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An approach is developed to obtain statistical properties similar to those of an infinite bulk system 
from computer simulations of a finite cluster. A rigorous theoretical formulation is given for the 
solvent boundary potential which takes the influence of the surrounding bulk into account. The 
solvent boundary potential is the configuration-dependent solvation free energy of an effective 
cluster composed of an arbitrary solute and a finite number of explicit solvent molecules embedded 
inside a hard sphere of variable radius; the hard sphere does not act directly on the solute or the 
explicit solvent molecules, and its radius varies according to the instantaneous configurations. The 
formulation follows from an exact separation of the multidimensional configurational Boltzmann 
integral in terms of the solvent molecules nearest to the solute and the remaining bulk solvent 
molecules. An approximation to the solvent boundary potential is constructed for simulations of 
bulk water at constant pressure, including the influence of van der Waals and electrostatic 
interactions. The approximation is illustrated with calculations of the solvation free energy of a 
water molecule and of sodium and potassium ions. The influence of bulk solvent on the 
conformational equilibrium of molecular solutes is illustrated by performing umbrella sampling 
calculations of n-butane and alanine dipeptide in water. The boundary potential is tested to examine 
the dependence of the results on the number of water molecules included explicitly in the 
simulations. It is observed that bulk-like results are obtained, even when only the waters in the first 
hydration shell are included explicitly. 

INTRODUCTION 

Computer simulations based on atomic models in which 
a large number of solvent molecules are treated explicitly 
with conventional periodic boundary conditions represent 
one of the most detailed approaches to study the influence of 
solvation on complex biomolecules.‘-4 Nevertheless, such 
approaches are very intensive computationally due to the 
large number of solvent molecules that are required to model 
a bulk solution: Significant amounts of computational time 
are spent to calculate a detailed trajectory of a large number 
of solvent molecules even though the solute of interest may 
represent a very small fraction of the total number of atoms 
in the simulation (see Ref. 3, for example). Furthermore, in 
spite of their computational cost, approaches based on con- 
ventional periodic boundary conditions are not exempt from 
approximations. For example, difficulties arise in thermody- 
namic perturbation free energy calculations involving 
charged species when long range electrostatic interactions 
are truncated5 or summed over an infinite periodic array us- 
ing Ewald techniques.6-’ 

Partly due to these difficulties, different approximate 
schemes have been developed and used to take the dominant 
effects of solvation into account implicitly, i.e., without in- 
cluding any explicit solvent molecules. Among those are the 
phenomenological approaches based on a representation of 
solvation effects in terms of atom or group based solvent- 
exposed area,g,‘O hydration shell models,“-13 continuum 
electrostatic approximations,t4-I6 and statistical mechanical 
theories based on RISM-HNC integral equations.t7 Approxi- 

mate schemes treating the solvent implicitly can provide use- 
ful quantitative estimates and remain computationally inex- 
pensive. In particular, approximations based on continuum 
electrostatics, in which the solvent is represented as a fea- 
tureless dielectric material, are remarkably successful in re- 
producing the electrostatic contribution to the solvation free 
energy of small solutes.18 Nevertheless, a description in 
which all atomic and structural details of the solvent mol- 
ecules are ignored may not always be appropriate. As an 
example, direct hydrogen bonding of solvent water mol- 
ecules to the backbone carbonyls was shown to be important 
in the unfolding process of an cu-helix.2 

l:An intermediate approach, considered here, consists of 
including a small number of explicit solvent molecules in the 
vicinity of the solute, and representing the influence of the 
remaining bulk with an effective solvent boundary potential. 
The- approach, which was originally proposed by State and 
Murrel for studying the recombination of radical atoms in the 
gas phase,ig has been extended by several authors for the 
simulation of finite representation of infinite dense bulk 
systems.20-26 The first to design a simulation method appro- 
priate for liquids were Berkowitz and McCammon.20 In their 
method, the many-body system was divided into three main 
spherical regions: a central reaction region, a buffer region, 
and a surrounding static reservoir region. The entire system 
(reaction, buffer, and reservoir regions) moves with the cen- 
tral solute of interest through a large simulation box. The 
forces arising from the reservoir region are calculated from 
fixed atomic centers, thus the influence of the surrounding 
bulk was not treated implicitly. Instead of using explicit fixed 
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atomic centers in the bath region, Brooks and Karplus intro- 
duced a mean force field approximation (MFFA) to calculate 
a soft boundary potential representing the average influence 
of the reservoir region on the reaction region.2’ hi the MFFA 
treatment, the boundary potential was calculated by integrat- 
ing all contributions to the average force arising from the 
reservoir region; the density in the reservoir region was ap- 
proximated by using the radial pair distribution function of 
the bulk liquid. The MFFA approach was extended by 
Brooks, Brunger, and Karplus for the simulation of bulk wa- 
ter, although the average contribution of long range electro- 
static forces due to the polar nature of the surrounding bulk 
water was not included.22 The average ,electrostatic reaction 
field was taken into account in the surface constrained all- 
atom solvent (SCAAS) treatment of King and Warshel,23724 
and in the reaction field with exclusion (RFE) of Rullmann 
and van Duijnen25V26 by using a dielectric continuum ap- 
proximation to the average electrostatic reaction field origi- 
nally derived by Kirkwood. 

