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We present two efficient iterative Monte Carlo algorithms in the grand canonical ensemble with
which the chemical potentials corresponding to prescribed �targeted� partial densities can be
determined. The first algorithm works by always using the targeted densities in the kT log��i� �ideal
gas� terms and updating the excess chemical potentials from the previous iteration. The second
algorithm extrapolates the chemical potentials in the next iteration from the results of the previous
iteration using a first order series expansion of the densities. The coefficients of the series, the
derivatives of the densities with respect to the chemical potentials, are obtained from the simulations
by fluctuation formulas. The convergence of this procedure is shown for the examples of a
homogeneous Lennard-Jones mixture and a NaCl–CaCl2 electrolyte mixture in the primitive model.
The methods are quite robust under the conditions investigated. The first algorithm is less sensitive
to initial conditions. © 2008 American Institute of Physics. �DOI: 10.1063/1.2839302�

I. INTRODUCTION

In the grand canonical �GC� ensemble the chemical po-
tentials of the various species ��i� are fixed, while the num-
ber of particles of these species �Ni� fluctuate around their
average value �Ni�, as determined by the chemical potentials,
the temperature �T�, and system size �fixed by volume V�.
Monte Carlo �MC� simulations realize statistical sampling in
the GC ensemble by random insertion/deletion steps.1,2

GCMC simulations have advantages in many applications.
For example, in the GC ensemble it is straightforward to
calculate entropic quantities such as free energy. Also, in the
simulations of mixtures where a species is present in low
quantity �e.g., physiological Ca2+ concentrations of
10−6–10−3 mol�, the use of GC ensemble is crucial.3

In mixtures, the densities of the various species ��i

=Ni /V� are called partial densities in physical chemistry,
while various definitions of concentrations are used in solu-
tion chemistry. These densities are outputs of the GCMC
simulations. In many applications, however, the purpose is to
perform simulations for prescribed �or targeted� densities
��i

targ� in the GC ensemble. For this purpose, one should
know the chemical potentials that correspond to the targeted
densities in advance. Finding these chemical potentials re-
quires some additional work.

A straightforward solution from a thermodynamic point
of view is to perform several simulations—in any
ensemble—and to calculate the missing thermodynamic
quantities from standard thermodynamic relations such as the
Gibbs-Helmholtz equation.4 This procedure, nevertheless,
can be too cumbersome and time consuming—especially for
mixtures. In the canonical and other �for example, in the

isothermal-isobaric� ensembles one can apply Widom’s test
particle method to calculate the chemical potentials.5 Shing
and Gubbins extended this method applying both particle
insertions and particle deletions, arriving at a more accurate
estimate of the chemical potential.6 Their method is a special
case of the overlapping distribution method of Bennett7 to
compute free energy differences.

If one wants to use the ensemble where particle
insertions/deletions and so particle number fluctuations natu-
rally occur, the GC ensemble should be used. In the GC
ensemble, the trivial procedure is to perform multiple simu-
lations and obtain chemical potentials by interpolation—also
a cumbersome process in the case of mixtures.8 Recently,
Lamperski9 proposed an elegant method to compute the ac-
tivity coefficients in electrolytes of fixed concentrations us-
ing the GC ensemble. The method is called the inverse
GCMC �IGCMC� method and it is based on adjusting the
chemical potentials after blocks of the simulations on the
basis of the densities obtained from the blocks. Thus, both
the chemical potentials and the particle numbers are fluctu-
ating quantities in the GCMC simulations, but they fluctuate
around the desired values.

In this paper we propose two simple iterative GCMC
algorithms that are easy to program, converge fast, and are
robust under many conditions. The first method changes the
value of the excess chemical potential in the iterations, while
the second method extrapolates the chemical potentials using
thermodynamic derivatives calculated from fluctuation for-
mulas. The methods are introduced on the examples of two
typical systems: �1� for a binary mixture of Lennard-Jones
�LJ� particles at a high density above the critical temperature
and �2� for a NaCl–CaCl2 mixture described by the primitive
model electrolytes. The methods are examined from the
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points of view of their sensitivity to starting conditions and
how fast do they converge to the targeted state.

No long range corrections were used in either cases. The
systems with cut-off potentials are just as well defined sys-
tems as those computed with long range contributions.
Therefore, they can be used to test the efficiency of the pro-
posed algorithms. Of course, the relationship between the
densities and the chemical potentials given by the algorithms
will be that of the system with cut-off potentials, but they are
well-defined nevertheless. We have performed a system-size
check and found that the width of the simulation cell, and
thus long range corrections, have small effect on the chemi-
cal potential-density relations.

