molecular volume, and where 

F(x) = ~ [ 1 + x(lsi~ ~;~n J 

' (57) 

(58) 

Rosenfeld has discussed the behavior of hard-particle DCFs [51] and 
has recently proposed a scaled-particle theory for hard-core fluids [52}. 
The latter work attempts to construct an approximate DCF from the fun
damental geometric measures needed to describe higher-order terms in 
the density expansion. Unfortunately, there has not been a comparison 
of the results of this method to simulation data. 

C. Numerical Solution of Closures of the OZ 
Equation 

No analytical solutions exist for any of the commonly studied closures 
of the Ornstein-Zernike equation (12) for the case of anisotropic hard 
cores, but increasing computational speed has made possible the numer
ical solution of these nonlinear integral equations. We refer the reader to 
Chapter 5 for more details on the integral equation approach to dense 
liquid structure; here we merely survey the current results and discuss 
their implications. 
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The first efforts to solve such problems seem to be those of Chen and 
Steele [53], who studied the hard-core PY equation. The quadratic non
linearity present in this equation greatly simplifies the problem and al
lowed some information to be obtained concerning the case of hard dumb
bells. Low densities and low anisotropies (center-to-center distances of 
0.3 and 0.6 sphere diameters) were studied. Spherical harmonics of an
gular momenta larger than l = 2 were ignored: reasonable agreement was 
obtained, however, with both computer simulations and virial expansion 
results. 

A more general prescription for solving nonlinear integral equations 
for liquid structure of anisotropic particles was presented by Lado [54], 
who applied his technique to the dumbbell problem. In this work, the 
reference-hypemetted-chain closure was used, with angular momenta up 
to l = 4. Lado investigated center-to-center distances of 0.2, 0.4, 0.6, and 
0.8, at densities pd3 = 0.2, 0.4, 0.6, and 0.8, where d is the diameter of 
a sphere with the same volume as the hard dumbbell. Lado found his 
results for thermodynamical quantities as well as the pair distribution to 
be in fairly good agreement with MC results. 

A later paper by Lado [55] applied the technique to solve the PY equa
tion for dumbbells. In this work, a comparison was made of the resulting 
DCF with the Pynn-Wulf approximation, and surprisingly good agree
ment was found for center-to-center distance-to-sphere diameter ratios 
up to 0.6 and densities up to pd3 = 0.8. This work, combined with the 
original papers of Pynn [49], tells us the geometrical approximations dis
cussed in Section IV .B are reasonable for dense fluids of prolate particles 
with aspect ratios less than 1.5 or so. 

Unfortunately, from the review of simulation results in Section II, we 
are led to conclude that transitions to nematic or smectic liquid crystals 
occur for dense fluids composed of particles with aspect ratios larger than 
2, precisely where the techniques mentioned above begin to break down. 
In the last few years, some progress has been made toward obtaining 
liquid structure for highly anisotropic hard cores. Perera, Kusalik, and 
Patey have solved the Perc us-Yevick and hypemetted-chain closures for 
the hard ellipsoid [42] fluid; Perera and Patey went on to study the hard 
spherocylinder [56] fluid similarly. Spherical harmonic expansions up to 
angular momentum I = 8 were used. 

These expansions appear to converge well even for aspect ratios of 5 
at densities (for ellipsoids with symmetry axis length 2A and width 2B) 
of8pAB2 = 0.45. We comment that the PY closure generally works better 
than the HNC for the case of hard spheres. What is found for prolate 
ellipsoids is that for anisotropies up to AlB = 3, the equation of state 
obtained from the PY compressibility is in somewhat better agreement 



478 Marko 

with Monte Carlo data than either the virial PY equation of state or either 
type of equation of state obtained from the HNC equation. However, it 
seems that the orientation-integration radial distribution given by the 
HNC equation is in better agreement with the MC data. In particular, we 
note that the inverse Kerr constant obtained from the HNC solutions is 
more reasonable than that obtained from the PY solutions at densities 
approaching the isotropic-nematic transition. One expects the inverse 
Kerr constant to go to zero as the instability toward the nematic is ap
proached (see Section III); the HNC (extrapolated) data appear to do this, 
while the PY data do not. In Fig. 8 we show the inverse Kerr constant 
for the PY and HNC solutions as a function of density for AlB = 3, and 
we have indicated the location of the isotropic-nematic transition ob
served in MC simulations. We also display the Pynn-Wulf result for the 
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Fig. 8 Inverse Kerr constant for prolate hard ellipsoids of revolution of aspect 
ratio AlB = 3, as a function of density pAB2

• Results from numerical solution of 
the HNC-OZ equation (filled points), numerical solution of the PY-OZ equation 
(dashed line), along with the result obtained from the Pynn-Wulf approximation 
(solid line). The isotropic-nematic transition density for AlB = 3 obtained from 
MC simulation is indicated on the density axis with an open box. (Adapted from 
Ref. 42.) 
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inverse Kerr constant; we note that like the PY result, it does not tend 
to zero at a reasonable density for the AlB = 3 case. 

Perera and Patey's results for the spherocylinder case are quite similar, 
leading to the conclusion that although the PY compressibility equation 
of state is more accurate than HNC or PY virial results for relatively low 
anisotropies (LID = 1), the PY virial, and HNC compressibility results 
agree better at higher anisotropies (up to LID = 5 was studied). The larger 
volume of data available for spherocylinders allowed a better comparison 
of the correlation functions; it seems that the HNC results are in better 
agreement with the MC data. Again, the inverse Kerr constant given by 
the HNC solution is much more reasonable (again tending to zero near 
the·known isotropic-nematic transitions) than the PY result. 

A study of the parallel spherocylinder fluid was undertaken by Caillol 
and Weis [57], again comparing the HNC and PY equations. In this case 
it was found that the amplitude of the first peak of the HNC structure 
factor (along the axis of the spherocylinder) tended to diverge as the 
density where the transition to the smectic was observed in MC simu
lations. In the PY case, no such divergence was observed. 

The DCF data obtained from these numerical studies is rarely presented 
as a function of radial separation for various orientations. However, this 
has been done by Lago and Sevilla [58], who studied the PY closure for 
spherocylinders with LID = I for packing fractions pv up to 0.39. (We 
note the agreement between the HNC and PY correlation functions at 
these densities in the study of Perera and Patey [56] for the case LID = 
1.) The most striking feature of these results is the apparent dependence 
of the DCF on the overlap volume. To quote, "the most outstanding 
feature is seen in the T orientation, where a large plateau is noticeable 
at higher densities" [58]. For parallel particle orientations, the DCF de
creases to a much more negative value as the particle separation is re
duced. This effect is reminiscent of the plateau in the DCF discussed in 
Section IV .A for configurations of prolate cores such that one punches 
through the other as the radial separation is decreased. It would be in
teresting to see similar plots of the real-space dependence of the DCF for 
the HNC and PY results discussed previously. 

The preliminary conclusion is that although the PY approximation gives 
good thermodynamics and good liquid structure for weakly anisotropic 
prolate hard cores (aspect ratio < 2), for the more anisotropic particles 
likely to form nematics and smectics (aspect ratios of 3 or larger), the 
HNC equation appears to be preferable. In particular, the behavior of the 
inverse Kerr constant appears to be a useful way of examining the be
havior of the anisotropic part of the liquid structure. The inverse Kerr 
constant is the I = 2 analog of the l = 0 part of the zero-momentum 
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component of the DCF, the inverse compressibility, which has long been 
used as a guide for determining the suitability of integral equations for 
liquid structure. What is required is a way of systematically improving 
approximate integral equations for structure of dense liquids, which is an 
old, unsolved problem. 

V. DENSITY FUNCTIONAl STUDIES OF liQUID
CRYSTAl PHASE TRANSITIONS 

The following survey of recent density functional results obtained for 
various sorts of phase transitions is not complete, due to the volume of 
work that has been published on this topic in the past few years. It seems 
that the first application of the modern formulation of the density func
tional approach to a liquid-crystal phase transition was the study of the 
isotropic-nematic phase transition by Sluckin and Shukla [30]. As men
tioned in Section III.D, this study developed the grand potential as a 
functional of the one-body density. An order-parameter theory was ob
tained by expanding the one-body density p(S) in Legendre polynomials, 
which allows contact to be made with various types of theories of the I
N transition (i.e., Maier-Saupe, Onsager, de Gennes). Similar ideas were 
presented by Singh [43]. Lipkin and Oxtoby [41], who applied the density 
functional expansion to isotropic-nematic-smectic A phase transitions, 
making contact with the theory of McMillan. 

A. Isotropic-Nematic Transition 

Although the early studies emphasized that one could construct a mean
field theory for transitions to mesophases from microscopic information, 
no explicit calculation for a specific molecular model was carried out until 
Singh and Singh studied the isotropic-nematic transition in the hard el
lipsoid system [40]. The one-body density was again expanded in Le
gendre polynomials as discussed in Section III. C. The Pynn-Wulf DCF 
(Section IV .B) was used, and all higher-order direct correlation functions 
were ignored (RY theory). At large anisotropies, the isotropic-nematic 
transition densities obtained from this calculation qualitatively agree with 
the simulation results of Frenkel et al. [21], although the density functional 
theory predicts the transition at densities 40% below the simulation result 
for aspect ratios of 2. 75 and 3. This is presumably due to the inaccuracy 
of the Pynn-Wulf DCF (see Section IV). Singh and Singh also noted that 
their choice of DCF leads to a density-functional theory that is invariant 
under the transformation AlB~ BIA, AB 2 ~ li(AB 2

); this is an approx-
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imate symmetry plainly apparent in the MC phase diagram [21] (see Fig. 
3). This calculation has been studied by other authors; similar results have 
been obtained [38,59-61]. 

The hard-ellipsoid nematic was also considered by Baus et al. [33], 
who considered an exact expression of the difference between the excess 
Helmholtz free energy of states with one-body densities p(X) and p0 : 

J32i'ex[P] - J32i'ex[Po] = - J dX J dX' Ll dA.(l - A.) 
(59) 

x c<2l(X,X' ;[p,J)[p(X) - po][p(X') - Po] 

where pr..(X) = p0 + A.(p(X) - Po). Although formally exact, this expres
sion requires the pair DCF of the inhomogeneous system; Baus et al. 
propose an ansatz for this object. The resulting theory is equivalent to 
the Onsager theory in the limit of high anisotropy and also possesses the 
AlB~ BIA symmetry mentioned above. For less extreme anisotropies, 
the transition properties are in good agreement with the MC results. 

More recently, computations have been carried out using liquid struc
ture data obtained from the solution of nonlinear integral equations (see 
Section IV.C). As described previously, it seems that the HNC equation 
is most suited to the calculation of liquid structure of prolate hard cores. 
Perera, Patey, and Weis have applied solutions to the HNC equation to 
the RY theory of the isotropic-nematic transition of hard ellipsoids and 
hard spherocylinders [62]; they find that the transition densities are some
what below those observed in MC simulations, but in much better agree
ment than those obtained using the Pynn-Wulf DCF. 

Marko and Curtin have also carried out similar calculations [36] using 
the MWDA and RY theories and have obtained remarkably similar results 
from the two theories. The MWDA theory predicts slightly higher tran
sition densities and slightly less sharp orientational distributions, but the 
differences are much less than those encountered in the comparison of 
MWDA and RY calculations of freezing [19]. This suggests that the higher
order DCF contributions are small enough to be ignored in the case of 
the isotropic-nematic transition. 

In Table 1 are listed the properties of the coexisting isotropic and ne
matic phases of hard ellipsoids of various anisotropies. Results from a 
variety of calculations, including simulations, are listed. The orientational 
components of the nematic phase listed in the table are defined as (P1) = 
PN -t I dX p(X)P1(cos 8), where Pt are Legendre polynomials, PN is the 
density of the nematic, and 8 is the angle between the nematic director 
and the symmetry axis of the ellipsoids. 
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Table1 Properties of Coexisting Isotropic and Nematic Phases of Hard Ellipsoid 
Liquid" 

AlB PI PN f3Pv f3J.L (Pz> (P4> Calc. 

1/3 0.952 0.972 17.47 24.03 MC [21] 
0.590 0.630 0.547 0.197 RY [40] 
0.901 0.925 14.82 22.3 0.561 DF [33] 
0.790 0.820 0.638 0.350 RY [62] 

1/2.75 1.040 1.066 25.69 41.60 MC [21] 
0.628 0.663 0.532 0.186 RY [40] 
0.957 0.978 18.37 25.7 0.548 DF [33] 

2.75 1.072 1.089 30.00 35.68 MC [21] 
0.628 0.663 0.532 0.186 RY [40] 
0.957 0.978 18.37 25.7 0.548 DF [33] 

3 0.969 0.988 18.69 25.15 MC [21] 
0.590 0.630 0.547 0.197 RY [40] 
0.901 0.925 14.82 22.3 0.561 DF [33] 
0.693 0.721 0.657 0.358 RY [62] 
0.842 0.850 11.14 17.10 0.480 0.158 RY [36] 
0.843 0.875 11.21 17.18 0.451 0.139 MWDA [36] 

5 0.613 0.654 5.31 12.2 0.64 DF [33] 
0.562 0.602 0.649 0.356 RY [62] 
0.599 0.615 4.94 10.5 0.500 0.172 RY [36] 
0.602 0.639 5.02 10.7 0.476 0.160 MWDA [36] 

"The symmetry axis is of length 2A, the other axes are of length 2B, densities are in units 
of (8AB 2) I , and the molecular volume is v 4'1TAB 2/3. Listed are the densities of the 
isotropic and nematic phases at coexistence, the pressure P, and the chemical potential J.l· 
The I =2 and I 4 components of the orientational distribution are defined in the text. The 
results from Monte Carlo (MC) simulation, Ramakrishnan-Yusouff (RY) and MWDA den-
sity functional theories, and other density functional (DF) formulations are listed. 

B. Crystallization of Weakly Anisotropic 
Particles 

The freezing of anisotropic particles into orientationally ordered or dis
ordered states with broken translational symmetry is a familiar phenom
enon and can be studied using the density functional approach. The first 
such calculation was that of Singh and Singh [40], who studied the iso
tropic-plastic freezing transition for hard ellipsoids with aspect ratios up 
to AlB = 2.25. Unfortunately, there are errors in their calculations that 
qualitatively change the results. 

This transition was correctly treated by Marko [60,38] and Smithline 
et al. [63]. Both groups used the RY theory and the Pynn-Wulf DCF with 
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the D(X,X') due to Berne and Pechukas [50] known to be accurate for 
low anisotropies, and both used a translational distribution that was a sum 
of Gaussian distributions. The main difference between the two calcu
lations seems to be that Smithline et al. used a one-body density con
strained to have one molecule per lattice site, while Marko carried out 
an unrestricted minimization. In any case, the two sets of results are quite 
similar. 

In opposition to the computations of Singh and Singh, it was found 
that the isotropic-face-centered-cubic (fcc) plastic transition density in
creased (in units of inverse molecular volume) as anisotropy AlB in
creased, in agreement with the MC result [21] (see Fig. 3 and Section 
II.C). However, it was also found by both groups that the coexistence 
density increased rapidly near AlB = 1.1. No stable plastic crystal states 
were found beyond this point. 

Marko and Curtin have carried out MWDA calculations for the 1-P 
ellipsoid transition and have found that as in the freezing of spherical 
particles [19,35], the MWDA (with the Pynn-Wulf DCF) leads to a dou
bling of the localizations (widths of the Gaussian distributions), but other
wise, the MWDA results are close to those obtained via the RY theory. 
In particular, an upturn in the transition density near AlB = l.l is seen 
in the MWDA calculations, suggesting that the inclusion of higher-order 
DCF contributions would not change this result. The same effect was 
seen in the freezing of hard dumbbells [63]; in this calculation, Smithline 
et al. used the approximate DCF due to Pynn [49]. 

Singh et al. [59] have carried out essentially the same calculations but 
with a DCF obtained by numerical solution of the PY -OZ equation. They 
report that the orientationally disordered fcc plastic phase of hard ellip
soids is stable from AlB = 1 to AlB = 1.25, which is the range in which 
this phase is seen in MC simulations [21]. They have studied hard dumb
bells using the same approach; the plastic phase is observed for aniso
tropies LID up to 1.26. They remark that "the location of coexistence 
parameters depends sensitively on the accuracy of the harmonics of the 
direct correlation function" [59]. This last calculation is in the best agree
ment with the simulation results of all of the density functional calcula
tions, which is encouraging since it incorporates the most realistic liquid 
structure data. As anisotropy increases, the 1-P freezing density in this 
calculation becomes rather large compared to the simulation results, but 
this is rather a minor defect compared to the lack of stability of the P 
phase predicted by the calculations that use the Pynn-Wulf DCF. 

In none of these calculations has the case of orientational distributions 
with the (cubic) symmetry of the lattice been studied. It is possible that 
cubic anisotropy of the one-body orientational distribution may play an 
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important role in reducing the free energy of the plastic phase. This effect 
must become more important as AlB increases, and in particular in the 
vicinity of the 1-P-S coexistence point. In Table 2 are listed properties 
of the coexisting liquid and plastic phases of hard ellipsoids obtained from 
the calculations discussed above. 

Smithline et al. [63] have searched for orientationally aligned crystal 
phases of dumbbells and ellipsoids, but they have restricted their search 
to cubic and hexagonal close-packed lattices. The only study to date of 
an oriented tetragonal crystal was carried out by Marko [38], who found 
that for hard ellipsoids of aspect ratio AlB> 1.05, the tetragonal oriented 
solid had a lower free energy value than that of the fcc plastic. The Pynn
Wulf DCF was used in an RY calculation; a triple-point phase diagram 
was found with a weakly first-order plastic-solid phase transition at higher 
densities than the first-order liquid-plastic transition. Although the to
pology of the phase diagram is in agreement with simulation results, the 
triple point is seen in the MC at AlB = 1.25. The ratio of lattice constants 
(the distortion of the lattice away from cubic) was found to be nearly AI 
B, reflecting the fact that the solid is a close-packed lattice of ellipsoidal 
hard cores. Unfortunately, the minima found were boundary minima, as 

Table 2 Properties of Coexisting Isotropic and Plastic Crystal Phases of Hard 
Ellipsoid Liquida 

AlB PI PP (3Pv (jjJ. u/2B Calc. 

0.94 1.04 11.7 16.6 0.11 MC [19] 
0.946 1.052 12.81 17.56 0.042 RY [36] 
0.877 1.019 9.263 13.02 0.095 MWDA [36] 

1.050 0.961 1.057 13.77 18.57 0.044 RY [36] 
0.924 1.027 11.56 15.58 0.087 MWDA [36] 
0.949 1.052 0.0436 RY [59] 

1.060 0.990 1.146 0.0477 RY [63] 
1.095 1.050 1.168 0.0446 RY [63] 
1.100 1.028 1.097 19.14 23.98 0.045 RY [36] 

1.041 1.076 20.40 24.55 0.064 MWDA [36] 
0.983 1.056 0.0498 RY [59] 

1.250 0.983 1.039 14.34 18.44 MC [21] 
1.030 1.078 0.0585 RY [59] 

111.250 0.998 1.060 15.51 19.54 MC [21] 

a Symbols are as in Table I. Listed are the densities of the isotropic and plastic phases at 
coexistence, the pressure P, the chemical potential f.l., and the localization parameter cr. 
Results from Monte Carlo (MC) simulation and from Ramakrishnan-Yusouff (RY) and 
MWDA density functional theories are listed. 



liquid Crystals 485 

only the orientational I 2 Legendre amplitude was used. It would be 
of interest to carry out RY and MWDA calculations of this system, using 
PY-OZ liquid structure data and using an orientational distribution ca
pable of producing sharper peaks. 

C. Smectic liquid Crystals 

The treatment of transitions to smectic phases has been a recent appli
cation of density functional theories. Most transitions to smectics are 
observed to occur from a strongly orientationally ordered nematic phase 
rather than from the disordered isotropic phase. Thus use of the RY theory 
is questionable (the isotropic phase is probably not metastable at N-A 
transitions, hence an isotropic phase DCF is probably not well defined). 
One might still use an RY theory if direct correlations of the nematic 
phase were employed instead of those of the isotropic liquid. To date, 
this approach has not been used. 

Historically, the first simulations of hard cores that indicated stable 
smectic phases were done without orientational fluctuations; particles 
were constrained to be parallel (23]. This idealization not only facilitates 
simulations, but also simplifies the density functional theory. It should 
be noted that the partition functions of aligned hard cylinders of different 
aspect ratios LID can be mapped onto one another by anisotropically 
scaling space; in terms of the packing fraction (or equivalently, the density 
in units of the close-packing density), the phase diagram is the same for 
all LID. This property obviously does not hold for spherocylinders or for 
nonaligned cylinders. 

For parallel hard particles, the disordered phase is a perfectly aligned 
nematic, and the direct correlation function, although anisotropic, is only 
a function of relative position. Mulder carried out a density functional 
calculation for aligned hard cylinders (64], using a density expansion to 
approximate the excess free energy. An interesting feature of his calcu
lation is the factorization of the diagrams into d = 2 hard disk and d = 

1 hard rod contributions. Mulder finds that the transition is of second 
order (mean-field critical behavior) and that the critical density and smec
tic wavelength tend toward values in agreement with MC simulations, as 
higher-order density contributions are added to the excess free energy. 
In this system, the maximum density is Pep = 21(\13 LD 2

). The critical 
density was found to be p*/pcp = 0.41, and the smectic wavelength at the 
transition is A *IL = 1.34 (MC results of p*/pcp = 0.39 and A *IL = 1.27 
are quoted, which are results similar to those obtained from aligned spher
ocylinders, which have aN-A transition at about p/pcp = 0.45 to 0.5). 

Aligned hard spherocylinders were also studied by Somoza and Tar-
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azona [34]. They note the success of a method of Lee [65], who approx
imated the excess free energy of a nematic by rescaling the free energy 
of a hard-sphere system at the same packing fraction by the ratio of the 
second virial coefficients of the two systems. This approach obviously 
generates the correct second virial coefficient and appears to lead to an 
accurate expression for the free energy of the nematic. Somoza and Tar
azona adopt a similar approach, but use as their reference not hard spheres 
but parallel hard ellipsoids. The geometry of the equivalent ellipsoids is 
obtained by matching the ratios of the moments of inertia of the ellipsoids 
and the hard particles under study. The inhomogeneous system excess 
free energy is then written as an integral of the free energy of parallel 
hard ellipsoids (known as well as that of hard spheres), scaled by a ratio 
of integrals of Mayer functions chosen to give the correct second virial 
coefficient in the homogeneous limit. As in weighted density calculations, 
the reference system free energy is evaluated at an effective density, set 
by a relation similar to (18). The authors choose to use an etiective density 
that is only a function of position; the weight function w is set by scaling 
a weight function applied by the authors to hard-sphere freezing. 

This approach was applied to theN-A transition of parallel hard spher
ocylinders, and a phase diagram in good agreement with computer simu-

Table 3 Nernatic-Srnectic A transition of Parallel Hard Spherocylindersa 

LID P.v-Aiacp J3Pv 13J.L A.IL Calc. 

0.5 0.56 3.56 9.98 3.0 MC [23] 
0.54-0.60 3.0-3.2 DF [34] 

0.50 2.62 7.29 2.2 MC [23] 
0.46-0.52 2.2 DF [34] 

2 0.48 2.31 5.85 1.7 MC [23] 
0.41-0.48 1.7 DF [34] 

3 0.47 2.22 5.27 1.5 MC [23] 
0.40-0.46 1.6 DF [34] 

5 0.46 2.11 4.56 1.4 MC [23] 
0.40-0.46 1.5-1.6 DF [34] 

oo (cylinders) 0.39 1.50 5.42 1.3 MC [23] 
0.39-0.46 1.3-1.4 DF [34] 

0.41 1.34 DF [64] 

a The cylinder length is L, the hemispherical caps are of diameter D, densities are in units 
of the close-packing density Pep. and the molecul~r volumes is v = TrD 2(L/4 + D/6). Listed 
is the nematic-smectic transition density, the pressure P, the chemical potential fl., and the 
smectic wavelength A.. Results from Monte Carlo (MC) simulations and from density func
tional (DF) theories are listed. In the limit LID__,. oo, parallel hard cylinders are obtained. 



Liquid Crystals 487 

lations [23] was obtained. It was demonstrated that for a variety of dif
ferent choices of the effective density, no qualitative change in the theory 
occurred. All of the results indicate an abrupt increase in the transition 
density at low aspect ratios below LID = 2, and a critical density of 
p*/pcp = 0.4 to 0.5 for larger aspect ratios. The smectic wavelength is 
seen to be only weakly affected by difierent effective densities and is in 
good agreement with the MC results [23]. The properties of the N-A 
transition in hard cylinder systems is indicated in Table 3; density func-. 
tional and MC results are listed. 

In the same work, the phase diagram of parallel cylinders with oblique 
ends was also calculated. Smectic C and biaxial nematic phases as well 
as smectic A and the disordered nematic are shown in Fig. 9. For slightly 
oblique cylinders, theN-A transition is shifted to somewhat higher pack
ing fractions, while for more oblique cylinders, a first-order transition 
from the nematic to smectic C is seen. For still more oblique cylinders, 
the transition to C is precluded by a second-order transition to a biaxial 
nematic phase. Unfortunately, no simulation results are available for this 
system. 

