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To model the double layer near an electrode, theories and simulations must include the
different dielectric coefficients of the electrode, the commonly-postulated ‘inner’ layer, and the
electrolyte. Recently, Boda et al. [D. Boda, D. Henderson, K.-Y. Chan, D.T. Wasan. Phys.
Rev. E, 69, 046702, (2004)] developed a technique to include inhomogeneous dielectric
coefficients in arbitrary geometries in a simulation. Here, Monte Carlo simulation results
based on this method are reported for the density profiles of 1:1, 2:2 and 2:1 aqueous
electrolytes. The simulations include two dielectric boundaries, one from an inner layer of low
dielectric coefficient and one from an uncharged metal electrode. In addition, an extension
of a Poisson–Boltzmann (PB) type theory due to Onsager and Samara [L. Onsager, N.N.T.
Samara. J. chem. Phys., 2, 528, (1934)] is developed and compared with our simulation results.
This approach works best for 1:1 salts at low concentrations.

1. Introduction

The authors are delighted to join the editors in
dedicating this paper and issue to Ben Widom in
recognition of his important contributions to chemical
physics. We insert this paper into this special issue to
commemorate the Widom insertion method. Ben is an
exemplary scientist and person and a good friend. We
wish him many more productive years.
The common theory of electrochemical interfaces

is the Poisson–Boltzmann (PB) type theory of Gouy
and Chapman (GC) [1, 2]. In the GC theory, the ions
are point charges, the solvent is a dielectric continuum
with a dielectric coefficient � and the electrode is a flat
surface with uniform surface charge. In simulations,
ions can be modelled as charged, hard spheres
(the primitive model, PM). No matter what theory or
simulation method is used, however, to bring results of
the primitive model into agreement with experiments,
it is necessary—or at least sufficient—to postulate
an interfacial region or ‘inner’ layer (also called
a Helmholtz or Stern layer) of some thickness � in
which the dielectric coefficient �� is smaller than that of
the bulk electrolyte. Any treatment of the double
layer for this primitive model thus includes at least

three regions with differing dielectric coefficients: the
electrode, the inner layer and the bulk (often called the
diffuse layer). At each of the two dielectric interfaces,
Poisson’s equation predicts a surface charge that is
a function of the location of all ions. Moreover, each
surface charge affects the other surface charge, thereby
coupling the different layers of dielectrics.

The GC theory assumes that the capacitance of
the interfacial electrolyte is that of two independent
capacitors in series. The capacitor representing the
diffuse layer is calculated from the GC theory without
reference to the inner layer. The inner layer capacitance
is then computed and the two capacitances are added
in series. The unstated, but very real, assumption is
that the diffuse layer density, charge and potential
profiles are completely unchanged by the presence of
different dielectric coefficients in the inner layer and in
the electrode. In effect, the inner and diffuse layer
capacitors are considered to be electrostatically
decoupled (or at most loosely coupled), an assumption
that has not been tested. One goal of this work is to
examine this assumption.

These simplifications mean that analytic results can
be obtained even if the electrode charge is large. The
widespread use of this theory results from an under-
standable preference for the convenience of an analytical
theory. However, the GC theory is not very accurate.
An empirical choice for �� and � only conceals this fact.*Corresponding author. Email: doug@chem.byu.edu
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Even if one obtains a reasonable fit for the capac-
itance, this means only that the experimental potential
at the electrode, which is known anyway, has been
reproduced. There is no reason to believe that the
potential away from the electrode, say that of an ion
at its distance of closest approach (at the edge of the
inner layer) is accurate (see figure 5 of Schmickler and
Henderson [3] for evidence that it is not).
The simulations of Torrie and co-workers [4–7]

are widely interpreted as validating the GC theory.
At best, however, these simulations show the GC theory
to give reasonably good values for the density profiles
of 1:1 aqueous electrolytes when dielectric inhomogene-
ities are ignored, when the ions that do not have too
large a diameter, and only when the theory is used for
the same electrode charge as that of the simulation.
Errors in the GC theory are apparent for divalent ions,
for ions with a large diameter, for solvents with a lower
dielectric coefficient [8] (or equivalently, a lower temp-
erature), and when the GC theory is used with the same
electrode potential (rather than the same electrode
charge) as the simulation [9, 10]. See, in particular,
figure 2 (a) and (b) and figure 4 (a) and (b) of [9], where
the GC counterion profiles are considerably smaller
than the simulation results when the potential is used as
the independent variable. For a 1:1 salt, the counterion
profile is in fairly reasonable agreement with simula-
tion only when the electrode charge is used as the
independent variable. This point has been overlooked
and is nontrivial given the large errors in the potential–
charge curve predicted by the GC theory and that the
potential is the more natural variable in the GC theory
(and experiments). For 2:2 and 2:1 salts, the agreement
with simulations is poor whether potential or charge is
used as the independent variable.
Even for 1:1 aqueous electrolytes with smaller size