II. ITERATING THE EXCESS CHEMICAL POTENTIAL

A. Method

The total chemical potential can be written as

�i
tot = kT log��i

3� + �i, �1�

where �i=h / �2�mikT�1/2 is the de Broglie wavelength, h is
the Planck constant, mi is the particle mass for species i, and
k is the Boltzmann constant. The term �i �without super-
script� is the one used in MC simulations that sample only
the configurational space; the kT log��i

3� term drops out
from the acceptance probability criterions of the insertion/
deletion steps because it does not depend on the configura-
tional coordinates. The quantity �i is sometimes called the
configurational chemical potential and can be decomposed as

�i = kT log��i� + �i
ex, �2�

where �i
ex is the excess chemical potential. The term residual

chemical potential is also used for this excess term. The
value of �i depends on the unit of length in the calculations
�through the density, so it would be more appropriate to write
the logarithmic term as log��i /�0�, where �0 is some fixed
density unit�.

The variables that are changing in our iteration process
are the excess chemical potentials �i

ex, while in the logarith-
mic �ideal gas� term we always use the targeted densities
�i

targ. The steps of the nth iteration are as follows:

�1� Calculate �i�n�=kT log��i
targ�+�i

ex�n� using the tar-
geted densities of the individual components in the
ideal gas term �the integer n in parentheses is the index
of the iteration�.

• In the first iteration, we start with some reasonable
guess for the values of �i

ex�1� �sometimes even the
ideal gas value �i

ex�1�=0 is good enough�.

• In subsequent iterations, the values calculated from
the previous iteration are used: �i

ex�n�=�i
ex�n−1� if

n�1.

�2� Perform a GCMC simulation �an iteration� using these
chemical potentials. The results of this simulation are
the average densities �i�n� and the average excess
chemical potentials are obtained as �i

ex�n�=�i�n�
−kT log��i�n��.

�3� Use these output excess chemical potentials of the it-
eration as the input chemical potentials of the next it-
eration, �i

ex�n+1�=�i
ex�n�, and jump to step 1.

The advantage of this procedure is that an existing
GCMC code can be used as the core of the algorithm, and
the iteration as an outer loop is easily programmable.

B. Results for a Lennard-Jones mixture

The LJ potential is given by

�LJ�rij� = 4�ij���ij

rij
�12

− ��ij

rij
�6� , �3�

where the i, j subscripts refer to species and rij is the dis-
tance of two molecules of species i and j. We have simulated
a binary LJ mixture with the potential and distance param-
eters �12=0.7071�11, �22=0.5�11, �12=0.75�11, and �22

=0.5�11. We used the reduced temperature kT /�11=1.5 that
is above the critical temperature of the pure LJ fluid. A cubic
simulation cell was used with a periodic boundary condition
applying the minimum image convention. If we use the size
parameter of species 1 ��11� as the distance unit �reduced
units�, the targeted densities in our example are �1

targ�11
3

=�2
targ�11

3 =0.4. The average number of particles in the simu-
lation was about 400 �200 for each species�.

First, we started the iteration process with the ideal gas
values for the excess chemical potentials: �1

ex�1� /kT
=�2

ex�1� /kT=0. The iteration finds the correct values rela-
tively quickly and after five to six iterations it only refines
the answer �Fig. 1, open circles�. We find that relatively short
simulations are able to drive the system very close to the
targeted values. Long simulations per iteration are necessary
if one wants to obtain accurate values at the end of the itera-
tion process. Thus, it is a good idea to increase the length of
the simulations gradually during the iteration process. In

FIG. 1. Convergence of partial densities and excess chemical potentials for
a LJ-mixture. Open circles with solid lines refer to the case when we start
from the ideal gas condition ��1

ex�1� /kT=�2
ex�1� /kT=0�, while full squares

with dashed lines refer to the case when we start from the excess chemical
potentials �1

ex�1� /kT=−1 and �2
ex�1� /kT=0.
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these calculations, we started the iteration process with 100
MC cycles and finished with 5000 MC cycles in the tenth
iteration. In an MC cycle 6000 attempts were made to per-
form an MC move. 60% of the MC moves was particle
insertion/deletion, while in the remaining 40% of the usual
particle displacements were performed. Insertion/deletion
and displacement of the larger particle were attempted more
frequently because the acceptance ratio for this species was
smaller. We intentionally ran short simulations to test the
efficiency of the iteration process. We found that relatively
short simulations are sufficient, but this depends �1� on the
system under consideration and �2� on the needs of the simu-
lator for the accuracy of the final result. Thus, these details
will have to be sorted out by the user of the method, so we
do not discuss the lengths of the iterations in this paper any
further.