Poniewierski and Holyst applied a weighted density theory to the prob
lem of the I-N-A transitions in hard spherocylinders with orientational 
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Fig. 9 Phase diagram for parallel oblique cylinders obtained by Somoza and 
Tarazona [34]. The density is measured in units of the close-packing density, and 
the skew is expressed as D tan a.IL, for diameter D, length L, and skew angle a. 
(see Fig. le). For no skew, theN-A transition is seen, but for large enough skew, 
there is a transition to a tilted smectic C. If the molecules are skewed enough, a 
biaxial nematic ("nematic B") appears between Nand smectic C. Second-order 
transitions are indicated with dashed lines, first-order with solid lines. The circle 
indicates the tricritical point along the A-C transition line. (Adapted from Ref. 
34.) 
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degrees of freedom [32]. The effective density use in the free energy per 
particle is obtained using a weighting similar to (18); the weight function 
w is chosen so that the virial expansion of the excess free energy is exact 
to second order in density; the Onsager limit is thus recovered from the 
theory, so that at low density and low anisotropy (LID._.... 0) the theory 
reduces to a WDA theory due to Tarazona for hard spheres. The authors 
comment, however, that at low LID their theory may not be valid, as it 
predicts hard-sphere crystallization at too low a density. In this theory 
there is an I-N transition at low densities (p/pcp = 0.52 at LID = 3 drop
ping to plpcp = 0.34 by LID = 10) of first order. At higher densities, a 
line of N-A transitions is reported, which are first order for LID < 3.3 
and are second order for LID> 3.3. TheN-A transition packing fraction 
rises from plpcp = 0.57 at LID = 3 to plpcp = 0.67 near LID = 10. The 
I-N and N-A coexistence regions meet at (presumably a triple point) 
near LID = 2.5. The smectic wavelength is between t../L = 1.3 and 1.42 
over the range 2 < LID < 10. 

Somoza and Tarazona have recently applied their approach to the hard 
sphereocylinder system with unconstrained orientational degrees of free
dom [66]. In this calculation the decoupling p(X) = p(r)p(e) was used, 
and again the theory reduces to that of Lee [65] for the isotropic and 
nematic phases. TheN-A line is found to be second order only for large 
aspect ratios (LID> 50); the transition is first order for shorter molecules. 
The N-A and I-N coexistence regions meet near LID 3 at a I-N-A 

Table 4 Nematic-Smectic A Transition of Hard Spherocylindersa 

LID p/pcp PN/Pcp PAfPcp Psi Pep AIL (Pz) Calc. 

0.695 0.792 MC/MD [25] 
3 0.574 0.688 MC/MD [25] 

0.55 0.55 1.40 0.69 DF [32] 
0.58 0.63 1.37 DF [66] 

4 0.57 0.57 1.40 0.81 DF [32] 
0.57 0.61 1.31 DF [66] 

5 0.58 0.58 1.34 0.90 MC/MD [24] 
0.58 0.58 1.40 0.88 DF [32] 
0.56 0.61 1.26 0.91 DF [66] 

a Units are as in Table 3. Listed are the densities of the coexisting nematic and smectic 
phases (pN and PAl· In the cases of simulations with LID = I, 3, and 4, theN-A transition 
is preempted by the isotropic-solid freezing transition; we list the coexisting isotropic and 
solid densities p1 and Ps for these cases. Also tabulated are the smectic wavelength A. and 
the quadrupole order pararmeter b2 • Results of Monte Carlo/molecular dynamics (MC/MD) 
simulations and density functional (DF) calculations are listed. 
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triple point. TheN-A transition packing fraction drops from p/pcp = 0.61 
at LID = 3 to about p/pcp = 0.45 as LID~ oo. Again, the smectic wave
length is between A. = 1.2 to 1.4 over the range of anisotropies studied. 

In Table 4 are summarized these results for the N-A transition in the 
unconstrained spherocylinder system, along with relevant simulation re
sults. The orientational component listed is defined as in Table I. 

It seems that the behavior of parallel prolate hard particles can be 
reasonably well described by the density functional approaches described 
above. The agreement of different calculations with simulation results is 
quite encouraging, and the mechanisms suggested to stabilize smectic C 
phases are interesting. In contrast, the question of the structure of the 
phase diagram of the unaligned spherocylinder system is unsettled. The 
order of the N-A transitions and the location of the N-A tricritical point 
has not been pinned down by simulations, and current density functional 
calculations are not in good agreement with one another. The role of the 
solid phase expected at high densities has not been investigated via the 
density functional approach; the simulations suggest that there may be 
two triple points (1-S-A and 1-N-A) in close proximity to one another. 

VI. CONCLUSION 

In this chapter we have focused on the problem of understanding the 
macroscopic properties of liquid crystals based on consideration of the 
interactions between the anisotropic constituent particles. We have dis
cussed only hard-core particles for two reasons: first, the theory is sim
plified for hard-core interactions, and second, the bulk of simulation data 
are for hard-core systems. The thermodynamics and phase transitions in 
these systems are quite similar to those of real liquid crystals. 

In Section III it was shown how one can construct a theory for phase 
transitions in such systems. The microscopic information required is static 
liquid structure: in particular, the direct correlation functions. The most 
straightforward approach is to use them to construct a functional pertur
bation theory for ordered phases; unfortunately, the fact that we have 
little knowledge even about three-point direct correlations forces us to 
ignore contributions of other than the pair direct correlations (RY theory). 
However, we have seen that this crude approximation leads to results in 
quantitative agreement with simulation results. 

The fact that the direct correlation functions are successive functional 
derivatives of the excess Helmholtz potential suggests that one should 
construct nonperturbative free-energy functionals that contain contribu
tions at all orders of perturbation theory; it is possible also to satisfy all 
sum rules derived from the two-point direct correlations. Density func-
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tional approaches along these lines have been successful in treating freez
ing of spherical particles, and weighted-density approaches have also been 
used to study liquid-crystal phase transitions in hard-particle systems 
(Section V.C). 

It is apparent, however, that in addition to improving the free-energy 
functional through methods such as weighted-density approximations, the 
use of accurate liquid structure information is of crucial importance in 
obtaining accurate predictions. This is particularly apparent in the cases 
of the isotropic-nematic transition of prolate cores (Section V .A) and in 
the isotropic-plastic transition in hard ellipsoids (Section V.B). For the 
1-P transition, Singh et al. [59) showed that the lack of stability of the 
plastic phase observed by other authors [60,63] for AlB > l.l was due to 
the use of inaccurate liquid structure rather than being due to higher-order 
DCF contributions or inadequate parametrizations of the crystal. Similar 
improvements have been realized in the description of the I-N transition 
using liquid structure obtained from solution of integral equations for 
liquid structure. One hopes that the rapid progress that we have seen in 
the last few years in simulation and solution of integral equations for liquid 
structure will continue, as these two sources of information are crucial 
to constructing and evaluating the theory. 

As discussed in Section V, density functional approaches have been 
used to study a variety of phase transitions in hard-core systems. In ad
dition to freezing transitions, transitions to nematic and smectic liquid 
crystals have been studied, and in the case of elongated particles con
strained to be parallel, these theories predict transition properties in good 
agreement with simulation results. The application of this approach to 
particles not constrained to be parallel is a topic of current research, but 
preliminary results tell us that we can expect accurate predictions in this 
case as well. 

There are a variety of directions in which the theory can be developed. 
Perhaps the most obvious is the inclusion of finite-energy interactions in 
models. Some work has been done by Singh and Singh [67] on particles 
with long-range dispersio-n interactions treated as a perturbation on the 
hard-core interactions. The structure of the theory presented in Section 
III does not change; the interactions are of course taken into account by 
the direct-correlation functions (which for finite-energy interactions, de
pend on temperature). The accuracy of the theory will hinge, as before, 
on the accuracy of the liquid structure used. 

Another direction of interest is that of determining elastic properties 
of ordered phases. In finding a particular ordered phase we have found 
a minimum of the free-energy functional. One might ask what the quad
ratic free-energy response is to long-wavelength distortions of such an 
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ordered phase: This can be summarized with a set of elastic constants 
that describe the free-energy cost of distortions of various symmetries 
[5,6]. Some effort has been made to develop a formalism to study this 
problem based on the RY theory (67,68]. There exist simulation results 
for the elastic constants for hard ellipsoid and hard spherocylinder ne
matics due to Allen and Frenkel (69] that do not agree well with existing 
density functional predictions. No calculations of elastic constants using 
WDA techniques or liquid structure obtained from integral equation meth
ods have been done to date. 

Calculation of the quadratic dispersion of the free energy around a 
particular ordered state would also allow the computation of corrections 
to the free energy due to long-wavelength fluctuations. Such corrections 
will typically increase the free energy of the ordered phase and will thus 
move isotropic-nematic or isotropic-solid transitions to somewhat higher 
densities or lower temperatures. In the case of transitions to a smectic 
(where the free-energy corrections due to elastic fluctuations diverge [7]), 
it would be useful to use density functional techniques to study the energy 
of defects that may be fundamental to understanding the nature of the 
smectic phase [70]. Finally, we note that techniques for handling inhom
ogeneous systems are useful for studying problems other than bulk prop
erties of condensed phases, such as the behavior of smectics near sub
strates or free surfaces [71]. 
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I. INTRODUCTION 

Upon mixing oil, water, and a little surfactant* one often finds a mac
roscopic thermodynamically stable phase termed microemulsion that pos
sess some quite remarkable properties. Two recent reviews of micro
emulsion contain most of the earlier references and discuss most of their 
basic properties as described in this section [1] (see also Refs. 2 to 4). 
Microemulsion has found application in a number of developing tech
nologies, such as enhanced oil recovery and cleanup, catalytic systems, 
and synthetic blood substitutes. Some of the prominent experimental ob
servations associated with these fluids are as follows. 

As a function of the concentration of amphiphile, temperature, and 
brine one finds a phase equilibrium between microemulsion, oil-in-water, 
and water-in-oil micellar phases. In some cases the middle microemulsion 
phase in this equilibrium is replaced by a lamellar liquid-crystalline phase. 
As one proceeds to the oil-rich or water-rich regions of the phase diagram, 
the three-phase equilibrium collapses to an oil-microemulsion or water-

* It is often necessary to add a little cosurfactant or brine to obtain microemulsion. There 
do exist some systems, notably oil-water-CnEm mixtures, that are genuinely three-com
ponent. We may also note that for the system we discuss, the term amphiphi/e rather than 
surfactant is favored by many. This convention has been chosen here. 
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microemulsion two-phase equilibrium via critical endpoints of, respec
tively, the water and microemulsion or oil and microemulsion. This three
phase coexistence, often named the Winsor III [5] state, is of particular 
interest both from the viewpoint of basic statistical mechanicst and for 
its technological importance [6]. 

Thus in this region of the phase diagram the middle microemulsion 
phase is often opalescent and its interfacial tensions with the coexisting 
phases are ultralow,t leading many to suppose that the liquid is near
critical. However, the volume fractions of the various components in the 
three phases may differ significantly (differences as high as 80% w/v have 
been observed) and, characteristically, the microemulsion does not wet 
the oil-water interface. That the interface is typically nonwet is indicated 
by, for example, Kunieda and Shinoda [7]. Both of these observations 
seem to indicate that the properties of the middle phase may not be as
cribed solely to a proximate critical point. Furthermore, the interfacial 
tension data in the three-phase region exhibit a rather characteristic and 
interesting pattern between the two critical endpoints [8].§ The tension 
between a pair of incipient critical phases naturally decreases monoton
ically, while that between the other pair rises monotonically. On the other 
hand, the oil-water tension actually exhibits a minimum between the two 
critical endpoints, a phenomenon that has long been used as the criterion 
of an optimal microemulsion. In that region of three-phase equilibrium 
where the oil-water tension is a minimum, the microemulsion contains 
almost equal volume fractions of oil and water and a fairly small amount 
(between 10 and 20 vol %) of amphiphile. It is bicontinuous in the sense 
that it conducts electricity and the apolar molecular diffusivity is high [9]. 

A number of scattering studies of this bicontinuous phase have been 
undertaken. These include small-angle neutron scattering (SANS) [10-

t The origin of this three-phase equilibrium has long been a matter of debate. In this chapter 
we offer the opinion that it stems primarily from a remarkable confluence of the various 
energy scales. This reasoning is to be distinguished from the notion that it is merely an 
extension of the conventional symmetric three-phase equilibrium of a three (or more)-com
ponent mixture. 
t The true origins of ultralow interfacial tension have also long been a matter of debate. 
Some have considered the phenomenon to arise as a consequence of near-criticality of the 
mixture. We shall see that the present model predicts the phenomenon to arise as a con
sequence of two types on cancellation. Thus the surface pressure of the amphiphilic film 
almost compensates the bare interaction energy of a flat interface between oil and water. 
Furthermore, a delicate balance of the chemical potentials of the components means that 
it is favorable to produce large amounts of free interface. 
§ A path between the two critical endpoints may require variation of both temperature and 
the amount of brine. 
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12], light scattering [13], and freeze-fracture electron microscopy [14]. In 
particular, the SANS studies produce a peak in the scattering intensity 
at small wave numbers, an observation that is consistent with the presence 
of two relatively long length scales in the microemulsion. The ratio be
tween these lengths appears to be nearly constant in the bicontinuous 
region* and is approximately equal to 4 [15]. It is also observed that with 
increasing amphiphile concentration, the peak in the SANS intensity shifts 
to shorter wavelengths. 

Finally, we note that the phase diagram also possesses a one-phase 
region spanning the oil-in-water, bicontinuous, and water-in-oil phases. 
It is believed that, typically, this single-phase corridor permits one to 
accomplish phase inversion without undergoing a phase transition. These, 
then, are some of the prominent aspects of the phase diagrams of mixtures 
of amphiphile, oil, and water where one has relatively small amounts of 
amphiphile. We note in passing that at higher amphiphile concentrations, 
one finds various liquid-crystalline phases. 

The purpose of the present chapter is to show that all of these features 
are present in a relatively simple lattice model. Within this model it is 
also possible to explain the origins of these phenomena and to see that 
the puzzling experimental observations are, indeed, entirely consistent 
with one another. 

A number of theoretical studies of microemulsion have been under
taken, and some of them are now providing quite promising results [16-
26]. Before beginning such a description it is worth pointing out that there 
are few truly universal features in these systems. Rather, they exhibit 
interesting and important generic properties that one seeks to understand 
in a unified and consistent manner. Many of the important observations 
originate in long but not diverging length scales. For this reason it is 
convenient to construct a model that is computationally tractable, thereby 
facilitating the study of these various trends, but that is reducible to a 
more compact-coarse grained Hamiltonian whenever one seeks to study 
universal features via renormalization-group calculations. 

There are some further considerations to be taken into account when 
formulating the model. Thus, if one is to understand a range of amphiphilic 
behavior, there should be sufficient flexibility to represent the effect of 
geometric fluctuations of self-assembled structures, as well as fluctuations 
causing the breakup of the phase, This indicates that the simplest possible 
formulation may be that of a lattice model. 

* This observation is a reflection of the conditions (referred to in an earlier footnote) that 
ensure the formation of much amphiphilic film. 
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Finally, one should also be aware that although mean-field studies of 
the present lattice model have been shown to elucidate the qualitative 
features of the lattice Hamiltonian, fluctuations certainly produce signif
icant quantitative changes in the predictions and, in some cases, it has 
been shown that the method gives qualitatively incorrect results. The 
present chapter is based largely on mean-field analyses and simulations, 
but, where possible, these have been checked using other methods. The 
main purpose of the present chapter is to present the lattice model as the 
basis for a qualitative description of microemulsion. Thus many technical 
details are suppressed and references are given to other studies where 
these may be found. 

II. ISING HAMILTONIAN 

We begin by systematically constructing the Ising spin model, starting 
from a few simple hypotheses about the microscopic molecular interac
tions. The Hamiltonian that we shall present is closely related to that of 
Widom [16,17], a model that had itself grown from earlier research by 
Wheeler and Widom [16]. It differs only in the generalization of some of 
the interactions. As in Widom's original treatment, we divide configu
ration space into cubes of side a and this, the microscopic distance in the 
formulation, is chosen to be the length of an amphiphile molecule. Ar
bitrary configurations of the oil (AA), water (BB), and amphiphile mol
ecules (AB) are then assigned to this lattice, subject to the constraint that 
only like ends of different molecules be permitted to lie within any cube. 
Thus each cube of configuration space is composed only of hydrophilic 
or hydrophobic material, and any molecular configuration may therefore 
be represented by values of Ising variables at their centers. Evidently 
there exist no isolated amphiphiles in this model, so to each local con
figuration of amphiphile molecules we may assign an additional energy 
that is chosen with respect to a pair of parallel amphiphile molecules that 
lie side by side. Ultimately, this leads to an unfavorable energy both for 
bending of an isolated amphiphilic film and for the touching of two such 
layers. However, these terms, being based only on pairs of amphiphiles, 
necessarily treat edges and corners of the amphiphilic film on equal terms 
in that a corner energy is calculated as the sum of edge energies. Since 
we conceive the microscopic origins of this energy scale to lie in the partial 
free energies of proximate amphiphile molecules that are surrounded by 
oil, water, and possibly cosurfactant, one expects the interaction Ham
iltonian to possess many-body terms. In particular, the bending of an 
amphiphilic film certainly has a potential energy contribution, but there 
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is also penetration of water (or oil) into the film that must be accounted 
for by the microscopic interaction parameters. It is therefore evident that 
such contributions would be different for edges and corners of the am
phiphilic film, and thus, in principle, require independent energy param
eters. We therefore choose as our basic interactions the parameters V1-

Vs, these corresponding to the energies of the local configurations that 
are given in Fig. 1. 

Note that the essential content of the foregoing arguments is that small 
regions or aggregates of amphiphile have only three basic significant en
ergy scales: the energies due to bends of an isolated film, these being 
distinct for edges and corners, and the energy of two proximate flat pieces 
of the film. For generality we must also differentiate between the ends 
of the amphiphiles, and this is reflected in the fact that parameters V1 and 
V3 are different from V 2 and V4. Note that, in principal, two independent 
three-body interactions for the amphiphiles at a corner have been assigned 
the same energy. Thus the configuration where the hydrophilic heads form 
a corner has the same energy ( Vs) as the configuration shown in Fig. I. 
Had we chosen to resolve between these local configurations, the form 
of the Hamiltonian would remain unchanged, although the four-body spin 
coupling parameter is modified. The essential features of the mean-field 

+ 
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Fig. 1 Molecular configurations of amphiphile that correspond to the interaction 
energies V1- V5 • These energies are measured relative to that of a pair of parallel 
amphiphiles. The amphiphiles (AB) are represented by a hydrophobic (e) and a 
hydrophilic (0) region and are considered to lie along the bonds of a simple cubic 
lattice. The midpoints of every bond occupied by an amphiphile molecule col
lectively represent the amphiphilic film. 
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predictions are also unchanged. However, for the moment we consider 
the spontaneous three-body curvature etTect to be smaller than the two
body spontaneous curvature. The retention of the three-body curvature 
energy causes the ordinarily second-order micellar-bicontinuous phase 
transition to become first order. The retention of the three-body spon
taneous curvature introduces no qualitatively new feature. 

The centers of all cubes that compose configuration space define a 
regular cubic lattice. Since the interactions of Fig. 1 require knowledge 
only of a central and six surrounding cubes, one may construct the total 
energy from octahedral clusters of Ising spins. Each octahedron involves 
seven Ising variables, and we may represent the local energy as a function 
of these Ising spins. The energy of each of the 20 such octahedral frag
ments (see Fig. 2) may be compiled from the rules in Fig. 1. We then 
require that the chosen function of the Ising variables correctly reproduce 
the energies of all 20 local-spin configurations given in Fig. 2. 

It transpires that the local energy contribution requires only one- to 
four-body spin interactions and the Hamiltonian may be written 

n n,n' n,n',n" 

n,n',n",n"' 

The spin-interaction coupling constants refer to the interactions for iso
lated spins as well as those between pairs, triples, and quadruples of spins. 
The two-body spin interactions {Inn·} are nearest-neighbor (J), diagonal 
neighbor (Md and linear next-nearest neighbor (M2 ), and their definitions 
in terms of the elementary energies V1- V5 are given in Table 1. Similarly, 
the three-body interactions {Lnn'n"} are of two types reflecting the coupling 
between bent triples (L 1) and linear triples (L2) of connected Ising spins. 
Finally, the four-body spin interactions {P nn'n"n'"} are of one type only (P), 
with four connected spins forming the corner drawn in Fig. 5. All of these 
coupling constants are given in terms of the basic interaction energies in 
Table 1. 

Previous studies of this model [16,25] have been confined to the choice 
of parameters M 1 = M, M2 = 2M, L 1 = L2 = P = 0, and more detailed 
information is available only for the cut H = 0. If one makes the choice 
H = L1 = L 2 = 0, corresponding to zero spontaneous curvature of the 
amphiphile film and equality of the chemical potentials of oil and water, 
one would expect to find the bicontinuous microemulsion to be one of 
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Cluster Symbol Local Energy Cluster Symbol Local Energy 

* co -*- o* 
0 

co 

f-- co -+ o• 
1 c1 

-

7f co v4 *- o• 
v3 

2 c2 

-

* c1 v2 --*- 1 • 
v1 

2 c2 

-

-f- c1 V2+2V4 * 
1. 

v1 + 2v3 3 c3 

-

f- co 
3 3V4+ v 5 -* o• 

c3 3V4+ V5 

-*- c1 5V4+2V5 +V2 -¥ 1* 5V3+ V1+ 2V5 4 c4 

-

--t-- c2 
4 4V4+ 2V2 

2* 
c4 4V3+ 2V1 

-

-*- c2 2V2+ 4V5+ 8V4 * 2* 2V1 + 4V5+ 8V3 5 Cs 

-*- c2 
6 3V2+12V4 + 8V5 * 2* 

Cs 3V1 +12V3 + 8V5 

Fig. 2 Energy of every local-octahedral Ising spin configuration. These values 

may be calculated using the definitions in Fig. 1. 
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Table1 Transcription from Ising Variables to Interaction Energies and Chemical 
Potentials in the Solutiona 

Ising 
variables 

H 
J 

Microernulsion model 

3/2(J.Lss - J.LAA) + 9/8VI 9/8Vz + 3/2V3 - 3/2V4 
l/4VI + 114Vz - 112V3 li2V4 -

l/4[J.LAB - (J.Lss + J.1,4A)/2] + 112 Vs 
li8( V3 + V4) + I/4 Vs 

- l/4( V1 + Vz) 
- 118( V1 - Vz) 
- I/8( v3 - V4) 
1!8Vs 

a The molecular configurations corresponding to the interaction energies V1- V5 are given 
in Fig. I. 

the prominent phases. The Hamiltonian then becomes 

l 4B 

'Jt = 2 2: Un0nUn + P ~. '" UnUn•Un•Un"' 
n n,n .n ,n 

On= a4~n4 + az~/ + ao 

~/Jx = fx- I + fx+ I - 2fx 

~/ + ~/ + ~/ = ~/ 

a4 -M 

-(1 + 12M) 

ao = -6(1 + SM) 

where, to make connection with earlier research, we set M 1 

= M) and thus 

1 = UJ..LAe!(f..LAA + J.Lee)] - ~K 

M=-~ 

(2) 

(3) 

(4) 

(5) 

(6a) 

(6b) 

(6c) 

2M (Mz 

(7) 

where K is the bending energy of the amphiphilic film. For this set of 
restrictions one finds that the present model is equivalent to that of 
Widom, except for the presence of a four-body term that reflects the 
selection of an independent corner energy in Fig. I. 

Finally, if one generalizes the definition of the linear operator to 

On = Mz(~x4 + ~/ + ~z4) - Mz(~/~/ + ~/~/ + ~/~/) 
+ (1 + 4M1 + 4M2)~/ - 6(1 + Mz + 2M,) (8) 
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one may conveniently write the general model as 

H 

n.n',n ... n"' 

In this chapter we study selected portions of the global phase diagram 
of the full Hamiltonian and evolve a more complete picture for the re
stricted case (2). In many cases our study is facilitated by the results 
presented in earlier papers on Widom's model [16,25], and such intor
mation will therefore not be discussed in much detail. We also note that 
the zero-temperature states of the Hamiltonian are known exactly for the 
extended Hamiltonian [16,26,27] and that low-temperature analyses have 
been used to determine the structure of the phase diagram for the ordered 
phases [27]. 

The important observations from the zero- and low-temperature anal
ysis that will be qualitatively important for our understanding of amphi
philic systems are outlined below. We first note that if J > 0 and M < 
0, the lattice model Hamiltonian is spatially frustrated, and this results 
in the stabilization of many structured phases. It transpires (see Section 
Ill) that these ordered phases may be put in correspondence with the 
liquid-crystal and crystalline phases observed in multicomponent mix
tures of oil, water, and amphiphile. However, even for the disordered 
phase that corresponds to microemulsion, the presence of these com
peting interactions is most important, and as we shall see (Section IV), 
actually implies the presence of the two long length scales observed in 
the SANS experiments. It is therefore worth reflecting a little on the 
origins and consequences of this spatial frustration. 