ions, most of the Torrie–Valleau simulations do not
address the question of the reliability of the underlying
model of a continuum dielectric representation of the
solvent and an absence of any dielectric boundaries.
They do report one set of simulations [5] for the case
when the dielectric coefficient of the electrode differs
from that of the electrolyte, leading to induced charge
on the electrode, but they do not consider an inner layer
with a different dielectric coefficient. This is because
they were able to treat only a single dielectric boundary
by means of electrostatic images. Since they do not
consider an inner layer with a different dielectric
coefficient, the issue of whether a dielectric boundary
at the inner–diffuse layer interface has an effect on the
diffuse layer profiles did not arise in their investigation.
In this paper, we investigate by simulation the

consequences of an inhomogeneous dielectric coeffi-
cient and, in particular, consider the effects of an inner

layer on the diffuse layer. In addition, we solve Poisson’s
equation for a system with two planar dielectric
interfaces and use this result to develop an exten-
sion of inhomogeneous PB theory of Onsager and
Samara [11] for an electrolyte near a planar dielectric
boundary for the case of two planar dielectric bound-
aries. As one might expect on the basis of past experi-
ence with the PB theories, this approach is most useful
for a 1:1 salt at low concentrations. Even so, it provides
valuable insight into the simulation results.

Since the effect of dielectric discontinuities is likely
to be most apparent for uncharged electrodes, in this
initial paper we confine our attention to uncharged
electrodes. Charged electrodes will be considered later.

2. Model

Our model electrolyte is the restricted primitive model
(RPM), where the ions are charged hard spheres, all
with the same diameter. In this paper, we use, d¼ 3 Å.
That is, the direct interaction between the ions can be
characterized by the energy,

We ¼
1

2

X
i

zie eðriÞ, ð1Þ

where zi is the valence of the ith ion, e is the magnitude
of the electronic charge, and

 eðriÞ ¼

X
j6¼i

zje

�jjri � rjj
, for jri � rjj � d,

1, for jri � rjj < d

8<
: ð2Þ

is the potential raised by the ions at ri. In equation (2),
�j is the dielectric coefficient of the region where the
jth ion resides. The charge of an ion is assumed to be
located at the centre of the ion. As is pointed out
below, the centres of the ions are always located in
the region whose dielectric coefficient is �3, therefore
�j ¼ �3 in equation (2). It is assumed that the interior
of an ion has the same dielectric coefficient as the
solvent. Thus, we need not worry about induced charge
on the surface of an ion. In principle, such induced
charge could be included and might yield interesting
results but this would make the simulation very time
consuming, perhaps impossibly so. We will return to this
point in section 3.

Space is divided into three regions of dielectric coef-
ficients �1, �2 and �3, as shown in figure 1. The electrode
occupies region 1 (x<0) and contains no ions. We
assume that the electrode is a metal whose surface
is planar and smooth. Thus, the dielectric coefficient
in this region is �1 ¼ 1. Region 2 is the inner layer
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(0 < x < �). We assume that the inner layer contains no
ions but consists of a layer of solvent molecules that
solvate the electrode. For simplicity, the solvent
molecules are assumed to have a diameter d equal to
the ion diameter (� ¼ d). As is seen in figure 2, the
distance of closest approach of an ion centre to the
electrode is dþ ðd=2Þ ¼ 3d=2. The charge of an ion is
never closer than d / 2 to the inner–diffuse layer dielectric
boundary and is always in a homogeneous dielectric.
In our method, the charge on the dielectric boundary is
a set of discretized charged surface elements. Because
the dielectric interfaces are hard walls for the ions, an
ion whose interior has a dielectric coefficient �3 does not
overlap with the inner layer of dielectric coefficient �2.
Consequently, new dielectric boundaries do not appear
during the simulation.
The dielectric coefficient of the inner layer is assumed

to be �2 ¼ �
� ¼ 6. The ions are confined to the third

layer, region 3 (x > �). The dielectric coefficient of
this diffuse layer is assumed to be that of the solvent and

is taken to be �3 ¼ � ¼ 80. This is slightly higher than
that of water and higher yet than that of a 1M aqueous
solution. However, the precise value of � is unimportant
for the moment; we are interested in whether the
dielectric boundaries affect the diffuse layer profiles.
This question is independent of �.

In this study we used a coupling constant, q�2 ¼
e2=�3dkBT ¼ 2:32 (kB and T are Boltzmann’s constant
and the temperature), which corresponds to monovalent
ions of diameter 3 Å in an solvent of dielectric coefficient
80 at room temperature.

3. Simulation method

Our method is that of Boda et al. [12], which is an
extension of the work of Allen et al. [13]. If we
characterize the inhomogeneous dielectric by a space
dependent dielectric coefficient �ðrÞ, then polarization
charge is induced at a dielectric interface. If the dielectric
boundaries are sharp, the polarization charge is a surface
charge that we denote by hðrÞ. Allen et al. have
introduced a functional I½hðrÞ� that is a function of hðrÞ
for a given configuration of the source charges (the
ions). They have shown that the induced charge that
minimizes the functional is a solution of the Poisson
equation.