The process is not very sensitive to the guess for the
intial values of the excess chemical potentials. For example,
we started an iteration with �1

ex�1� /kT=−1 and �2
ex�1� /kT

=0 �Fig. 1, solid squares�. The convergence is faster because
this guess is closer to the final results �1

ex�1� /kT=−1.25 and
�2

ex�1� /kT=−0.16. Because the first iterations are relatively
short, this does not influence the length of the whole iteration
process considerably. It is the refinement of the final answer
which is more time consuming.

Finding a good initial guess is more important when the
temperature is lower than the critical temperature. In this
case, the system tends to fluctuate between the vapor and
liquid phases because an iteration might get into the meta-
stable region. This means that the algorithm is not as robust
in the liquid phase under the critical temperature �in the va-
por phase, it is more robust because the excess term is small
compared to the ideal term�. Here, the user should use the
algorithm with extra care, just as the GCMC simulation
method in general should be used with extra care in this
regime. In this regime, the particle insertion method5 applied
in the canonical ensemble is more advantageous because the
system is not allowed to change phase at fixed densities.
Phase separation can occur, nevertheless, inside the simula-
tion cell if we perform the simulation in the two-phase re-
gime.

C. Results for a primitive electrolyte mixture

Electrolytes are conventionally simulated in the GC en-
semble by inserting/deleting neutral groups of ions,15 usually
	+ cations and 	− anions �where 	+ and 	− are the stoichio-
metric coefficients�. In this case, instead of the chemical po-
tentials of the individual ions, the chemical potentials of the
salts are used in the GCMC simulations. In the example
shown here, we simulate a mixture of NaCl and CaCl2. The
chemical potentials of the salts are

�NaCl = �Na + �Cl = log��Na�Cl� + �NaCl
ex , �4�

�CaCl2
= �Ca + 2�Cl = log��Ca�Cl

2 � + �CaCl2
ex , �5�

where the salt excess chemical potentials are

�NaCl
ex = �Na

ex + �Cl
ex, �6�

�CaCl2
ex = �Ca

ex + 2�Cl
ex. �7�

The formalism can be readily extended to mixtures of any
salts.

The ions are modeled as charged hard spheres immersed
in a continuum dielectric �
=80� at temperature T=300 K
and so have an interaction potential �in Gauss units� of

��rij� =
zizje

2


rij
, �8�

for rij �Ri+Rj and infinite otherwise because the overlap of
spheres is forbidden. In this equation, zi and Ri are the va-
lence and radius of ionic species i. In our example, Pauling
radii are used for the radii of the ions: 0.95, 0.99, and 1.81 Å
for Na+, Ca2+, and Cl−, respectively. The targeted salt con-
centrations are �NaCl=0.1 mol and �CaCl2

=0.01 mol. Our sys-
tem size corresponds to targeted ion numbers of 200, 20, and
240 for Na+, Ca2+, and Cl−, respectively. The processes were
started with 200 MC cycles with increasing lengths in later
iterations.

We show iteration results for three initial guesses: �a�
starting with the ideal gas conditions in the first iteration
with �NaCl

ex �1� /kT=�CaCl2
ex /kT=0 �Fig. 2, open circles�, �b�

starting with the guess �NaCl
ex �1� /kT=0 and �CaCl2

ex /kT=−1 in
the first iteration �Fig. 2, gray triangles�, and �c� starting with
excess chemical potential values provided by the mean
spherical approximation �MSA� in the first iteration with
�NaCl

ex �1� /kT=−0.603 and �CaCl2
ex �1� /kT=−1.861 �Fig. 2, full

squares�.
The situation is very similar to that observed in the case

of the LJ mixture. Both the densities and the excess chemical
potentials converge to the final values quite fast. The process
converges faster if we start the iteration from something that

FIG. 2. Convergence of salt concentrations and excess chemical potentials
for a NaCl–CaCl2 electrolyte mixture. Open circles with solid lines refer to
the case when we start from the ideal gas condition ��NaCl

ex �1� /kT
=�CaCl2

ex /kT=0�; gray triangles with dotted lines refer to the case when we
start from the condition ��NaCl

ex �1� /kT=0 and �CaCl2
ex �1� /kT=1�, while full

squares with dashed lines refer to the case when we start from the MSA
results ��NaCl

ex �1� /kT=−0.504 and �CaCl2
ex �1� /kT=−1.543�.
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is closer to the final solution. The final excess chemical po-
tentials are �NaCl

ex /kT=−0.613 and �CaCl2
ex /kT=−1.970.