The fact that the underlying spin model is spatially frustrated is hardly 
surprising given that such models are known to produce many flat domain 
walls between plus and minus spins [27 ,28] and that, in the solution pic
ture, such domain walls represent amphiphilic film. Nevertheless, the 
equivalence of the solution model to a spatially frustrated lattice model 
with only a few coupling constants is already a nontrivial and interesting 
aspect of the study. When the chemical potential term I-LAB - 1/2(!-LAA + 
1-LsB) is large and positive, so is the coupling constant, J (small amphiphile 
concentration), and the spin model has a strong ferromagnetic coupling 
and therefore disfavors the formation of magnetic domain walls or, what 
is equivalent in the liquid model, amphiphile layers. Those that do form 
are encouraged to remain apart by the linear next-nearest-neighbor an
tiferromagnetic coupling and to remain flat by the diagonal-neighbor in-
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teraction, the latter two effects reflecting the underlying molecular in
teractions.* At higher temperatures, layer fluctuations will force the 
lamellae even further apart because of the favorable contributions that 
arise from entropy of wandering of the surfaces and the unfavorable ef
fects from their collision. It is important to note, however, that above the 
layer-roughening temperature, the principal contributions to the effective 
forces between the domain walls arise not from simple entropy of wan
dering, but from a convolution of the layer fluctuations over the energy 
of contact and bending of the amphiphilic film. This will ultimately mean 
that the length scales in the liquid-crystal and microemulsion phases are 
set by these effects rather than by Helfrich forces. t 

As mentioned earlier, the zero-temperature states of the Hamiltonian 
can be determined exactly. This is accomplished by determining those 
local octahedra that minimize the energy for fixed values of the coupling 
constants. Since for H = L 1 = L2 = 0 there is inversion symmetry and 
every local octahedron is self-tiling or tiles with its inversion image, one 
can construct all the zero-temperature states. There are, however, some 
regions of parameter space (termed multistate surfaces) where two or 
more octahedra are energetically degenerate. Such degeneracies reflect 
special choices of the values of the microscopic energies, as well as the 
relative chemical potentials of the oil, water, and amphiphile. They may 
occur between octahedra with either different numbers of amphiphile mol
ecules or with the same number but different geometric arrangements. In 
either case zero-temperature states may then be constructed from arbi
trary mixtures of them, and this results in the formation of layered, rip
pled, tubular, and cubic ordered phases. At nonzero temperatures, fluc
tuations break the degeneracy existing on the zero-temperature multistate 

* This is an important point. Even at low temperatures where bilayer fluctuations are neg
ligible, the characteristic layer separations in this model are set by two factors. The first is 
the amphiphile end-to-end energetic contribution that appears in Fig. I; relative to the side
by-side contribution, this is unfavorable. However, in principle one should have further
neighbor end-to-end interactions that reflect the attractive dispersion interactions between 
amphiphiles, and this causes some modification of the swelling progression predicted by the 
model. The other more important factor affecting the low-temperature layer separations is 
that of the relative chemical potential of oil, water, and amphiphile. Evidently, if insufficient 
oil or water is present, the amphiphile layers cannot swell. Large chemical potentials of oil 
and water produce large (ferromagnetic) nearest-neighbor coupling, and this results in plus
minus domain walls being well separated. 
t This matter has also been discussed for continuum models of interacting bilayers (A. 
Parsegian, pre print and private communications). The convolution of the layer fluctuations 
with interaction potentials produces effective forces that differs from the entropic interac
tions of Helfrich that are discussed in Ref. 29. Such considerations are all accounted for in 
the formulation of a lattice model. 
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surfaces, providing the thermodynamic ordered phases of the lattice 
model. For example, it may be shown that upon the surface 

J + 2Mz + 4Ml + 4P = 0 (10) 

the local octahedra C0° and C0
1 (see Fig. 2) are energetically degenerate 

and that only the lamellar and the two ferromagnetic phases are stable. 
The effects of this zero-temperature multistate region in stabilizing long
period lamellar order are, as we shall see, ultimately profoundly important 
in understanding the properties of microemulsion. It is worth noting that 
since an amphiphile lies along every bond connecting a plus and minus 
spin, Eq. (10) is, from the viewpoint of the underlying solution model, a 
surface that divides parameter space into a region where it is unfavorable 
(J + 2M2 + 4M1 + 4P > 0) and favorable (J + 2M2 + 4M1 + 4P ::50) 
to form large amounts of (flat) amphiphilic film. This is in accord with 
the observation that at finite temperature and upon the surface defined 
by (10), zero work is required for the insertion of amphiphile into the 
amphiphilic film, the underlying reason for degeneracy of the clusters Co 0 

and C0
1

• One may also describe this phenomenon qualitatively by saying 
that the mesoscopic coarse-grained tension of an amphiphilic ftlm is zero, 
even though the curvature energy is large and positive. However, the 
definition based on the lattice model is regarded as canonical and yields 
a connection to microscopic parameters and chemical potentials of the 
system. Such connections could, in principal, be checked experimentally 
and one expects them to be obeyed, at least qualitatively.* 

At higher temperatures, in the vicinity of the surface (10), the flat la
mellar sheets crumple and a disordered phase results. However, the struc
tural properties of this disordered phase still reflect many of the features 
of the zero-temperature multistate sheet, a theme that will arise frequently 
in our description of microemulsion. 

It is worth noting that although the sheet defined in (10) is central to 
our understanding of microemulsion, there exist others that presage the 
emergence of liquid-crystalline phases. Inasmuch as the model reflects 
such near-cancellations in continuum systems, one might expect a range 

*There are, of course, different levels at which the conclusions drawn from this model may 
be evaluated experimentally. At one level one may simply locate the various phase equilibria 
by adjusting the parameters of the model. Various quantities may then be computed along 
these phase equilibria and compared with the corresponding equilibria in experiment. One 
may also determine the parameters of the lattice model using SANS data. These are the 
types of strategy pursued in the present chapter. It would be interesting, however, to use 
experimental data to fit the evolution of phase boundaries and, subject to these fixed values, 
compute the observables. 
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of interesting experimental phenomena near these surfaces. We are un
aware of careful experiments in these regions of the phase diagram. 

At higher temperatures the low-temperature expansions referred to 
above must be replaced by other types of calculation. The most basic 
analysis is that based on local-density mean-field theory. It is useful partly 
because it yields a qualitatively correct description of the global phase 
diagram* and partly because it is analytically tractable, an important fea
ture given the complexity of the model. 

In the next section we construct and study the mean-field theory of 
the Hamiltonian [Eq. (2)]. Some results for the full Hamiltonian (9) are 
also presented. 

Ill. LOCAL DENSITY MEAN-FIELD THEORY 

To derive the mean-field equation, we apply the Gibbs-Bogoliubov varia
tional principal, which establishes an upper bound on the free-energy 
density. Thus we find that 

G :5 Go + ('JC - ':ICo) (11) 

Here, G is the true free energy of the system, Go is the free energy with 
respect to a reference Hamiltonian, 

(12) 
n 

and (X)0 means that the average of X is taken with respect to 'JC0 . Using 
(11) and (12) one can show that the free-energy density may be written 
in the thermodynamic limit as 

1 (fLSnOnSn + !kT2:(l + Sn)ln!(l + Sn) ) 
C§ = lim- n n (13) 

[->oo / + (1 - Sn) In !(l - Sn) + P ~ Sn n';,~ .. Sn•Sn"Sn'" 

where Sn = (an)o is the spin density at site nand the primed sum means 
that the sum is restricted to the appropriate connected four-body terms 
(see Fig. 1). To proceed we now expand around the minimal spin density 
Sn, 

* This point has been to a large degree established by checking the conclusions from mean
field theory with low-temperature, high-temperature, and loop expansions in addition to 
simulation and analytical renormalization-group calculations. There remain some open ques
tions, however, such as those discussed in Ref. 30 (also, Y. Levin and K. A. Dawson, 
unpublished). 
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The Euler-Lagrange equations are 

oC§ k - 1 ""~:'I s s - = 0 = OnSn + Ttanh Sn + P L...J n'Sn" n'" 
oSn n'.n",n"' 

(15) 

and these ensure that the resulting spin density correspond to a local 
minimum or maximum of the free energy. Again, the prime implies that 
the sum is restricted to run only over all appropriate three-spin terms that 
are connected to the central site (n). For a local minimum, the second 
derivative term must be greater than zero for all variations in the spin 
density. The second-order derivative matrix evaluated in the disordered 
phase (Sn = 0) is 

Kn.n' = (On + kT)on.n' (16) 

Within local density mean-field theory, we shall be interested in con
structing analytically the phase diagram in the vicinity of the disordered 
phase (microemulsion) without a priori knowledge of the symmetry of the 
states. We must, therefore, first locate that surface in parameter space 
where the matrix (16) has one or more zero values for Sn = 0. This will 
define a critical surface* in terms of the lattice-model parameters J, M, 
and P, beneath which the disordered phase is no longer stable. The second 
derivative matrix (16) is diagonalized by Fourier transformation and has 
eigenvalues (M 1 = 2M, M2 = M) 

(17) 

where 
3 

eq = 2.: cos q; (18) 
i= 1 

When one or more of the eigenvalues becomes zero (say, Kq) this is an 
indication that the paramagnetic phase is unstable with respect to infin
itismal sinusoidal spin-density variations with momentum Qc· To enforce 
convexity on the spectrum of eigenvalues we require that 

and 

Kqc = min {KqJ =? VqKq iq=qc = 0 
q 

(19) 

(20) 

* This defines a true critical sutface o·nly if at the paramagnetic phase is a global minimum 
of the free energy as it becomes unstable. It is possible that for some values of the parameters, 
another minimum is then a global free-energy minimum and the critical transition has then 
been preempted by a first-order transition. One can prove (see Ref. 25) that for P = 0 the 
paramagnetic phase is the unique minimum until the multifurcations occur. This comment 
is valid up to a value of P, say Po that is a function of J and M. Note that Pc(l,M) defines 
a curve of tricritical points. 
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To study the region below the critical surface (T < Tc) systematically, a 
perturbation theory must be developed to solve the nonlinear mean-field 
equations. 

Reparameterization of the mean-field equations at the critical surface 
is achieved upon division of (15) by kTc (m = MlkT, j = 1/kT, VP = PlkT, 
{)n = OnlkT). 

(21) 
n',n",n''' 

where the parameter E ( = I - TITc) will be the small parameter in the 
theory. The solution to Eq. (2l) may be written as an expansion in E, 

Sn(E) = :2: Ei3+p s<p) 
p=O 

(22) 

We emphasize that the spin density may still possess arbitrary spatial 
variations and that, as yet, no judgments have been made about the sym
metry of the solutions. The leading order term, S(OJ, is premultiplied by 
E13 , where ~ is the mean-field critical exponent of!. Then, by expanding 
the nonlinearity in (22) and equating equal powers of E, an infinite set of 
coupled equations is obtained and these define the perturbation theory. 
To e:J'(E

512
) one obtains 

E 112 : ({) n + l)S(O) = KqS(O) = 0 

E312 : (On + l)S(l) = s(O) - !S(OJ' 

(23a) 

(23b) 

VP(S~~~.z+ 1S~~~+ 1.zS.~0l1.y.z + terms related by symmetry) = j<0 

E512 : (On + l)S(2) = s(O)Z s<l) + S 0 ) + ~s<W !S(OJ' 

+ VY(S~~~.z+ 1S.~~~+ 1.zS~1l1.y.z (23c) 
+ terms related by symmetry) 

= pzJ 

The remaining terms in (23b) are composed of all combinations of three
spin terms that are connected to the central site. In (23c) the same is also 
true, but one permutes the index of S(l) through every position that is 
connected to the central site. 

The solutions, swl, of (23a) are plane waves so that one may write 
3 

s(O) = Aq II cos(q;X; + aJ = Aqi.pq 
i=l 

(24) 

Here the q; satisfy (19) and x1 , xz, x3 , correspond to x, y, z, respectively. 
At this order in perturbation theory the only nondegenerate solutions that 
are consistent with the convexity relations are qc = (0,0,0) and qc = 
(1T,1T,1T). However, these solutions are valid only in the vicinity of their 
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respective critical lines, 

(25) 

and 

(26) 

Note that these equations are true for arbitrary values of '2P, provided that 
the order-disorder transition is second-order. They correspond, respec
tively, to the paramagnetic-ferromagnetic critical line and the paramag
netic-antiferromagnetic critical lines. The third region of parameter space 
that satisfies the convexity relations is given by the relation 

(27) 

again, valid for arbitrary '2P provided that the transition is continuous. 
There is also a constraint on the sum of the cosines of the critical modes 
that is derived from the convexity relation (20), 

(28) 

Since (25) to (27) have no explicit '2P dependence, we conclude that the 
order-disorder transition consists of two flat sheets that cap a segment 
of an elliptical cylinder. Beneath this ellipsoidal surface ( T < Tc) one is 
not yet able to resolve the degeneracy of states having many different 
periodicities. One therefore uses the Fredholm alternative to solve the 
equations to 0(E312

). The Fredholm alternative requires that for there to 
be a solution to (23b), all homogeneous solutions must be orthogonal to 
the inhomogeneous term. For example, 

(29) 

where the brackets denote the sum over all lattice spacings, 

(Xn) = }~~ (o ~ 1)3 ~ Xn) (30) 

Application of the Fredholm alternative leaves us with a number of special 
cases for the spatial modulations of phases that minimize the free energy 
to 0(E3 ). The free-energy density to 0(E3

) is 
2 

<§ = -In 2 - :_ ((S<0l)2) (31) 
4 

Performing the sums we find that to 0(E3
), there are nine special cases 

to consider in the free-energy density. These are: 
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I. q = (1T,O,cos- 1(-jcl4mc)) 

C§ = -In 2 - e
2 

{ 
1 

} (32) 
6 (! + 32(-jcf4mc - 2)(1}>) 

2. q = (O,O,cos- 1 
(- jcl4mc - 2)) 

C§ = -In 2 - e
2 

{ 
1 

} (33) 
6 (! + 32(-j)4mc - 2)(1}>) 

3. q = (1T,1T,COS- 1(-jc/4mc + 2)) 

C§ = -In 2 - e
2 

{ I } (34) 
6 {! + 32(-jcl4mc - 2)(1}>) 

4. q={O,cos 1(-j,J8mc-!),cos 1(-j)8mc-m 

C§ = -In 2 - e
2 

{ 
1 

} (35) 
4 {~ - I8{-jc/4mc - lf(l}>) 

5. q = (1T,COS 1(-j)8mc + !),cos- 1(-jcl8mc +!)) 

C§ = -In 2 - e
2 

{ I } (36) 
4 {if + 18{- jc/4mc + 1)2 (1}>) 

6. q = (cos- 1 
(-jcl4mc - q2 - q3),q2 ,q3) 

C§ = -In 2 - £ { 9 27 . I 1 } (37) 
32 (64 + z-(-]c 4mc COS qz COS q3 

- cos2 
q2 cos q3 - cos2 q3 cos qzf(l}>) 

The remaining three cases (7 to 9) have wave vectors that have value 1r/ 
2 in at least one direction [q = {1T/2,1T,q3 ), q = (1T/2,0,q3 ), q = (1TI2,1T/ 
2,q3 )]. For these cases the resulting free energies are degenerate with 
value 

C§ = -ln2 
2 

(38a) 

In the limit (1}> = 0, the free energies reduce to the values obtained for 
Widom's model. In that case, one finds that if two special values are 
chosen {0, 1r/2, or 1r), the third value direction of q is not yet fixed by 
(27) and (28). Higher orders of perturbation theory must be used to break 
the remaining degeneracy. Here we are concerned with finite (1}> and at 
O(e312

) most of the degeneracy is broken. However, there are some re
gions in parameter space where one must go to second-order perturbation 
theory [O(e512

)] to break the remaining degeneracy. It transpires that sec
ond-order perturbation theory is needed only for those cases where at 
least one of the special values is 1r/2 (cases 7 to 9). It may also be shown 
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that for the special cases 7 to 9, the problem is independent of VJ> up to 
and including 0(E512

). The free energy to 0(E4
) for cases 7 to 9 is then 

determined to be 

~ = -ln2- E
2

- E3
(-

1
- + !.!.) + 0(E4

) 
2 9Ktt3 24 

(38b) 

Here, K 113 corresponds to the eigenvalue Kq~<JNJ· One then minimizes 
the free energy (38) with respect to qt ,qz,q3 subject to the constraint (28). 

Since we have a free parameter, VJ>, premultiplying a four-spin term, 
we must also solve for values of VJ> where a surface of second-order order
disorder phase transitions terminates in a tricriticalline, beyond which a 
surface of first-order order-disorder phase transitions develops. To see 
how this might arise, we consider expansion of the free-energy density 
to O(Sn 6 ). 

~ = !(Sni!JnSn) + !(l - E)(Sn + S/ + Sn6 + O(Sn8
)) (39) 

Vf'(SnSx.y-.- t.zSx+ t,y.zSx.y.z+ 1 + terms related by symmetry) 

We know that Sn = E
112Aq<pq<Ol + E

312Bq<pq(l)· By inserting this result into 
(39) and collecting powers of E we have 

(41) 

We may also examine the Landau-Ginzburg free-energy functional 

~ = aS 2 + bS4 + cS6 + ... (42) 

At a second-order phase transition a = 0, b > 0, c > 0. One can see a 
clear analogy between (39)-(41) and (42) along with the conditions on a, 
b, and c. Thus at the critical point the O(E) term is zero from (23a), and 
for stability the 0(E2

) must be positive. This condition leads to the re
quirement that 

(43) 

Performing the sums in (43) in the infinite volume limit [Eq. (30)], the 
following condition for stability is given: 

Vf'> (44) 
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Fig. 3 Phase diagram in space of Ising model couplings, j ( = 1/ki), m ( = Ml 
kT), !J> ( P/ki), for the range -1196 s !J> s 0. The points Q, L, R, P 1 , P2. Q, 
Q2 have been marked to provide a relation to the more detailed phase diagram 
of Fig. 5. The paramagnetic phase is identified with isotropic mixtures of oil, 
water, and amphiphile. In the vicinity of curve Land in the interior of the capped 
elliptical cylinder the disordered phase takes on the properties of microemulsion. 

This constraint permits us to determine whether a given portion of the 
order-disorder transition surface is first or second order. 

The foregoing analysis is useful because it permits us to determine 
analytically the structure of the mean-field phase diagram in the vicinity 
of the order-disorder transitions. This is in itself a highly important region 

0.15 
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Q (P= -1/96) 
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Fig. 4 Mean-field phase diagram for Ill' :S -1/96. The sheet of first-order phase 
transitions between paramagnetic and ferromagnetic phases that grows out of the 
plane from line QL has not been marked. It is, however, described in more detail 
in Fig. 16. Note that the hatched portion of the lamellar-disordered phase bound
ary is first order; the remainder is second order. 

of the phase diagram and provides a useful check on numerical studies 
of the mean-field equations (15). The basic structure of the resulting phase 
diagram is laid out in Figs. 3 and 4. Thus in Fig. 3 we present the results 
for j,m,CZ/' (for -1/96 ::; CZ/' ::; 0). Note that many of the essential features 
found for the cut CZ/' = 0 (see Fig. 5) are also present for nonzero CZ/'. Thus 
the phase boundaries for the ordered phases shift, but the states remain, 
while the ferromagnetic-paramagnetic phase transition remains second 
order. 

-1/96 
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Fig. 5 Cut (q]> = 0) of the phase diagram in Fig. 3. This phase diagram is described 
in more detail in Ref. 25, as is the notation used to describe the layered (lamellar), 
tubular, and cubic phases. 

At g> = - 1/96 the uniform phases disorder via a tricritical transition, 
and beyond this value there is a surface of three-phase equilibria between 
the ferromagnetic and uniform phases. This line of tricritical points that 
separates second- and first -order transitions of the uniform phases extends 
into the periodic-phases region, where, however, it becomes a curve pa
rameterized by the wavelength of the critical mode. Beyond this one may 
construct another perturbation theory that is also parameterized by the 
distance from the tricritical curve. The resulting analysis is lengthy and 
will not be presented here. To clarify the situation further, in Fig. 6 we 
have presented a solution variable cut of the phase diagram (Fig. 4) at g> 
= -0.15. The variables we have used are the chemical potential ofam
phiphile relative to that of oil and water, and the parameter K = - M/4. 

The results presented in Figs. 3 to 6 comprise the full mean-field phase 
diagram of Hamiltonian (3). We now turn to its interpretation and dis
cussion as a model of microemulsion. To do this we will rely on the results 
from the mean-field theory and from extensive Monte Carlo calculation 
[31]. These two types of study of the Hamiltonian are, to a significant 
degree, in agreement. Some important differences are discussed in Ref. 
31. However, besides quantitative Monte Carlo results one can use the 
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Ptk8T = -0.15 
-- First Order 
- -- Second Order 

oil and water two-phase equilibrium 

1-D modulated 

Crystalline Amphiphile 
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-0.15 0.03 0.21 0.39 0.57 0.75 
Klk 6T 

Fig. 6 Cut (rzi' = - 0.15) of the phase-diagram shown in Fig. 4 in terms of the 
solution variables. The abscissa and ordinate axes represent, respectively, the 
chemical potential and curvature parameter defined in Table I. 

instantaneous configurations to produce quantitative descriptions of the 
various phases. 

We identify the disordered phase of the spin model as the amphiphile
rich isotropic phase that is found in mixtures of oil, water, and amphiphile 
or alcohol. The ferromagnetic phases correspond to the oil-rich and water
rich phases that are typically found to be in coexistence with the middle 
bicontinuous microemulsion. There are also many ordered phases of the 
spin model and these are considered to represent the liquid-crystalline 
and crystalline materials that are found at high concentration of amphi
phile. In particular, the one-dimensional periodic structures correspond 
to the lamellar liquid-crystalline phases that are almost always found near 
the bicontinuous microemulsion phase. These lamellae may be charac
terized by a repeat distance that increases as they are swollen by the 
addition of oil or water. Near the limits of swelling that, in this model, 
correspond to the intersection of the flat sheet [Eq. (25)] with the ellip
soidal cylinder (curve marked L of Figs. 3 and 4) one finds that there is 
a transition to the disordered phase. Upon further examination by Monte 
Carlo simulation this disordered phase is found to consist of fairly well 
separated crumpled amphiphilic sheets, an observation that is further elu-
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cidated in Section IV. We now contend that the region of the disordered 
phase that lies close to where the interior of the ellipsoidal surface and 
the flat sheet join corresponds to the bicontinuous microemulsion phase. 
One would consider this classification to persist within the ellipsoidal 
surface up to the vicinity of its intersection with the multistate sheet (10), 
the latter being defined from the condition that the insertion of an am
phiphile at the expense of half an oil and water cube costs zero work. 
This is an important conclusion that will be argued in more detail later 
in the chapter. It will ultimately permit us to establish relations between 
the microscopic parameters of the model in order that the bicontinuous 
phase be present. These relations may ultimately be expressed in terms 
of ratios of various experimental variables that should then be nearly 
universal. An example is given in (59). Concisely, then, we expect to find 
the bicontinuous microemulsion in the vicinity of the order-disorder tran
sition within the sector defined by the relations 

J + 4MI + 4M2 S 0 (all P) (45) 

and (10), that is, 

J + 4MI + 4M2 - 8P 2:: 0 (46) 

The origin of the first of these two equations is discussed further just 
above (54). 

For our study of the Winsor III equilibrium, the most important changes 
on going from zero to finite 1!1' are twofold. First, the surface of transitions 
from the ferromagnetic to the disordered phase becomes first-order, and 
part of it becomes identifiable with the Winsor III equilibrium. The second 
is more subtle and its importance will become clear only when we discuss 
(see Section IV) the correlation functions of the theory. In essence, 
though, it will transpire that for certain choices of 1!1', the model predicts 
a nonmonotonic small-wavelength scattering intensity for a disordered 
microemulsion phase that is in equilibrium with the micellar phases. This 
phenomenon is indeed sometimes observed for Winsor III middle-phase 
microemulsions. 

The fact that for sufficiently large values of 1!1' (and therefore of V5 ) 

the micellar and microemulsion phases are in first-order equilibrium is 
hardly surprising. The four-body term admits the assignment of indepen
dent edge and corner energies. This is, in turn, reflected in the emergence 
of a discontinuous transition between the ferromagnetic and disordered 
phases, the former containing numerous corners, the latter consisting 
mainly of flat domain walls with occasional edges. It is clear, therefore, 
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that we have implicitly asserted that the principal cause of the Winsor III 
three-phase equilibrium lies in the difference between these different cur
vature-energy scales. That there exist other physical effects, not ac
counted for by the original two-body spin Hamiltonian is clear. For ex
ample, the configurational entropy for a three-state Potts model is 
different from that of the Ising model, and this results ·in a symmetric 
three-phase equilibrium. Within such a formulation, one might therefore 
assume the Winsor III state to arise as a consequence of the three-com
ponent nature of the mixture.* While such effects are surely present in 
real solutions, it is unlikely that they are relevant to the Winsor equilib
rium. For them to be so, one would require many of the amphiphile mol
ecules to be isolated in solution, and this is known not to be the case for 
moderately long amphiphiles. Now in the case of mixtures of short-chain 
alcohols, oil, and water, one also often finds a three-phase equilibrium 
between an oil-rich, water-rich, and isotropic alcohol-rich phase. Sub
stantial portions of the alcohol exist as solvated isolated molecules. For 
this reason one believes that the origin of these first-order transitions lies 
in large measure in translational entropy effects due to three distinguish
able components. This case should therefore be well described by the 
symmetric equilibrium in the Potts model. It has sometimes been claimed 
that the Winsor equilibrium is a natural extension of this type of three
phase equilibria associated with short-chain alcohols. This is probably not 
true. In essence we have argued that the Winsor Ill state is much more 
remarkable and is largely a reflection of the different bending energies of 
the amphiphilic film. If this is indeed the case, the Winsor III transitions 
should become increasingly first-order as the amphiphile length and there
fore the curvature energy are increased. The converse would be true if 
the origin lay in translational entropy effects, since as the amphiphiles 
become longer it has a much greater tendency to remain within the am
phiphilic film and the system becomes increasingly two-component in 
nature. Undoubtedly, there exist experimental data that would resolve 
this issue. 