In our previous work [12], we have developed a diff-
erent solution for this variational problem. The result
is an integral equation whose discretization results in
a matrix equation. If we assume that the source charges
are ions as described in the previous section and that the
dielectric boundaries are sharp, the following equation
can be written

Z
B

hðr0Þ �ðr0Þ�ðr� r0Þ þ��ðrÞ
ðr� r0Þ � nðrÞ

jr� r0j3

� �
dr0

¼ ��ðrÞr eðrÞ � nðrÞ, ð3Þ

where the dielectric coefficient on the boundary �ðrÞ is
defined to be the arithmetic mean of the two dielectric
coefficients on each side of the boundary. Furthermore,
the dielectric discontinuity ��ðrÞ is the difference of
the two dielectric coefficients on each side of the boun-
dary in the direction of the local unit normal of the
surface nðrÞ. The integral is taken over the dielectric
boundary surfaces B, �ðr� r0Þ is the Dirac delta and
 eðrÞ is the potential of the source charges defined in
equation (2). After discretizing r into discrete values
ri by dividing the surface B into small surface elements
Bi, ri being the centre of the ith surface element, a matrix
equation is obtained

Ah ¼ c, ð4Þ

x = 0 x = δ

+
+

 

 

Figure 2. Inner and diffuse layer models. The inner layer is
presumed to be inaccessible to the ions. For example, it could
consist of a solvation layer of water molecules. Note that the
ions are always located in the region of the dielectric
coefficient �3.

electrode inner
layer

e
1

e
2

e
3

x = Hx = δx = 0

diffuse layer

x = H′

Figure 1. Simulation geometry. The cell consists of three
regions, the electrode, H0 < x < 0, whose dielectric coefficient
is �1, the inner layer, 0 < x < �, whose dielectric coefficient is
�2, and the diffuse layer and bulk, � < x < H, whose dielectric
coefficient is �3.
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where the vectors h and c contain the discretized values
of the induced charge and the right-hand side of
equation (3) at the discretized values of ri, respectively.
The matrix is constructed from the expression in square
brackets in the integrand:

Aij ¼ �ðriÞ�ij þ��ðriÞ

Z
Bj

ðri � r0Þ � nðriÞ

jri � r0j3
dr0: ð5Þ

It is seen that the matrix depends only on the
geometry of the inhomogeneous dielectric, and it does
not depend on the source charges. It is the vector c that
depends on the positions of the source charges.
Therefore, the matrix need be inverted only once at
the beginning of the simulation provided that the
geometry does not change during the simulation.
(This is the reason for the definition of the ions in the
preceding section: when a dielectric boundary appears
or moves, the matrix should be reinverted, a very time
consuming process.) In a MC step, the vector c is
changed, from which the induced charge can be
calculated from the matrix multiplication h ¼ A�1c.
The potential produced by the induced charges is

 iðrÞ ¼
X
j

hjaj
jr� rjj

, ð6Þ

where hj and aj are the charge density and the area of
the jth surface element, respectively. When calculating
the energy of the system, which is an essential step in
a MC simulation, the interaction energy between the ith
source charge and the induced charges

Wi ¼
1

2

X
i

zie iðriÞ ð7Þ

should be added to We (equation (1)). The computa-
tional cell is bounded by hard reflecting walls at
x ¼ �H0 and x¼H. The precise value of H0 is unim-
portant since there are no ions in the electrode. To avoid
unwanted dielectric boundaries at x ¼ H0 and x¼H, we
assume that the dielectric coefficient is �1 for x < H0 and
�3 for x>H. The metal surface is assumed to be located
at x¼ 0. Periodic boundary conditions are applied in
the lateral ( y, z) directions. The width of the cell in
lateral directions is given by L. The values of L and
H vary with the ion concentration and are greater the
lower the concentration.
An important aspect of the simulation is

the discretization of the surface charge, namely, the
construction of the grid on the surface. For the
simulation cell used in this work, the grid is rectangular
due to the periodic boundary conditions in the y and
z directions. The width of the surface element square

is �x ¼ d because we have shown that this grid resolu-
tion yields satisfactory results if the ions move in the
region of higher dielectric coefficient [12].

Equation (3) is general in the sense that the method
can be applied to curved surfaces or to dielectric bound-
aries that are in close proximity, but we must evaluate
the matrix with much more care. This matrix formula-
tion has been used in quantum mechanical solvation
programs based on apparent surface charges [14] first
introduced by Hoshi et al. [15], although our deriva-
tion and resulting formulas are more general. After this
work was completed, it was found that Green and Lu
have performed MC simulations to study polarization
effects using this matrix equation to study polarization
effects in biological ion channels [16–18].

