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ABSTRACT Since the discovery of gating current, electrophysiologists have studied the movement of charged groups within
channel proteins by changing potential and measuring the resulting capacitive current. The relation of atomic-scale movements
of charged groups to the gating current measured in an external circuit, however, is not obvious. We report here that a general
solution to this problem exists in the form of the Ramo-Shockley theorem. For systems with different amounts of atomic detail,
we use the theorem to calculate the gating charge produced by movements of protein charges. Even without calculation or
simulation, the Ramo-Shockley theorem eliminates a class of interpretations of experimental results. The theorem may also be
used at each time step of simulations to compute external current.

INTRODUCTION

Since Schneider and Chandler (1973), the internal move-

ments of channel proteins have been estimated by measuring

gating current (reviewed by Armstrong, 1975, 1981; Almers,

1978; Sigworth, 1994; Bezanilla, 2000; Hille, 2001). Gating

current is the capacitive current (recorded as electron flow

between macroscopic electrodes) produced by the movement

of charged atoms in a channel protein, when the voltage

between the electrodes is changed. It is distinct from the

conduction current produced by the flow of ions through the

open channel and can be separated from total measured

current in a variety of ways, which give quite consistent

results. Experiments using site-directed mutagenesis have

since identified charged amino acid residues of channels that

contribute to voltage-dependent gating (Stühmer et al., 1989)

and gating current (Aggarwal and MacKinnon, 1996; Seoh

et al., 1996).

To interpret these measurements quantitatively, one must

know the relationship between the atomic-scale charge

movements and the externally recorded current. Such

a relation has recently been derived using a particular

equilibrium model of statistical mechanics (linearized

Poisson-Boltzmann theory) to describe the charges in the

bathing solutions (Roux, 1997). Here, we present a general

solution, one that has been known for some time in

computational electronics. An extension of Kirchoff’s

current law, the Ramo-Shockley theorem, links current

flowing in the external circuit to charge movement inside the

system (Shockley, 1938; Ramo, 1939). Recent general-

izations of the original theorem directly relate microscopic

charge movements and macroscopic current in complex

systems. We apply the Ramo-Shockley theorem to gating

current experiments and show how it can be used to calculate

measured charged movements from atomic models. We use

the theorem to rule out certain interpretations of experimen-

tal results and to compute external currents in simulated

systems with high efficiency. The generalized theorem

provides a concise formula and model-independent results

that are applicable to many biophysical problems.

THE RAMO-SHOCKLEY THEOREM

In voltage clamp experiments used to study currents through

a biological membrane, two electrodes impose a controlled

voltage across a domain that contains different dielectrics

and charged particles (ions in the baths and channels) and

charged groups in the protein (Hodgkin et al., 1952). The

charged particles move because of thermal agitation (heat)

and the local electric field. The current measured by the

external circuit has two components: the particle current

carried by ions entering or leaving the electrodes and the

displacement current. The displacement current is the move-

ment of charge (electrons) in the electrodes induced by

changes in the electric field caused by the movement of all

the charged particles that do not reach the electrode

(Griffiths, 1999; Jackson, 1999; Purcell, 1985; Feynman

et al., 1964). The Ramo-Shockley theorem equates the total

current (particle plus displacement) measured in the external

circuit with the microscopic motion of the charged particles

in the domain between the electrodes.

Voltage-clamp experiments measure the total current I
flowing into an electrode held at voltage Em with respect to

a grounded electrode. The Ramo-Shockley theorem (refer-

ences given below) states that this current is

I ¼ 1

1 volt
+
j

qjWðrjÞ � vj: (1)

We use the nomenclature of Yoder et al. (1997) where vj
and rj are the instantaneous velocity and position vectors,
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respectively, of the particle j with charge qj when the

clamped voltage Em is applied. W is the electric field that

would be generated by removing all particle charges (mobile

and fixed) from the domain and setting the clamped voltage

to 1 volt. The only charges contributing toW are the charges

needed to impose ground potential and 1 volt at the

electrodes and charges induced by the electrode charges on

and in the dielectrics of the domain.W is not the field that is

present when the clamped voltage Em is applied and the

current is observed. The field resulting from the clamped

voltage Em enters the equation indirectly, through the

positions rj and velocities vj that it imparts to mobile

charged particles. The sum in Eq. 1 is over all mobile particle

charges qj in the domain; that is, it is the sum of all charges qj
moving with velocity vj at the time the sum is taken,

including both those that belong to the channel protein and

all ions in the bath solutions and the pore of the channel.

