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1 Introduction

The calculation of the electrostatic potential in a dielectric medium is a fundamental aspect

of many scienti�c problems, and in some applications (particle simulations, for example) can

be the rate-limiting step. One method to compute the electrostatic potential is to solve the

Poisson equation for the system given the density of the source charges and the (inhomo-

geneous) dielectric coe¢ cient. An alternative approach is to use superposition, considering

the �elds of all the charges in the system, including the charges induced in the dielectric

medium by the source charges present in the system. It is this method that was recently

considered by Allen, Hansen, and Melchionna who derived an e¢ cient method for computing

the induced charge using a variational (functional minimization) approach [1] and applied it

to particle simulations [2]. Using this approach we describe a computationally inexpensive

method that directly computes the induced charge.
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2 Theory

Allen et al. [1] considered a domain D that contains the dielectric medium with dielectric

coe¢ cient " (r) at location r 2 D. The functional Allen et al. derived to determine the

induced charge as a function of location is given by several volume integrations:
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where G (r) is the Green�s function for the domain D,  e is the electrostatic potential due

to the source charges in the system of uniform dielectric 1, and

� (r) = " (r)� 1 (2)

is the local susceptibility of the medium. The induced charge �ind (r) resulting from the

source charges is determined by minimizing I2 [h] with respect to

h (r) = �ind (r) : (3)

To determine h (r) and therefore the induced charge pro�le we will solve the extremum

condition
�I2
�h (r)

= 0 (4)
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Allen et al. proved this condition yielded the required functional minimum. With the relation

r � (frg) = rf � rg + fr2g (6)

and the de�nitions of the Green�s function

r2
r00G (r

00 � r0) = �� (r00 � r0) (7)

and the electrostatic potential due to the source charge density � (r)

"0r2 e (r) = �� (r) ; (8)

this may be rewritten asZ
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[" (r0)� 1] � (r0)G (r� r0) dr0: (9)

This equation may be further simpli�ed by considering by considering both the function

and functional described by Eq. (9):

F [h (r0)] (r) =

Z
D

h (r0) g (r) dr0 � f (r) (10)

where g (r) is the expression in square brackets in the �rst integral in Eq. (9) while f (r)

is the right-hand side (RHS) of Eq. (9). Then F [h (r0)] (r) is both a function of r and a

functional of h (r0). It is h (r0) that we wish to determine under the constraint

F (r) = 0 (11)

for all r. Since F (r) is identically 0, it follows that, as a function,

r2
rF (r) = 0 (12)

for all r. Thus we have the identity that

0 = r2
rF [h (r
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0 �r2
rf (r) (13)
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or Z
D

h (r0)r2
rg (r) dr

0 = r2
rf (r) : (14)

Applying this identity and Eq. (7) to Eq. (9) gives

h (r) " (r)�
Z
D

h (r0)rr" (r) � rrG (r� r0) dr0

= "0rr" (r) � rr e (r)� [" (r)� 1] � (r) : (15)

It is this equation that we propose to discretize and solve for h (r) to determine the

induced charge pro�le. Although this equation is general for forms of the function " (r), we

will considering the case of sharp dielectric interfaces for discrete, point source charges. This

case has been considered in other contexts (as described below), but we note that the general

equation (15) for non-sharp dielectric interfaces has, to our knowledge, not been previously

derived.

2.1 Discrete, point source charges

When the source charges are point charges in discrete locations, the source charge density is

given by

� (r) =
X
k

zke� (r� xk) (16)

where source charge k with valence zk is located at xk, e is the elementary charge, and � is

the Dirac delta function. Because these charges are point charges and have no surface area,

the induced charge around each charge k is localized at the position of the charge xk and

has density [3]

�zke [" (xk)� 1] � (r� xk) (17)

if the dielectric is locally uniform around the source charge. Therefore, the contribution to

h from the induced charge around the source charges (SC) is

hSC (r) = �
X
k

zke [" (xk)� 1] � (r� xk) : (18)
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Substituting this into Eq. (15) gives that

h (r) " (r)�
Z
D

h (r0)rr" (r) � rrG (r� r0) dr0 = "0rr" (r) � rr e (r) (19)

where

"0r2 e (r) = �e
X
k

zk
" (xk)

� (r� xk) (20)

and h refers solely to the induced charge other than that around the source charges.

