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ABSTRACT The origin of the anomalous mole fraction effect (AMFE) in calcium channels is explored with a model of the rya-
nodine receptor. This model predicted and experiments verified new AMFEs in the cardiac isoform. In mole fraction experiments,
conductance is measured in mixtures of ion species X and Y as their relative amounts (mole fractions) vary. This curve can have
a minimum (an AMFE). The traditional interpretation of the AMFE is that multiple interacting ions move through the pore in a single
file. Mole fraction curves without minima (no AMFEs) are generally interpreted as X displacing Y from the pore in a proportion
larger than its bath mole fraction (preferential selectivity). We find that the AMFE is also caused by preferential selectivity of X
over Y, if X and Y have similar conductances. This is a prediction applicable to any channel and provides a fundamentally
different explanation of the AMFE that does not require single filing or multiple occupancy: preferential selectivity causes the
resistances to current flow in the baths, channel vestibules, and selectivity filter to change differently with mole fraction, and
produce the AMFE.
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INTRODUCTION

Theory can offer insights into how proteins work, as well as

guide the interpretation of experiments. For ion channels, the

presence or absence of an anomalous mole fraction effect

(AMFE) is commonly used to infer how the pore operates.

In the classic mole fraction experiment, a mixture of ion

species X and Y is in the baths with their total concentration

([X]þ [Y]) kept constant and the current (or conductance) is

measured as the mole fraction [X]/([X]þ [Y]) of X is varied.

An AMFE exists when the conductance versus mole fraction

curve has a minimum. This was first identified by Takeuchi

and Takeuchi (1) and Hagiwara and co-workers (2,3).

The commonly accepted explanation of the AMFE (4)

presented in textbooks (5) is that an AMFE indicates that

multiple ions are moving through the pore in a single file.

This explanation is often used to infer whether a channel

has a single-file, multi-ion pore. A superficial search in

PubMed and the calcium channel literature shows how

common this interpretation is in the literature (6–12).

Recently, this interpretation has been challenged. Nonner

et al. (13) first suggested that neither single filing nor

multiple ions are necessary for an AMFE; in principle,

a pore occupied (on average) by less than one ion can have

an AMFE. They proposed that localized binding of ions

produce depletion zones of low ion concentrations that

reduce current of one ion species. These depletion zones

act as high-resistance elements, just like low concentrations

reduce conductivity in a salt solution. These high-resistance

elements—connected in series with other low-resistance

elements along the pore—limit conductance through the

pore of that particular ion species. Nonner and co-workers
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(14,15) showed that this explained the classic Ca2þ block

of Naþ current AMFE of the L-type calcium channel (16,17).

Gillespie et al. (18) later generalized this resistors-in-series

theory to explain AMFEs in synthetic nanopores in plastic.

These nanopores were ~50 Å wide and thus there was no

possibility of single filing or correlated ion motion. These

experiments demonstrated that neither of these proper-

ties—both integral to the textbook theory—are necessary

for an AMFE. Instead, they showed that the AMFE was

due to preferential binding of Ca2þ over monovalent cations

within the pore (i.e., the proportion of Ca2þ in the smallest

part of the pore is larger than its mole fraction in the baths).

This preferential binding caused the resistance to current

flow for each ion species to change nonlinearly with mole

fraction in the center of the pore (which is highly Ca2þ-selec-

tive), but linearly at the edges of the pore, producing the

AMFE.

Subsequently, Gillespie and Boda (19) analyzed AMFEs

in a model L-type calcium channel with Monte Carlo simu-

lations. The resistors-in-series model explained the classic

Ca2þ block of Naþ current AMFE, confirming previous

work (14,15). It also explained the apparently conflicting

measurements of the Ca2þ versus Ba2þ AMFE (6).

The traditional textbook and resistors-in-series theories

predict very different origins of the AMFE phenomenon.

This is not that surprising since they use very different

descriptions of how ions move through the pore. The tradi-

tional theory uses a chemical kinetics model to describe

ions in a single file hopping over static energy barriers

between binding sites, each of which can only hold a single

ion. The resistors-in-series model describes ions as moving

by electrodiffusion, where barriers and wells are created

and destroyed on the atomic timescale as ions move (20).

In steady state, barriers, and wells (potentials of mean force)

doi: 10.1016/j.bpj.2009.08.009

mailto:dirk_gillespie@rush.edu


Reinterpreting the AMFE 2213
depend on the concentration and types of ions in the baths

(21,22); they are not fundamental properties of the pore

(14,23).

Which explanation for the AMFE is applicable for a partic-

ular channel then depends on which theory best describes the

physics of ions moving through that particular pore. Thus,

a measured AMFE should not immediately be interpreted as

an unambiguous marker of a multi-ion pore, especially if there

is no other evidence for single filing. The traditional model

can give a misleading impression about the inner workings

of the channel because, instead, the AMFE may reflect the

preferential binding of one ion species over another, as we

show in this article for the ryanodine receptor (RyR).