The measured current I of Eq. 1 is converted to charge by

integrating over arbitrary trajectories that connect known

starting locations r#j of the particles to known ending

locations r$j. This integration yields the externally measured

gating charge:

Q ¼ � 1

1 volt
+
j

qj½Uðr$jÞ � Uðr#jÞ�; (2)

where U(r) is the potential at location r that would be

generated by removing all particle charges (mobile and

fixed) from the domain and setting the clamped voltage to

1 volt. Again, the potential field present while the clamped

voltage is held at Em enters the equation only indirectly; it

determines the locations of the charged particles.

The theorem was derived independently by Shockley

(1938) and Ramo (1939) and is commonly used in

computational electronics as a generalization of Kirchoff’s

current law that includes displacement current. The original

derivations assumed negligible magnetic and radiation

effects (that is, they assumed quasielectrostatics) to describe

electron transport in vacuum tubes. The theorem has sub-

sequently been generalized to systems containing inhomo-

geneous linear dielectrics (Pellegrini, 1986; Kim et al., 1991).

An extended version for the full electrodynamic regime

has been derived (Yoder et al., 1996, 1997). We use the

generalized quasielectrostatic version of the theorem.

To illustrate the theorem, we give a simple derivation for

a capacitive linear circuit that applies to a voltage-clamped

system. Imagine that a vanishingly small conductive sphere j
is placed at location rj, where it forms capacitors CjR and CjG

(Fig. 1). The surfaces of capacitor CjR are the conductive

sphere and the recording electrode R (the electrode where Em

is applied in a voltage clamp experiment). The surfaces of

capacitor CjG are the conductive sphere and the second

(grounded) voltage clamp electrode G and any other

grounded surfaces.

We consider two experiments. In the first experiment,

labeled (1), a single, mobile, charged particle with charge qj

is placed in the small conductive sphere located at rj and the

electrode R is set to zero potential. The charge induced on R
(the charge that the voltage clamp applies to maintain R at

zero potential) will be

q
ð1Þ
R ¼ �qj

CjR

CjR 1CjG

: (3)

The charge induced on the electrode can be computed by Eq.

3 for any qj if the calibration factor CjR=ðCjR 1CjGÞ is

known. We determine this factor in a separate, second

experiment, labeled (2).

In the second experiment, the charge of all charged

particles is removed (that is, q
ð2Þ
j ¼ 0), and a voltage of 1 volt

is imposed on R. The capacitors CjR and CjG now form

a voltage divider, and the resulting voltage at rj is

Uð2ÞðrjÞ ¼
CjR

CjR 1CjG

3 ð1 voltÞ: (4)

Combining the results of the two experiments, we have

q
ð1Þ
R ¼ � 1

1 volt
qjU

ð2ÞðrjÞ: (5)

This treatment can be extended to a system of many small

spheres j that contain charges qj; by superposition, we then

have

q
ð1Þ
R ¼ � 1

1 volt
+
j

qjU
ð2ÞðrjÞ: (6)

If we move the charges j from locations r#j to locations r$j, the
electrode charge will change by

Q ¼ � 1

1 volt
+
j

qj½Uð2Þðr$jÞ � U
ð2Þðr#jÞ�; (7)

FIGURE 1 Equivalent circuits for the two thought experiments used to

derive the Ramo-Shockley theorem (see text).
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which is the Ramo-Shockley theorem in the form of

Eq. 2.

APPLICATIONS TO ION CHANNELS

Defining electrical coordinate and electrical travel

For a given dielectric geometry of the baths, membrane, and

channel, Eq. 2 relates induced electrode charge with

microscopic charge and the function U(r). The geometric

coordinate r is thereby mapped onto the electrical coordinate

U(r)/(1 volt) and the geometric travel r$j � r#j onto the

electrical travel, Tel, of the charge j:

Tel [
1

1 volt
½Uðr$jÞ � Uðr#jÞ�: (8)

The potential U is found by solving the Poisson equation

for the channel geometry with 1 volt of potential on the

electrode R and all the linear dielectrics in place, but no

charged particles of any kind (neither fixed or mobile

structural charges, nor bath ions). The only charges present

are the electrode charges that maintain boundary conditions

like the potential of 1 volt and polarization charges induced

by the electrodes on and in the dielectrics. The dielectrics

that we include are linear and isotropic; their polarization

settles much faster than the experimentally observable

charge movements. The effects of these linear dielectrics

are expressed in Eqs. 1 and 2 by the field W or the potential

U. A voltage-gated channel will add what might be described

as a nonlinear, time-dependent, and probably location-

dependent anisotropic polarizability to the membrane;

charge movements underlying such complex behavior reflect

the interesting gating movements of the channel protein.