IV. STRUCTURE FACTOR IN THE 
MICROEMUlSION PHASE 

Some of the most revealing insights into the structure of microemulsion 
have been offered by fairly recent small-angle neutron scattering (SANS) 

* This effect would in some measure account for the symmetric three-phase equilibrium 
found in the models discussed in Ref. 18. 
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experiments. However, as we shall see, such measurements are of ad
ditional importance to our theoretical study because, from them, one may 
uniquely determine the microscopic coupling parameters of the lattice 
model. 

Teubner and Strey (41] analyzed some of the earlier experimental data 
and pointed out that the appearance of a pronounced peak in the scattering 
intensity for the bicontinuous microemulsion regime could not be under
stood in terms of a classical droplet model. They suggested a simple Orn
stein-Zernike form for the intensity of scattered radiation, 

/(0) 
l(q) = l - bqz + cq4 (47) 

where b and c are positive quantities. The presence of the O(q2
) and 

0(q4
) terms of opposite sign means that this function has a peak at finite 

values of q. It was also pointed out that this scattering behavior is con
sistent with the long-distance behavior of the correlation function, 

A . 21rr 
h(r) = - e-rl~ sm-

r d 
(48) 

where s and d are given by 

( 
1 b) -112 

2c 112 + 4c 
(49) 

s = ( 
1 . b) -112 

2c 112 4c 
(50) 

When the experimental data are fitted to (47), the two putative lengths, 
s and d, may be determined as a function of the field variables. On that 
region of the phase diagram typically considered to be bicontinuous mi
croemulsion, both lengths are typically found to be on the scale of 
hundreds of angstroms. One concludes, therefore, that there are at least 
two significant lengths that are important in understanding the bicontin
uous microemulsion phase. A clear understanding of their origin is central 
to the elucidation of the microstructure of microemulsions. The results 
of this section are derived from a Gaussian fluctuation calculation (15] 
and Monte Carlo [31] simulations and the reader should consult the orig
inal references for technical details. 

In fact, it was also possible to show that the isotropic phase of the 
lattice model ofmicroemulsion exhibits such behavior [15,31]. The reason 
is straightforward. From the mean-field free-energy functional [15], one 
can determine an approximate susceptibility as the second-derivative ma
trix with eigenvalues given by [17]. The Fourier-transformed lattice-dif-
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ference operator may, in the long-wavelength limit, be replaced by its 
small-momentum expansion, and one thereby obtains a structure factor 
and scattering intensity with coefficients of opposite sign for the terms 
of order q 2 and q 4

• Thus, using (17), one obtains 

b = 
+ 12m 

(51) 
-6(j + 5m) + 

-m 
(52) c = 

-6(j + 5m) + 

/(0) = 1 
(53) 

-6(j + 5m) + 
and also a nonspherically symmetric term of form (q 1

4 + q2
4 + q3

4
). 

Clearly, the latter term is present because of the underlying lattice. In 
the microemulsion regime its contribution is, however, numerically small 
and need not be considered at present. Indeed, for this region of parameter 
space it may further be shown that the coefficient of the nonspherically 
symmetric term is an irrelevant variable for the renormalization group 
flow. Thus, for long lengths d and~ this term does not contribute much 
beyond naive fluctuation theory. For shorter lengths,~ and d, the structure 
factors are still affected by the presence of the underlying lattice, although 
these remain numerically small. 

It is, however, also possible to approximate the scattering data for the 
full Hamiltonian [Eq. (9)] in a slightly different manner. Thus, as for (17), 
we determine the eigenvalues of the second-derivative matrix and spher
ically average to obtain generalizations of (51) and (52). The results are 

1 + 4MI +4M2 
b' (54) 

6(1 + M 2 + 2Mt) - 1 

6(1 + M2 + 2Mt) - 1 
(55) 

The most important point to be deduced from these formulas is that 
the characteristics of the scattering curve [Eq. (47)] are actually deter
mined not just by the concentrations of the components and some cur
vature energy, but also by the interlayer interaction energy scale set by 
the parameter Mt. Thus although the form of (47) is quite simple, varia
tions with the parameters reflect a number of system-dependent variables. 
This presumably accounts for the remarkably common pattern of the scat
tering from microemulsion. 

We should also note a few further general features of the predictions 
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forb and c. For example, both diverge [as does /(0)] on approach to the 
sheet in parameter space given by (25). Part of that surface corresponds 
to the ferromagnetic to disordered phases disordering transition. Else
where on the surface the periodic phases are stable and it no longer has 
the significance of a set of phase transitions, though within the disordered 
phase d and !_; still increase on approach to it. We also note that b is 
positive only beyond the surface j + 12m = 0. In this region the work 
required to insert an amphiphile molecule becomes sufficiently small for 
much amphiphilic film to be formed, and the disordered phase then begins 
to take on some of the appearance of the liquid-crystalline phases. 

Indeed, it is possible to divide that region occupied by the disordered 
phase into two regions. The dividing surface is defined by the values of 
the parameters}, m, <!J> for which d = 0. On one side of this surface the 
correlations decay according to (48); on the other the decay is a simple 
exponential. This dividing surface is independent of <!J> and is given by 

(56) 

This, then, is the more formal definition of one of the two boundary sur
faces introduced in (45) and (46). We emphasize, though, that this is an 
approximation based on Gaussian fluctuation theory. Higher orders of 
loop contributions introduce <!J> dependence. However, the simulation re
sults of Figs. 7 and 8 indicate that the result is valid for moderately small 
<!J>. Since the Gaussian fluctuation calculations are known to be quanti
tatively unreliable, we have chosen to calculate the structure factors using 
Monte Carlo simulation. Some results are given in Figs. 7 and 8 for two 
different values of the parameters. For orientation we have also included 
a phase diagram (Fig. 9) obtained from simulation and renormalization 
group calculation. The first result, Fig. 7, corresponds to <!J> = O,j = 1.3, 
m = - 0.4. Note that this curve corresponds to a point in the (j,m) plane 
that is well away from the ordered phases and, consequently, exhibits 
little sign of a peak at finite q. The curve in Fig. 8 (<!J> = 0, j = 1.2, m = 
- 0.4), on the other hand, corresponds to a (j,m) point much closer to a 
short-wavelength ordered phase and possesses a pronounced peak at finite 
wave number. Results have been calculated for the same pair of (j,m) 
values but for larger values of <!J>. It transpires that the structure factors 
are only a little different from those for <!J> = 0, an observation that is 
consistent with the mean-field susceptibility calculation outlined in (51). 
Thus the four-body term in the mean-field free energy makes little con
tribution to the inverse susceptibility of the paramagnetic phase [Eq. (17)]. 

One can make additional comparisons between the predictions of the 
lattice model and experiment. Note that the constants in (47) may be 
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523 

Fig. 7 Structure factor versus wave number calculated by Monte Carlo simu
lation. The values of the parameters are j = 1.3, m = -0.4, q}' = 0.0, and the 
lattice size, L = 20. 

determined experimentally. Consequently, their evolution as a function 
of increasing concentration may also be determined. Teubner and Strey 
[41] exhibit some such data for the bicontinuous phase of a water-octane
C12E5 mixture (see Table l of Ref. 10). From these one may infer that in 
agreement with the model, b is a positive number that increases with 

0.334 
S(q) 0.310 

0.262 

0.238 

0.214 
0.190 .__.__...__.__...__.__..___,____._....~..;;:-.. 

0 2 3 4 5 6 7 8 9 10 
n 

Fig. 8 Structure factor versus wave number calculated by Monte Carlo simu
lation. The values of the parameters are j = 1.2, m = - 0.4, q;> = 0.0, and the 
lattice size, L = 20. Note the emergence of a rather pronounced peak at finite 
q. 
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Fig. 9 Phase diagram in j,m space for CfJ' = 0 as calculated by simulation, low
temperature expansion, and renormalization group calculations. This diagram em
phasizes the observation that although the topology of the mean-field phase dia
gram is correct, the phase transitions are strongly shifted. For this reason, when 
correlation functions are being discussed one should make reference to the present 
phase diagram rather than the mean-field diagrams of Figs. 3 to 5. 

decreasing concentration of amphiphile. A quantitative comparison 
would, however, require the evaluation or estimate of m for this system. 
Such estimates can be made independently on the basis of, for example, 
experiments that measure interfacial fluctuations. However, we leave 
comparisons of this nature for a later paper. Rather, we examine those 
ratios that are indicated by the lattice model to be constant, or nearly so. 
For example, the ratio blc ( = r) is, from (51) and (52), 

j 1 
r = :- + 12 2: 0 = - [J.LAB - l(J.LAA + J.Lss)] 

m 2M 
(57) 

However, we have earlier noted that a second length scale (d) emerges 
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only when} + 12m< 0, and - b2 + 4c < 0. This, along with the condition 
of (46), defines a sector within which we expect to find the bicontinuous 
phase. Thus, for Mt = 2M and '11> = 0, we find that 

j + 10m:::::: 0 (58) 

Consequently, for bicontinuous microemulsion we expect the ratios to lie 
within the range* 

O<r:52 (59) 

Also, for fixed /(0), d diverges as r becomes large, so large domain-size 
microemulsions will have smaller values of this ratio. The relation (57) 
will be reflected in constraints between numerous other properties of the 
microemulsions. For example, it has already been shown that the ratio 
d/~ is roughly constant. However, since such observations stem from (57) 
it would be convenient if future experimental measurements included the 
measured value of r. We can study this issue by rearranging (48) and (49). 
Thus we find that 

and 

4c 
b = 2c 112 --r 

~ (60) 

(61) 

determine b and c in terms of the measured ~ and d. In this manner the 
ratio blc (in units of angstroms) may be plotted against concentration for 
the water-octane-C 12 E5 mixture. Note that for the smallest concentration 
r is very small, indicating that one is almost on the sheet j + 12m = 0. 
As expected, with increasing concentration r increases (d decreases) and 
the highest concentration corresponds roughly to the sheet j + !Om = 
0. Since we assume fixed m, this means that} is varying as a consequence 
of changes of the amphiphile chemical potential relative to that of oil and 
water. This corresponds to a horizontal trajectory in the interior of the 
ellipse in Figs. 3 and 4. Since one is moving away from any order-disorder 
transition, the overall scattering intensity is expected to decrease, an ob
servation that is consistent with, for example, Fig. 5 of Ref. 10. Indeed, 

* Note that one now has a relationship between the activities of oil, water, and amphiphile 
and the interaction energy m. Experimental tests of this have not yet been made. 
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one can rewrite (53) as 

1(0) 
I - 6(blc - 7)m 

(62) 

Now, assuming that m is constant for this sequence of experiments, its 
value may be determined from one experimental value /(0), and all the 
others are determined uniquely. The results, in the form of plots of /(0) 
against concentration, are in good qualitative agreement with experiment. 
Equation (58) may also be rearranged to give 

I 
m (63) 

6(blc - 7)[1 - /(0)] 

a quantity which, besides being nearly constant in such experiments, also 
yields another estimate of the microscopic coupling in the lattice model. 
Experimental determination of this quantity as a function of the concen
tration of added cosurfactant would also be most useful in the experi
mental studies. This would enable one to probe the increasing flexibility 
Cl m I becomes smaller) of the amphiphilic film as cosurfactant is added. 
Finally, note that if we examine (57), (59), and (63), we have a highly 
nontrivial relation between the chemical potentials and the /(0) from scat
tering data. Experimental probes of this relation have not yet been un
dertaken. Such relations would represent one of the most rigorous tests 
of the theory because they provide relations between experimental quan
tities that possess no superficial correlations with each other. 

The results of the calculations of the structure factors of the model 
may also be understood more qualitatively as follows. At sufficiently low 
temperatures, the presence of competing interactions causes lamellae or
dering with varying distances between the lamellae, depending on the 
couplings and temperature. Above the order-disorder transition the hith
erto flat lamellae crumple and a disordered phase results. Although there 
may be no long-range order, there remain correlations that are reminiscent 
of the layered ordering. There are, consequently, two length scales: one, 
d, that reflects a tendency of the layers to maintain a fixed interlayer 
distance, and the other, ~. a bulk correlation length that determines the 
length on which this layer-like order falls off. To see this more clearly 
one might contemplate the spin-spin correlation function equation (48). 
This function dies off exponentially with a length, ~. that determines the 

* These values of /(0) versus concentration would be useful experimental data for com
parison with the model. A broad range of systems should be studied experimentally in this 
manner before any final conclusions are drawn. However, the preliminary seem very good, 
and deviations may well be accounted for by the fact that (62) and (63) are not yet sufficiently 
accurate descriptions of the lattice model. 
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average number of plus (or minus) spins that are coaligned with the central 
plus (or minus) spin. The correlation function then passes through zero 
at some value of the interlattice spacing that determines the most probable 
distance for a domain wall separating antialigned spins to occur. In the 
fluid picture we may consider a central oil (water) cube to be correlated 
with other oil (water) cubes up to the length scale set by the change of 
sign of the spin-spin correlation function. Thereafter, the fluid around 
the central oil (water) cube is considered to be essentially water (oil). Any 
central oil (water) site is, therefore , on average surrounded by concentric 
shells composed largely of water (oil), and so on. The domain walls in 
the microemulsion phase are disordered and there is no preferred direction 
of ordering, so, on average, the width of these concentric shells reflects 
the characteristic interlamellar ordering (see Figs. 10 and II). Of course, 

~4W 

® 

Fig. 10 Instantaneous configuration of bicontinuous microemulsion from Monte 
Carlo simulation for point} = 1.3, m = -0.4, '!J> = 0.0, the point to which Fig. 
7 also corresponds. The regions occupied by positive spins (oil) have been shaded 
to give a better visual representation of the structure. The boundary between oil 
and water has also been smoothed. 



528 Dawson and Mundy 

Fig. 11 Instantaneous configuration of bicontinuous microemulsion from Monte 
Carlo simulation for point j = 1.2, m = - 0.4, C!f' = 0.0, the point to which Fig. 
8 corresponds. Note that there are only relatively subtle structural differences 
from Fig. 10, but Fig. 8 possesses a pronounced finite q peak, whereas Fig. 7 
does not. 

as one becomes sufficiently far (in units of s) removed from the central 
site, the amplitudes of the oscillation in the spin-spin correlation function 
become small and the distinction between on-average oil and water do
mains becomes less distinct because of the fluctuations of the domain 
walls. However, if s is moderately large in comparison to d, the picture 
that one has of the isotropic phase is that of fairly distinct domains of oil 
and water separated by amphiphilic film layers that although somewhat 
crumpled, tend to keep a fixed average distance from neighboring layers. 
Since the concentration of amphiphile at the bond n + ! is given by 

(64) 

we see that for low amphiphile volume fractions, one requires (a nan+ 1!2) 
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to be close to unity (i.e., spins on nearest-neighbor sites should be well 
correlated). This is favored by large ~ and d and therefore we expect to 
find the bicontinuous microemulsion phase with low amphiphile concen
tration near an order-disorder transition where the period of the lamellar 
ordering is long. On the basis of simulations this is indeed found to be 
the case for the lattice model. It would appear that this observation is 
also consistent with experimental phase behavior. 

The discussion above may be illustrated using instantaneous configu
rations from a simulation of the lattice model. In Figs. 10 and 11 we have 
shown two sample configurations for those values of the parameters used 
to compute the structure factors in Figs. 7 and 8. Figure 10 corresponds 
to the structure factor in Fig. 7, and Fig. 11 corresponds to that of Fig. 
8. One striking observation that one might make about the bicontinuous 
microemulsion structure is that it is difficult to identify distinct well
formed layers separated by oil and water. Rather, there are domains which 
in some regions appear to be lamellar-like, in others almost globular. The 
indefiniteness of lamellae should be taken seriously. Indeed, since they 
reproduce the scattering data so well, one should view the images in Figs. 
lO and 11 as truly representative of that phase we call bicontinuous mi
croemulsion. 

The fact that the bicontinuous microemulsion is characterized by two 
such lengths means that one must be careful about any definition of a 
domain size. Thus in simple systems there is a direct correspondence 
between the correlation length and the domain. In the present case, how
ever, the average size of oil or water regions is essentially d and fluc
tuations about it are determined by ~· Thus the lamellar structures have 
well-characterized domains of oil or water because the fluctuations of the 
amphiphilic film are modest. In the microemulsion there remains an av
erage d, but if~ is small the amphiphile fluctuations are so large that it 
is inappropriate to regard this as characteristic of an oil or water domain. 
It is possible to study this issue a little more carefully by calculating the 
amphiphile-amphiphile correlation function, 

(65) 

This function directly probes the issues discussed above. The distance 
between peaks (say i = - j) is precisely the size of an oil region, and the 
dispersion is also readily calculated. However, to retain direct contact 
with the neutron-scattering data, we shall, for the remainder of this chap
ter, rely more on heuristic definitions that are based on the two lengths, 
~and d. We shall use these ideas once more in Section VII, where we 
discuss the definition of microemulsion. 
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V. INTERFACIAl TENSIONS AND STRUCTURE 
OF THE INTERFACES BETWEEN PHASES IN 
THE lATTICE MODEl 

Within the context of mean-field theory one may also construct the in
terfacial profiles and tensions between the various phases that are in equi
librium in the phase diagrams, Figs. 3 to 6. The interfacial tensions derived 
from such calculations are expected to be qualitatively correct [31]. One 
may also heuristically associate the mean-field profiles with the interfacial 
structure of small regions of the interface. As we shall see, the tensions 
calculated for the present lattice model are characteristically low, even 
when there is no proximate critical point. Thus in the region of three
phase oil-water-lamellar coexistence, one finds that the oil-lamellar 
phase or water-lamellar phase tensions are all ultralow (of order 10- 4kT). 
One also finds interfacial structure rather reminiscent ofliquid-crystalline 
order at the interface between the oil-rich and water-rich phases [32,33]. 
We have already alluded to the fact that this implies the existence of a 
nontrivial length scale, besides the correlation length, at the interface 
between isotropic phases. The precise evolution of these length scales as 
a function of the parameters of the model is readily determined numeri
cally, or approximately by a perturbation theory based on the suscepti
bility of the isotropic phases [33]. It is also worth noting that this phe
nomenon is intimately related to the peak in the scattering intensity that 
was discussed in the preceding section. In both cases one finds that the 
soft modes, as determined by the momentum-dependent susceptibility, 
occur at nonzero momentum. In the case of the interface they lie in the 
complex-momentum plane and the real and complex pieces then deter
mine the two length scales present in the interface. In the calculations 
presented below, in Figs. 12 to 15, we plot the particle density for each 
layer, z. These results are obtained by averaging the free-energy func
tional (13) over the x,y directions and then minimizing with respect to the 
layer densities, subject to the asymptotic conditions for the two bulk 
phases that are in equilibrium. 

In Fig. 12 we plot a typical oil-water interface along the three-phase 
equilibrium surface between oil, water, and lamellar phase. We note the 
symmetrical interfacial structure. Figures 13 and 14 correspond, respec
tively, to an oil-water interface and oil-microemulsion interface that are 
on the three-phase equilibrium sheet but somewhat away from the lamellar 
phases. For this reason the tension is still not extremely low, nor is there 
any discernible interfacial structure. Also, for these values of the param
eters the oil-water interface is found to be wet by the third, microemulsion 
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Fig.12 Typical density plot for oil-water interface for a point on the oil, water, 
liquid-crystal equilibrium surface. Note the presence of an interfacial structure. 
On the inset we have presented the amphiphile density distribution across the 
interface. The interfacial tension corresponding to this proftle is ultralow. 
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Fig. 13 Typical oil-water interface for a point on the three-phase equilibrium 
surface between oil, water, and isotropic phase, but far from curve L. 
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Fig. 15 Typical microemulsion-water interface for a point on the three-phase 
equilibrium surface between oil, water, and isotropic phase close to curve L. At 
this point the isotropic phase possesses the features of a bicontinuous micro
emulsion, and this is associated with structure in the rnicroemulsion side of the 
interface. 

532 



Nature of Microemulsions 533 

phase, a matter to which we shall return in some detail at the end of this 
section. 

The next result, Fig. 15, is derived for a point on the isotropic three
phase equilibrium surface that is much closer to the lamellar phase. Con
sequently, one might expect the appearance of interfacial structure. How
ever, although the oil-water interface (not shown) is structureless, the 
oil-microemulsion or water-microemulsion (Fig. 15) interface has struc
ture, confined primarily to the microemulsion side. This is an observation 
that might be checked experimentally. One can show, in fact, that within 
the present model this particular type of interfacial structure is commonly 
associated with Winsor III equilibria and may, in some measure, be used 
to differentiate between these and conventional three-phase equilibria. 

At this point we may pause to review the origins of ultralow interfacial 
tension, at least within the framework of the present lattice model. Ac
tually, many of the important applications of amphiphilic dispersions stem 
from the remarkably low interfacial tensions found between the phases 
in the three-phase triangle, so this question has caused considerable in
terest and controversy in the literature. More recently, it has become 
common to attribute the phenomenon to the near-cancellation of the bare 
surface tension and the transverse component of the pressure [34-36]. 
There is both experimental [37] and theoretical evidence [36] that such 
effects are indeed significant. However, the predictions of the lattice 
model imply that resolution of the question may not be so simple and that 
such cancellations lead to low, but not ultralow, tension. To see that this 
is the case we recall that because of the constraint that there are no direct 
oil-water contacts, all of the amphiphilic film satisfies the Schulman con
dition [38]. 

We have, in addition, chosen the zero of energy to be that of flat 
amphiphilic film, so that at any temperature the tension of a perfectly flat 
interface would be zero. This choice ensures that the conjectured con
dition for ultralow tension is automatically satisfied by construction of 
the lattice Hamiltonian. However, finite temperature e(fects cause fluc
tuations that disrupt and bend the interface in a number of ways, and it 
thereby acquires an effective tension. This tension has been calculated 
for the three-phase equilibrium surface between oil-water and the iso
tropic phase of Fig. 3. The tension is low across most of the surface, 
becoming ultralow only near a tricritical point or near the multistate sur
face defmed by (10) or (46). We had earlier identified this multiphase 
surface by requiring that the work required to insert an amphiphile into 
the film vanish. Note, therefore, that one appears to require this further 
constraint on the microscopic parameters and chemical potentials of the 
model before the tensions become comparable to those that are conven-
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tionally called ultralow. Given the integrity of the predictions of the model 
so far, one expects that such a constraint must also be satisfied by ex
perimental systems with ultralow tension, an observation that could read
ily be evaluated experimentally. In fact, as we shall see later, the picture 
offered by the microemulsion model leads one to suppose that the prac
tical rules of thumb at present used to predict ultralow tensions are ac
tually a reflection, albeit an imprecise one, of the constraints implied by 
the present model. We note finally that since this explanation ofthe origin 
of ultralow tension does not require proximity to any critical point, there 
is no implication that the compositions of the three phases should be 
nearly the same. In fact, typically the three-phase Winsor III equilibrium 
in this model are far from being critical when one considers compositions 
of the components. This point is important since it rationalizes some of 
the apparently conflicting observations on these systems that were men
tioned in Section I. This point is connected to another puzzling obser
vation; thus the oil-water interface of a Winsor III state is typically non
wet by the microemulsion [7], although there has been at least one 
observation of a transition to wetting [39]. 

In the calculations described above one notes that for values of the 
parameters near the multistate surface, and consequently for a structured 
interface, the oil-water interface is not wet by the microemulsion phase. 
We may pursue the issue of wetting across the Winsor progression some
what more systematically using mean-field calculations of the type de
scribed above.* In this case, however, one must study the phase diagram 
as a function of the coupling constants H and L that break the inversion 
symmetry. This permits us to locate the critical endpoints that bound the 
Winsor progression. As mentioned in Section II, these parameters in
volve, respectively, the difference in chemical potentials of oil and water 
and the spontaneous curvature of the amphiphilic film. These quantities 
in turn reflect the changes in the concentration of oil and water and in 
the amount of brine or cosurfactant present in the system. For ionic sur
factants the Debye screening induced by the addition of salt can signifi
cantly affect the propensity of the amphiphilic film to bend toward water 
regions, thereby reducing the magnitude and removing the symmetry in 
the edge and corner energies of the lattice model. For our purposes it is 
important to note that most of the freedom present in the parameter space 

* Note carefully that the Winsor progression is parameterized by only two of the microscopic 
variables. This is a consequence of the fact that since we are dealing with uniform phases, 
j and m appear in the phase-equilibria equalities only as the total coefficient of the two-body 
term. On the other hand, the actual calculation of interfacial tension is for a fixed choice 
of the ratioj/m. Thus there exist Winsor Ill progressions for which the bulk volume fractions 
of the components are precisely the same, but for which the interfacial tensions are quite 
different. 
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of the Hamiltonian is removed if one chooses to study such phase equi
libria. The interfacial tensions and contact angles measured for these 
phase equilibria are dependent on relatively few or none of the parameters 
of the model. This is a useful consistency check on our understanding of 
the meaning of the microscopic parameters in the model. 