RyR is a calcium channel with millimolar Ca2þ affinity

(24) that releases Ca2þ from the sarcoplasmic reticulum

(SR), an intracellular Ca2þ storage organelle. It has proven

to be a useful test case for understanding selectivity in

calcium channels because it lends itself to relatively easy

single-channel recordings. Additionally, a model of ion

permeation through RyR has been developed that reproduces

all the known experimental permeation and selectivity data

(21,25,26). Moreover, it predicted AMFEs in RyR before

experiments confirmed them (21,25). Here we confirm new

AMFE predictions with experiments.

In this article, we explore the origin of AMFE in single

RyR channels using this model. Our analysis indicates that

the resistors-in-series model not only explains whether an

AMFE is present or absent in cation mixtures, but also the

AMFEs’ voltage and concentration dependences. Because

the RyR model of permeation not only reproduces experi-

mental AMFEs, but also predicts them without adjusting

any model parameters, this study provides the strongest

evidence so far that the cause of the AMFE in some channels

is the resistors-in-series mechanism. Moreover, because the

RyR model does not include single filing of ions, this study

also provides further evidence that single filing is not neces-

sary for an AMFE.

THEORY AND METHODS

AMFE experiments

SR microsomes were prepared from rat ventricular muscle according to pub-

lished methods (27). Microsomes were stored in liquid nitrogen, quickly

defrosted, kept on ice, and used within 5 h. Planar lipid bilayers were formed

from a 5:3:2 mixture of phosphatidylethanolamine, phosphatidylserine, and

phosphatidylcholine (50 mg/mL in decane) across a 100-mm hole in a

12-mm-thick Teflon partition. The solution on one side had HEPES-Ca2þ

(10 mM Ca2þ, pH 7.4) and was grounded by the patch-clamp amplifier.

The luminal side of the RyR2 channel always faced this solution (28).

The cytosolic side had a HEPES-TRIS solution (114 mM TRIS, pH 7.4),

500 mM Cs-methanesulfonate, 2 mM CaCl2, and 5–15 mg of SR micro-

somes. Once single-channel activity was observed, the solutions in both

compartments were exchanged at a rate of 4 ml/min for 5 min to establish

the specific test conditions detailed in Results. All test solutions contained

10 mM HEPES (pH 7.4). No calcium buffers were used. Listed [Ca2þ] indi-

cate added Ca2þ beyond the 1–4 mM contaminant [Ca2þ] (as determined by

a calcium electrode). Zero added Ca2þ is plotted as 1 mM [Ca2þ].
All recordings were made at room temperature. Single-channel currents

were digitized at 10 kHz and filtered at 1–2 kHz using an A/D converter

and amplifier (Axon CMS, Molecular Devices, Downingtown, PA).

Acquired data were analyzed using pClamp (Axon CMS, Molecular

Devices). Unit current amplitudes were determined from Gaussian fitting

of all-points histograms.

These experiments were performed on the native cardiac isoform (RyR2).

These native channels may have endogenous regulatory proteins like the

negatively-charged calsequestrin attached to them. Such proteins were not

present with the purified RyR2 channels (25,29,30) that were used to

develop the PNP/DFT model (described below). This may contribute to

the larger discrepancies between theory and experiment here than those

described previously (21,25). Nevertheless, the model is in very good agree-

ment with experiments.

We use the added-salt mole fraction protocol (16,17) where Ca2þ is added

to a fixed concentration of monovalent cation Xþ. This is similar to the

classic mole fraction experiment described in the Introduction because

[Ca2þ] << [Xþ]. Moreover, we added Ca2þ only on the luminal side

because millimolar cytosolic Ca2þ significantly decreases RyR open proba-

bility (31).

This protocol is different than that of Tomaskova and Gaburjakova when

searching for AMFEs in RyR (32). They placed mole fraction mixtures on

the luminal side only and LiOH on the cytosolic side. Besides the compli-

cating effect of a third cation, their results are difficult to interpret because

with a 5:1 concentration ratio of LiOH they report a reversal potential of

46 5 2 mV (as expected for a perfectly cation-selective channel), but in

a 12:1 concentration ratio they measured only 10 5 5 mV—far from the

expected ~60 mV for a highly cation-selective channel. However, Toma-

skova and Gaburjakova do show AMFEs for mixtures of Naþ and Csþ

and of Liþ and Ca2þ, consistent with our results.

Model of RyR

We use a previously published model of ion permeation through a single,

open RyR pore with no changes to any parameters (21). The pore is modeled

as only the five conserved, charged amino acids previously shown to affect

RyR selectivity and permeation (29,30): Asp-4899, Glu-4900, Asp-4938,

Asp-4945, and Glu-4902 in the RyR1 numbering scheme. The model pore

and amino acid locations are shown in Fig. 1 of Gillespie (21).

Ion current is modeled with one-dimensional Nernst-Planck theory,

�Ji ¼
1

kT
DiðxÞA

�
x
�
riðxÞ

dmi

dx
; (1)

where ri and mi are the concentration and electrochemical potential, respec-

tively, of ion species i throughout the pore and baths. Ji is the flux of ion

species i. A(x) is the area of the equi-chemical potential surfaces that is esti-

mated as previously described (14). In the pore, it is the cross-sectional area.

Di is the diffusion coefficient.