Although the previous treatments of the solvent bound- 
ary potential provided many of the essential elements for 
useful practical approximations, some aspects need addi- 
tional consideration. In particular, several theoretical formu- 
lations of the solvent boundary potential were elaborated by 
considering the influence of bulk solvent surrounding a 
spherical region of constant radius (MFFA, SCAAS, and 
RFE). Such formulation of the solvent boundary potential 
does not take into account the density and volume fluctua- 
tions characteristic of a bulk solvent at constant pressure. For 
example, this is important when a solvent boundary potential 
is used to calculate the free energy difference between two 
solutes occupying significantly different specific volumes.28 
In addition, some difficulties involving the treatment of the 
electrostatic reaction field remain unresolved. In particular, 
the presence of point charges near the continuum dielectric 
interface at the boundary leads to artificial divergences.T6*2g 
In the Monte Carlo simulations based on the RFE method, 
this problem was avoided by rejecting the configurations in 
which the oxygen of a water molecule is closer than a mini- 
mum distance from the dielectric discontinuity,26 i.e., effec- 
tively introducing a repulsive wall near the dielectric bound- 
ary. In the SCAAS method, phenomenological biasing 
potentials are introduced to constrain the average density and 
solvent polarization at the boundary of the finite system 
around prescribed values.23924 However, it was reported that 
the total dipole of the system was unstable during molecular 
dynamics simulations of bulk water even though no explana- 
tion was provided.24 

In light of the difficulties raised. by the previous treat- 
ments, a different route was chosen to formulate and develop 
a solvent boundary potential for computer simulations of a 
finite representation of an infinite bulk system. The present 
theoretical formulation is based on a separation of the mul- 
tidimensional solute-solvent configurational integral in 
terms of n “inner” solvent molecules nearest to an arbitrary 
solute, and the remaining “outer” bulk solvent molecules. 
Following this formulation, it is shown rigorously that equi- 
librium statistical properties representative of an infinite bulk 
system can be obtained from the finite system with a specifi- 

cally defined “solvent boundary potential.” The solvent 
boundary potential is recognized as the solvation free energy 
of an effective cluster comprising the solute and IZ solvent 
molecules embedded in a large hard sphere. The hard sphere 
corresponds to a configurational restriction on the outer bulk 
solvent molecules; its radius is variable such as to include 
the most distant inner solvent molecule. This formulation, 
which differs significantly from previous treatments, pro- 
vides further insight into the statistical mechanical basis of 
the solvent boundary potential and is helpful in constructing 
useful approximations for computer simulations in dense liq- 
uids. 

In the first section, the theoretical formulation of the 
solvent boundary potential is developed. In the second sec- 
tion, an approximate solvent boundary potential is con- 
structed for simulations of bulk water. In the third section, 
the boundary potential for water is illustrated with a few 
applications. Simulations of small systems with different 
number of explicit waters are used to examine the solvation 
of a water molecule and of sodium and potassium ions in 
bulk water and to calculate the intramolecular potential of 
mean force of n-butane and of the alanine dipeptide. A brief 
discussion of the results concludes the paper. 

FORMAL DEVELOPMENTS 

An arbitrary solute immersed in a bulk solvent is con- 
sidered. It is assumed, without loss of generality, that the 
center of mass of the solute is fixed at the origin. In the 
canonical ensemble, all statistical averages to be evaluated 
involve multidimensional integrals of the form, 

(1) 

where U is the total potential energy of the system and 
(X,,l***N) represent the degrees of freedom of the solute 
and the N solvent molecules. 