It is important to note that if the source charge was an ion modeled, for example, as a

point charge at the center of a dielectric sphere, then the induced charge on the ion surface

must also be determined [4], [5]; this would be another contribution to h (r) on the LHS of

Eq. (9).

2.2 Sharp dielectric boundaries

One circumstance under which determining the induced charge is particularly advantageous

is when the dielectric material contains only sharp boundaries that separate the medium

into piecewise uniform dielectrics. Then the induced charge is a surface charge on the

dielectric interfaces (if the induced charge around the source charges is not considered),

and the integrals in Eq. (15) become surface integrals over the surface S of the dielectric

boundaries [1]:

h (s) " (s)��" (s)
Z
S

h (s0)rsG (s� s0) � n (s) ds0 = "0�" (s)r e (s) � n (s) (21)

where the dielectric coe¢ cient on the boundary " (s) is de�ned to be the arithmetic mean of

the two dielectric coe¢ cients on each side of the boundary. Futhermore, the dielectric jump

�" (s) is the di¤erence of the two dielectric coe¢ cients on each side of the boundary (in the

direction of the local unit normal of the surface n (s)).

To solve Eq. (21) numerically the surface S must be discretized; speci�cally, each discrete

patch j of S is characterized by its center-of-mass rj, area aj, unit normal nj (this is constant
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over the patch and thus the patch is planar), value of the dielectric "j, and value of the

dielectric jump �"j. Because G is the Green�s function, it is known everywhere, as is its

gradient. r e is also known because the density of the discrete, point source charges is

known from Eq. (20).

The integrals in Eq. (21) are then discretized as sums over the patches i and j:X
j

hj

�
�ij"j ��"i

@Gij
@ni

aj

�
= "0�"i

@ i
@ni

(22)

where �ij is the Kronecker �,

@Gkj
@nk

= rG (rk � rj) � nk; (23)

and
@ j
@nj

= r e (rj) � nj: (24)

Note that in the in�nite geometry, Green�s function is

G (rk � rj) =
1

4� jrk � rjj
(25)

and therefore

rG (rk � rj) = �
1

4� jrk � rjj3
(rk � rj) : (26)

Also, for discrete charges in the in�nite geometry,

 e (r) =
e

4�"0

X
k

zk
" (xk) jr� xkj

(27)

and therefore

r e (rj) = �
e

4�"0

X
k

zk

" (xk) jrj � xkj3
(rj � xk) : (28)

This can be written in matrix form as

Ah = c (29)

where each element of the matrix A is given by

Aij = �ij"j ��"i
@Gij
@ni

aj: (30)
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Each element of the column vector h is given by hj and each element of the column vector

c is given by

ci = "0�"i
@ i
@ni

: (31)

This the same matrix formulation used in quantum mechanical solvation programs based

apparent surface charges (ASC) (see, for example, [5]) �rst introduced by Hoshi et al. [4].

When considering simulations of point charges, it is important to note that the source

charges contribute only to the RHS c in Eq. (29); the only contributions to the matrix A are

the dielectric pro�le and the Green�s function. Thus the inverse of A (or any factorization of

A) need only be computed once for a given geometry and dielectric pro�le. This substantially

reduces computational burden to approximately N2 operations versus N3 for inverting the

matrix at every simulation step, where N is the number of patches. We note that, in the

context of ASC solvation methods, Pomelli and Tomasi have developed an algorithm that

solves the matrix equation (29) with order N operations. However, they use truncated long-

range electrostatic potentials to achieve this fast algorithm and such truncations have been

shown to be inappropriate for simulations in more complex charged systems [7]. On the

other hand, iterative methods other than those of Pomelli and Tomasi [5], [6] may yet prove

to be faster than N2 without the use of cuto¤ potentials [8].

Lastly, we note that because the matrix equation (29) is linear, this method may also be

used to determine the coe¢ cients of a series expansion of h [9].

3 Energy of the System

Once the induced charge has been calculated for a given set of charges, the electrostatic

energy E of the system may also be calculated from the ion-ion interactions and the ion-

induced charge interactions:

E = Eion-ion + Eion-ind (32)
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where, for discrete charges,

Eion-ion =
e

2

Z Z
� (r0) e (r� r0) drdr0 (33)

and

Eion-ind =
e

2"0

X
j

Z Z
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In the discretized scheme, these become
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e
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