The ions are charged, hard spheres whose chemical potentials mi are

computed with density functional theory (DFT) of electrolytes. The DFT

generalizes the Poisson-Nernst-Planck (PNP) theory of point ions so this

model is called the PNP/DFT model of RyR. Note that the PNP/DFT theory

only describes how ions move through the pore and is not a theory of the

AMFE; that is the resistors-in-series model described below.

Corry et al. showed that Nernst-Planck approaches (Eq. 1) can fail in

narrow channels like the Kþ channel, especially for point-charge ions

(33). However, they also showed that the Nernst-Planck equation is valid

if the pore radius is larger than two screening (Debye) lengths. Because

the RyR selectivity filter contains four negative Asp-4899 side chains at

very high concentration, permeant cations are screened very effectively

and the screening length is always <1.8 Å, putting our 4 Å radius pore

within the diffusive limit. Moreover, the DFT eliminates the point-ion

approximation that is clearly problematic in narrow pores and correctly

computes ion-ion correlations of charged, hard spheres (21,34). This gives

us confidence that Eq. 1 can be used to compute current through RyR.
Biophysical Journal 97(8) 2212–2221
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This PNP/DFT model has reproduced the current/voltage relations (–150

to þ150 mV) of wild-type and three mutant RyR channels in >70 published

ionic solutions (21,25,26) and at least another as-yet unpublished 66 solu-

tions (D. Gillespie, L. Xu, and G. Meissner, unpublished). The model also

predicted—before the confirming experiments were done—previously

unknown AMFEs (21,25) and other experimental data (e.g., Figs. 1, 2,

and 4) in >75 ionic solutions. The quantitative prediction of large quantities

of unexpected results without changing any parameters gives us confidence

that this model correctly captures the essential physics of ion selectivity and

permeation in RyR.

Ionic pathways in parallel, resistors in series

Equation 1 can be rewritten to describe ion currents as currents through an

electrical circuit. In this way, we can describe the AMFE in terms of the

resistors in a circuit and how their resistances change with mole fraction.

To do this, we integrate Eq. 1 from bath to bath across the channel,

Ji

Z
dx

DiðxÞAðxÞriðxÞ
¼ zie

kT

�
V � VNernst

i

�
; (2)

where e is the fundamental charge, zi is the valence of species i, and V is the

applied voltage. The cytosolic side is grounded and positive fluxes are from

the SR lumen to the cytosol. The Nernst (equilibrium) potential is

VNernst
i ¼ kT

zie

�
ln

�
r

cyt
i

rlum
i

�
þ Dmex

i

kT

�
; (3)

where r
cyt
i and rlum

i are the bath concentrations on the cytosolic and luminal

sides, respectively, and Dmex
i is the difference in the excess chemical poten-

tials between the cytosolic and luminal baths. Then the current is

I ¼ e
X

i

ziJi ¼
X

i

V � VNernst
i

Ri

(4)

with electrical resistances

Ri ¼
kT

z2
i e2

Z
dx

DiðxÞAðxÞriðxÞ
: (5)

Equation 4 is formally identical to the equation used to describe the

current through an electrical circuit with parallel pathways; the analogy is

exact if it is an electrochemical circuit (i.e., the current across each resistor

is proportional to the electrochemical potential drop, instead of the voltage

drop, across the resistor). The parallel pathways represent movement of

different ion species i. Each branch has a resistor with resistance Ri in series

with a battery at the Nernst potential of species i.

Although this circuit description is well known (5), we note that each

resistance Ri depends on the geometry (through A(x)) and the diffusion coef-

ficient and ion concentration profiles, Di(x) and ri(x). Anything that changes

these terms changes the resistance. For example, a conformational change or

loss of a regulatory protein can change the pore geometry (and the diffusion

coefficients), possibly causing a decrease in current when ion mole fraction

changes.

The concentration profile along the pore, however, is the most likely to

change the resistance with mole fraction because it depends on the bath

concentrations, the applied voltage, and the kinds of other ions present.

An example of how dramatically concentration profiles depend on the

bath composition has been demonstrated in RyR (21). With a 1 mM Ca2þ

and 100 mM Liþ or Csþ in the baths, the selectivity filter contains five times

more Liþ than Csþ. Therefore, the resistances Ri depend on the physical

properties of all ion species, as well as their amounts. In other words, the

resistances Ri are not constant and not known a priori, but rather must be

computed by the model.

We will consider how the ion-specific resistances within different regions

of the pore change with mole fraction. This can be done by breaking the inte-

gral in Eq. 5 into integrals over smaller regions,

z2
i e2

kT
Ri ¼

R
bath to

bath

½DiðxÞAðxÞriðxÞ�
�1

dx

¼
R

cytosolic
bath

þ
R

cytosolic
vestibule

þ
R

selectivity
filter

þ
R

luminal
vestibule

þ
R

luminal
bath

;

(6)

where the integrand [Di(x)A(x)ri(x)]�1 is not explicitly written. For each ion

species i, each region is then a resistor in series with the other four resistors.

The resistance of each region of the pore changes differently with mole frac-

tion to produce the AMFE, giving the resistors-in-series model of the AMFE

its name (19).