In our simulations we have used an NVT ensemble.
The L�H dimensions of our cell are 20d� 184d,
21:7d� 26d, and 15d� 21d for concentrations 0.05,
0.5 and 2M, respectively. The number of ions are
120, 200 and 300 for these concentrations. We averaged
over 115 000–500 000 MC cycles depending on concen-
tration. No long range corrections were used in this
work because in [12] we have shown that for uncharged
surfaces and for the range of parameters that we
consider here, the cell dimensions that we have used
are large enough.

4. Simulation results

We report results for an uncharged electrode for four
different models, with different values for the dielectric
coefficient in the three regions. We adopt the nota-
tion �1j�2j�3 to describe a particular model. The simplest
is Model 80j80j80, the model that underlies the
GC theory, where the dielectric medium is homo-
geneous. The second is Model 1j80j80, where the
electrode is a metal but the inner layer has the same
dielectric coefficient as the diffuse layer, and the third
model is Model 1j6j80, where the inner and diffuse
layer dielectric coefficients differ. Finally, we consider
briefly the Model 6j6j80.

Results for 1:1 electrolytes are reported in figures 3–5
for the cases where the bulk concentrations are
cð1Þ ¼ 0:05, 0.5 and 2M, respectively. Since the
electrode is uncharged, the anion and cation profiles
are identical. Hence, we plot only the average concen-
tration profile normalized to one, cðxÞ=cð1Þ ¼
½cþðxÞ þ c�ðxÞ�=½2cð1Þ�, in these figures. For all three
concentrations, the GC profile would be cðxÞ ¼ cð1Þ,
i.e. a straight line, whose value is unity, in each of the
figures. The results for Model 80j80j80 (no dielec-
tric boundaries) show the consequences of ion size,
a parameter missing in the GC theory. For Model
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80j80j80, the contact value of c(x) is proportional to
the bulk pressure, p, through the exact contact value
theorem [19],

�ð3d=2ÞkBT ¼ p, ð8Þ

where �(x) is the total number density profile of the ions
at x, which is proportional to c(x), and p is the pressure
of the bulk electrolyte. The physical content of
equation (8) is that, for Model 80j80j80, the momentum

transfer at the distance of closest approach is equal to
the bulk pressure. We know of no exact analogues of
equation (8) for Models 1j80j80, 1j6j80 and 6j6j80.
Equation (6) is satisfied by the GC theory. However,
in the GC theory the ions are points and the ideal gas
result for the pressure applies. Thus, in the GC theory,
p ¼ �ð1ÞkBT and �ðxÞ ¼ �ð1Þ. In reality, the pressure
includes not only the direct effect of the excluded
volume of the ions, a positive contribution, but also
the effect of the Coulombic interactions among the
ions, a negative contribution, with the result that, for
the conditions considered here, the pressure of the elec-
trolyte is less than the ideal gas pressure. Hence, the
concentration profile for Model 80j80j80 decreases as
x approaches contact at 3d=2. That is, �ð3d=2Þ ¼ p=kBT,
but p=kBT < �ð1Þ. Hence, even before dielectric bound-
aries are taken into consideration, the GC profiles are
somewhat too large near contact. In figure 5, where the
concentration is high (2M), the profile goes through
a minimum near contact, indicating that the hard core
effect is becoming more important for 2M and is
counteracting at short range the longer range coulombic
term; volume exclusion makes the ions crowd near the
surface, while the attraction between ions in the diffuse
layer draws ions away from the electrode.

Next, the effect of the metallic nature of the electrode
is considered in Model 1j80j80. Intuitively one might
think that, since 80 is very large for a dielectric coeffi-
cient, there would be little difference between
Models 80j80j80 and 1j80j80. However, as is seen in
figures 3–5, each ion induces a charge of the opposite
sign on the surface of the electrode. Consequently, the
ions are attracted to the electrode. This attraction is

2 43 5 6
x / d

0.6

0.9

1.2

c(
x)

 / 
c(

∞
)

80 | 80 | 80
∞  | 80 | 80
∞  |  6  | 80
80 | 80 | 80
∞  | 80 | 80
∞  |  6  | 80

1:1, c0=0.05M 

Figure 3. Density profiles of a 0.05M 1:1 electrolyte near
an uncharged electrode. The symbols and the curves corre-
spond to Monte Carlo and theoretical results, respectively, for
the various models as indicated in the figure, while the plus
signs are theoretical results for the 6j6j80 model. The
theoretical curves have been calculated from equation (22).
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Figure 5. Density profiles of a 2M 1:1 electrolyte near an
uncharged electrode. The symbols and curves have the same
meaning as in figure 3.
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Figure 4. Density profiles of a 0.5M 1:1 electrolyte near an
uncharged electrode. The symbols and curves have the same
meaning as in figure 3.
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strong enough to overcome the decrease in c(x) due to
the Coulomb forces between the ions, and cð3d=2Þ >
cð1Þ for Model 1j80j80.
Next we consider Model 1j6j80 in figures 3–5.