At lirst sight, it appears that the problem of reducing the 
multidimensional configurational integral 2 in terms of 
l,...,rz “explicit” and n + 1 , . . . ,N effective “implicit” solvent 
molecules could be simply formulated in the framework of 
joint density distribution functions as developed in tradi- 
tional statistical mechanical treatments of liquids,30,31 

where the joint n-particles potential of mean force, 

“wi”)(X,,l,..., n)=-k,T ln[pcn)(X,,l ,..., n)], (3) 
is an explicit function of the coordinates of the solute and n 
solvent molecules taking implicitly the influence of the (n 
+l)th to Nth molecules into account. Although such treat- 
ment is rigorously correct, further consideration reveals that 
it is inadequate for the development of a theoretical formu- 
lation of the solvent boundary potential. The difficulty with 
Eq. (3) arises from the fact that the 12 explicit solvent mol- 
ecules and the (N-n) implicit solvent molecules are not 
restricted to distinct regions of configurational space that are 
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A) 

FIG. 1. Schematic representation of the inner and outer regions as described 
by Eq. (3) in the text. (A) The inner region contains one solute and the n 
nearest solvent molecules; the nth solvent molecule is at a distance R,, 
from the center of mass of the solute. (B) In the reduced system, only the 
solute and the rz solvent molecules of the inner region are described explic- 
itly. The influence of the (N-n) solvent molecule belonging to the outer 
region is described through the potential of mean force W(X, ,l,...,n) de- 
fined by Eq. (5). 

near and far away from the solute, respectively. This implies 
that the potential of mean force C@‘@‘(X,,l,...,n) must be 
able to take into account the influence of implicit solvent 
molecules in direct contact with the solute. This is. inappro- 
priate to construct a useful simulation method in which all 
the solvent molecules near the solute are represented with an 
atomic model. A different formulation of the problem, which 
was chosen in the MFFA method,21 is to define the explicit 
and implicit solvent molecules according to a spherical re- 
gion fixed in space surrounding the solute. However, in this 
formulation the number of explicit solvent molecules inside 
the spherical region must be allowed to vary to account for 
the density fluctuations present in a constant pressure system. 
Even though molecular dynamic simulation techniques with 
a variable number of molecules have been developed,32 this 
approach was not chosen here. 

To find a useful formulation, the N solvent molecules are 
separated in terms of two groups: the n inner solvent mol- 
ecules nearest to the solute and the (N - n) remaining outer 
solvent molecules. This is represented schematically in Fig. 
1. The separation is possible for all configurations contribut- 
ing to the integral except those for which the nth and (n 
+l)th solvent molecules are exactly at the same distance 
from the solute. Those configurations were assumed to rep- 

resent a set of measure zero and were ignored. Exploiting the 
indistinguishability of the solvent molecules, the solvent 
molecules are renumbered such that the inner and outer 
groups are represented by the (l,..., n) first and (n + 1,. . . ,N) 
last solvent molecules, respectively. Based on this separation, 
the configurational integral in Eq. (1) can be expressed as, 

1 
‘(N-n)! I 

‘d(n+l)**-d(N)e-“‘ksr, 
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where the prime on the integral symbol indicates that the 
(n+l ,. . . ,N) outer molecules are spatially restricted, i.e., all 
contribution in which any of the (n + 1,. . . , N) is closer to the 
solute than any of the (1 ,...,n) molecules is rejected to avoid 
multiple counting of identical configurations. The factors of 
rz ! and (N - n) ! account for the multiple counting of identi- 
cal configurations of the inner and outer solvent molecules, 
respectively, and the integral involving the y1 inner solvent 
molecules is unrestricted. The exact formal equivalence of 
the configurational integral of Eq. (4) with the more familiar 
Eq. (1) is illustrated in Appendix A in the case of the ideal 
gas partition function. 

The separation of the solvent molecule in two groups 
makes it possible to integrate out the contribution of the 
outer solvent molecules such that their influence is taken into 
account implicitly. It follows that statistical properties of the 
solute and the n nearest solvent molecules representative of 
an infinite bulk system can be expressed in terms of the 
Boltzmann average of the finite system interacting with the 
effective potential energy, W(Xu,l,...,n), defined from the 
restricted configurational integral, 
,-W’(X,,l,..., n)lkgT 

1 s- 
C I 

‘d(n+ 1). . .d(N)e-~‘(Xu,l,...,N)‘kBT, (5) 

where C is an arbitrary constant that can be chosen for con- 
venience (see below). For example, the average of an observ- 
able Q[XJ depending on the solute degrees of freedom, X, , 
is expressed as, 