10 mV

20 mV

30 mV

Na
+

10 mV

20 mV

30 mV

Li
+

10 mV

20 mV

30 mV

Cs
+

K
+

10 mV

20 mV

30 mV

A B

C D

FIGURE 1 Comparing the AMFE predictions of the

model (lines) to experiments (symbols). Ca2þ is added to

the luminal bath while both baths contain 100 mM Xþ for

different monovalents Xþ: (A) Liþ, (B) Naþ, (C) Kþ, and

(D) Csþ. The currents at 10, 20, and 30 mV are shown.

Experimental error bars smaller than the symbol are not

shown. The 20 mV curves in panels B and D were published

previously (21).
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For the results shown in this article, we divide the system as follows: the

cytosolic bath; the cytosolic vestibule containing Asp-4945 and Asp-4938;

the selectivity filter with Asp-4899; the luminal vestibule with Glu-4900;

and the luminal bath.

Resistors-in-series model of the AMFE

Previous work on the resistors-in-series model showed that the combination

of three elements was identified as necessary to generate an AMFE (18,19):

1. Higher binding affinity of one ion species X over another species Y. This

causes X to be present in the selectivity filter in a proportion higher than

in the bath. This is preferential selectivity of X over Y.

2. Resistance to current flow in other regions of the pore (e.g., cytosolic and

luminal vestibules) changes differently with [X] than in the selectivity

filter. This is because the rest of the pore has a lower affinity for X; if

not, these regions would be the selectivity filter. This means that the

concentrations of X and Y—and their resistances by Eq. 5—vary differ-

ently with [X] in different regions of the pore.

3. The endpoint currents/conductances (i.e., the currents/conductances in

mixtures with the smallest and largest [X]) should be approximately

equal. If the endpoints are very far apart, the current must be depressed

far more to generate a minimum than if the endpoints are equal.

Gillespie and Boda (19) showed (if the endpoint conductances were

equal) that both preferential selectivity and the resistances outside the selec-

tivity filter were essential to an AMFE; without either, there was no AMFE.

That work built on the experiments by Gillespie et al. (18) in synthetic nano-

pores, that showed that the more similar the endpoint conductances, the

deeper the AMFE. Below we will show that the AMFEs in RyR are consis-

tent with these principles.

RESULTS

First, we show predicted and measured AMFEs in different

mixtures of Ca2þ and monovalent cations. Second, we

analyze these AMFEs, focusing on mixtures of Ca2þ and

Csþ or Liþ because these produce the largest and smallest

AMFEs in RyR. Third, we analyze the classical mole frac-

tion experiments where mixtures of Naþ and Csþ generate

an AMFE in RyR, while other mixtures of monovalent

cations (e.g., Liþ and Kþ) do not.

Experiments in mixtures of Ca2þ and monovalent
cations

We performed experiments to determine the conditions

under which RyR2 has AMFEs in mixtures of Ca2þ and

monovalent cations. The results are shown in Figs. 1 and 2

(symbols). Fig. 1 also shows the currents computed with

the PNP/DFT model (lines). In these experiments, 100 mM

Xþ (Xþ ¼ Liþ, Naþ, Kþ, and Csþ) is in both baths and

Ca2þ is added to the luminal bath. The cytosolic bath

contains ~1 mM Ca2þ. The experimental data for 10 mV

applied voltage are replotted in Fig. 2 A to clearly show

the AMFEs. Fig. 2 B shows exemplar current traces and

histograms in Csþ. To test the predictive power of the model,

the calculations were done before the experiments.

Mixtures of Ca2þ and Csþ have the largest AMFEs; there

is a distinct minimum up to 30 mV. Naþ and Kþ have

smaller AMFEs at 10 and 20 mV. The AMFEs are no longer

evident by 30 mV in all these mixtures except Csþ. Liþ did

not generate significant AMFEs at any of the voltages we

studied, although at each voltage there was a small depres-

sion of current compared to 1 mM Ca2þ as [Ca2þ]lum was

increased (see Fig. 3 C). The PNP/DFT model exaggerates

this depression of current at 20 and 30 mV, but when the

model results are considered collectively, the model predicts

all the general trends with very good quantitative agreement.

Ca2þ block of monovalent cation current

Preferential selectivity and resistances

To analyze the Ca2þ/monovalent cation AMFE (Figs. 1 and

2), we first consider the case of 100 mM symmetric Csþ with

added Ca2þ (Fig. 1 D). We start by considering preferential

selectivity. Since RyR is a calcium channel, one would

expect it has preferential selectivity for Ca2þ over any mono-

valent cation. This is shown in Fig. 3 A (red lines, right axis)

where the number of Ca2þ and Csþ ions calculated to be in

the selectivity filter are plotted as luminal Ca2þ concentration

[Ca2þ]lum is increased. Even micromolar [Ca2þ]lum displaces

Csþ from the selectivity filter and with ~30 mM [Ca2þ]lum

there is one Ca2þ and one Csþ (intersection of the red lines).

Fig. 3 A also shows that Csþ current (black solid line) is

approximately proportional to the number of Csþ in the

selectivity filter (red solid line). Csþ occupancy (and current)

decreases because it is being replaced in the pore by Ca2þ.