For this model, there is a repulsive force due to the
induced charge on the dielectric interface at �. This is
stronger than any attractive force due to the induced
charge at the electrode and therefore cð3d=2Þ is strongly
reduced.
Results for a 2:2 electrolyte at a bulk concentration

of 0.5M are shown in figure 6. The reduction in c(x) is
even more pronounced than that in figure 4; even the
1j80j80 curve shows drying at the interface. The
Coulomb forces among the ions are stronger, as are
the attractive forces due to the induced charge which are
proportional to z2i .
Finally, results for a 2:1 electrolyte for a bulk

concentration of 0.5M are reported in figure 7. Since
the charges of the ions are not symmetric, the concen-
tration profiles of the anions and cations differ. In
figure 7, the profile for each ionic species is normalized
by its own bulk value cið1Þ. Figure 7 shows that the
monovalent ions approach the electrode somewhat
more closely than the divalents. There is also a slight
maximum in the divalent ion profile, but this is a
small effect. We have verified that the area of the
difference in the monovalent and divalent profiles is
zero to within the accuracy of our simulation. Thus,
there is no net charge on the electrode (apart from
polarization charges) or within the ion profiles.
However, the asymmetry of the profiles means that, as
is seen in the inset of figure 7, there is a non-zero

electrostatic potential even though the electrode is
uncharged. We defer further discussion of the potential
to a later paper where we will examine the charge–
potential characteristics for both charged and uncharged
electrodes.

5. Electrostatics of the r1jr2jr3 model

We have already noted that for Model 1j6j80 the
repulsive effect of the induced charge at the 6j80
dielectric interface at x ¼ � ¼ d exceeds the attractive
effect of the induced charge at the1j6 interface at x¼ 0.
We have made some simulations for Model 6j6j80
for a 1:1 electrolyte whose concentration is 0.5M and
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Figure 7. Normalized density profiles of a 0.5M 2:1
electrolyte near an uncharged electrode. The three insets
show results for the three different geometries (80j80j80,
1j80j80 and1j6j80). The symbols and the curves correspond
to Monte Carlo and theoretical results, respectively, for
the two ionic species as indicated in the figure. The theoretical
cation and anion profiles are identical for the 80j80j80 model.
The profiles for the 1j6j80 and 6j6j80 models are indis-
tinguishable. The inset shows the MC potential profiles; the
dotted, dashed and solid lines denote 80j80j80, 1j80j80 and
1j6j80 results, respectively.
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Figure 6. Density profiles of a 0.5M 2:2 electrolyte near an
uncharged electrode. The symbols and curves have the same
meaning as in figure 3.
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for a 2:1 electrolyte whose concentration is 0.5M.
In both cases, their results are virtually identical to those
of Model 1j6j80. For this reason, we have not plotted
the MC results for the 6j6j80 geometry in figures 4 and 7.
This does not mean that there is no value in simulations
with multiple dielectric interfaces. Indeed, since the
above result is not intuitively obvious, this observation
illustrates the value of our method. There is no reason to
expect that the 1j6j80 and the 6j6j80 models would be
equivalent for all concentrations, all ion diameters, and
all electrode charges.
In order to gain more insight into this result, we give

below the solution of Poisson’s equation for a single
charge in region 3 of the �1j�2j�3 model and obtain
a generalization of the well known ‘image’ result for
a single dielectric boundary. Smythe [20] presents an
elegant method for solving Poisson’s equation for this
problem and gives results for the potential in region 1
for a 1j�j1 model. Adapting Smythe’s method to our
problem, we find that, in Fourier Bessel (k) space, the
response potential in region 3 for the �1j�2j�3 model
with the �1j�2 and �2j�3 boundaries located at x¼ 0 and
x ¼ �, respectively, and a unit charge located in region 3
at x0 > � is given by

FðkÞ ¼
�3 � �2
�3 þ �2

�
4�2�3
�23 � �

2
2

1

1� � exp ½�kð2�Þ�
� 1

� �� �

� exp ½�kðx0 � 2�Þ�, ð9Þ

where

� ¼
ð�1 � �2Þð�3 � �2Þ

ð�1 þ �2Þð�3 þ �2Þ
: ð10Þ

If �1 ¼ �2, �¼ 0 and the second term on the right of
equation (9) vanishes, giving the usual ‘image’ result
for a �2j�3 discontinuity at x ¼ �. If �2 ¼ �3, the first term
on the right of equation (9) vanishes. Superficially, one
might think that the zero in the denominator of the
coefficient of the second term on the right of equation (9)
is a concern. However, if the fraction in the second term
is expanded as a power series in �, all the terms, except
the term in �, vanish and �ð�23 � �

2
2Þ
�1 is finite in the limit

�2! �3. Consequently, the usual ‘image’ result for
a �1j�2 discontinuity at x¼ 0 is obtained. Also the cor-
rect limits are obtained in the limits of large and small �.
For � large, the second term on the right of equation (9)
vanishes. For �¼ 0, the term in the square brackets
is �=ð1� �Þ. The sum of the first and second terms on
the right of equation (9) gives the correct result.
After the completion of this work we found that

a result equivalent to equation (9) has been given
by Carnie and Chan (C2) [21] in the context of a slab
surrounded by an electrolyte. Also, it has been pointed

out to us that Bell and Levine (BL) [22] have examined
a three slab model consisting of an electrolyte, an
inner layer and an electrode, which is similar to the one
considered here and we expect that equation (9) is
implicit in their work.