They are included as explicit charge movements in the sums

of Eqs. 1 and 2.

Figs. 2 and 3, A and B, show calculations of electrical

coordinate maps, found by solving the Poisson equation

numerically on a domain in which bath solutions, lipid, and

protein are represented as linear, isotropic dielectrics. The

dielectric geometries shown are low-resolution representa-

tions of an open conduction pore (Fig. 2) and of a ‘‘gating

pore’’ that allows an S4 segment to slide back and forth

through the membrane (Fig. 3). Note that all protein charges

and ions are removed from the system, as is necessary for

the determination of electrical coordinates. The domain is

cylindrical about the vertical axis and is represented in an

axial cross section. The points r of each contour line are each
at the same potential U; they are plotted at increments of

DU ¼ 0.05 volt (solid lines), and some at DU ¼ 0.025 volt

(dashed lines). Each electrical coordinate U(r)/(1 volt) is

a surface and not a unique location r; all points of the surface
represented by a contour line are at the same electrical

coordinate from the external voltage clamp electrode.

A map of electrical coordinates can help predict the gating

charge measured in a thought experiment, for example, if

a charge q were moved between two locations. According to

Eq. 2, the gating charge would be Q ¼ �qTel, where Tel can
be read from the map. Note that manipulating one or many

charges this way does not affect the map; the map changes

only when the geometry of the linear dielectrics changes. If

many charges are moved simultaneously, their contributions

to the gating charge sum algebraically. This additivity itself

may appear surprising because it holds in a domain of

condensed matter. The invariance of the map and the

additivity of individual readings make the ‘‘electrical travel’’

defined via the Ramo-Shockley theorem a useful concept.

Figs. 2 and 3 B are computed in a small domain that is

typical for a simulation. In actual experiments, electrodes are

much farther away from the membrane, making the electrical

travel across each bath much larger than the electrical travel

across the membrane. This leads to an apparent paradox: in

the experimental situation, movement of structural charge in

the membrane itself contributes very little to the measured

charge Q in Eq. 2, because the structural charge is scaled by

a small electrical travel. The paradox is due to the fact that

the electrical coordinate is computed with all source charges

removed from the interior of the system (including the ions

in the bathing solutions), whereas the external charge

movement Q is computed from the movements of all mobile

charges of the system (including the ions in the bathing

FIGURE 2 Mapping geometric coordinates to electrical coordinates. A

conductive pore provides an aqueous bridge through the membrane

(qualitatively similar to the open pore of a K channel; Jiang et al., 2003).

The domain (A, drawn to scale) is a generalized cylinder (maximal radius

5 nm, length 13 nm) and is shown in an axial cross section; the highlighted

part in panel A is shown at larger scale in panel B. Electrodes bound the two
hemispherical baths. The top (external) electrode is grounded, whereas the

bottom (internal) electrode is maintained at 1 volt. Isopotential lines are

shown at 50-mV intervals (solid lines); some intermediate isopotentials

corresponding to 25-mV intervals are also included (dashed lines). The
isopotential lines also mark surfaces of constant ‘‘electrical coordinate’’

(with respect to the grounded electrode), corresponding to intervals of 0.05

(or 0.025). The dielectrics are described by dielectric coefficients of 80 (bath

solutions and pore, open) and 2 (lipid and channel, shaded). At the lateral

boundary of the membrane (dark gray lines), a linearly varying potential is

imposed.
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solutions). In a system with deep baths, Q is dominated by

the contributions of the bath ions that move in response to the

movement of charges in the membrane (and thus conduct the

gating current toward the electrodes).

In principle, Eqs. 1 and 2 can be applied to any domain in

a circuit that is bounded by surfaces where controlled

potentials are applied, provided that the movements of all

charges in the domain (for example, all ions in the bathing

solutions) are included in the summation. If the domain is

geometrically expanded the electrical travel of all charges is

reduced, but charges newly included in the domain are

appended to the summation. For a chosen domain (large or

small), the Ramo-Shockley theorem exactly computes the

current that would be measured in an experiment performed

in that geometry.

Realistic simulations of an actual biological experiment

are frustrating because most of the computational effort

concerns ions in the baths, not charges in the pore or channel

protein of biological interest. It is more efficient to use

a multiscale approach. At one level of multiscale approach,

one could treat the bathing solutions as ideal conductors.