Jd(X,) & Jd(l)--*d(n)-**d(N)QIX,Je-U’kBT 

(Q>= * 1 
Jd(X,) ~1 Sd(l)...d(n)...d(N)e-~‘kBT 

Jd(X,) s Sd(l)...d(n)QIX,]e-~xu,l,...,n)‘ksT 
= 

1 

(6) 
Similarly, the difference in the free energy of solvation of 
two solutes can be expressed in terms of the finite system. 
Following standard free energy perturbation techniques,5’33 a 
thermodynamic coupling parameter, X, is introduced such 
that the total the solute-solvent interaction energy corre- 
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sponds to solute 1 or solute 2 when the value of A is set to h, 
or X,, respectively. The free energy difference between the 
two solutes with coupling parameters X, and h2 can be writ- 
ten as, 
e-L-UA~)-A(A2)l~kBT 

A simple interpretation of the potential of mean force is 
suggested for one particular choice of the undetermined ar- 
bitrary constant C in Eq. (5). For this purpose, the total po- 
tential energy of the bulk system is decomposed in terms of 
the inner-inner (Uii), inner-outer (Ud and outer-outer 

Sd(X,)(lIN!)Sd(l)...d(n)...d(N)e-U(Xl)’k~T 
(U,) contributions, 

=Sd(X,)(11N!)Sd(l)...d(n)...d(N)e-L.’(X2)’kBT 

=Sd(X,)(lln!)Sd(l)...d(n)e-~X’)l’kBT U= Uii+ U,+ U,,, (8) 
Id(X,)(lln!)Sd(l)...d(n)e-~‘(“2)’kBT 

=(,-[~AI~~IY(~~)I~J) v.2) ’ (7) and the configurational restriction on the integral over the 
where the subscript (A& means that the average is performed 
in an ensemble based on the effective potential W&J [the 
potential of mean force ~((xi) follows from Eq. (5)]. 

outer solvent molecules is be expressed in terms of unre- 
stricted integrals with Heaviside step functions, 
~(lril-hd~ 

e-Y3”TXu,l ,..., n/kBT= Sd(n+1)H(Ir,.,l_R,,)...Sd(N)H(lrNI--R,,)e-[Uii’UiofUoo]‘ksT 
Sd(n+l)...Sd(N)e-U,,‘kBT 3 (9) 

where 

R max =MAX(lrIl,...,lr,l), (10) 

is defined to include the solvent molecule in the inner region 
that is the farthest from the solute. fn Eq. (9), the Heaviside 
step functions act effectively as a repulsive hard potential 
Uhsr(Rmax) to prevent the outer molecules from penetrating 
into a spherical region of radius R,,, i.e., 

(11) 

The “solvent boundary potential” corresponds to the total 
influence of the outer solvent molecules on the finite system 
and is defined as AW%W- Uii . Expressing the potential of 
mean force in Eq. (9) in terms of unrestricted averages over 
the configurations of the outer molecules, the solvent bound- 
ary potential can be written as, 

e-A?YqX,,J ,..., n)fkBT, ( e - [ Uiof UhsJlkBT) 
(U,) ) (12) 

which can be recognized as the solvation free energy of an 
effective cluster composed of one solute and y1 solvent mol- 
ecules frozen in the (X, ,l,...,n) configuration and embedded 
inside a hard sphere of radius Rmaw.34 The hard sphere is 
introduced as a device to account for the configurational re- 
striction of the outer solvent molecules and does not act di- 
rectly on the solute or the n inner solvent molecules. The 
radius R,, varies according to the instantaneous configura- 
tion of the inner solvent molecules [see Eqs. (10) and (11) 
above]. This interpretation of the solvent boundary potential, 
relating the statistical properties representative of an infinite 
system to that of a finite effective system, is a main result of 
this paper. The present interpretation is particularly helpful in 
deriving approximations for the boundary potential AW. 

Based on this interpretation, an approximate boundary poten- 
tial for bulk water is developed in the next section. 