We examine the surface of isotropic three-phase equilibria of the sym
metric model. The three interfacial tensions may be computed and a curve 
of wetting transitions determined (see Figs. 16 and 17). To one side of 
the curve w(j,m,<!P) the isotropic surfactant-rich phase wets the oil-water 
interface. On the other side (shaded) the oil-water interface is nonwet, 
as might be expected of a microemulsion. Note that as one proceeds to 
the line of tricritical points, the extent of the region for which the interface 
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Fig. 16 Sheet of isotropic three-phase equilibria in space of parametersj, m, I!J'. 
Above the surface one has the oil and water micellar phases and beneath it the 
isotropic phase. In the vicinity of curve L the isotropic phase possesses the prop
erties of microemulsion. Note that on the shaded portion of the surface the oil
water interface is not wet by the isotropic (microemulsion) phase. Curve w(j,m,i!J') 
thus represents a curve of second-order wetting transitions. Curves L and Ware 
fairly close together, so in accordance with most experimental observations, we 
conclude that microemulsion tends not to wet the oil-water interface. 
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Fig. 17 Location of a wetting transition for the oil-water interface. The dashed 
line is 2rr ow, while the solid curve is u ~w. At the crossing the microemulsion wets 
the oil-water interface. The points marked on the curves indicate the figures 
where density profiles for those values of the parameters have been presented. 

is nonwet shrinks, reflecting the normal trend that wetting accompanies 
the vanishing of interfacial tensions near a tricritical point. However, 
there is a novel phenomenon present in the lattice model of microemul
sions. The interfacial tensions become small as one proceeds in either of 
two directions on the equilibrium sheet. Thus, as !fP becomes small the 
tensions vanish as one approaches the line of tricritical points. However, 
for fixed !fP the tension also becomes small as one approaches the mul
tistate sheet (or tends to the curve L) because, as we have explained, the 
work of inserting an amphiphile molecule into the amphiphilic film is 
vanishing. This second mechanism for lowering the tensions is entirely 
unrelated to near-criticality and therefore carries with it no implication 
that the interface should be wet nor that the volume fractions of the com
ponents in different phases should be the same. On the contrary, the 
contact angles actually increase with decreasing oil- and water-micro
emulsion tensions. One can readily see that the issues of wetting, low 
interfacial tensions, and near-criticality (as determined by the volume 
fractions of the components) are subtle and potentially confusing if one 
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does not understand the global nature of the phase diagram. Presumably, 
the most common three-phase equilibria that are called Winsor III states 
are those that lie inside the nonwet region of the equilibrium surface. In 
some cases they may also be proximate to a tricritical point, reflecting a 
small corner energy term. Also, in some experiments one is probably 
close to both of the critical endpoints, a matter to which we shall presently 
return. In either case the tensions would be lowered as a consequence of 
being close to a critical region that we have mentioned. However, it is 
probable that the dominant effect in lowering the tension is proximity to 
the multistate surface rather than any of these critical points. The interface 
would then be nonwet because the third phase, whether it be liquid
crystal or microemulsion, always has a higher tension with oil or water 
than in the case of critical wetting. 

Although this phenomenon has been reproduced with numerical cal
culations, it is also useful to develop a more intuitive understanding. The 
tensions between all of these interfaces are quite low at low temperatures, 
and for the case of the oil-water interface is significantly modified only 
by the in-layer fluctuations of the interface. However, the tensions with 
the lamellar phases or microemulsion are also affected by the fact that 
the principal fluctuating layer that defines the interface is hindered by the 
other amphiphilic films in the middle phase. This observation is closely 
related to the fact that there is a second, well-characterized length scale 
(d) present in the lamellar and bicontinuous phases (i.e., the average 
distance between the layers). As a consequence, these interfacial tensions 
tend to be higher than those between the simple oil-water interface, where 
one has only micelles on either side of the interface. This means that if 
the third phase is sufficiently structured, that is, contains sufficient flat 
amphiphilic film, it will tend to form a lens rather than spreading out to 
wet the oil-water interface. Thus even though all the interfacial tensions 
may be becoming lower on approach to the multistate surface, the am
phiphilic film within the bicontinuous phase is becoming more flat and 
has a greater tendency to dampen the interfacial fluctuations of the prin
cipal amphiphilic monolayer that defines the interface. Furthermore, the 
propensity of the middle phase to wet the oil-water interface is to a large 
degree determined by the lengths ~ and d since these determine the degree 
to which the principal monolayer is hindered. Finally, in Fig. 18 we have 
presented an instantaneous simulation configuration of an interface be
tween water-rich and microemulsion phases. This example is presented 
to give a qualitative impression of the water/bicontinuous microemulsion 
interface at the Winsor III state. The configuration was prepared by first 
locating the Winsor III equilibrium by Monte Carlo simulation of the heat 
capacity and energy. An initial condition for the interfacial simulation was 
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Water 

Fig. 18 Instantaneous configuration from a Monte Carlo simulation of the hi
continuous microemulsion-water interface . This calculation was carried out for 
a point on the three-phase equilibrium surface represented by Fig. 16. Notice the 
degree of roughness of the interface, a phenomenon that would not be present 
for a simple liquid-gas interface . The structure in the microemulsion side of the 
interface that was apparent in the mean-field calculations (Fig. 15) arises from 
the large domains that aggregate behind the principal amphiphilic film. Note care
fully that this particular point was located using Monte Carlo simulation. It thus 
represents an interface at the Winsor III phase equilibrium. 

then constructed by filling half of the cube with equilibrated microemul
sion and half the cube with an equilibrated water configuration. Average
structure von Neumann boundary conditions are then applied and the 
simulation reequilibrated. However, we note that the interface is much 
rougher than one would expect from liquid-gas interface. In addition, 
there is a tendency for large micellar aggregate to form on the micro
emulsion side, this being reflected in the mean-field density profile of Fig. 
15. 

Note that we can now understand one more of the interrelations be
tween experimental observations. Thus the condition [Eq. (46)] that re
sults in low tensions by stabilizing large amounts of amphiphilic film also 



Nature of Microemulsions 539 

results in a nonwet oil-water interface. Such relationships may mean that 
the various attempts in the literature to resolve between classical three
phase equilibria and the Winsor III state for oil-, water-, and bicontin
uous-microemulsion are quite closely connected, even if they are not in 
quantitative agreement. This issue of how one should distinguish mi
croemulsion is an interesting matter, and we shall return to it in Section 
VI. 

We now return to the general topic of interfacial tensions in the Winsor 
III three-phase equilibrium. In particular, we wish to establish the idea 
that the present lattice model is capable of reproducing the characteristic 
pattern of tensions to which we referred in Section I. One would certainly 
expect this to be so since as we commented previously, the extended 
parameter space contains the oil-microemulsion and water-microemul
sion critical endpoints. In addition, we know that the symmetric model 
(H L 1 = L 2 = 0) that contains the bicontinuous microemulsion phase 
possesses a region of non wet three-phase equilibria. The essential ingre
dients of the interfacial tension plots are therefore already present. In 
Figs. 19 to 21 we have presented calculations of the oil-water (uow), oil
isotropic phase (u0 .,.), and water-isotropic phase (uw.,.) tensions between 
the critical endpoints. In the absence of constraints beyond those implied 
by the phase equilibria, it is possible to choose an arbitrary relationship 
betweenj and m. This will in turn select a trajectory that for the symmetric 
three-phase condition (! 1 = [2 = h = 0) corresponds to a point on the 
three-phase equilibrium sheet of Fig. 16. We therefore present plots for 
j + I lm = 0 (Fig. 19), j + 12m = 0 (Fig. 20), and j + 13m = 0 (Fig. 
21), corresponding to oil-water interfaces that are dry, undergoing a wet
ting transformation, and wet by isotropic phase, respectively. Recall also 
that the isotropic phase tends to have the properties of microemulsion 
only for the first two choices of the j,m relation, these being quite close 
to curve L of Figs. 3 and 16. The oil-water interface is nonwet for the 
first case (j + lim = 0), in accordance with the experimental observation 
that, generally, Winsor III oil-water interfaces are not wet by micro
emulsion. It would in principal, be possible to make another selection 
that would produce a wet interface. It should be noted that although the 
Winsor III interface is typically nonwet, a transition to wetting has been 
observed in at least one case [39]. Such a situation is possible in the 
present model, but one would then predict that the peak in the SANS 
data would move to a smaller wave number. It would be interesting to 
check these ideas with measurements of tensions and of SANS experi
ments. 

In summary, then, we have observed that Winsor III states tend to 
have nonwet oil-water interfaces because of the proximity to the mul-
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Fig. 19 Interfacial tensions across the Winsor progression. The left- and right
hand sides correspond, respectively, to water-microemulsion and oil-micro
emulsion critical endpoints. This particular trajectory (j + llm = 0) crosses the 
three-phase surface (Fig. 16) to the right of the wetting curve, so the oil-water 
interface is not wet by isotropic phase. Also, since we are close to curve L, the 
isotropic phase possesses the properties of microemulsion. These predictions are 
all in accord with experimental observation. 

tiphase sheet. Also, for Winsor III states, there are peaks in the exper
imental SANS data, and these tend to occur at small wave number. Sim
ilarly, in the present model one finds that as one proceeds along the three
phase surface toward the multiphase sheet, one begins to see the emer
gence of a second length scale in bulk and interfacial properties, this 
reflecting the proximity of an ordered phase on the phase diagram. The 
two phenomena described above, the general absence of a tendency to 
wet and a secondary length scale, are related in the present model and, 
we believe, in the experiments. Thus in this section we have commented 
that the flattening of the amphiphilic film causes the oil-water interface 
to be nonwet, whereas in Section IV we have shown that this same aspect 
is accompanied by a second length scale in the structure factor. 

Having established the capacity of the model to describe these phe-
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' Fig. 20 Interfacial tensions across the Winsor progression. The left- and right
hand sides correspond, respectively, to water-microemulsion and oil-micro
emulsion critical endpoints. This trajectory (j + 12m = 0) crosses the three
phase surface (Fig. 16) very close to the wetting curve, so the oil-water interface 
is almost wet by isotropic phase. Also, since we are fairly close to curve L, the 
isotropic phase still possesses the properties of microemulsion. Indeed, this may 
be viewed as a marginal microemulsion (see Section IV). 

nomena, we may now turn to a rather old but practical question about 
the nature of an "optimal" microemulsion. In early experimental studies 
it was realized that a number of technologically important features of 
microemulsion are associated with the minimum in the oil-water inter
facial tension that is found in the symmetric bicontinuous portion of the 
Winsor III state. From the arguments above, one may establish an un
derstanding of the origins of this minimum in the oil-water tension. This 
permits us to establish the correspondence of microscopic interactions to 
the classical definition of an optimal microemulsion. However, in the 
space of parameters of this model there exist other degrees of freedom 
that might be exploited in establishing a more refined definition. A number 
of such questions have yet to be studied. 
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Fig. 21 Interfacial tensions across the Winsor progression. The left- and right
hand sides correspond, respectively, to water-microemulsion and oil-micro
emulsion critical endpoints. This trajectory (j + 13m = 0) crosses the three
phase surt"ace (Fig. 16) to the left of the wetting curve, so the oil-water interface 
is wet by isotropic phase. Also, since we are far from curve L, the isotropic phase 
should not be viewed as microemulsion. 

VI. CONClUSIONS AND REFlECTIONS ON 
VARIOUS ASPECTS OF MODEliNG 
COMPlEX FlUIDS 

While our understanding of simple fluids is by now fairly satisfactory, the 
same cannot be said of very complex fluids. In particular, for amphiphilic 
systems our understanding of the structure of the phases and the tran
sitions between them is comparatively primitive. The large number of 
degrees of freedom involved in these systems render the conventional 
methods of calculation and simulation less effective and if one seeks to 
understand the global phase-diagram one must model the system in a 
different manner than that conventionally used for simple fluids. Such 
models should certainly make contact with the microscopic energy scales, 
though at the minute one cannot hope that the correspondence will be 
very direct. It is also essential that they be analytically and computa-
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Fig. 22 Volume fraction of oil in the oil-rich phase (upper curve) and water
rich phase (lower curve) across the Winsor progression of Fig. 19. For I = 0 one 
has the Winsor III equilibrium, and here the difference in the fractions of oil in 
the phases is still substantial. We have thus reproduced the effect that the interface 
may have ultralow tension and be nonwet (Fig. 19) while on the basis of com
position, still noncritical. This was one of the puzzling experimental observations 
with which we opened this chapter. 

tionally tractable since the phenomena we seek to study are frequently 
quite subtle. That the present mode, based as it is on so few basic hy
pothesis about the interactions, should be so successful in reproducing 
and predicting the phenomena is quite gratifying. There is every reason 
to believe that it encompasses most of the experimental data for these 
systems. One should, however, also be aware of the limitations of such 
studies. These are both fundamental and, in some cases, of a more tech
nical nature. 

At the fundamental level one must accept that the lattice models, 
though they exhibit the generic phenomena and elucidate the origins and 
interrelations between them, cannot be quantitative. Such models are 
studied as a function of their parameters, so one may make predictions 
about the effect of changing various experimental parameters, but there 
is, as yet, no way of a priori calculating their values. On the other hand, 
the model requires very few parameters, and the unknowns are usually 
overdetermined with just one physical measurement. For example, SANS 
data can be used to determine /(0), b, and c, and two of these fix the 
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microscopic couplings and concentration.* The concentration may be 
computed independently from the model and one can also use the param
eters to calculate the interfacial tensions, contact angles, and other ob
servable quantities and compare them to experiment. Thus in the future 
it is most desirable that SANS experiments be carried out simultaneously 
with interfacial, composition, conductivity, heat capacity, and other mea
surements. Greater emphasis might also be given to specular reflection 
experiments that will probe the structure of the oil- and water-micro
emulsion interfaces. This should permit one to determine if there are 
indeed secondary long length scales present, and to relate this phenom
enon to the issue of wetting. 

We might also point out that the lattice models prompt the development 
of a more intuitive level of understanding of complex systems, but such 
arguments may, in the context of the lattice model, always be reduced 
to concise well-formulated mathematical questions. This is a powerful 
combination with which to attack such complex problems. 

There are, of course, also some technical problems that have yet to 
be overcome. Mean-field calculations offer the most complete description 
of the lattice Hamiltonian, but they are frequently quantitatively unreli
able. In the region of the Winsor III states mean-field theory offers no 
information about the structure of the phases, and although the length 
scales we study are long compared to the lattice spacing, there are few 
useful fixed points of a renormalization group flow. Low-order loop cor
rections have also been shown to be of some limited quantitative value 
[42]. Many of the important observables, when calculated with simula
tions, are susceptible to anomalously large finite-size effects, although 
this problem could certainly be ameliorated by systematic MCRG cal
culations. Finally, the presence of the underlying lattice, while essentially 
irrelevant for the bicontinuous microemulsion, affects the liquid-crys
talline phases in a number of important ways. First, only order with a 
symmetry that is appropriate for the lattice is reproduced by the lattice 
Hamiltonian. Thus tubular phases become arrays of square tubes rather 
than cylinders, and presumably some classes of phases are entirely ex
cluded. More significantly, even for phases with the correct symmetry, 
the fluctuations may be disturbed by the presence of a lattice. For ex
ample, realistic layers of the fluid lamellar phases undergo long-wave
length transverse fluctuations that control their swelling on the addition 
of oil or water. At low temperatures the lattice suppresses such fluctua
tions, although they are restored above the roughening transition in the 
lattice models. Microemulsion exists only well above the natural rough-

* Heat capacity and composition measurements may be used to fix the value of CJ>. 
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ening temperatures of the lattice, so these considerations do not affect 
this phase. One must, however, exercise caution in interpreting anything 
but long length-scale phenomena when dealing with a lattice model. The 
phases that lie at high amphiphile concentration have order on relatively 
short lengths. Nevertheless, we would contend that the liquid-crystalline 
order predicted by the lattice model is a useful caricature of the true 
ordered structures. 

We now turn to a discussion of some of the results presented in this 
chapter and their broader interpretation. In Section II we referred to the 
question of the definition of microemulsion. Recall that it is possible to 
follow the single-phase corridor from oil-in-water to water-in-oil micelles 
via the bicontinuous microemulsion phase without passing through any 
phase transition. One must thus seek a definition that is based on criteria 
other than singularities of derivatives of the free energy. From the ex
perimentalist perspective, microemulsion is often defined heuristically in 
terms of its physical properties. Thus the fluid is an isotropic nonviscous 
dispersion of oil and water that exhibits certain interfacial properties and 
whose location in the phase diagram has a characteristic topological re
lationship with the other phases. 

More recently, Kahlweit [2) has suggested another interesting descrip
tion based on, for example, the convergence of certain physical mea
surements (measured within the water or oil domains) to their bulk values. 
One type that has been suggested is the dielectric measurement of the 
water domains. Evidently, such a definition will ensure that the oil or 
water domain size is quite large. This scheme must ultimately be related 
to the sizes of the length scales ~ and d mentioned in Section IV since 
these determine the extent and nature of the dispersed oil or water regions. 

Various definitions based on theoretical considerations have also been 
advanced. Widom has pointed out that since true Winsor III micro
emulsions tend not to wet the oil-water interface, it may be appropriate 
to use this as the criterion for their definition. On the other hand, some 
materials that are commonly considered to be microemulsion do wet the 
interface, while some fluids that are not, on the basis of other physical 
properties, do not wet the interface. This classification is evidently not 
unique, but from the results in Section V we see that it is suggestive. 

Other classifications are based on the observation that the micro
emulsion phase tends to yield a maximum in the SANS scattering inten
sity. This is also found to be the case for the lattice models and there one 
can calculate a surface that divides the isotropic phase into two regions, 
one where the maximum of the structure factors is at qmax = 0 and the 
other, qmax > 0. This definition is essentially based on the emergence of 
a second length scale, d. Although this suggestion is mathematically ap-
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pealing, it is unlikely that materials with very small d will possess the 
other physical properties of microemulsion. It is also unclear that a large 
d but small ~ would represent an acceptable definition. At the minute the 
most reasonable choice seems to be based on an expression ofKahlweit's 
ideas. Thus the second length scale (d = de) ought to be sufficiently large 
that the implied water or oil domains take on certain macroscopic prop
erties. However, for this criterion to be workable one must presumably 
also require that ~ be comparable to d since this will ensure a fairly mono
disperse domain size. When such a choice is made, one can again calculate 
a sheet that divides the isotropic phase into two regions but with qmax < 
qc or qmax > qc where qc = 2Trldc. It transpires that such a surface lies 
to the right of the sheet j + 12m = 0 in Figs. 3 and 4. Finally, if one is 
sufficiently close to the order-disorder transition and near this sheet, it 
is clear that both d and ~ will have the desired properties. 

Ultimately, however, one must accept that the progression from con
ventional three-phase equilibria to the Winsor III state is so gradual that 
it is difficult to resolve the question in a completely satisfactory manner. 
All of the definitions mentioned above are based on some important ele
ments of microemulsion, and each has their own merits. It is probably 
more important to recognize that all are simple reflections of a remarkably 
rich underlying scheme that is made clearly visible by the lattice models, 
an observation that is in itself sufficient to justify their development. 

In summation we may reflect on those tasks that have yet to be 
achieved before a truly quantitative theory of microemulsion emerges. 
Although the essential features· of microemulsion are described by the 
present model there are aspects of the phase-diagram and scattering func
tions that must be calculated using methods that can accurately describe 
the long but not diverging length scale. Some of this work has been carried 
out [35,40]; some has yet to be undertaken. There is, in particular, a need 
for more accurate but simple analytical expressions, such as (51) to (53), 
to which experimental data may be fit. 

Finally, we have hitherto directed out attention to the equilibrium prop
erties of these systems, and the study of their nonequilibrium behavior 
is its infancy. It is already clear (J. R. Gunn, C. M. McCallum, K. A. 
Dawson, unpublished) that there exist a number of important phenomena, 
their elucidation being important technologically and of substantial in
trinsic scientific interest. 
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Kinetic Theory of Strongly 
Inhomogeneous Fluids 

H. Ted Davis 
Minnesota 

Minneapolis. lvfinnesota 

I. INTRODUCTION 

Fluids confined to spaces a few molecules wide in at least one dimension 
are strongly inhomogeneous. Examples of these are fluids between clay 
platelets, in zeolites, in porous vicor glasses, and between coalescing 
colloidal particles. Also, there are strong density or composition inho
mogeneities in interfaces between bulk phases. In recent years a great 
deal of progress has been made toward understanding the molecular struc
ture of fluid interfaces. Much of the recent advances in molecular theory 
and molecular simulations is presented in other chapters of this book. As 
usual, our understanding of equilibrium properties is ahead of our un
derstanding of transport and flow properties. Thus, instead of trying to 
expose the general theory of flow and transport in strongly inhomoge
neous fluids, I have set the more modest goal of describing flow and tracer 
diffusion in terms of the modified Enskog kinetic theory. 

The modified Enskog theory is outlined in Section II. In Section III it 
is shown that the theory yields the exact equilibrium Yvon-Born-Green 
(YBG) equations. These equations represent hydrostatic equilibrium for 
each molecular species. Closure approximations to the YBG equations 
are discussed and it is demonstrated that the Fischer Methfessel approx
imation predicts density profiles and salvation forces (normal pressures) 
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in good agreement with computer simulations of simple fluids confined 
to planar slit pores. The theory of tracer diffusion is presented in Section 
IV for the modified Enskog model and for three square-well fluids: fluids 
whose molecules interact with a central attractive square-well and a 
smooth, loaded, or rough hard-sphere repulsion. The modified Enskog 
theory of flow is presented in Section V, and the special problems of 
confinement-induced solidification are mentioned in Section VI. 

II. MODIFIED ENSKOG EQUATION 

Enskog's equation has been used for the study of fluids that are homo
geneous on the molecular scale. Applications to homogeneous fluids have 
shown that despite the simplifications it is based on, Enskog's theory 
predicts the self-diffusion and viscosity coefficients rather well [I]. There 
is. however. nothing in the approximations underlying the equation that 
precludes applications to strongly inhomogeneous fluids .. tluids 
whose component densitie~ on a molecular scale). In 
fact, recent applications of the theory to thin fluid films confined to mo-
lecularly thin pores indicate that the yields meaningful results for 

thin films '] kinetic for the singlet dis-
tribution function. modified to include attractive interactions through a 
mean-field approximation. forms the basis of the theory presented herein. 

In what follows we assume that the fluid is composed of classical, 
structureless molecules that interact via pair potentials of the form 

u(5) 
5 <a 
5 >a 

(l) 

where s is the intermolecular a the hard-core diameter of the 
molecules. and continuous potential. Barker and Henderson 
and Weeks et al. have described ways to approximate con-
tinuous pair potentials strong short-range repulsive interactions 
by a hard-core cutoff model of the type given (1). 

The distribution denotes the probability den-
sity in configuration and velocity space [i.e., f,(r,v,t) d 3r d 3 v is the prob
able number of particles of type i lying between rand r + dr with velocity 
between v and v + dv at timet]. Similarly, f)Jl(r,r' ,v;,vj,t) d 3r d 3r' d 3v; 
d 3vj denotes the probable number of pairs of particles, one of which lies 
between r and r + dr with a velocity between v, and v; + dv,. and the 
other of which lies between r' and r' + dr' with a velocity between Vj 

and v1 + dvj. ffP is the doublet distribution function. In a multicomponent 
fluid subjected to external forces , electrical, gravitational and mag-
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netic fields or the forces of confinement exerted by solid surfaces), the 
modified Enskog equation is 

c 

·""' f(2)< , t> d3 , d3 _ """ r [f\2)( k , ,, ) vv; iJ r.r ,v;,vj, r v1 - L...i )"Jrk>O ,1 r,r + a;1 ,v;,VJ,t (2) 

- flJ>(r,r - auk,v;,Vj,t)]abvu·ka2k d3vJ 

where V and V Vi are gradient operators with respect to r and v1, m; the 
molecular mass i, u/ the potential of the external force on i. 

the continuous of the pair potential between i andj, and au (a1 

+ a1)12. where a1 is the hard-core diameter of i. k is a unit vector directed 
from the center of to the center and v; is the velocity of i after a 

collision \vith J [i.e~ .. v; = v1 2M1vij*kk and v; = v1 + 
- vi• mJ(m1 + and Al1 mAm1 + 

of molecular in the fluid. 
are that the continuous interactions are 

contribute mean field in which the 
molecules mo\e but do not contribute to collisional and that 
the hard-core collisions are uncorrelated. As Enskog did. we make the 
further assumption that the doublet distribution function factors into the 

(3) 

where gu(r,r' ,t) is the pair correlation function. This assumption neglects 
the velocity dependence of the correlation function. Unlike the usual En

theory of weakly inhomogeneous fluids, we do not assume that gii 
is the correlation function of fluid at some local composi-
tion. 

The local number density n1, pair density nlf1, and average velocity u; 
of species i are obtained from the expressions 

n;(r,t) I f 1(r,vi,l) d3v1 

nlJl(r,r' ,t) I flfl(r,r' ,v1,vht) d3v; d3v1 

u,{r,t) = _!_I vJ,<r,v;,!) d 3v; 
n; 

The spatial pair correlation function is given by g~.ir,r',t) 

(2)( f t) 
( , ) n,1 r,r, 

g .. r r t = 
u ' ' n.<r ,t)n1(r' ,t) 

(4) 

(5) 

(6) 

(7) 
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Multiplying and using (4) and (5), we find the 
continuity (mass conservation) equation 

an; 
---::-- + V·(n 1u;) 
dt 

0 (8) 

for species i. This is an exact result even though we derived it from an 
approximate kinetic equation. In deriving (8) we used the properties 
JV ,J, d 3v1 = JV .. J/Jl d 3v1 = 0. which result from the condition f 1, f u ~ 
0 as v,~ x. 

The momentum conservation equation for species i can be obtained by 
multiplication of (2) by v1 d 3v; and integration. The result is 

a(m;tl;U;) "' r I ~) 1 at + V·(mini (v,v,)) + n;'vu'f + L... Vuj(lr-r' )n)J (r,r' ,t) d r' 
J . 