The potential in x space can be obtained by
integrating this result. However, it is more convenient
to expand the denominator as a power series in � and
then invert analytically. The result for a unit charge
at x0 > � and y0 ¼ z0¼0 is

�3ðx,y, zÞ ¼
1

r
þ

�3 � �2
�3 þ �2

� �
1

½y2 þ z2 þ ðx0 � 2�þ xÞ2�1=2

�
4�2�3
�23 � �

2
2

X1
n¼1

�n

½y2 þ z2 þ ðx0 � 2�þ 2n�þ xÞ2�1=2
,

ð11Þ

where r ¼ ½ðx� x0Þ
2
þ y2 þ z2�1=2.

So why are the Model 6j6j80 and Model 1j6j80
results so similar for �¼ 3 Å? Stated another way, why
does a 3 Å dielectric slab behave as if it were infinitely
thick? This is not an intuitive result. If we examine
the terms in equation (11) numerically, we find that if �,
the thickness of the �2 region, is exceedingly small
or exceedingly large, the expected results are obtained.
However, if we start with � large and then allow �
to decrease, the contribution of the third term increases
in magnitude and for �¼ 3 Å becomes comparable
in magnitude to the second term, but is nearly inde-
pendent of x. Thus, the 6j6j80 and 1j6j80 results are
similar not because the third term in equation (11) is
small, but because its derivative is small; it is differences
in energy rather than absolute values of energy that
are significant. As � is decreased further, the second term
becomes small (and flatter) and the derivative, as well
as the magnitude, of the third term becomes appreciable.

Bell and Levine have also noted that the effect of an
inner layer with a low dielectric coefficient is to reduce
the metallic behaviour of the electrode.

6. Simple expression and results

We can use the result of the previous section to develop
a simple expression for the concentration profiles of our
system. First, let us consider a �3j�3j�3 model. We know
that for such a model at contact

X
i

cið3d=2Þ=cið1Þ ¼
X
i

�ið3d=2Þ=� ¼ p=�kBT, ð12Þ

where �iðxÞ is the density profile of the ions of species i,
� ¼

P
i �i and �i ¼ �ið1Þ. Equation (12) is useful only if

the pressure p is known. Fortunately, the mean spherical
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approximation (MSA) yields an expression for p
that is accurate for all but the largest values of q�.
This result is

p

�kBT
¼ a ¼ a0 �

G3

3p�
, ð13Þ

where

a0 ¼
1þ �þ �2 � �3

ð1� �Þ3
, ð14Þ

� ¼ p�d3=6,

G ¼
1

2d
ð1þ 2�dÞ1=2 � 1
� �

ð15Þ

and

�2 ¼
4p�e2

�

X
i

z2i �i: ð16Þ

� is the usual Debye–Hückel parameter and � ¼ 1=kBT.
Recall that � ¼ �3 is the dielectric coefficient
of the region (region 3) that contains the ions. Note
that a is the difference between a repulsive uncharged
hard-sphere term, a0, and an attractive electrostatic
term. Whether a is positive or negative depends on
the relative magnitudes of these two terms. In a theory
that is more general than the MSA, it is likely that these
two contributions to a would not be decoupled.
Although approximate, equation (13) is satisfactory
for our purposes.
This gives us a useful expression for the contact value.

However, we still need the x dependence of the
concentration profiles. Here again, the MSA provides
some guidance. In the MSA,

ciðxÞ

cið1Þ
¼

g0ðx� 3d=2Þ, for x > 3d=2,

0, for x < 3d=2,

�
ð17Þ

where g0ðtÞ is a function that Smith and Henderson [23]
have given explicitly for t < 6d. Note that the above
MSA result is defective in at least two regards. First,
it is independent of the ion species and charge. Thus,
at best g0ð0Þ can only be an approximation to a0.
Second, even for this charge-independent part of p, the
MSA is inexact. Instead of a0, the MSA contact value
is ð1þ 2�Þ=ð1� �Þ2, which is the MSA value for the
compressiblity, �@p=@�, for uncharged hard spheres. This
agrees with a0 only for small �. Even so, we can use this
MSA result to construct an expression for x dependence
of the charge-independent part of the concentration
profile. It is plausible that the x dependence of the