We presented results for the chemical potentials of the
salts �that correspond to the mean activity coefficients� in
this work. The method, nonetheless, can be used to deter-
mine the individual chemical potentials �or the individual
activity coefficients� of the ions. Our simulations gave results
�not shown� for the individual chemical potentials that are
consistent with the results for the salt chemical potentials.
Because the main purpose of this paper is to present the
algorithm, we do not pursue this question here. Computation
of the chemical potentials of the individual ions is far from
being trivial because of the problems with breaking charge
neutrality when we insert an individual ion. Sloth and Sø-
rensen applied the Widom particle insertion method to simu-
late the individual activity coefficients.10–12 Modifications of
the method by a neutralization of the charge of the test-
particle have been proposed to overcome the strong system-
size dependence of the results.13,14 The IGCMC method of
Lamperski9 was shown to be able to reproduce the individual
activity coefficients. Lamperski gives an analysis on the sys-
tem size dependence of the individual and mean activity co-
efficients. We will report our results on this issue in a future
paper.

The algorithm seems to be quite insensitive to the model
studied. It is equally efficient for two very different systems
such as electrolytes and the LJ fluid. Therefore, the effi-
ciency of the algorithm is not affected by taking into account
small energy terms such as the long-range corrections.

III. EXTRAPOLATING THE CHEMICAL POTENTIAL

A. Method

The second method iterates the configurational chemical
potentials instead of the excess ones. It is based on the first
order series expansion of the densities. For a binary mixture,

�1�n + 1� = �1�n� + � ��1

��1
���1�n + 1� − �1�n��

+ � ��1

��2
���2�n + 1� − �2�n�� ,

�9�

�2�n + 1� = �2�n� + � ��2

��1
���1�n + 1� − �1�n��

+ � ��2

��2
���2�n + 1� − �2�n�� .

The derivatives are taken by keeping T, V, and the chemical
potentials of the other species constant. If we prescribe that
the densities in the next iteration should be the targeted den-
sities �substitute �i�n+1�=�i

targ on the left-hand side of Eqs.
�9�� then the chemical potentials in the next iteration �1�n
+1� and �2�n+1� can be calculated from this system of lin-
ear equations �which can be straightforwardly extended to
more than two components�. Every other quantity in these
equations are provided by the simulation of the nth iteration:
the chemical potentials used in this iteration �1�n� and
�2�n�, the partial densities provided by the simulation as

ensemble averages �1�n� and �2�n�, and the thermodynamic
derivatives as fluctuation formulas:

� ��i

�� j
� =

1

kTV
�NiNj − Ni · Nj� . �10�

The fluctuation formulas are more poorly converging quan-
tities in a simulation than the usual ensemble averages. The
convergence of the above algorithm, nevertheless, does not
require very accurate values for them. Even approximately
accurate values of the derivatives drive the iteration closer to
the desired state. Longer simulations, nevertheless, provide
more accurate values for the densities and the fluctuation
formulas, consequently, more accurate results at the end of
the iteration process can be achieved.

B. Results for a Lennard-Jones mixture

We illustrate the method on the example of the LJ mix-
ture used at the previous method. Because we need a rela-
tively accurate value of the derivatives in this technique, we
use the same length of simulations in every iteration. In the
following figures, we plot the configurational chemical po-
tentials because this is the quantity that we change by ex-
trapolation in this technique.