(9) 

where 

n, I 
In and , we used the property f 

v1VvJ, - U f f; resulting from the condition f;---+ 0 as 
v;---+ x. U is the unit tensor. which has the property U·a a for arbitrary 
vector a. 

In arriving at the final form of the right-hand side of 
hard-sphere collision properties !8]. namely. 

we used 

( I) 

and v; v; + M 1vJi·kk, M 1 mJ(m1 + m1). We have also replaced Vt 

and v2 in the final form of the right-hand side of (8) to emphasize that 
they are simply dummy variables once integration is carried out over both 
of them. 

With the aid of several manipulations, (8) can be put into a form more 
like what is expected in continuum mechanics. First, let us introduce the 
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coordinate transformation r,r' ~ r, s r' - r to obtain 

""' I '<7 A(i ' I) (2)( ' ) d3 ' LJ v uu r - r nu r ,r ,t r 
J 

(12) 

The final form of the right-hand side of (12) is obtained by using the 
transformation s ~ s and taking the mean of the original and the trans
formed expressions. 

Next we use the identity 

d 

do 
(r -~ us,r ~. ( l CX)S,[) '(r - o:s.r - (! a)s.l) 

113) 

which one obtains another 

\Lf .,_ S.!) (r s.r .! 1 du 
(14) 

x (r- cxs,r + (I - a.)s,l) 

(12) and (I we find that 

""' I vuA(I r - r' i')n€2l(r r' l) d 3r' .<:..J IJ I IJ , ' 
j 

( 15) 

where 

(l6) 

and 

BA = ""' I I s duj(s) [ (Zl( , LJ 
2 

d n1 , r ,r 
j s s 

s) - n)[l(r,r s)] d3s (17) 

T/ is the contribution of the ith species to the part of the stress tensor 
arising from the continuous intermolecular interactions. B/ is the asym
metric force on species i contributed by the continuous intermolecular 
interactions [9]. The asymmetric force arises from the density inhomo
geneities of different species. Even if the pair correlation function depends 
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only on s, B/ is not zero in a multicomponent solution since the quantity 

gu(s,t)[n,(r - s)n1(r) - n 1(r)nj(r - s)] 

(18) 

is in general not zero if i ""'j. We remark also that B/ cannot be cast into 
the form of a divergence of a function of r. Thus B/ differs in a funda
mental way from the local stress tensor contribution to the momentum 
balance. 

Manipulations similar to those leading to (14) can be used to obtain 

right-hand side of (9) = V·T/ + B/ (19) 

where according to the Enskog hard-sphere theory the contribution of the 
repulsive forces to the stress tensor and asymmetric force are 

T/ 2: ---"---"--- J- 1 J J kkfJ1(r + cw,1k,r 
J mt + mj o V;!1·k>O 

(I - a)aiJk.v 1.v2,t) X at(v21·kf d 2k da 

k[ + 

l) 

and ClJ we used transformations 
VlV2--+V:-,V1. 

the local kinetic stress tensor of i is defined as 

where u((r,t) is the local mass average velocity, 

u(r,t! 

The momentum balance equation of 
as [9] 

U;U uu)J 

and 

can now be 

+ + 

(24) 

(25) 

(26) 
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Summing (24) over all species and noting that the asymmetric forces 
cancel, 

2: 8 1 = 0 (27) 

we obtain the usual momentum balance equation of fluid mechanics: 

a(pu) • 
--- + V·(puu) = pFe - V·T 

dt 

where the local mass density is 

p(r.t) 2: m 1n1(r.t) 

the local body force density is 

pf"( 

the total local stress tensor is 

T rTK , L , ~ J 

(28) 

(29) 

(301 

I l 

The equation for p is obtained by multiplying (5) by m 1 and 
summing over species. The well-known result is 

iJp ~ -::-- + v ·(pu) 
d[ 

0 (32) 

Although continuum mechanics can be used to derive (29), the total 
momentum balance equation, it cannot be used to decompose the species 
momentum balance into local species stress and asymmetric force con
tributions as given At equilibrium (24) provides hydrostatic equa
tions governing the density distributions of the species in the presence of 
external fields or in fluid interfaces. We address equilibrium properties 
of strongly inhomogeneous fluids in the next section. 

Ill. EQUiliBRIUM THEORY Of 
INHOMOGENEOUS FLUIDS 

A. Equations of Hydrostatics and the Yvon
Born-Green Equations 

At equilibrium the singlet and doublet distribution functions are given by 

f; = <p(v;)n,{r) and fb2l = <p(v;)<p(vj)nli'l(r,r') (33) 



558 Davis 

where ~.p is the Maxwellian velocity distribution function 

'f'(V) c-:a) ,,: e -m,.'t2kT (34) 

k is Boltzmann's constant and Tis the absolute temperature. There is 
mean flow at equilibrium. Thus u, = u 0, so the momentum balance 
equation of species i reduces to 

0 = - m,n/ilu/ T B, + v·T, (35) 

the equation of hydrostatic for species i. The set of these equations gov
erns the component density distributions n,(r) for a fluid at equilibrium. 

Although (35) identifies hydrostatic equilibrium of each of the species 
as the determinant of the density distributions of inhomogeneous fluid at 
equilibrium. it is more convenient for computational purposes to use the 
equivalent set of equations obtained directly from (9) in the equilibrium 
limit. At equilibrium the velocity integrals in f9l can be performed. The 
results are 

fl;tllj n,kTlf (36) 

and 

,, 
! a z~: 

:Z.:krJ (37) 

With these results the equilibrium version of (9) becomes 

kT'Vni + n;'Vu/ + L J vutnlJ'l(r,r') d3 r' 
I (38) 

r 
+ L kT J = 0 

i 1,2, ... , c. Equation (38) is known as the Yvon-Born-Green (YBG) 
equation for the density distribution n,. The valid 
for multicomponent fluids whose 
by (l). Thus, even though the modified Enskog equation is an 
mation for a nonequilibrium system, it yields the exact equations of 
drostatics. 

At equilibrium the stress tensor and asymmetric force of species i are 
of the forms 

1 ( 1 f SS du1 
n,kTU + L 7 Jc - -' nif(r 

1 
_ o s ds as,r + (1 a)s) d 3 sda 
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a)auk)al- d2 k da (39) 

and 

B; = Eq. (17) + 2: ~I k[nj7l(r,r + duk) nifl(r,r - duk)] d~d2k 
j 

(40) 

+ L ~I~ ds [nj7l(r.r - s) - n}jl(r.r - s) d 3s 
j 

These results are again exact for fluids whose molecules obey pair po
tentials of the form of (1). 

The total asymmetric force IS zero, as noted before, and the total stre~:, 
tensor is 

T = 

B. local 

Tl ~ "'"' I .:....., 
!J .;_ 

- ns.r -'- (1 - s 

(l 

Approximation 

The YBG distributions are not a closet set since 
they contain contributions from the doublet density distribution function. 
Thus come closure must be found if we wish to solve the 
YBG equations. One way to accomplish closure is to use the mean-spher
ical. hypernetted chain or the Perc us-Y evick approximation. All of these 
begin with the exact Omstein-Zernicke equation 

gu<r.r') = I + cu(r,r') -r 2: J [gu(r.r") - 1]11k(r")ck;(r"r') d 3r" 

The Percus-Yevick approximation is, for example, 

I r - r' I> au 
I r - r' I< au 

Equations (42) and (43) combine with the YBG equation [Eq. (38)] to yield 
a closed set of equations for 11; and gif. The problem with solving these 
equations is that they are computationally very costly even for a one
component fluid in planar geometry (i.e., 11 varying only in one direction). 

A much simpler approximation that has been introduced in the study 
of the liquid-vapor interface is (9] 

11/}l(r,r') = n,(r)nj(r')gu (1 r r' l,n(r ~ r')) (44) 
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where 

is the pair correlation function of homogeneous fluid evaluated at the 
component densities n (;; {n 1 , • • • ,n,}) at position (r + r')/2. Often, the 
problem has been simplified even further by assuming that in evaluating 
the mean-field contribution involving ui), the structureless fluid approx
imation (i.e., giJ O,l r r' I < au and giJ I ,j r - r' I > au) can be 
used and that in the hard-sphere term the contact value of the hard-sphere 
correlation function can be used. With these "van der Waals" approxi
mations the YBG equation becomes 

V[kT In n1 + u{ + 2.: J ui}(s)n1(r + s) d3 s] 
J (45) 

+ 2: kT J ni(r auk)J,>~5 (au,n(r + !auk))a~k d 2 k 
J 

0 

Although "local density functional approximations·· such as (45) have 
been shown to qualitatively correct and 
sure profiles and surface tensions for one-component liquid-vapor inter
faces [91, they are known to fail for fluid-solid interfaces where the 
distribution tends to be rather than 
ing in space [ 10]. Consequently, "nonlocal density functional 
mations" have been explored. Typical of this approach is the Fischer
Methfessel approximation. namely [I 1], 

r' l,n ( ) (46) 

where it is assumed that the pair correlation function is that of homo
geneous fluid, but. instead of being evaluated at some local composition. 
it is evaluated at a locally averaged In its most 
form, the local average can be defined as 

fi;(r) J W;(r,r' ,{n})ni(r') d 3 r' 

where the local weighting function w1r .r' {n}) is a functional of the density 
distributions n. To ensure that n, ni in a homogeneous fluid, it is re
quired that 

J wi(r,r' ,{n}) d3 r' = I (48) 

In the context of either the YBG equations or of density functional 
free-energy theory, the nonlocal density functional theory has been in 
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essence an attempt to pick the "best" choice of weighting functions w,.. 
The approaches ofNordholm et al. [12], Tarazona [13], Percus [14], Van
derlick et al. [15]. Kroll [16], and Fischer and Methfessel's [I l] works 
have proceeded along these lines. In particular, for a one-component fluid, 
Fischer and Methfessel chose 

ti(r) = [~ 1T(~rJ I L<af2 n(r + s) d
3
s <49) 

or 

w(r,r') 1 - 11 (1 r - r' I - ~) (50) 

where 11 is the Heaviside function, that is, = U. x 0 and = i. 
0. A generalization of the Fischer-Methfessel formula to a multicom

ponent fluid is 

where 

_, 
I a;\ 
I 'i I 

!5 j) 

n,(r --,-- s) 

of and This form 
of ii; is suggested by the exact theory of an inhomogeneous fluid of hard 
rods [ 15]. ln fact. one can show [17] that the YBG equation for 
a one-component fluid of hard rods yields the exact density distribution 
function when the Fischer-Methfessel approximation is used. The work 
of Nordholm and Johnson suggests averaging n,. over the molecular di
ameter in (54) instead of over the molecular radius. Tarazona's formula 
for ii; is considerably more since he requires the free-energy 
functional derivatives with regret to to the Pcrcus-Yevick 
direct correlation function for hard spheres. 

As in the van der Waals theory, Fischer and Methfessel assume (!) 
that the pair correlation function can be replaced by a step function in 
the term involving the continuous interaction ui] (which is presumably 
long range and therefore gives a contribution less sensitive to short-range 
pair correlations) and (2) that the hard-sphere contact value of the pair 
correlation can be used in the hard-sphere part of the YBG equation. Thus 
the Fischer-Methfessel model is 

v[kT In lli + u/ + L J ui}(s)nj(r + s) d 3 s] 
j 

+ 2: kT J nj(r + auk)gVs(au,ii(r + !aik)a~k d 2k = 0 (53) 
j 
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The equations looks very similar to the local density functional equation 
(45) but in fact predicts dramatically different and qualitatively correct 
density distribution for fluids near solid surfaces. 

For a one-component fluid. an improvement over the Fischer-Meth
fessel model can be obtained by approximating the pair correlation func
tion in the mean-field term by 

using the Barker-Henderson method [6] to determine the hard-sphere 
diameter a and attractive potential uA from the continuous pair potentials 
representing the actual fluid particles. The quantity a(n) is given by a(n) 

k11aPH 5 (n)lan ]. where PH5 (n) is the pressure of a homogeneous hard
sphere fluid. According to the Barker-Henderson method. one computes 
the effective (temperature dependent) hard-sphere diameter from the for
mula 

a 1., [1 ~ 
(l 

ds (55) 

where u is the pair potential bel\veen particles and u is the particle sep-
aration at which u = 0. Then one sets 

fo 
l u(s) 

s:Scr 
s (J 

(56) 

and equates R(s.n) to the correlation function RH5 (s,ii) of hard spheres 
whose collision diameters are a. With (54) the YBG equation becomes 

V [kT Inn + u"l + J VuA(s)n(r + S)RHs(s.ii(r + ~s) 

For a homogeneous fluid, (57) yields a more accurate equation of state 
than does (53). Also, the free-energy analog of (57) has been shown to be 
more accurate than the free-energy analog of (53) in predicting the density 
profile of Lennard-Janes and dipolar fluids near a hard, flat wall [18]. 
Thus it is our expectation that (57) will generally be more accurate than 
(53). 
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C. Application of the Fischer-Methfessel 
Model 

563 

The Fischer-Methfcssel model has been compared [19] with molecular 
dynamics studies of a Lennard-lones fluid confined by planar Lennard
lones walls [20]. The wall-particle potential used in the studies is that of 
6-12 U -fluid particle interacting with semi-infinite slabs of solids com
posed of 6-!2 LJ particles. ln particular, the wall potential used was [21] 

where 

e 

u'(x) 6 

( ) lO 

X 

+ 6"(L x) (58) 

(59) 

and E., and cr., are energy 
interaction. 6" CL 

wall and a particle 

for fluid mole-

u( 4E r cr !2 (60) 

In the theoretical work to be presented here, it is assumed that the hard
sphere interaction replaces the repulsive part of (60) and the attractive 
part is equated to uA. Thus. in the theoretical work, 

(61) 

In the following comparison of theory and simulation, the hard-cord di
ameter dis equated to the Lennard-lones parameter (i.e., we set a = 

cr). We expect improved results if (57), a model based on the Barker
Henderson translation of a continuous potential model into a hard-sphere 
cutoff model, were solved instead ofthe Fischer-Methfessel model. How
ever, (57) is numerically more complex than the Fischer-Methfessel 
model and has not been investigated yet. 
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so the Fischer-Methfessel equation 

~ [ kT In n(x) + ue(x) + J IiA(! x - x' !) n(x') dx' 

-'- 2TrkT lx dx" J~a dx' x'n(x' + x")gHs(d,ii(x" + h')) J 
where 

x x' 
Equation (62) can be integrated to yield 

r' i) dy' dz' 

I x- x' <a 

I x- x' >a 

K = - kT ln n(x) -'- J n(x')iiA(j x x')) dx' 

T 2-:::kT dx" ~{"" dx' x' n(x' + x")gus(a,fi(x" i x' )) 

0 (62) 

(63) 

(64) 

The K is a constant of integration and constitutes a thermody-
namic field variable for the system. 

the correlation 
The best available choice is the Carnahan-Starling formula, 

(65) 

The Fischer-Methfessel expression for fi in the planar case is 

fi(x) (x' - x)2 J nCr') dx' (66) 

(64) becomes a solvable nonlinear equation for the 
n(x) once the constant K is set. One way to set K is to 

that the number of particles in the simulated system be the same 
as the number in the theoretical system [i.e., to impose the constant that 

dx number of particles in the molecular simulation]. In this 
way, K enters (64) as an unknown, but the density constraint adds an 
equation to compensate for the new unknown. 

Density profiles determined by molecular dynamics by Magda et al. 
[20] were compared to those determined by Vanderlick et a!. [19] by 
solving (64). In the studies the parameters Ew and O"w were set equal toE 
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and O", and as mentioned above, a was taken to be the same as O". The 
temperature of the confined fluid film was taken to beT= 1.2€fk. Equation 
(64) was solved by discretizing the integrals with the trapezoidal rule and 
solving the resulting algebraic system with the Newton-Raphson method. 
Comparisons for pores of width L = 3a and 4a are shown in Fig. I. In 
agreement with the computer simulations, the predicted density profiles 
show strong layering as a result of fluid-wall interactions. 

In another paper, Davis et al. [5] have examined a family of density 
profiles, pore average densities, and normal pressures or solvation forces. 
The family is generated at constant K by varying pore width L. It has been 
shown that for a one-dimensional van der Waals fluid, the quantity K 

defined by (64) is, in fact, the chemical potential, so a family at constant 
K would be a family at constant chemical potential. Davis et aL assumed 
that (64) is also in three dimensions the chemical potential corresponding 
to the Fischer-Methfessel theory. With this assumption. the results pre
dicted for constant K can be to the molecular dynamics studies 

et al., since these ;,tudies were carried out at approximately 
constant chemical 

of the with the confined fluids in 
the molecular = 0.5925 and the temper-

value of K was calculated 
and kTIE 1.2 in the bulk fluid formula. Also. K 

n, J <I .lx d.1, [Eq. , where f.Lo 115 
IS the chemical po-

YVQ'f\ Born Green Mod€1 
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L~4 
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Fig. 1 Comparison of the density profiles predicted by the Fischer-Methfessel 
approximation with molecular dynamics simulations. (Redrawn from Ref. 19.) 
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tential of homogeneous hard sphere fluid at 

1-loHS(nb) = kT In nb + rnn l _(!___ [~_,::: n2a 3gH5(n)] dn (67) 
Jo n an -' 

One can easily show that the equations for the chemical potential of ho
mogeneous fluid implied by (64) is (67). We can alternatively show that 
the pressure P0 (n) of homogeneous fluid implied by the Fischer-Meth
fessel approximation yields, with the aid of the Gibbs-Duhem equation 
dP0 (n) ndJ-Lo(n), (67) for the chemical potential of homogeneous fluid. 

A series of density profiles calculated for various pore widths L for 
the fixed values of K and Tare shown in Fig. 2. The number of fluid layers 
(i.e .. the number of peaks in the density profile) is seen to be a sensitive 
function of pore width L Between L = 2a and L = 2.6a, fluid film 
undergoes a transition from a single layer to a double layer. At L 2.95a 
the double layer is more favored than at L 2.6a. as indicated by the 
fact that for L 2.95a. At L 3.5a. two more layers appear to be trying 
to form, but when the pore width is increased to L 4D. it is a three-
layered structure that forms. At L Sa. a four-layered 
structure is formed. 

The normal pressure of the confined fluid can be computed from 

where is the predicted density and ) is the particle wall 
potential given by Eq. (59). The solvation pressure is defined as 

(69) 

where P0 (n&) is the pressure of bulk phase For rzba 3 = 0.5925 
and kTIE = 1.2. the predicted solvation pressure is shown in Fig. 3 as a 
function of pore width L. The solvation pressure oscillates as 
function of L The maxima in the solvation pressure coincide with pore 
widths most favorable to the layered structures. These widths are ap
proximately an integral multiple of a. At these favorable widths the lay-

is strong, the density peaks near the wall are and therefore 
the normal pressure is For L between the favorable widths, the 
layering is somewhat frustrated and the peaks near the walls are 
smaller, with the consequence that the pressure is smaller [e.g .. in 
2 we see that the density peaks near the wall for the L = 2.6a pore are 
smaller than for the L == 2.95a pore. and as shown in Figs. 2 and 3 (e.g., 
for pore width L = 2.6a) the density and pressure are smaller than 
the density peaks and pressure for L = 2.95a, and for pore width L = 
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Fig. 2 Density profiles illustrating the effect of pore width L on layering struc
ture. Predicted for the 6-oo LJ fluid confined by planar 3-4-10 LJ walls. (Redrawn 
from Ref. 5.) 

3.5a the density peaks and pressure are smaller than those for L = 4a]. 
Also shown in Fig. 3 are the molecular dynamics results of Magda et 

a!., for the confined 6-12 Lennard-Jones fluid. The predicted trends in 
the solvation pressure agree quite well with those calculated in the com
puter simulations. This oscillatory behavior of the solvation pressure has 
been observed by the surface forces apparatus, with which one measures 
the forces required to confine thin films of fluids between opposed mica 
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Fig. 3 Solvation pressure. P, = PN Pn(ncl. versus pore width. Comparison 
of Fischer-Methfessell approximation and molecular dynam1cs for t1uid confined 
by planar 3-4-10 LJ walls. Pressure in units of E/(T' and pore widths in units of 
a. (Redrawn from Ref. 5.) 

surfaces [22.23]. The theory thus these observed trends in terms 
of fluid layering induced by interaction between the fluid and the confining 
walls. In a later section we examine the implications of this layering for 
the transport behavior of confined fluids. 

IV. THEORY OF TRACER DIFFUSION 

A. Some General Properties 

In tracer diffusion the 
trations that interactions among the 
tracer diffusion coefficient in a 

is present in such small concen
J'·"'"'"'" are negligible. The 

fluid is a second 
rank tensor since diffusion depends on direction in this case. It follows 
from the theory [24] of Brownian motion that the local diffusivity tensor 
for tracer diffusion can be computed from 

(70) 

where (aY denotes the equilibrium ensemble average of the quantity a 
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for a tracer particle initially placed at r. This ensemble average can be 
expressed as 

(oY = J···J a [2Jl)QI(r1, ... ,rN,VJ. ... ,vN)J 
peq(rJ) (71) 

X o(r rd d 3
r1 .. ·d3

rN d3vc··d3
VN 

where 2P Neqd3r1• • ·d3
vN denotes the probability that in an equilibrium en

semble the tracer particle lies between r and r 1 + dr 1 with a velocity 
between v 1 and v1 + dv1, while the other i = 1, 2, ... , N particles lie 
between r 1 and r 1 + dr1 with velocities between v; and v; + dv1. The 
quantity peq(r 1) d 3r1 is the singlet probability that the tracer particle lies 
between r 1 and r 1 + dr1. 

In an isotropic fluid peq(r1) = constant and the diffusivity is indepen
dent of r and is equal to 

D I
. ([r,(t) - r1 
liD 

t-x 6f 

lim _!_ J · ··J [r (!) 6t I 

(72) 

side of can be rewritten in terms of the velocity 
autocorrelation function. By integration along the dynamical path of the 
diffusing particle, we obtain 

r1(t) - r1(0) = !a' v 1(i) dT 

so 

D(r) (73) 

With the aid of coordinate transformation '· •' ___,. T, •" •' T, the 
condition of stationarity (v(TV(7')) = (v(O)v(7' - 7)), and the property 
fb dT f'_-.,. .. d•" o:(7") = 2 fb d•"(t •")a(7") resulting from interchange of 
the order of integration, (73) becomes 

D(r) = lim (' (v(O)v(7"W (t 
r-.oo Jo (74) 

= L"" (v(O)v(•"W dT" 

This is the Green-Kubo formula generalized to tracer diffusion in an 
anisotropic fluid. 
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The velocity autocorrelation function also related to the friction ten
sor~ or, more precisely. the mobility tensor r- 1

• If a tracer particle of 
mass m 1 is subjected to a small constant external field F/ that does not 
affect the other particles of the medium. it will experience at steady state 
a drift velocity u 1 given by 

(75) 

To relate ~to the velocity autocorrelation function, we solve the Liou
ville equation for a small force F 1" applied at t 0 to an equilibrium 
system. The Liouville equation for the n-particle probability distribution 
function is 

(i{ 
(76) 

where i and '2J>N(r 1 ..... r: .. :.v 1, .... vJ.t) d 3 r1, ... , d 3
vN is the 

probability that particles 1.2. . . lie between r1 and r, + dr1. r2 and r 
+ dr2 , .•. and have velocities between v1 and v1 + dv 1 • v2 and v2 + 
dv2 , •.. at time t. The Liouville operator .CJ is defined by 

From the definition of 
v1 . it follows that 

or 

from which it follows that 

, with 

and 
dt 

and 

where h is any function of the dynamical variables r1, ... ,vN. 

(78) 

(79) 

In the absence of the perturbing force and at equilibrium, the so-
lution to (76) is 

e-HikT 

(81) 
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where H (r 1 , • • • , v N) is the unperturbed Hamiltonian of the fluid. Suppose 
that a uniform constant, perturbing force F1P is turned on at timet = 0. 
The distribution function can be expressed in the form 

(82) 

where for sufficiently small perturbation f;,/!/'N is linear in the perturbing 
force F 1P. Denoting the Liouville operator by:£' = :£ + ll:£, where:£ 
is the unperturbed operator and 

(83) 

we can linearize the Liouville equation to obtain 

1 
i'i' !lCZP + - Flp'Vl ~ ·- . N kT ((84) 

The formal solution to this equation is 

Since :£H = 0, e~;::eu -rJgpNeq(r1 , ••• ,vN) gpNeq(r 1 , ••• ,vN) so the 
operator e-i:P<r--rl is applied only to Vt in (85). 

The perturbation !lf to the singlet velocity distribution function can 
be obtained by multiplying (85) by Nt d 3

r 2 .. ·d3
rN d\12 · .. d 3

vN = N 1(d 3
r 

d3v )N- 1 and integrating the result, 

(86) 

where we have used the property that :£---')- :£ under the transformation 
v1 ---')- -v1 and have noted that exp{iL(t - 7)]v1 = v1(r - 7). The local 
drift velocity u 1(r) is then given by 

nt(r)ut(r) = J Vtllf d 3
v1 

= ~;FP·Lr J···J [vte-i::t:(r-TlvJ]PNeq(d3r)N-t(d3v)N d,- (87) 

= nt(r)t- 1(r)·FtP 
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where the local friction tensor ~(r) is defined (in the long time limit) by 

~(r) = lim Nt (' J···J- [v 1e i.:£-r'vtl'2l'Neq(d3r)N-l(d3v)N dT' 
r~= n t(r)kT Jo 

t r= 
= kT Jo (vt(O)v,(•'W dT 

Comparison of (74) and (88) reveals the relation 

D(r) = kT~- 1 (r) 

which is the Einstein relation generalized to anisotropic fluids. 