A

B

0.5 s

4 
pA

FIGURE 2 (A) The experimental data for Liþ, Naþ, Kþ, and Csþ at 10 mV

from Fig. 1. (B) Representative current recordings and histograms at 10 mV

for 100 mM Csþ and the indicated concentration of luminal Ca2þ.
Biophysical Journal 97(8) 2212–2221
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For Ca2þ the situation is very different; the increasing Ca2þ

occupancy does not initially translate into significant Ca2þ

current (black lines, left axis); the Ca2þ current (black dashed
line) reaches 0.5 pA only when [Ca2þ]lum is elevated to

400 mM. Note that at this point Ca2þ occupancy (red dashed
line) in the selectivity filter is almost saturated. This suggests

there is a large resistance to Ca2þ current somewhere outside

of the selectivity filter. In other words, Ca2þ passing through

the selectivity filter is not the rate-limiting step.

Fig. 3 B shows that this resistance comes from the baths

surrounding the pore (green dashed lines), especially the

regions at the pore entrances (data not shown). The high

resistance arises because the very low Ca2þ concentrations

in the baths give the baths very small Ca2þ conductivity.

At these low concentrations, the vestibules also have very

high resistances to Ca2þ current (blue dashed lines) (35). It

is not until [Ca2þ]lum reaches the millimolar level that the

bath becomes the very low resistance element that it is

usually assumed to be and is in this case for Csþ (solid green
and blue lines). Therefore, even though Ca2þ occupancy is

high within the pore, there is very little Ca2þ current because

of the very high resistance outside the selectivity filter. Note

that although Ca2þ is only added on the luminal side, adding

Ca2þ symmetrically does not change our findings; in that

case, both bath resistances (green dashed lines) are identical

and those resistances still prevent Ca2þ flux and still produce

an AMFE, as shown previously (19).

So why is there little or no AMFE when Ca2þ is added to

Liþ (Fig. 1 A), even though Liþ should intuitively behave

similarly to Csþ? In fact, Liþ seems to fulfill all the criteria

for an AMFE: the pore selects Ca2þ over Liþ (21), the Ca2þ

resistance outside the selectivity filter is as large as with Csþ

(Fig. 3, B and D), and the endpoint currents are equal (Figs.

1 A and 2 A). The reason is that RyR has a much higher

affinity for Liþ than for Csþ (21), as shown in Fig. 3: at

micromolar [Ca2þ]lum, there are ~3.5 Liþ in the selectivity

A B

C D

cytosolic bathluminal bath
vestibules

selectivity filter

baths

vestibules

selectivity filter

Ca
2+

Cs
+

cytosolic bathluminal bath
vestibules
selectivity filter

baths

vestibules

selectivity filter

Ca
2+

Li
+

Cs + currentCs +
 occupancy

Ca2+ current

Ca2
+  occu

pancy

Li+ current

Li+ occupancy

Ca2+ current
Ca2

+  occu
pancy

FIGURE 3 (A) Ca2þ and Csþ current (black lines, left axis) and number of Ca2þ and Csþ in the selectivity filter (red lines, right axis) as [Ca2þ]lum is

increased. The net current is shown with the dotted line and the experimental results are shown with gray squares. (B) The resistances of Csþ (solid lines)

and Ca2þ (dashed lines) in the selectivity filter (black lines), the cytosolic and luminal vestibules (blue lines), and the baths (green lines). (C and D) Same

as panels A and B with Liþ substituted for Csþ. The applied voltage is 10 mV.
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filter (solid red line in Fig. 3 C), but only ~2.5 Csþ (solid red
line in Fig. 3 A). This is because each Liþ ion has only 6%

the volume of a Csþ ion so more Liþ ions can fit into the

crowded selectivity filter (15,19,25,36). Moreover, it takes

~0.8 mM [Ca2þ]lum to displace enough Liþ so that there is

one Liþ and one Ca2þ in the selectivity filter (intersection

of red lines in Fig. 3 C)—27 times the amount of Ca2þ

needed with Csþ. This affinity for Liþ causes the Liþ

current to decrease at much higher [Ca2þ]lum than for Csþ,

but at those concentrations the Ca2þ current is increasing.

As a result, the net current (dotted black line) is relatively

constant and any minimum is much smaller than for Csþ.

This shows that it is incorrect to infer that the absence of

an AMFE indicates the absence of preferential selectivity;

only the presence of an AMFE is significant (18,19).

The resistance to current flow for the monovalents Csþ

and Liþ change differently as more Ca2þ is added compared

to the resistance of Ca2þ, especially in the selectivity filter.

This is shown in Fig. 3, B and D (black lines). As the mono-

valent is replaced in the pore by Ca2þ, its concentration

decreases and so its resistance increases (solid black lines).

Ca2þ resistance, on the other hand, decreases as its concen-

tration increases, but then it saturates as Ca2þ occupancy

saturates (dashed red lines in Fig. 3, A and C). Moreover,

the selectivity filter is the highest resistance element for the

monovalents (as expected), while for Ca2þ it is the lowest

resistance element until [Ca2þ]lum is ~1 mM. This keeps

Ca2þ current small even though Ca2þ occupancy of the

selectivity filter is high.