second term is given by the usual PB expression,
exp ð��xÞ. Thus, we obtain for a �3j�3j�3 model,

ciðxÞ

cð1Þ
¼

c0ðxÞ

c0ð1Þ
¼ 1þ ða0 � 1Þ

ð1� �Þ2

1þ 2�
g0ðx� 3d=2Þ � 1½ �

�
G3

3p�
exp½��ðx� 3d=2Þ� , ð18Þ

and, as in equation (17), ciðxÞ ¼ 0 for x < 3d=2. That is,
we have divided g0ðx� 3d=2Þ � 1 by its (incorrect) MSA
contact value and then multiplied by its correct
(or at least more correct) hard sphere contact value.
We use g0ðx� 3d=2Þ � 1 rather than g0ðx� 3d=2Þ so
that the right-hand side of equation (18) equals 1 at
large x. Note that equation (18) assumes that ciðxÞ
is independent of species if the electrode is uncharged
and if there are no dielectric boundaries. This seems
correct for symmetric salts, but, as is seen in figure 7, is
not correct for asymmetric salts, even if they all have
the same diameter. To obtain the species dependence
would require a contact value theorem for each species.
This we do not have. Equation (12) is a theorem for
the sum of contact values. To the extent that within
a �3j�3j�3 model ciðxÞ is independent of species,
equation (18) satisfies equations (12) and (13).

This result is compared with some of our simulation
results for an uncharged electrode with no dielectric
boundaries in figures 3–7. The results are quite reason-
able for figures 3–6 where z1 ¼ �z2 but fails to give
the species dependence seen in figure 7. Equation (18)
has captured the essence of the simulation results for
symmetric salts at an uncharged electrode with no
dielectric boundaries.

We now turn our attention to the effect of dielec-
tric boundaries. Onsager and Samara (OS) [11] have
described a simple theory for the concentration profiles
of a �1j�2 dielectric boundary x¼ 0 (with the charges
confined to region 1). Their result, a screened self-image
expression, is

ln
ciðxÞ

cið1Þ

� �
¼ �

�z2i e
2

4�1x

�1 � �2
�1 þ �2

� �
exp ½�2�x�: ð19Þ

Subsequent to the work of OS, this result has been
obtained by BL, Nicholls and Pratt (NP) [24],
Outhwaite [25] and C2. The method of C2 is best
known to us and probably the most general. The work
of C2 together with the comment of Henderson
and Plischke [26] shows that the OS result follows
from a fully self-consistent solution of a second-order
inhomogeneous linearized PB equation (in k space) for
a flat uncharged electrode.
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The results of NP and C2 were obtained in k space
and involve the function

���ðkÞ ¼
�2p� �1k

�2pþ �1k
, ð20Þ

where p ¼ ð�2 þ k2Þ1=2. Equation (19) results from
integration of the k space result of NP and C2 only
if ���ðkÞ is independent of k. This raises the question
of whether we should base our expression on the
original OS x space result or the NP and C2 k space
result. Reference to figure 2 of C2 shows that the effect
of the k dependence of ���ðkÞ is to account in part for
the electrostatic contribution to the contact value that
is missing in the OS theory. Indeed, if the k dependence
of ���ðkÞ is taken into account then, in the absence of
a dielectric boundary, the contact value would be

ln
cið3d=2Þ

cið1Þ

� �
¼ �

1

6

�z2i e
2

�3d

� �
�d, ð21Þ

which is just the low concentration version of
equation (13). That is, we can obtain the low concentra-
tion version of the �3j�3j�3 model contact value either by
integrating ���ðkÞ or from equation (13). We prefer
equation (13) because it is not limited to low concentra-
tions, it is easier to use, and the generalization to the
�1j�2j�3 model is more straightforward.
Our result for the �1j�2j�3 model is an obvious

extension of the OS result and is

ln
ciðxÞ

cið1Þ

� �
¼ ln

c0ðxÞ

c0ð1Þ

� �
�

�z2i e
2

4�3ðx� �Þ

�3 � �2
�3 þ �2

� �

� exp ½�2�ðx� �Þ� þ �z2i e
2 �2
�23 � �

2
2

� �

�
X1
n¼1

�n

x� �þ n�
exp ½�2�ðx� �þ n�Þ�

ð22Þ

for x > 3d=2 and ciðxÞ ¼ 0 otherwise. Equation (22)
reduces to the OS result if �1 ¼ �2 or �2 ¼ �3, if c0ðxÞ ¼ 1,
and if � is small or large. When using equation (22),
we summed 100 terms in the series. In most cases,
a smaller number of terms is sufficient.
Some results of equation (22) are shown in figures 3–6

for Models1j80j80,1j6j80 and 6j6j80. The agreement
with the simulation results is fairly reasonable for 1:1
salts at 0.05M, but less so for 0.5 and 2M, and when
divalent ions are present. A small difference between
Model 1j6j80 and Model 6j6j80 is noticeable at
0.05M, but there is no appreciable difference at higher
concentrations. In both the simulations and theory
the difference between Model 1j80j80 and 80j80j80

decreases as the concentration increases. However,
equation (22) exaggerates this tendency. Generally
speaking, the profiles that result from equation (22)
decay too rapidly. At high concentrations, the simula-
tion profiles show oscillations. It is tempting to replace
the PB exponentials, exp ð��tÞ by the MSA function,
f(t). The MSA function tends to the PB exponential
at low concentrations and small z2i q

�2, but can exhibit
oscillations at larger values of these quantities because
of the presence of spherical Bessel functions. However,
these oscillations are weaker than those seen in the
simulations so we have not pursued this.