Figure 3 shows the convergence of this method when
starting from two different initial conditions �this figure cor-
responds to Fig. 1 at the previous method�. In these simula-
tions, 2000 MC cycles were used in every iteration. When
we start the iteration from an initial condition with a state
that is relatively close to the final state �1

ex�1� /kT=−1 and
�2

ex�1� /kT=0 �Fig. 3, open squares�, the iteration is much
faster than starting with the ideal gas condition �Fig. 3, full
circles�. In the latter case, the system is wandering about on
the 	�1��1 ,�2� ,�2��1 ,�2�
 surfaces without any sign of con-
vergence. When, nevertheless, it hits a state that is suffi-
ciently close to the final state, it starts to converge fast. Be-

FIG. 3. �Color online� Convergence of partial densities and configurational
chemical potentials for a LJ-mixture using the extrapolation method. Full
circles with solid lines are obtained from the ideal gas starting condition
�1

ex�1� /kT=0 and �2
ex�1� /kT=0, while open squares with dashed lines are

obtained with the starting condition �1
ex�1� /kT=−1 and �2

ex�1� /kT=0.
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cause the �i��1 ,�2� functions are monotonic at the
supercritical temperature used in this study, the method finds
the region of convergence sooner or later. It means that this
extrapolation technique is more sensitive to initial conditions
than the first method �compare Figs. 1 and 3�.

Figure 4 shows a comparison between the convergences
of the two methods. The same starting conditions
��1

ex�1� /kT=−1 and �2
ex�1� /kT=0� were used. The extrapo-

lation method shows a fluctuation behavior in the first itera-
tions, but after that it converges fast. The convergence of the
first method is more stable. Not only the densities and the
chemical potentials converge to the well defined values in
the targeted state but also the thermodynamic derivatives.
Figure 5 shows their convergence.

IV. SUMMARY

Two iterative algorithms have been proposed to deter-
mine the chemical potentials of mixtures with a prescribed

composition. The idea of the first algorithm is that by using
the targeted densities in the log��i� terms and updating the
excess chemical potentials in the iteration process, we auto-
matically drive the system towards the desired conditions.
The process converges fast, needing just a few iterations.
Accuracy can be obtained by running longer simulations in
later iteration steps.

The second method utilizes the capability of MC simu-
lations to calculate the thermodynamic derivatives ��i /�� j as
fluctuation formulas. Then, we can extrapolate the chemical
potential in the �n+1�th iteration using the results of the nth
iteration on the basis of a first order series expansion.

The first process seems to be more insensitive to starting
conditions, at least above the critical point or at low densi-
ties. Establishing the limits of the method at high densities
below the critical point—and where liquid-liquid immiscibil-
ity can occur—requires more careful analysis that will be
published later. In the last months, we have used the first
method extensively to compute the chemical potentials in
various electrolyte mixtures.16–18 Our experiences are very
positive with the method. It works robustly practically for
any composition even for tertiary mixtures.

The second algorithm is more sensitive to starting con-
ditions. It converges fast and steadily once the process is
close to the final value. Therefore, a combination of the two
methods seems worthwhile: Start with the first method to
drive the systemn close to its final state, then refine the an-
swer with the second method and longer simulations.

The iteration is stopped by the potential users when the
accuracy reached a certain limit, which depends on the user’s
needs. A natural choice for the criteria for when to stop the
iteration is that when the difference between the chemical
potentials and/or densities in two consecutive iterations is
smaller than a chosen tolerance.

The usual difficulties characteristic to the GCMC
method at high densities �where particle insertion is prob-
lematic� are inherent in this algorithm. These issues can be
addressed by special sampling techniques �e.g., the cavity
biased sampling19�. Certainly, this algorithm is as good as the
“mother algorithm,” the GCMC simulation technique, so any
advanced sampling trick—that are available for many types
of difficult situations in the literature—will also improve the
efficiency of this algorithm.

The algorithm is presented for the examples of homoge-
neous systems simulated in cubic simulation cells with peri-
odic boundary conditions. The method, nevertheless, is not
restricted to such systems. It can also be used for inhomoge-
neous fluids where a part of the system, far from walls and
other inhomogeneities, forms a homogeneous, bulk sub-
system. Using the densities obtained for this bulk subsystem,
the first algorithm also works as we successfully tested on
our biological ion channels3 �results not shown�. In the case
of the homogeneous system, however, the definition of the
output densites �and thus, of the excess chemical potentials�
is unambiguous as opposed to the inhomogeneous case
where these densities are bound to the choice of the bulk
subsystem.

FIG. 4. �Color online� Convergence of partial densities and configurational
chemical potentials for a LJ-mixture using the starting condition
�1

ex�1� /kT=−1 and �2
ex�1� /kT=0. Full circles with solid lines �black� are

obtained with the method iterating the excess chemical potential, while open
squares with dashed lines �red� are obtained with the extrapolation method.

FIG. 5. �Color online� Convergence of the thermodynamic derivaties used
in Eq. �9� as calculated from fluctuation formulas of Eq. �10�.
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