Concentration and voltage dependence of the AMFE

The difference in affinity of RyR for Liþ and Csþ has signif-

icant consequences on the AMFE because it is harder for

Ca2þ to displace Liþ from the selectivity filter. This then

presents a testable prediction: the easier it is for Ca2þ to

displace a monovalent, the more the minimum (if there is

one) should move to lower [Ca2þ]lum. One way to increase

Ca2þ binding in the RyR pore is to decrease the monovalent

cation concentration in the baths (21). We test this prediction

in Fig. 4 and find that, indeed, less [Ca2þ]lum is required to

generate a minimum as [Naþ] is decreased from 250 mM

to 50 mM. As for Fig. 1, the calculations were done before

the experiments.

The figure also shows that, as [Naþ] decreases, the

endpoint currents become more equal and the AMFE

becomes deeper. This is consistent with the predictions of

the resistors-in-series model (19) and the AMFE experiments

on synthetic nanopores (18). The relationship between

endpoint conductances and AMFE depth is also seen in the

voltage dependence of the depth of the AMFE in Fig. 1. In

the experiments (symbols), all the monovalents except Liþ

have a minimum in the current at 10 mV, but only Csþ still

has one at 30 mV. This loss of the AMFE mirrors the

increase in the difference between the endpoint currents

(i.e., the currents at [Ca2þ]lum ¼ 10�6 and 10�2 M). The
difference in the endpoint currents increases with voltage

because the monovalents have significantly larger conduc-

tances (200–800 pS) compared to Ca2þ (100–150 pS).

Therefore the same increase in voltage disproportionately

increases the monovalent current at [Ca2þ]lum ¼ 10�6

compared to the Ca2þ current at [Ca2þ]lum ¼ 10�2 M,

moving the endpoint currents apart and decreasing the depth

of the AMFE (or eliminating the AMFE altogether).

Classic mole fraction experiments

Analyzing the AMFE for mixtures of monovalent cations is

more difficult because the effect is much smaller (<10% for

Naþ/Csþ mixtures). Still, we show that preferential selec-

tivity, resistances outside the selectivity filter, and equal

endpoint conductances combine to make an AMFE possible.

We analyze two mole fraction experiments, one in mixtures

of Naþ and Csþ which has an AMFE and one in mixtures of

Liþ and Kþ which does not (Fig. 5 A).

For the Naþ/Csþ mixtures, normalized selectivity filter

occupancy and currents are shown in Fig. 5 B. Naþ is pref-

erentially selected over Csþ; the proportion of Naþ in the

selectivity filter is larger than its mole fraction in the bath

while the proportion of Csþ is less. Csþ current is approxi-

mately proportional to Csþ occupancy (the Csþsolid and

dashed lines are almost the same). For Naþ, however, the

two curves are more dissimilar, with Naþ current proportion-

ately smaller than Naþ occupancy (the Naþsolid line is

below the dashed line).

FIGURE 4 The effect of bath Naþ concentration on the AMFE. The

current at 20 mV is shown for added luminal Ca2þ with symmetric

250 mM (squares), 100 mM (circles), and 50 mM (triangles) Naþ. Symbols

are experimental results and lines are the model’s predictions. The discrep-

ancies between the experiments and PNP/DFT model are larger for 50 mM

Naþ because at low concentrations the model overestimates the affinity of

RyR for monovalents. Twenty millivolts was chosen to have sufficient

signal/noise ratio for the 50 mM measurements.
Biophysical Journal 97(8) 2212–2221
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FIGURE 5 (A) Mole fraction experiments in mixtures of Naþ and Csþ

and mixtures of Liþ and Kþ. The experimental results (symbols) and the

theoretical results (lines) have been previously published (21,25,38). The

inset shows a close-up of the Naþ/Csþ curve. (B) Normalized selectivity

filter occupancies (dashed lines) and individual ion species conductances

(solid line) of Naþ and Csþ are shown as the mole fraction of Naþ is

increased. [Naþ] þ [Csþ] ¼ 250 mM. (C) The conductance in Naþ/Csþ

mixtures calculated with only the resistances of Naþ and Csþ in the selec-

tivity filter (solid line), in the entire pore (dashed line), and in the entire

pore and the baths (dotted line).

Biophysical Journal 97(8) 2212–2221
This pattern is similar to what happened with Ca2þ: the

cation (Naþ or Ca2þ) that is displacing Csþ from the pore

has a current that is proportionately smaller than its occu-

pancy in the selectivity, but it was much more pronounced

for Ca2þ. The same is true for the small Liþ ions which

RyR prefers over the larger Kþ ions (21); Fig. 5 B is nearly

identical for the Liþ/Kþ mixtures when the mole fraction of

Liþ is the x axis (data not shown). That is, for these normal-

ized variables, the replacement of Kþ in the pore by Liþ

is very similar to the replacement of Csþ in the pore by

Naþ. So why do Naþ/Csþ mixtures have an AMFE while

Liþ/Kþ mixtures do not? The answer lies in the endpoint

conductances which are nearly identical for Naþ and Csþ

(~500 pS), but very different for Liþ and Kþ (211 pS vs.

800 pS) (Fig. 5 A).