B. Self-Diffusion in Several Model Fluids 

(88) 

(89) 

In Section IV.C we solve the modified Enskog equation for tracer dif
fusion. However. under the assumption that diffusive transport involves 
only uncorrelated binary collisions, we can find the self-diffusion coef
ficients for a whole class of molecular models in which the forces are 
impulsive (i.e., models for which the changes in the intermolecular po
tentials occur exclusively at discontinuities). In particular. we consider 
fluids whose molecular interact at a d as 
spheres, rough spheres, or loaded spheres and at a separation r,1 = Ra. 
R > l, via a square-well potential. Thus we assume that 

{ 

-E a < ru < Ra 
uA(ru) 0 ru > Ra (90) 

By "smooth sphere" we mean a hard-sphere particle whose center of 
mass coincides with its center of geometry. Only the normal components 
of the translational velocities of a pair of smooth spheres upon 
collision. Smooth spheres do not exchange rotational energy. A loaded 
sphere is also smooth, but its center of mass is offset from its 
center, so loaded spheres can exchange rotational energy through colli
sions. The center of mass and geometrical center of a co
incide, but the surface of a rough sphere is "perfectly rough" in the sense 
that the relative velocities of the points of contact reverse in a collision 
between a pair of rough spheres. 

Isotropic fluid transport coefficients (i.e., transport coefficients in 
weakly homogeneous fluids) have been studied extensively with smooth, 
rough, and loaded sphere models [I ,25,26]. For tracer diffusion, the 
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sphere theoretical result has led to a useful approximation formula relating 
the diffusivity of a polyatomic solute to the product of a molecular shape 
factor and the diffusivity of hard spheres [27-29]. Brown and Davis have 
obtained formulas for the self-diffusion coefficients of fluids of square
well particles interacting with smooth, rough, or loaded sphere repulsions 
[30]. The results presented in this section are extensions of the Brown
Davis theory to anisotropic fluids. 

As in isotropic fluids, we assume that the velocity autocorrelation func
tion decays exponentially. Since the relaxation is in an anisotropic 
the formula for exponential decay is 

where U is the unit tensor = a) and 
The diffusion for this ap:prc)xrmailo'n ts 

From and it follows that 'T 

are 
to those on 
wcorrelation function about 1 

m 
lim 

1-.:T 

m 

where.:\ v1 is the velocity change during binary collisions. 

(91) 

(93) 

It should be pointed out that for systems of finite width W in any 
direction x, the quantity [x(t) - x(O)f s [ W - x(O)f. Thus ([x(t) -
x(O}J2)/2t __,. 0 as t __,. oo. This means that the self-diffusion coefficient in 
the confined direction would appear to be zero if the mean-square dis
placement is measured for times large compared to the time it takes for 
the diffusing particle to traverse the distance W. However, if the time to 
traverse the distance W is long compared to the diffusive relaxation time 
the quantity ([x(t) - x(O)P)I2t will first converge to the self-diffusion 
coefficient and remain constant until t approaches the time to traverse 
W. Thus when we apply the exponential approximation and compute D(r) 
from (92), we have assumed that the time for the diffusing particle to 
traverse the confined distance is large compared to the relaxation time 
Txx(r). 

Rigid particles interacting via a square-well potential undergo four 
types of binary collisions, so the ensemble average indicated at (88) has 
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to include a properly weighted average of these. After Davis et al. [31.32], 
we identify the following four types of binary collisions: 

I. Two smooth or loaded spheres initially approaching each other 
collide at a distance of separation a. The relative velocities of their 
centers of geometry are reversed in such a collision. A pair of rough 
spheres will experience a reversal of their surface velocities at the 
point of contact upon collision at a separation a. 

2. A pair of approaching particles initially separated by a distance 
greater than Ra will, upon reaching the separation ru = Ra, convert 
an amount E of potential energy into translational energy in the 
case of smooth and rough spheres and into translational and ro
tational energy in the case of loaded spheres. 

3. A pair of particles initially separated by a distance less than Ra 
and moving apart can with enough kinetic and rotational energy 
escape the square well. In this case, at the separation ri; Ra, 
the smooth or rough spheres will give up translational energy of 
amount E and the loaded spheres will give up translational and 
rotational energy totaling E . 

..t A of initially a distance less than 
moving apart cannot undergo an escape collision at rif Ra if 
do not possess sufficient energy. In this case. the smooth or 

at r11 Ra a reversal of the relative 
of their centers and the loaded spheres will experience a reversal 
of the relative points on their surfaces along the line between their 
centers (geometric centers). 

Consider a collision between particles I and 2. The relative positions 
of colliding particles will be identified by a unit vector k directed from 
the center (geometrical) of spheres 2 toward the center of sphere l. The 
angular velocities w 1 and w 2 must be included in the collision dynamics 
for rough and loaded spheres. For loaded we must also 
their orientations e1 and e2 (unit vectors lying between the center of ge
ometry and the center of mass and the distance that the center of mass 
lies from the center of the spheres. The force F 12 that particle 2 exerts 
on particle I is impulsive for the models considered, so we can integrate 
the equation of motion over the infinitesimal times ot to obtain the col
lisional changes of v1 and Wt: 

1 J'+or - F12 dt 
m r 

J (94) 
m 

for loaded spheres (95) 
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and 
a a(«), = k x J 
21 

for rough spheres (%) 

where J is the linear momentum exchanged in a binary collision and a x 
b denote the cross product of vectors a and b. The moment of inertia is 
a tensor I for loaded spheres and is a scalar I for rough spheres. The 
quantity e denotes the distance of the center of mass from the center of 
geometry of a loaded sphere and e; is the orientation of the center of mass 
of loaded sphere i relative to its center of geometry. 

The quantity J can be determined from the laws of conservation of 
energy and momentum. For example, for a pair of smooth spheres col-

at a. we have J Jk. mv 1 -'- nn2 mv; _._ mv;. and !m;: 1
2 + 

imvi 2 + imv!/. Since .:1 v, v; v1 ·- .:1 v2 = (v2 -
-Jim, it follows from energy conservation that 2 

- 2J·v 1/m + ~ , 1 21m2 ), or f 2 = 
mJ·v21- where v2, v2 -Jnnc,·k or 

J (97) 

Results for all four types of collisions for the three models con-
sidered here are tabulated in Table I. The following notation is used in 
the table: 

v 2 + v 1 

a 
Vzi -

2 
(ro1 + ro2) X k 

V21 + Wz X e2e - w1 x e 1e 

2 
f..l2 = 

m 
2 - + I- 1 : [e(e 1 x klfe 1 x kl 
m 

4/ 

(98) 

(99) 

(100) 

(IOI) 

X k)(e 2 X k)) (102) 

(103) 

Let us now tum to the evaluation of (93). The probability that a pair 
of particles in a configuration suitable for a binary collision of type i during 
the time at .:1 t is 

aUik) dm 1 dm2 d 3 r 1 dV'l.i 

(104) 

where dil = lii1"4--o (a + e) = a-+- for a type 1 collision, A Ui = Iim.,-.0 

(Ra + E) = Ra + for a type 2 collision, and a<il = Iim.,_0 (Ra - e) = 
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Table 1 Momentum Exchange in the Four Binary Collisions for Spherical Mol
ecules Interacting via a Square-Well Potential and Having Smooth, Rough, and 
Loaded Hard Cores, Respectively 

Type of 
collision 

2 

3 

4 

2 

3 

4 

2 

3 

4 

Source: Ref. 30. 

Velocity J 

Smooth hard core 

Rough hard core 

2 l ' 
vn·k 0 T V:c1·kk) 

K ' 

V21·k > 0 ~J V2r·k - k 

V21·k < V2E~J.z :2 [ V21·k V(v21·kf - 2E~J.r] k 

< V21·k < 0 [- 2 
Vz1·kk] 

1-L2 

Loaded hard core 

ib·k >0 [
- 2 . 

IL3 

_!__ [ !b·k - k 
IL3 

:
3 

[ g21·k + V(g21·kf 2E~J.3] k 
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Ra- for types 3 and 4 collisions. m; and dm; are the velocity and the 
velocity volume element for smooth spheres. For loaded and rough 
spheres, m1 denotes the linear and the angular velocities and dm; is the 
corresponding volume element. <j>(m;) is the equilibrium distribution of 
the relevant velocities (Gaussian in v1 and w;). 

The pair correlation function is discontinuous at d and Rd. In particular, 

The volume dV'l:] in which particle 2 must reside to collide with particle 
I during the time !:J.t is I v21 ·k I am2 d 2 k !:J.t for smooth and rough spheres 
and I g2 1·k I a<m d 2 k !:J.t for loaded spheres. Thus the contribution to 

j v 1 '1 i collision for smooth IS 

lim ( J(i)) 
.
-- k<i>(vd<l>(v2) 

\ m 

X ·k) d 2 k ( 106) 

in this accounts for the fact 
with which particle I can collide . 

..:.. I' 1 we see that the 
are the same those that occur in the fluid 

. This enables us to use the results already obtained by Brown and 
Davis [30]. The same thing is true for the rough and loaded spheres. so 
in all it follows that 

" 1 (r) 
m 1. 

lffi 
kT aho !:J.t 

{
homogeneous} If eq(r) 
flUid result p 

(107) 

Comparison of (107) and the homogeneous results of Brown and Davis 
yields the following results for a fluid of square-well particles having a 
smooth. rough. or loaded hard-core repulsion: 

Smooth hard cores: 

.. -1 (108) 

Rough hard cores: 

_ 1 8a 2(TrmkT) 112 [2K + 1 
-r = 

3 1 
AHc 

m K+ 
(109) 
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Loaded hard cores: 

(110) 

where 

AHc = }'IT J n(r + kd)g(r,r + ak + )kk d 2 k (Ill) 

and 

Asw 

= C~) 
and 

where 

l_ J n(r1 + Rak)g(r,r + Rak + )kk d 2k 
4'Tf 

E 

2kT 

(112) 

(113) 

( 114) 

( 115) 

r is the principal moment of inertia of the loaded spheres (l = felel + 
fe1e2). The functions 2(E/kT) and lJ(a) have been tabulated by Brown 
and Davis. In obtaining the given forms of AHc and Asw. we have used 
the property n(r) Np(r). 

For a equilibrium density distribution n(r), ,-(r) can be computed 
from (108), (109), or (110). The equilibrium YBG equation is the same for 
all three of these models. The IS 

kT + n + J n(r)n(r + Rak) 

X + Rak + J + ak)g(r,r + ak+)kd2k 0 

(116) 

As pointed out previously, a closure assumption has to be made to render 
{116) solvable. Several closure approximations that have been used are 
discussed in Section III. 

To apply the theory above, once a closure approximation is 
introduced, (116) can then be solved for n(r), ,. - 1 (r) can be computed 
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from Eqs. (108) to (110), and its inverse -r can be used in (92) to predict 
the local self-diffusion coefficient tensor D(r). Such calculations have not 
yet been done for the models introduced in this section. Hopefully, such 
applications will be made in the future for fluids in slit pores, cylindrical 
pores, and periodic pores (zeolites)-comparison of the models for var
ious parameters will provide insight into the relative roles of repulsive 
and attractive forces and of rotational collision dynamics in the diffusion 
behavior of strongly inhomogeneous fluids. In the next section we solve 
the modified Enskog equation for tracer diffusion and apply the results 
to self-diffusion in fluids confined to slit pores as a function of separation 
of the confining pore walls. 

C. Modified Enskog Theory of Tracer 
Diffusion 

Let us return nov, to the modified equation for a multicomponent 
mixture. In a transport situation the vector H; acts as a driving force for 

where. 

kT\ In 
s 

s)g;)r + s) d 3s 
s ds ( 117) 

j 

kTj. + a;;k)gu(r.r + auk)a~k d 2 k 

At equilibrium 0 and in fact is equivalent to the equilibrium YBG 
equation. 

In tracer diffusion. the tracer component is added in extremely small 
amounts, n 1 ~ n1, so the other components are not perturbed appreciably 
from equilibrium. that is, 

fj = j 2, ... (118) 

~J = c:~T rt2 exp(-;%;/) (119) 

where the n1 satisfy the equilibrium YBG equations H1 = 0. We consider 
steady state, so that iJfdiJt = 0. and write the tracer singlet distribution 
function as 

(120) 

where tjJ(r, v d is the perturbation of f 1 from equilibrium. 
Substitution of (118) and (120) into the modified Enskog equation [Eq. 

(2)], neglect of terms of order n 12
, and some rearrangement lead to the 
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result [2] 

(I + I)J)<p1v1·HI +\PI [ kTv1·VI)! 

+ 
1
1 Vv,w·2: Jn)r + s)gu(r,r + s)~ d 3s] 

m f"'I s ds 

2.: krJ. [nJ(r + auk)gu(r,r + auk)I)J(r,v·d 
j.,.,.ft v 11·k>O 

nj(r - auk)gu(r,r au(k)\jl(r,vJ)]<p(vJ)<p(vJ)a&vJi·k d 2 k d 3 v 1 (121) 

To obtain the form of the right-hand side of (121) we used the relationship, 
<p(r•d<.p(r~) q:(I• 1 )<p(rj). arising from the conservation of kinetic energy 
in a hard-sphere collision. 

We are interested in a linear first -order transport theory. The terms 
having the factors wH 1 or vw are nonlinear or second order in the deviation 
from equilibrium and so are dropped from (121 ). The resulting equation 
can be solved by the Chapman-Enskog procedure. which is to expand w 
in a series of Sonine polynomials. The lowest-order approximation has 
been shown to he excellent for tluids and assumed 
ficient here as well. The approximation 

IV= 

J . The unknown IS 

by the Galerkin of multiplying ( 121) by v 1 • integrating, 
and solving the resulting algebraic equation for a(r). The result is 

( 123) 

where the local Enskog friction tensor is given by 

g + 

(124) 

with m 11 m 1mi(m 1 + For the special case of self-diffusion, (124) 
reduces to the result obtained for hard (E 0) in Section IV. B. 
The continuous potential uA in the modified Enskog theory affects the 
diffusion coefficient through its control of the density distribution ni(r). 

The local drift velocity of the tracer particle is 

Ut(r) = I.jftVtd3vt = -~- 1 ·H 1 n, 
(125) 
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As we asserted earlier, nonzero H 1 provides the driving force for the 
nonzero drift velocity of tracer particles. 

Let n~(r),n;(r),-·· denote the component densities of system at equi
librium. Suppose the density of tracer particles l is caused to deviate 
slightly from equilibrium (i.e., n, - n; ~ n;) and small uniform perturbing 
force F,P is applied to the tracer particles. Then, since H 1({n;}) = 0, one 
can show that to lowest order 

H1 = krv(:J + Ft (126) 

so to lowest order the local flux of tracer particles obeys 

J1(r) = -n~(r)kJl~(r)} 1·v(n:) n~(rm(r)} 1·F1P (127) 
fll; 

Equation ( 127) has the form 

(128) 

where D(r) is the local diffusion tensor and is. as shown in Section IV .A. 
related to the friction tensor the Einstein relation 

D(r) kT{,(r) 1 

D. Modified Enskog Theory of Self-Diffusion 
in Slit Pores 

(129) 

By self-diffusion we mean that the molecular properties of the tracer dif
fusion species are the same as those of the other fluid particles. Thus we 
consider in detail the case of self-diffusion in a one-component fluid con
fined by two flat, impermeable, solid walls (i.e., we consider self-diffusion 
in a slit pore). At the end of this section we examine self-diffusion in a 
cylindrical pore. The particle-wall potential ue is assumed to be a function 
only of the distance x of the particle from the wall. The equilibrium den
sities, n; and n·, of tracer and other fluid particles also depend only on 
distance x from the wall. 

Since the tracer and other fluid particles have the same molecular prop
erties and since we are considering a situation such as n; ~ n °, the equi
librium YBG equations become, to lowest order of n;in", 

kTdn; • due • J o • Sx d0 3 dx + 111 d-.; - flt n (x + Sx)g(x,x + Sx) s ds d s 

+ 27ra2n;kT J~ I g(x,x + as)n.(x + as)s ds (130) 
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and 

dn" "du" • J . Sx duA 3 kT- + n d n n (x + sx)g(x,x + Sx)-- d s 
dx x s ds 

+ 27ra2 n.kT J~ 
1 

g(x,x + a~)n"(x + a~)~ d~ (131) 

If (130) is divided by n; and (131) by n·, and if the results are subtracted, 
it follows that 

d n; 
dx In 

11
• 0 (132) 

or n~ln" constant. Thus only (131) has to be solved for n"(x). n; (x) can 
then be computed from (~!.X')n"(x), where x; and are the overall mole 
fractions of tracer and other fluid particles. 

To the slit pore the Enskog friction tensor is of the form 

(133) 

where i.] and k are unit vectors in the x, v. and z directionaL where ~N 
and are the normal and transverse components of the friction tensor. 
The components are given 

+ ( l 

and 

~r(x) 4a2(7rmkT) 112 J~ 
1 

g(x,x + a~+ )n°(X + a~)(! 

in the absence of an external 
the slit pore is given by 

field, the diffusion flux in 

where and 
Pore wall impermeability yields the condition 0. We can choose 

y to be the diffusion direction so that 0. These conditions 
that n 1 is independent of z and that n 1 Thus the local 

flux is given 

o dx(y) 
J1v = - Dr(x)nt(x)-d-. y 

(137) 

Experimentally, one cannot usually measure the local ditTusion flux. What 
one can measure is the pore average flux Jpore and pore average density 
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n pore defined by 

lpore 
I rL 1 rL 
L Jo fly dx and L Jo n 1 dx (138) 

where L is the distance of separation of the solid walls. Multiplying (137) 
by dx and integrating, we find Pick's law for self-diffusion in a slit pore, 
namely, 

(139) 

where 

dx 

Dpore (140) 

molecular dynamics. Magda et al. determined the pore diffusivity 
for a 6-12 Lennard-Jones fluid confined between flat solid walls inter-

with fluid particles to the 3-4-lO Lennard-Jones po-
tential at (59). Vanderlick and Davis [3] compared the results of the mod-
ified theory using the Fischer-Methfessel of the density 

and the Carnahan-Stariing formula .11. They 
used the 6-x tluid-fluid pair potential and chose the effective hard-sphere 
diameter to be a = 0.972a to ensure that the Enskog theory gives the 
correct bulk phase diffusivity for the conditions of the simulations. The 
conditions were E = E., .• (j aw. kTIE 1.2, nbulka

3 0.5925, and KIE 

= -3.6254. The comparison is shown in Fig. 4, which gives the pore 
diffusion coefficient versus pore width L. The theory predicts an oscil
latory approach to bulk diffusivity as the wall separation increases. The 
simulations also exhibit the oscillatory behavior, although the data are 
too sparse to resolve more than two periods. The maxima and minima in 
the diffusivity reflect the minima and maxima in the average pore density 
Fig. 5. The density maxima occur at pore widths favoring an integral 
number of fluid layers, and the minima occur as transitions between these 
widths. 

Magda et al. [20} observed that although the density profile is strongly 
peaked in fluid confined to slit pores, the local diffusivity measured in 
bins parallel to the pore walls was quite insensitive to distance from the 
pore wall. Their results are shown in Fig. 6. According to the modified 
Enskog theory, this insensitivity to the strong oscillations in the density 
profile occurs because of smoothing in two ways. First, as is apparent in 
the integration over~ in (135), the fact that the tracer particle experiences 
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Fig. 5 Average pore density versus pore width. Comparison of theory (Ref. 3) 
and molecular dynamics (Ref. 20). Density in units of a- 3 and pore width in units 
of a. (Redrawn from Ref. 3.) 



Kinetic Theory of Strongly Inhomogeneous Fluids 585 

01 e .114±.004: 02 e .109 03·-111 04e.113 o5 •. 11s 

2 

-)( -c: 
>. 
:::: 
(/) 

c: 
(I) 

0 

1 
0 

0 2 4 6 8 10 12 
Position, x 

Fig. 6 Molecular dynamics results for the density profile and the local transverse 
diffusivity of a 6-12 LJ fluid confined in a planar slit pore with 3-4-10 LJ walls. 
D is the diffusion coefficient parallel to the pore walls. over the ith 
slice parallel to the walls. The units of diffusivity, density. and distance from the 
wall are a- 3 , and a. (Redrawn from Ref. 20.) 

binary collisions with particles arriving from every direction results in an 
average of local density over the surface of a sphere of diameter a. The 
other averaging occurs, for similar reasons, in the dependence of 
the pair correlation function. In the context of the Fischer-Methfessel 
model, the pair correlations are governed by the local density averaged 
over a sphere of radius d/2. 

In Fig. 7 are presented the density profiles n(x) and the local transverse 
diffusivity profiles Dr(x) predicted for a 6-o: Lennard-lones fluid and 
for a hard-sphere fluid confined by 3-4-10 Lennard-lones walls. The 
density profiles were computed from the Fischer-Methfessel model and 
the diffusivity from the modified Enskog theory with the Camahan-Star
ling approximation for gH

5 (a,ii). For both fluids, the transverse diffusivity 
is only a weak function of pore transition. 

V. FLOW IN A STRONGlY INHOMOGENEOUS 
ONE-COMPONENT FlUID 

A. Modified Enskog Theory 

Davis has solved the modified Enskog equation for slow flow in a strongly 
inhomogeneous one-component fluid. We outline his results here. The 
momentum balance equation is given at (29). According to the modified 
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wall predicted from the modified Enskog theory using the Fischer-Methfessel 
closure approximation. Density in units of a-'. diffusivity in units of (3u/8)(kT! 
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• and distance in units cr. (Redrawn from Ref. :u 

Enskog theory for a pure fluid. the stress tensor is of the form 

I l' J ss duA u)(v 1 - u)/ + 
1 

d n< 2 l(r 
~ 0 s s 

T = mn((vt a) 

X s,r + (I - a)s,t) d 3s da + ~ a3 l 1 J J kkj<ll (141) 

V}!·k:>O 

x (r - aak,r + (I da 

and the modified Enskog equation is 

,t)f 

a2 J J [g(r,r, + ak + ,t)f(r,v) ,t)f 

X (r + ak + ,v2,t) - g(r,r - ak + ,t)f 

X (r,vt,t)f(r ak,v2,t))v21·k d 2k d 3v 2 

(142) 

As in the case for tracer diffusion, the Chapman-Enskog technique 
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can be used to solve the kinetic equation. The singlet velocity distribution 
function can be expressed in the form 

f(r,v,t) = n(r,t)<p(V(r,t))[I + lj!(r.v,t)] 

where <p(V) is the Maxwell velocity distribution and 

V = v - u(r,t) 

is the velocity relative to the local mass average velocity. Since 

(143) 

(144) 

n = J f d3v, 3n2kT J l , , J ' - 2mV-jd-'v and nu= vfd·v (145) 

it follows that the perturbation function obeys the conditions 

0 (146) 

According to the Chapman-Enskog method. the 
tlJ is approximated the first few terms of a set of 
orthogonal polynomials in velocity The Sonine or Hermite polynomials 
serve the purpose. the second-order the approxi
mating function for the singlet velocity distribution function is 

+ c -
3,~T) J (147) 

where b is a traceless symmetric tensor (i.e., b : U 0 and b b 7). It 
follows from the conditions at (146) that a c = 0, so 

(148) 

To determine b by the Galerkin method, we multiply (142) by (V 1 V1 

!V1 U) d3v 1 , integrate over v1 , and set the residual equal to zero. If the 
result is linearized in ljJ and if higher-order terms (i.e., those proportional 
to a'ilu/at and u·'ilu and those nonlinear in vu) are dropped. the following 
integral equation is obtained for b(r,t): 

a 2 J g(r,r + ak + ,t)n(r + ak,t){2k 0 kkk : [b,(r,t) - b(r + ak,t)] 

- 2[kk·b(r,t) + b(r,t)·kk ~ b(r,t) : kkU]} d 2 k 
(149) 

( )

3/2 [ 3 

y; ;; e(r,t) + ~ J g(r,r + ak- ,t) 

X n(r + ak,t)k0 kkk : e(r,t) J 
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where e is the traceless symmetric part of vu, that is, 

Hv·u)U (150) 

and k 0 k is the traceless diadic 

(151) 

[Note: The sign of the second term in square brackets on the left-hand 
side of (149) is negative. It was typeset incorrectly as positive in (6.9) of 
Ref. 4. Also, the right-hand side of (6.9) of Ref. 4 has an erroneous factor 
of 2.] 

Because of the term b(r ak,t) in (149) the theory results in a difficult 
to solve integral equation for b. To simplify the theory, we approximate 
b(r - ak,t) by b(r,t) and obtain an algebraic equation for b(r,t): 

H : b + K-b + b·K L:e (152) 

where 

H a: J g(r,r ak + ,t)n(r ak,t)[2k0 kkk 

K= a 2 Jg(r,r-ak+,t)n(r (!54) 

and 

L(r ,t) ak+ ,t)n(r ak,t) 

X k 0 kkk d 2 k J (155) 

The quantity l0 is a fourth-rank tensor with the property 

l0 :a a a : l::;J (156) 

where a is any second-rank tensor. The general form of b will be 

b(r,t) = B(r,t) : e (157) 

B is a fourth-rank tensor and is symmetric and traceless with respect to 
its first two components and its second two components; that is, Ba 13v'"' 

= Br:;aV~J-.• Bur:;v~J-. = Baf;~J-.v• La BaO.VIJ-. Lv Bar;vv = 0, where Baf'>v~J-. is the 
al3vJ.L Cartesian component of B. 