Such idealized baths extend the electrodes to the boundaries

of the membrane and protein and reduce the summations in

Eqs. 1 and 2 to the movements of only the charges within the

channel/membrane. The summations then give an upper

bound to the measured gating charge because each geo-

metrical movement results in the maximal possible electrical

travel. Such a map is shown in Fig. 3 C; later we show how

an upper limit of the gating charge helps explain experi-

mental results.

Comparison with a linear equilibrium analysis

An expression for the external charge similar to Eq. 2 has

been derived by Roux (1997) and used by Islas and Sigworth

(2001). Roux sought to include the effects of the bath ions

into the electrical potential that defines the electrical co-

ordinate (the potential UðrÞ in our nomenclature), much

like the polarization charge of linear dielectrics has been

included in the potential used in the generalized Ramo-

Shockley theorem (Eq. 2). Including the bath ions this way

requires that the polarization of the bath electrolyte solutions

be linear in the applied voltage. Roux linearizes bath

polarization by describing the bath electrolytes in the

linearized Poisson-Boltzmann (PB) theory, which assumes

that the interaction between charges is significantly smaller

than 1 kT. This linearization renders the electrical capaci-

tance of the double layers at the membrane-bath boundaries

independent of the applied voltage, and thus yields a

well-defined electrical coordinate for the protein charges.

FIGURE 3 Mapping geometric coordinates to electrical coordinates. An

S4 helix segment spans the membrane through a ‘‘gating pore’’ (as

envisioned by Bezanilla, 2002). Two different electrode arrangements are

used. One arrangement includes bath solutions between the membrane and

electrodes (A, c.f. Fig. 2); panel B shows an enlargement of the region

bounded by the dashed line in panel A. In the other arrangement, the

electrodes cover membrane and protein like a thin metal foil (C). Isopotential

lines are shown at 50-mV intervals (solid lines); some intermediate

isopotentials corresponding to 25-mV intervals are also included (dashed

lines). The dielectrics are described by dielectric coefficients of 80 (bath

solutions, open) and 2 (lipid and channel, shaded).
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Application of this linearized theory to scenarios where the

protein bears charges (such as a cluster of gating charges that

can be exposed to the baths) requires that the screening of

these charges by bath ions be adequately described by

linearized PB theory. Systems containing charges of high

density (like concentrated electrolyte solutions), however,

cannot be described by linearized PB theory if the charge

interaction is more than a fraction of kT, as it is likely to be.

Although one expects that only a small fraction of the applied

voltage drops over the boundary layers of the baths (because

of the small dielectric constant of the membrane), the actual

error of Roux’s approximation needs to be assessed for the

specific charge distribution on the protein, which likely

requires an explicit simulation of the bath solutions (Boda

et al., 2004). Upper and lower bounds for the screening effect

of bath ions, however, could be estimated, at less computa-

tional cost, from computations without bath ions: one where

the electrode surface is set directly at the membrane, and

another where the electrode surface is set back several Debye

lengths (Fig. 3).

In deriving an electrical coordinate using an equilibrium

theory of screening, Roux assumed that the baths are in

thermodynamic equilibrium. Given that ions in solutions can

form screening configurations very fast (;1 ns), this

approximation appears well justified in studies in which

the charge movements of interest are relatively slow (such as

gating currents). On the other hand, Roux’s ansatz cannot be

used wherever bath ions can flow from one side of the

membrane to the other, such as through an open ion channel

(Roux, 1997). By contrast, the Ramo-Shockley theorem

applies to all situations, equilibrium or nonequilibrium, up to

the timescale where magnetic and radiation effects become

significant (Pellegrini, 1986).

Interpreting gating charges

When applied to gating charge experiments, the Ramo-

Shockley theorem expresses gating charge as the product of

the physical charge and the well-defined electrical travel of

the physical charge, summed over all mobile charges present

in the domain. To apply Ramo-Shockley to a specific

example, we consider an experiment by Seoh et al. (1996)

that produced an unforeseen result. Seoh et al. created

mutants in which a charged residue of a membrane-spanning

segment in a K channel monomer was replaced by a neutral

residue. They found that deleting a positive charge of the S4

segment eliminated up to 7e0 of measured gating charge (e0
is the proton charge). Because of the tetrameric structure of

the protein, one might expect that at most 4e0 of gating

charge would be eliminated in such mutants. In the Seoh et al.

(1996) experiment, upper bounds for the magnitude of the

physical charges in the wild type and mutants are known.

The movements of the charges in the protein are not known.

It is not clear a priori if the movement of these atomic

charges (in the native protein) could contribute a dispropor-

tionately large amount to the gating charge recorded by the

external electrodes.