To start the analysis, assume for simplicity that the sum

total number of both Naþ and Csþ in the filter is constant

and that the pure Naþ and Csþ endpoint conductances are

equal. Both are approximately true; in RyR, there are

3–3.8 monovalents in the selectivity filter (i.e., Naþ plus

Csþ or Liþ plus Kþ). If the Naþ and Csþ conductances

were both proportional to their occupancies, then the total

pore conductance would be constant as mole fraction

changed because the total occupancy of Naþ plus Csþ is

constant and because the endpoint conductances are equal.

However, the Naþ current is not proportional to its occu-

pancy, and so the total current is not constant. In fact,

because the conductance (solid) line for Naþ is less than

its occupancy (dashed) line in Fig. 5B, the total pore conduc-

tance dips below the endpoint conductances to make the

AMFE. At <10% this effect is not substantial when the

endpoint conductances are as far apart as they are for Liþ/Kþ

mixtures; for Liþ/Kþ mixtures, ~75% of the Kþ current

would have to be depressed by a small amount of Liþ to

be experimentally observable.

The reason that the Naþ conductance line is less than its

occupancy line is that there is an extra resistance for Naþ

outside the selectivity filter (like for Ca2þ earlier). This is

illustrated in Fig. 5 C, where the pore conductance in Naþ/

Csþ mixtures is calculated in different ways. The solid line

computes the conductance by using only the resistances of

Naþ and Csþ in the selectivity filter. It does not have an

AMFE. Only when the resistance of the entire pore is

included is there an AMFE (dashed line). This demonstrates

that it is not sufficient to include only the selectivity filter in

the calculation because the AMFE is due to how the resis-

tances both inside and outside the selectivity filter change

with mole fraction.

DISCUSSION

Resistors-in-series model

Nonner et al. (13) were the first to show that the AMFE

requires neither single filing of ions nor multiple ions in
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the pore. Their model described the AMFE as coming from

localized depletion zones, located adjacent to binding sites,

where ion concentration is low and therefore conductivity

is low or, equivalently, resistance is high. In models of the

L-type calcium channel, these localized depletion zones

were indeed found to generate the Naþ versus Ca2þ AMFEs

(14,15,19). Therefore, localized depletion zones are one way

to generate an AMFE. However, this article and recent work

(described below) demonstrate that a generalization is neces-

sary; the resistances of all regions in the system—and how

they change with mole fraction—must be considered:

1. Experiments found AMFEs in synthetic nanopores in

plastic (18). These pores have a uniform negative surface

charge along their entire 12-mm length and therefore there

is no localized binding site for the ions and consequently

no localized depletion zones. However, the 50 Å-wide

center of the pore is highly Ca2þ-selective while the

1500–4000 Å-wide ends of the double-conical pore are

not. This causes the resistances in those two regions to

change very differently with mole fraction, producing

the AMFE.

2. There are no obvious depletion zones in the density

profiles of ions with the same charge. This was shown

for the Ca2þ versus Ba2þ AMFE in the L-type calcium

channel (19). It is also what makes analyzing the Naþ

versus Csþ AMFE in RyR challenging; there are no areas

of localized high resistance to current flow for either ion

species (data not shown) like there are for Ca2þ (Fig. 3, B
and D).

Intuitively, the baths, the pore vestibules, and the selec-

tivity filter must have different resistances to current flow;

each region has different ion concentrations and, like any

salt solution, has a concentration-dependent conductivity.

The selectivity filter, in particular, must have a very different

resistance than the rest of the pore because it must have

a very different ion composition. For example, it has previ-

ously been shown that in RyR the Ca2þ concentration in

the selectivity filter will be higher than the Kþ concentration,

but not so in the rest of the pore (21). Moreover, the ion

concentrations—and therefore resistances—in the selectivity

filter and the rest of pore must change differently with mole

fraction because each region has a different affinity for ions

like Ca2þ—and, by definition, the selectivity filter has the

highest affinity. An AMFE results because these resistors

are in series and the ion species behave as if they move along

parallel electrical pathways (19).

Different inferences from different theories

One common interpretation of an AMFE due to the textbook

theory is that multiple ions are moving through the pore in a

single file. This single-file, multi-ion origin of the AMFE has

understandably become deeply engrained (6–12) because it

was not until 10 years ago that an alternative theory was
even proposed (13). Because these two theories describe

ion permeation very differently, it is important to reexamine

the inferences drawn from each.

Single filing

The classic barrier model describes ion permeation as ions

hopping over energy barriers that separate binding sites that

contain at most one ion (single filing) at a time (4). The resis-

tors-in-series model describes ion permeation as diffusion of

ions down their electrochemical potential gradients with no

assumption of single filing. Both can theoretically explain

the origin of AMFE. However, the experimentally measured

AMFEs in the 50 Å-wide synthetic nanopores unequivocally

show that single filing is not necessary for the AMFE (18). In

this article, we have shown that a number of AMFEs can be

predicted (before confirming experiments were done) with

a PNP/DFT theory that does not include correlated, single-

file motion of ions because it does not include the momentum

conservation necessary to model that (37). Therefore, this

article provides further evidence that single-filing of ions is

not necessary to produce an AMFE.