Results for the unsymmetric 2:1 case are plotted in
figure 7. Even for the 80j80j80j model, the simulation
results show a different profile for the monovalent and
divalent salts which is not predicted by equation (22).
However, equation (22) seems to describe qualitatively
the effect of the dielectric boundaries even in the 2:1
case. We note that the simulation profiles show oscilla-
tions that are lacking in equation (22). Curiously, in
the 1j80j80 geometry, the MC monovalent profile
is larger than the MC divalent profile near contact
whereas the theoretical results show the opposite
behaviour.

7. Conclusions

In the simulations reported here, there is no source
charge on the electrode. On average, there is no induced
charge on the dielectric interfaces for the 1:1 and
2:2 cases. Nonetheless, the concentration profiles of
the ions are affected by the induced charges. Although
on average there is no induced charge, there is a non-
uniform net charge on the dielectric interfaces at
every instant of the simulation. It is this instantaneous
induced charge that is the cause of the behaviour of
the profiles. Although the induced charges are instan-
taneously non-uniform, the average induced charge is
uniform (and zero) and the ion profiles are functions
only of x.

As far as the 2:1 case is concerned, the dipole layer
seen in figure 7 results in a net average polarization
charge on the dielectric boundaries. The monovalent
ions that are closer to the interface on average induce
a higher (in magnitude) polarization charge on average
than the divalent ions.

We have already noted that for Model 1j6j80 the
repulsive effect of the induced charge at the 6j80
dielectric interface at x ¼ � exceeds the attractive effect
of the induced charge at the 1j6 interface at x¼ 0.
However, the 1j6j80 and 6j6j80 models can only be
equivalent if � is large in some sense. We have examined
Poisson’s equation for a single charge at a more general
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two dielectric boundary problem in order to understand
this question. We note that there is nothing in nature
that requires dielectric interfaces to be far apart. In fact,
the reverse is true. We expect that in the inner layer the
dielectric coefficient decreases continuously from 80 to
a small value, perhaps even unity, with something like
6 being only the average value. This could be modelled
by a series of closely spaced dielectric interfaces.
Our simulations do not support the popular idea that a

theory or simulation of the diffuse layer can be combined
with a treatment of the inner layer and/or the electrode
that involves dielectric boundaries unless one takes into
account the fact that the diffuse layer profiles are affected
by the induced charge at these boundaries.
Although the simulations that we report were

made using the method of Boda et al., equation (11)
may permit faster simulations for planar boundaries than
can be made using the Boda et al. method, this does not
detract from the usefulness of the Boda et al. method
as this method can be used with arbitrary (fixed)
boundaries.
If the use of the GC theory, with or without

a dielectric interface, is suspect, what should one do?
A simple analytic result is an undeniable convenience,
and, for the moment, computer simulation does not
seem useful for routine analysis of experiment. As
computer power continues to increase and computer
cost continues to decrease, however, in the future this
will become less and less of a consideration. Most
theories are not able to take the induced charge at
a dielectric interface into account. Exceptions are the
pair integral equation of Plischke and Henderson [27]
and Kjellander and Marcelja [28] that can be adapted
to account for induced charge at dielectric boundaries,
but are computationally intensive. The methods of
Croxton et al. [29], based on the BBGY hierarchy,
and the cluster-perturbation theory of Vertenstein and
Ronis [30] are worth pursuing. The modified Poisson–
Boltzmann (MPB) theory [31], which is based on the
work of BL, is a comparatively simple theory that can
account for induced charge at a single planar dielectric
interface. The authors do not know whether the
MPB theory can be adapted to a general inhomoge-
neous dielectric interface, but suspect that it can if
equation (11) and its generalizations are used. If this can
be done, the MPB approach is worth pursuing. Also,
Fawcett and Henderson [32] have had good success
with modifying the GC theory semi-empirically in light
of simulations. Perhaps this approach can be extended
to include induced charge. Tests of any theory must
consider 2:1 electrolytes because the charge reversal
observed there offers the greatest challenge. This
phenomena is not described even qualitatively by the
OS theory.

In summary, we believe that it is important to
include the dielectric interfaces both at the inner–diffuse
layer boundary and at the electrode. Multiple dielectric
interfaces may be even more important. Obviously,
there is much to be done.
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