Equation 2 allows one to narrow the interpretation of these

results. For instance, one might think that even if the charges

move between the same starting and ending points, the

measured charge would depend on the local electric field in

which the physical charges travel. If this were true, charges

traveling across a region of high local field strength might

contribute disproportionately to the measured gating charge,

or their deletion might reduce gating charge disproportion-

ately. Equation 2 states, however, that neither structural

charges nor their polarization charges can exert such an

amplifying effect on the relation between atomic and mea-

sured charge movements; if the mobile charges move be-

tween the same points r#j and r$j, the electrical travel

½Uðr$jÞ � Uðr#jÞ�=½1 volt� does not change because neither

the particle charges nor polarization charges induced by the

particle charges contribute to U(r).
The gating process is, of course, not independent of the

local electric field present where and when the charges move.

In particular, changes in the local electric field can change

the electrical travel that the mobile charges actually undergo

when perturbed by an applied voltage, although they do not

change the map defining electrical coordinates. For example,

deletion of some of the structural charges of an S4 helix that

moves as a solid body likely reduces the total electric force

acting on the helix. Consequently, the geometric travel of the

mutated helix, and of the undeleted S4 charges on it, might

be reduced. The positions r#j and/or r$j would change,

reducing the measured gating charge.

Within the constraints set by the Ramo-Shockley theorem,

the experiment of Seoh et al. (1996) can be interpreted in two

ways: 1), that deletion of charges qk restricts in some way the

electrical travel of the other mobile charges qj (changing
r#j and/or r$j) or 2), that the mutant channels have a different

dielectric geometry from the native channel, changing U(r).
Of course, the experiment might both restrict electrical travel

and change the dielectric geometry.

Ramo-Shockley and energy

Electrophysiologists have long used effective parameters to

assign energy contributions to physical processes inferred

from experiments. For example, Hodgkin and Huxley (1952)

hypothesized that charged particles moving in the membrane

electric field do the work W ¼ ze0Em on the membrane

component that creates the voltage dependence of the Na1

and K1 conductances. Here, Em is the membrane potential, z
the effective valency of the particle, and e0 the proton charge.
Similarly, Woodhull (1973) described the voltage-dependent

block of Na1 current by protons assuming that the ‘‘potential

energy’’ of the blocking proton included a contribution

W ¼ e0dEm, where d is the ‘‘fraction of membrane potential

acting at the site.’’ Whereas the relationship between the

moving microscopic charges and the externally recorded

3720 Nonner et al.
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charge is given by the Maxwell Equations (which lead to the

Ramo-Shockley theorem), the definition of effective charges

is based on energetics.

Energetics, however, are difficult to assess in an open

system (such as an ion channel), which exchanges heat,

charge, matter, and energy with the environment. Heat flows

between the channel and baths because: 1), the motion of

ions in the pore and the motions of gating particles of the

protein involve atomic collisions, and 2), the ions typically

flow down a concentration gradient. Charge flows between

the channel protein and baths because ions flow through the

pore and capacitive charge flows between gating machinery

and baths. Matter flows between the channel and baths

because ions enter and leave the channel. Some of the ions

may cross the channel, but most do not. Ions may also enter

and leave other places in the channel protein besides the

conduction pore. Obviously, the energy supplied by an

external circuit and the heat exchanged with the baths must

equal the energy of all these processes, only one part of

which is the energy of particular interest, namely the energy

that modulates the ion flow. This energy and its associated

effective charge are difficult to define. Specific physical

models of the gating or blocking process are needed to

evaluate these energy terms.

Calculating current in simulations of ion channels

Equation 1 allows calculation of currents in a simulation

when charged particles move between positions, for instance

in simulations of gating current, or of ionic current flowing

through the pore of an ion channel. Equation 1 estimates

current much more efficiently than counting ions crossing

a surface (Chung et al., 1998), because it provides a sample

of the instantaneous current at each time step of the

simulation, whereas counting of crossings produces rela-

tively few current pulses and does not capture displacement

current nor its essential contribution to the noise. Similarly,

Eq. 2 allows one to track charge efficiently.

The sampling of current is an important application of the

Ramo-Shockley theorem in electronic device simulations at

the particle level (Gruzinskis et al., 1991; Babiker et al.,

1998). This method is just now finding its way into

simulations of ion channels (U. Ravaioli (University of

Illinois, Urbana-Champaign), personal communication; M.

Saraniti (Illinois Institute of Technology), personal commu-

nication).

CONCLUSION

The Ramo-Shockley theorem allows one to relate, in

a general way, microscopic movements of physical charges

in ion channels to macroscopic currents recorded in a voltage

clamp.
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