In the case of an isotropic fluid, we can easily solve ( 149) to obtain b 
b0 E., where 

5 (m) 312[1 + 
4

11' na
3
g(a,n)J b0 = - -- - __ l-::5,.---__ _ 

SW kT na2g(a,n) 
(158) 



Kinetic Theory of Strongly Inhomogeneous Fluids 589 

Once b has been determined by solving (149), the stress tensor can be 
evaluated by insertion of the result into (141). We will not carry out this 
evaluation here since our aim is to obtain the momentum conservation 
equation. This equation contains V·T, which is simpler than T since the 
~ integration is eliminated in taking the divergence. For a one-component 
fluid, (9) can be combined with (8) to yield 

au 
mn + mnu·Vu + nVue + V·P = \·-r 

dt 
(159) 

where we have equated T to T - P, P being the part of the pressure tensor 
that remains in the limit of zero flow and -r being the stress due exclusively 
to flow. ln 

'V·P s 
(160) 

I kn(r,l)n(r 

and 

\ ·• = m n I V 1 V 1 ~;( r. V 1 V 1 ] 

+ a 2m I I kn(r,t)n(r - ak,r)g(r,r ak ,l) 

<p(V 1(r,t)){;p(V2 (r - ak,t)) (161) 
;p(V2 (r,t)) + <p(V2 (r - ak,t))[q;(r,VJ(r,t),t) 

+ \jl(r - kd,V2 (r - ak,t),t) + C(ljl2 )]}(v21 ·k)2 d 2 k d3v 1 d 3v2 

We are interested in the low flow limit in which terms of order (Vu)2 

and are negligible. Thus the term of order ljl2 in (161) is negligible and 
the following approximations can be inserted: 

m 
ak,t) = q;(V2) + kT q;(V2)[- V2 ka : Vu + V2 kka2 

: VVu] 

(162) 

and 

<p(V2(r ak,t))lljl(r,V 1(r,t),t) + ljl(r - ak,Vz(r - ak,t),t)] 
= q;(Vz){(VIVI - ~V1 2U) : B: E: + (V2V2 (163) 

~V12U) : (B : E: ak·V(B : .::]} 

where the quantities V1 , V2 , u, B, and E: on the right-hand side of (162) 
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and (163) are evaluated at rand As in simplifying (149) to solve for b. 
the approximation B(r - ak.t) : e(r - ak,t) = B : e - ak · V(B : e) is 
not an entirely consistent approximation, but hopefully it will not cause 
too much error in the final result (it is partly justified by noting that at 
high densities the contributions from b are not large compared to the 
contributions from the terms in (161) and at low density nb is almost 
independent of density. 

Carrying out the integrations over velocities in (161) with the approx
imations just discussed, we obtain 

V'·T = V [-mn (kT) 2bJ + M1 : Vu + Mz: V'Vu 
m; (164) 

2 ('rkT) "~ kT - - [2M! : b + M::.: vb] 
a m m 

where 

I,:~ 

u'n(r,!) 1 n(r -r ak.t)J,;(r.r ~ ak J)kkk d 2 k (l65J 

and 

( 1T 

I 2 

1 + akJ + uk ' .t )kkkk (166) 

In reducing ( 163) to its final form, we have used the fact that b is a sym
metric traceless tensor. 

The results in this section can be summarized by noting that in the 
slow-flow limit, the momentum balance equation in a strongly inhomo
geneous tluid is of the form 

au 
mn- + nvu" + V·P = I : vu + 

iH 
: vVu (167) 

where :\t 1(r),t) and :\tz(r,t) are third and fourth rank tensors that depend 
on the fluid distribution n(r). The contribution of M1 to (166) 
comes solely from the fluid inhomogeneity since ~1 1 vanishes when den-

is constant. 
For weakly inhomogeneous fluids, (166) reduces to 

where P, TJb, and TJs-the pressure, bulk viscosity, and shear viscosity 
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of isotropic fluid-are for the modified Enskog theory given by 

p 
[ 

27T J J d0 nkT l + 
3 

na3g(a,n) + tn2 s ds g(s,n) d 3s (169) 

16 (27T )
2 

Tjb = S7T 11* 3 na
3 

g(a,n) (170) 

1 + (47T/15) 
48 (27T )

2 

} + 257T 3n a3 g(a,n) (l7l) 
g(a,n) 

where 11* is the ideal gas shear viscosity predicted for hard spheres, 
namely. 

B. Steady Planar Flow in a Slit Pore 

Consider !luid confined between identical, 
less ~o!id . The \vall-fluid interaction potential u'' on 
the distance from a walL As we saw in Section III, the density profile 
n(x) of such a confined fluid at equilibrium varies rapidly with distance 
from the wall 

For the purpose of the analysis to be presented in this section. Bitsanis 
et al. [33] made a very important observation in molecular dynamics stud
ies of the 6-12 Lennard-Jones fluid undergoing Couette flow between 3-
4-10 Lennard-Jones walls. They found that shear does not affect the 
density profile n(x) appreciably, even at shear rates as high as lOJOs- 1

• 

This observation means that in Couette flow the density profile n(x) can 
be computed from the equation of hydrostatics equilibrium. Thus the pres
sure tensor P has the symmetry of the equilibrium fluid, 

(172) 

where PN is the component of pressure normal to the wall and P 7 is the 
component transverse to the waiL The equilibrium density profile is de
termined by 

n due + dPN = O 
dx dx 

(173) 

where dPN/dx is the x-component of (159). 
If the direction of flow is e~> the steady (i:Juli:Jt 0) low-flow (u·Vu 
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negligible) limit of (158) in the direction of flow becomes 

aPr 
-_- = V·T·e~ (174) 
dY 

The observation that the density profile depends only on x considerably 
simplifies the structure of V·T. Assuming that for planar flow u = uv(x)e 1 , 

n n(x), and g(r,r + ak + ,) = gHs(a;n(x + (a/2) kx)), we can carry 
out part of the integration over d 2 k to evaluate M 1 , M2 , and b. For M 1 

and M2 the results are 

and 
1/2 1 

{l
4
t1(X) r I ti(X + a~)g(X,X +a~+) 

{ll ~ 

[(l 
I I 

where <'t. . and 6 are Cartesian coordinates, e3 lying in the x-direction 
and e1 and e2 in the y- and z-directions. The quantity U(2

) 

2.:;' •. 1 is the unit dyadic in the yz-plane. 
To determine b we have to take advantage of the symmetry of the 

problem and solve (149) for the various components of b. The results are 

!? b _____ _:__...;._ _ _:::__;:_ ___ _::. Exx 

1) 
{l 

(178) 

(179) 

(180) 

a20 + fjt)]Ezz} 

(181} 
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'11'0 
---:::---:: {[cxtf32 - <Xz(I + f3t)]Eyy + [at (I + f3t) - tx2f32kzz} 

(182) 

where the following abbreviations have been used: 

0 = -0; (~ra 
G(x,s) = n(x as)g(x,x + +) 

(183) 

(184) 

«t = '11'02 I~ 
1 
G(x,~)[3(1 - ~2)2 - 4(1 - ~4)] d~ (185} 

<Xz = '11'0
2 I~ I G(x,s)[(l e)2 4e(l ends (186) 

'ITG It 
_ -

1 
G(x + (187) 

G( I n (188) 

Equation ( 168) can now be in the form 

(189) 

where 

( 
k'[\ 1/2 1 

Mt 2'11' m'll' } a 3n(x) I-I n(x + a~)g(x,x +a~+ )(1 e)~ds 

1 a [ (k!_'\ 
2 J (kT\ 2 

1 2ax mn(x) -;;;) B(x) 4nmn(x)a
2 

,;; ) B(x) I-l n(x +as) 

X g(X,X +as+ )(I e)sd~ 

(
kT 2 aB(x) 1 

nmn(x)a3 
-) --I n(x + as)g(x.x +as+ )(1 e)eds 
m ax -1 

(190) 

(191) 
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(192) 

Let us now specialize planar Couette flow, in which case Uy(O) = 

- u0 ,uy(L) = uo, and aPrlay = 0. In this case the solution to (184) is 

f~ dx" exp{- fo" dx'[M1(x')IM2(x')]} 
Uy(x) + u0 • • (193) 

f{r dX' exp{- J(; dx'[M1(x')IM2(x')]} 

At the time of this writing (188) has not been applied in its entirety to 
Couette flow in confined thin films. HoweveL Davis et al. [5] tested (193) 
for the case in which B(x) is neglected (for homogeneous fluids whose 
density is greater than about 0.5<T 3

, this is known to give a good ap
proximation to the viscosity). Bitsanis et al. [33] carried out molecular 

5.0 ,..--------------------, 

4.0 

>- 3.0 
;!:::! 
(J) 
c: 
(!) 

c 2.0 

1.0 

Density Profile, 

0.0 u_ __ _,_ __ __..J. ___ ..l._ __ ___,_ ___ ..J-__.1) 

0.0 1.0 2.0 3.0 4.0 5.0 

Position, x 

Fig. 8 Density and local average density profiles determined for a 6-12 LJ fluid 
confined by a planar 3-4-10 LJ walls. Density in units of a- 3 and distance from 
pore wall in units of <T. (Redrawn from Ref. 33.) 
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dynamics studies of Couette flow of a 6-12 Lennard-Jones fluid confined 
between structureless 3-4-10 Lennard-Jones walls. They found that the 
density profiles n(x) and pore diffusivity are independent of flow, even 
up to shear rates of 1010s- 1

• In Fig. 8 is presented their density profile 
for the case €.., = €, O",.. = O", EikT = 1, wall separation L = 7.50", and 
pore average density np = 0.6920"- 3

• Also shown in Fig. 8 is the local 
average density profile computed from the molecular dynamics density 
profile according to the Fischer-Methfessel formula (71). 

The velocity profile found in the molecular dynamics study is compared 
in Fig. 9 with the profile predicted by (193) with the terms inB(x) neglected 
and using the Fischer-Methfessel approximation, g(x,x + a~+) = 
gH

8 (a.n(x + ia~)), for the contact value of the pair correlation function. 
For the predictions, n(x) is computed from (71) using the molecular dy
namics results for the density profile n(x). The predicted velocity profile 
agrees fairly well with the observed profile. The velocity profile is sur-

>. 
.:::: 
0 
0 0.00 

~ 
~ 
0 
i.i: -0.25 

I 

! Molecular Dynamics 

- Enskog Theory 

-0.50 l...----l.....----'----'-----'----'----' 
0.0 1.0 2.0 3.0 4.0 5.0 

Position, x 

Fig. 9 Comparison of the velocity profile of a confined fluid undergoing planar 
Couette flow. Molecular dynamics for a 6-12 LJ fluid between planar 3-4-10 U 
walls. Modified Enskog theory for a 6-oo fluid. Velocity in units of(kT!m) 112 and 
distance in units of O". (Redrawn from Ref. 5.) 
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prisingly insensitive to the sharp oscillations in the density profile. Ac
cording to the theory, the velocity profile depends on density only through 
the ratio M 1 (x)/Mz(x). From (190) and (191) it follows that the local density 
n(x) cancels out of the ratio except in the term -a[mn(kT/m)2B(x)/2)/ax, 
which is expected to be small except at very low densities. Otherwise, 
the density profile is smoothed once by an average over the area of a 
sphere of a molecular diameter a because the binary hard-sphere collisions 
occur on contact of a molecular centered at x with other molecules ap
proaching it from all directions. A second and a third smoothing occur 
through the integrations over x' and x" in (193). This smoothing is model 
independent since we expect the planar Couette flow approximation to 
the momentum balance equation to be of the form given by ( 189) from 
symmetry arguments alone. 

Hopefully, in the future the effect of the term B(x) (i.e., of b) M 1 and 
M2 will be explored. The quantity B(x) arises from the deviation of the 
singlet velocity distribution function from local equilibrium. The quan
tities M 1 and M2 arise from momentum transport between particles whose 
velocities arc at equilibrium relative to the local mass average 

VI. ClOSING REMARKS 

In the modified theory it is implicitly assumed that the confined 
film remains fluid. It has been found [34.35}, however, shear 
ments with the surface forces apparatus that when the separation of con
fining solids is only one or two molecular diameters wide, the confined 
film may not flow under an infinitesimal stress. Instead. there can be 
solidlike structure, a finite yield stress [36], and the film can shear in a 
stick-slip mode [35). Molecular dynamics indicates that the confining sol
ids can induce solidlike structure in films of a few molecules thickness 
and the shear stress must "melt" the solidlike structure to induce flow 
[37]. In cylindrical pores of small diameter that the molecules 
have to move in single file, Suh and MacEiroy [38] found that their mo
lecular dynamics results for the density dependence of the self-diffusion 
coefficient agree well with the exact for hard rods. 
In zeolite pores molecular indicates [39] that molecular motion 
is not that of a fluid, but rather is an activated hopping motion. Thus a 
kinetic theory of the Enskog type is not expected to be valid in pores 
having at least one dimension on the order of one or two molecular di
ameters. A totally different theoretical approach is needed for such sys
tems. 
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BBGKY hierarchy, see Born-Green-
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Bicontinuous phase, 518 
Bilayer, 506 
Boltzmann distribution, 10 
Born-Green-Yvon (BGY) hierarchy 
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Boson, 378 

Bridge function. 143. 182. 195. 257. 
308. 325 

Brown-Davis theory. 573 
Brownian motion. 568 
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Cahn transition, 285 
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Clebsch-Gordon coefficients, 465 
Coexistence region, 30, 419. 469 
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Colloids, 325 
Derjaguin-Landau-Verwey

Overbeek (DL VO) theory. 
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188, 241, 305, 328 

Compressibility 
equation, 93, 178 
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interfacial, 52, 68 

Computer simulations, 103, 106, 
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effect of periodic boundary 
conditions, 429 

of nucleation. 415. 428 
quantum, 378, 384 

Condensation, nucleation of 
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transitions. 16 7 

Contact 285, 438 
Contact theorem, 233, 249 

approximate, Gouy-Chapman 
theory, 245 
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theory, 184, 256 
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Continuum mechanics, 557 
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quantum, 380 
Couette flow, 591 
Critical phenomena 
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interfacial, 49 
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Crystal 
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approximation, 118 

Debye-Hi.ickel theory, II 
De bye screening parameter, 245, 
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Density expansions, 103, 472 
Density functional theory, 85-175 

crystal-melt interface. 429 
crystal nucleation. 433 
liquid crystals. 458 
liquid-vapor nucleation. 417 
quantum fluid, 367 

Denton-Ashcroft approximation. 134 
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263 
Diffusion. 582 

local self ditfusion tensor. 578 
DitTusivity 
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fluid, 263, 562 

Direct correlation function, 15. 36. 
59, 91' 119, 148, 251, 254, 
307, 316, 365, 369. 431. 459 

one particle, 253 
quantum, 372 
three particle, 139 

Direct method of Lozada-Cassou, 
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Distribution function, 552 
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critical, 62, 157 
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Effective mass, 373 
Einstein relation, 572, 581 
Electrode 
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Electrokinetic phenomena, 305, 349 
Electroneutrality condition, 251, 315 
Electrostatic potential, 210, 243 
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Enskog theory 
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microemulsion, 497, 519 
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wetting, 277-302 

Exponential regime, 293 
External potential or field, 25 

Fermion, 378 
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Feynman path integral, see Path 

integral 
Fick's law, 583 
First order phase transition, 160, 

453 
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Fischer-Methfessel approximation, 
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Fisk-Widom theory of an interface, 
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Flow in strongly inhomogeneous 
fluids, 585 

Fluctuations, 40, 151 
Fourier series, 371, 430, 467 
Fourier transform. 37. 520 
Fractal, 420, 438 
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Free energy, 204 
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surface, 59 

Freezing, 94, 108, I 19. 133, 363-405 
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empirical rules, 384. 452 
quantum. 367 

Friction tensor. 580. 582 
Functional derivative. 25. 253 
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Galcrkin procedure. 580, 587 
Gas-liquid interface. 7 
Gaussian approximation 

quantum system, 373 
Gaussian fluctuation theory, 572 
Geometry, effect of, 71, 246 
Gibbs-Bogoliubov inequality, 508 
Gibbs dividing surface, 6, 30 
Glass transition, 427 
Gouy-Chapman (GC) theory. 9, 245, 
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447, 459 
derivatives, 31 
of a droplet, 411 
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Green's function, 222 
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Hard core interactions, 443 
Hard spheres, 131,184,188,192, 
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Bose, 377 
mixtures, 394 
one dimensional, 95 

Hard wall, 50, 131, 185, 190, 195 
Hartree-Fock theory, 87 
Hartree theory, 87 
Helfrisch theory, 506 
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isotope effects, 377 
phase diagram, 376 

Henderson-Abraham-Barker 
equation, 183, 254, 304 
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material, 500 
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Hydrostatics, 557, 591 
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Mechanical equilibrium 
Hypernetted chain approximation 
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HNC2 equation, 189, 260, 261 
renormalized HNC equation, 182 
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184, 255, 266 
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Impulsive forces, 572 
Inhomogeneous fluid 
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Inhomogeneous hard spheres, 96 
Instabilities, 4 3 
Integral equations, 177-199 
Interface. 147 
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model 
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ISM (interaction site model) (see 
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Kierlik-Rosinberg approximation, 
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Kirkwood's equation, 261 
Kirkwood-Poirier theory, 305 
Kosterlitz-Thouless transition, 202, 
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Lamellar phase, 514 
Landau-Ginzberg-Wilson field 

theory, 444, 513 
Laplace's equation, 3 
Lattice model of a microemulsion. 

500, 544 
Layering transitions. 163 

criticality, 16 7 
Legendre transformation, 363, 419, 

459 
Lennard-Jones potential, 100, !60, 
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Liouville equation, 570 
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Lippmann equation, 231 
Liquid crystals, 443-495 
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microemulsion. 497, 506, 507 
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phase transitions, 470 
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Liquid-gas interface, 147, 559 
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Local density approximation, 109 
Local diffusion tensor, 581 
Local relaxation tensor, 573 
Local self diffusion tensor, 578 
Lovett-Mou-Buff-Wertheim 

approximation, 35, 190, 253, 
260 

Lyotropic phase transitions, 447 

Macrospheres, see Colloids 
Maxwell construction, 359 
Maxwell stress tensor. see Pressure 

tensor 
Maxwell velocity distribution. 558. 

587 
Mayer f function, 307, 369, 472 
Mean field approximation, 2, 16. 

152, 328, 508, 544 
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Mean field approximation, 181, 253. 
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256, 263 
Mechanical equilibrium, 40 
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approximation, 121 
Melting, see Freezing 
Melting curve, 382 
Metastable state, 407 
Micelle, 578 
Microemulsion. 497-549 
Mixtures, 394, 418, 435 
Modified Poisson-Boltzmann 

equation, 262, 266, 304 
Mo!dover-Cahn transition, 286 
Molecular dynamics, see Computer 

simulations 
Molecular fluid (see also Liquid 

crystal and microemulsion), 
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Momentum balance or conservation, 
39, 556, 589 

Monte Carlo simulations, see 
Computer simulations 

Nonequilibrium wetting, 297 
Nonlocal character of 
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inhomogeneous fluids, 17 
Nonplanar geometry, 75, 150, 246 
Nonpolarizable interface, 213 
Nonprimitive model, 263 
Nonuniform fluid, see 

Inhomogeneous fluid 
Nordholm weighted density 

approximation, 112 
Nucleation, 407-442 

binary mixtures, 435 
crystallization. 425 
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liquid-vapor transition. 410 
rate. 412 

Nucleation 
classicaL 410, 435 
density functional. 417 

One-body correlation function or 
profile. 34 

One-body direct correlation 
function, 60 

One-dimensional fluids, 96. 452 
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Onsager reciprocal relations, 347 
Onsager theory of a liquid crystal. 

445, 469 
Order parameter. 407 
Ornstein-Zernike equation, 36. 92. 

134, 143, 180, 251, 303, 306, 
452, 459, 472, 559 

inhomogeneous, 189, 25!. 305, 
323 

second order, 79 
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function near critical point, 
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Pairwise additivity, 178, 379 
Paramagnetic phase, 514 



604 

Partition function, 33, 90, 203, 379 
Path integral. 367 
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Percus weighted density 

approximation, 126 
Percus-Yevick approximation, 118, 

134, 181, 307, 341, 452, 472, 
477, 559 

PY2 equation, 189 
singlet or PYl equation, 104, 184 

Perturbation theory, 95, 108, 120, 
388, 390, 510, 530, 571, 579, 
582, 587 

Phase diagram, 27 
classical, 377 
helium, 377, 383 
microemulsion, 499, 514. 524, 534 
model liquid crystal, 454. 456. 487 

Phase separation. 418 
Phase transition, 27 
Plasma 

homogeneous two-dimensional, 
205, 222 

inhomogeneous two-dimensional, 
209, 224 

one component, 204 
two component, 218 

Plastic solid, 449 
Poiseuille 

flux, 352 
formula, 349 

Poisson-Boltzmann equation. 10. 
244, 317 

Poisson equation, 10, 210, 243 
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Polymer, quantum fluid as a, 367, 

371 
Pore 

cylindrical, 317, 341, 581 
flow in a slit pore, 591 
periodic, see Zeolites 
slit, 313, 581 

Porous material, 29 
Potts model, 519 
Power law regime, 293 
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Pressure or virial equation, 179 
Pressure tensor, 38, 335, 557, 586, 

591 
Prewetting, 160 
Primitive model, 214, 224, 253, 305 
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Quantum liquids, 367 

Ramakrishnan-Yussouff theory, 363, 
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Reciprocal lattice vector, 371, 431 
Regular solution theory, 419 
Reiss theory of nucleation, 416. 435 
Renormalization group, 544 
RISM (reference interaction site 
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Rosenfeld weighted density 

approximation, 127 
Rotational matrices. 465 
Rough surface, 150, 246 

temperature, !64 
transition, 164 

Scaling, 288 
Screening in electrolytes, 202 
Self correlation function, 372 
Self diffusion, 572 

in slit pores, 581 
Shielding approximation, 195 
Short range scaling, 289 
Single eigenfunction ansatz, 63, 68 
Slit, 73 
Smoluchowski formula, 348 
Smooth surface, 150 
Solvation force, 29, 31, 551 
Spheres (see also Hard spheres) 

loaded, rough, smooth, 572 
Spinodal curve, 408, 419 
Square gradient theory, 7, 38, 99, 

419, 431 
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Square well potential, 572 
Statistics 

Boltzmann, Bose-Einstein, Fermi-
Dirac, 378 

Sticky site model, 250, 269 
Stillinger-Kirkwood theory, 308 
Stillinger-Lovett moment relation, 

251 
Stress tensor, see Pressure tensor 
Structural determination methods, 

ex-situ and in-situ, 239 
Sum rules, 23-83 

245, 252 
compressibility route, 51 
definition. 24 
general. 34 

plasma. 233 
rough surface. 246 
vi rial route. 54 

Superheating of a liquid, 407 
Superposition approximation. 179. 

196. 259. 329. 340 
Supersaturation of a gas. 413 
Surface free energy, 55 
Surface tension. 55. 148 

electrolyte, 252 
microemulsion. 533 
plasma, 231 
pressure tensor, 14 
van der Waals treatment, 7 
Yvon-Triezenburg-Zwanzig-

Lovett-Wertheim expression, 
36, 58 

Surfactant, 497 
Susceptibility (see also 

compressibility), 530 
Symmetry, 25, 445 

broken, 30 
rotational, 449 

Tarazona weighted density 
approximation, 112, 389 

Tensile strength, 421 
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Thomas-Fermi model, 27 
Three point extension, see Triplet 

correlation function 
Tolman's length, 78 
Total correlation function. 15, 32, 

179, 307, 372 
Tracer diffusion, 551, 568, 579 
Transport 

coefficients, 572 
properties, confined electrolyte, 

303, 344 
theory, linear first order. 580 

Transverse correlation length, 151 
Tricritical point, 67, 514. 535 
Triplet correlation function. 179. 32 I 
Tubular phase. 5!4 

Undercooling of a liquid. 407. 426 
Uniform fluid. see Homogeneous 

fluid 

Vacancies, 396 
Vandermonde determinant, 205 
van der Waals theory (see also 

Square gradient theory and 
surface tension), 109 

Vaporization, see Condensation 
Variational principle, 90 
Vector potential, 245 
Velocity autocorrelation. function, 

569 
Velocity distribution function, 587 
Velocity profile of a confined fluid. 

595 
Virial, 179, 248 
Virial route to inhomogeneous 

fluids, 39 

Weak fluctuation regime, 69 
Weighted density approximation, 

ll2, 391, 461, 486, 561 
modified, 134, 391, 463 
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Wertheim-Lovett-Mou-Buff 
equation, see Lovett-Mou
Buff-Wertheim equation 

Wetting, 195 
binary mixtures, 280, 285 
critical, 28, 66, 265 
experiments, 277-302 
incomplete, 283 
microemulsion, 534, 545 
nonequilibrium, 297 
prewetting, 30, 62 
transition, 26, 30, 62, 101, 536 

Widom model of a microemulsion, 
500 

Wigner crystal, 202 
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Winsor III state, 498, 518, 534, 537, 
539, 544 

Young's equation 3 
Yukawa potential, 22, 157, 186, 420 

used to study colloids, 339 
Yvon-Bom-Green (YBG), see Born

Green-Yvon 

Zeldovich factor, 413, 424 
Zeolites, 551, 579 
Zeta potential, 349 