Multi-ion pore

Because of the long history of the textbook theory, ‘‘AMFE’’

has become almost synonymous with ‘‘multi-ion pore.’’

However, in the resistors-in-series model, an AMFE can be

explained even with <1 ion in the pore on average (13). In

RyR, there are indeed multiple ions in the selectivity filter

(Fig. 3), but this is not the reason there is an AMFE. There

are multiple ions in a calcium channel because of basic

electrostatics: the four negative glutamates or aspartates in

the selectivity filter attract cations in similar numbers

(approximately four monovalents or approximately two

divalents).

Ca2þ blocks the pore

Ca2þ block of monovalent current in the textbook model is

just that: Ca2þ occludes the pore because it is in a deep

energy well and monovalent cations cannot pass at the occu-

pied well (the single filing constraint). Momentum conserva-

tion would be required to model the physical block of the

pore, which the Nernst-Planck approach does not include.

Therefore, it is not the physical occlusion of the pore by

Ca2þ per se that stops monovalent current in the resistors-

in-series model. This is seen in the AMFEs of the synthetic

nanopores where there is clearly no flux coupling (18).

With increasing [Ca2þ], Ca2þ increasingly occupies the

center of the nanopore, but there is no occlusion of the

50 Å-wide pore by Ca2þ; Ca2þ is just present in higher

proportions because of the selectivity properties of the

pore. In the same way, the Ca2þ in a calcium channel statis-

tically occupies the pore more often, reducing the monova-

lent concentration and therefore the monovalent current

(Fig. 3).
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Preferential selectivity

The resistors-in-series model predicts that an AMFE reflects

the preferential selectivity of ion species X over species Y;

that is, a small amount of X replaces a disproportionate

amount of Y from the selectivity filter. This has been

described and experimentally tested previously (18,19). It is

also seen in this article in the preferential selectivity of Ca2þ

over monovalent cations (Fig. 3), Naþ over Csþ, and Liþ

over Kþ (Fig. 5 B). Preferential selectivity is necessary for

the AMFE in the resistors-in-series model, but it is not enough

by itself. For example, because the endpoint conductances are

very different for Liþ and Kþ, the preferential selectivity of

Liþ over Kþ is not sufficient to make an AMFE (Fig. 5).

However, the preferential selectivity does make the nonline-

arity of the curve; a small amount of Liþ displaces Kþ and

moves the conductance closer to the pure Liþ conductance.

Preferential selectivity also explains why there is no AMFE

for Ca2þ and Liþ; RyR has a relatively high affinity for Liþ

compared to the other monovalent cations so there is low

relative preferential selectivity of Ca2þ over Liþ.

Presence or absence of an AMFE

The Ca2þ/Liþ case illustrates that in the resistors-in-series

model the absence of an AMFE does not mean the absence

of preferential binding: Ca2þ is preferentially bound over

Liþ, but there is no AMFE because Ca2þ current makes up

for the decrease in Liþ current (Fig. 3 C). It is actually true

in both models that only when an AMFE is actually present

can conclusions be drawn. In the textbook model, some

multi-ion pores do not exhibit an AMFE (4). Therefore,

even if no AMFE is measured under many conditions, one

should not conclude that it is a single-ion pore. In fact,

RyR was thought to be a single-ion pore, in part because

no AMFEs had been observed—until the PNP/DFT perme-

ation model predicted one in Naþ/Csþ mixtures (25).

CONCLUSION

We have used the PNP/DFT model of ion permeation

through RyR to evaluate the AMFEs in RyR. The predictive

power of the PNP/DFT model indicates that it describes the

physics of both selectivity and permeation well. Our analysis

suggests that the AMFEs in RyR are not due to the correlated

motion of single-filing ions; the physics needed to describe

this is not in the PNP/DFT equations.

The resistors-in-series idea explains both the origin of the

AMFEs in RyR when they are present in some mixtures and

why they are not present in others. Resistors-in-series also

reproduces AMFE experimental data in the L-type calcium

channel (14,15,19) and Ca2þ-selective synthetic nanopores

(18). Collectively these studies show that the AMFE is

a natural consequence of electrodiffusion through highly-

selective pores and that therefore the resistors-in-series

theory may be applicable to many ion channels: an AMFE

Biophysical Journal 97(8) 2212–2221
is likely to be measured in any channel that has a clear pref-

erence for one ion species over another when the endpoint

conductances are similar. Moreover, the preferential selec-

tivity underlying the resistors-in-series model is the interpre-

tation of the nonlinear conductance versus mole fraction

curves that do not have minima, like for Liþ/Kþ mixtures

in RyR (Fig. 5 A). Preferential selectivity then provides

a unifying concept for all the properties of conductance

versus mole fraction curves.

The success of the resistors-in-series model demonstrates

that it is a viable alternative theory of the AMFE. It also

demonstrates that any interpretation of the AMFE is at best

model-dependent. Consequently, observation of an AMFE

is no longer enough to infer a multi-ion pore. Without inde-

pendent evidence for single filing, it is not possible—in any

channel type—to know whether the cause of the AMFE is

correlated ion motion or preferential ion selectivity.

This work was supported by National Institutes of Health grant No.

AR054098.
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