The separation of the configurational integral in Eq. (1) 
in terms of two distinct groups of solvent molecules as ex- 
pressed in Eq. (4) provides a formal link relating the proper- 
ties of a finite effective system to that of an infinite bulk 
system. Based on Eq. (6), statistical properties representative 
of an infinite bulk system can be obtained directly, as a 
simple Bolztmann average involving the particles of the fi- 
nite system interacting with an effective potential. Similarly, 
Eq. (7) is analogous to the familiar expression of free energy 
perturbation techniques.5333 For some observables involving 
directly the outer solvent molecules, such as the solute- 
solvent interaction energy or solute-solvent density distribu- 
tion function at large distances, averages may not be ex- 
pressed solely in terms of the finite system without further 
assumptions. Thus to compute averages representative of an 
infinite system, it is sufficient to generate n-particle configu- 
rations obeying a Boltzmann distribution with the potential 
energy Uii+A~ If an approximation to the solvent bound- 
ary potential is available, this task can be accomplished by 
Monte Carlo, or by stochastic BrownianLangevin dynamics 
methods.6 In generating these configurations only the solvent 
molecules located inside the sphere are represented explicitly 
with an atomic model, with the potential Uii ; the influence of 
the outer solvent molecules is taken into account by the 
boundary potential, AW. 

Although Eq. (6) shows that the correct equilibrium av- 
erage properties representative of an infinite system can be 
obtained in principle from the finite effective system, a cor- 
responding equivalence for dynamical properties was not 
demonstrated here. In fact, several dynamical properties can- 
not be described correctly by the finite system, even if the 
exact solvent boundary potential is used. For example, the 
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translational diffusion constant of the solvent molecules in 
the simulation converges to zero since the mean square dis- 
placement of the particles is bound by the finite system. Nev- 
ertheless, it may be expected that carefully constructed 
buffer regions in which the dynamics of the molecules obeys 
Langevin stochastics algorithms, such as described by 
Brooks and Ka.rplu~,~i can provide a useful approximation to 
study dynamical properties involving localized events far 
away from the boundary. 

CONSTRUCTION OF A BOUNDARY POTENTIAL FOR 
BULK WATER 

The configuration-dependent boundary potential due to 
the surrounding bulk solvent can be obtained by calculating, 
step by step, the reversible thermodynamical work necessary 
to assemble the effective cluster composed of the solute and 
n solvent molecules in the configuration (X, ,l,...,n) embed- 
ded in a large hard sphere of radius R,, corresponding to 
the distance from the origin of the outermost inner solvent 
molecule. Although the final result does not depend on the 
choice of a particular path, the boundary potential is calcu- 
lated by assembling the effective complex through the fol- 
lowing steps: 

(i) A hard sphere of radius R,, is inserted in a bulk 
solvent. 

(ii) One by one, the neutral solute and the n solvent mol- 
ecules are inserted in the bulk solvent away from the 
origin and translated to their respective positions in- 
side the hard sphere. 

(iii) The charges of the solute and of the IZ solvent mol- 
ecules located inside the sphere are switched on adia- 
batically. 

Following this path, the free energy contributions at each 
step are 

A W= A “wsr+ A Wvdw+ A We~ec , (13) 

where Awi,, , A%?&, , and A%@‘& represent the cavity, the 
van der Waals, and the electrostatic free energy contribu- 
tions, respectively. Several approaches based on different 
level of sophistication can be used to calculate the solvent 
boundary potential. In principle, the various schemes used to 
account implicitly for the effects of bulk solvation mentioned 
in the introduction could be used to approximate the function 
ACHY (see Refs. 9-17). In the present case, analytical func- 
tions were chosen to obtain a simple and computationally 
inexpensive approximation to the boundary potential appro- 
priate for bulk water simulations. One important simplifica- 
tion that is used in the present treatment is based on the 
assumption that the simulation system is spherical on aver- 
age. This approximation, which is illustrated schematically 
on Fig. 2, results in an effective smooth spherical boundary 
surrounding the finite simulation system. Because this is an 
approximation, the solvent boundary potential needs to be 
parametrized and adjusted empirically. Preliminary simula- 
tions of a sphere containing 100 water molecules, described 
below, were used to develop the present boundary potential. 

A) 

B) 

FIG. 2. Schematic representation of an instantaneous configuration of the 
solvent molecules near the boundary of the simulation system. The hard 
sphere restriction is represented by a dashed line. (A) Instantaneous configu- 
ration of the inner system. The farthest water molecule is located at a radial 
distance of R,, from the center of the simulation system. The region of 
space from which the outer molecules are excluded is represented by the van 
der Waals envelop of the inner molecules plus the exclusion hard sphere 

. . restrrctron of radius R,, [see Eqs. (8) and (9)] and the instantaneous shape 
of the van der Waals envelop of the system is not perfectly spherical. (B) 
The assumption of the average effective spherical symmetry of the simula- 
tion system results in a smooth effective interface located around R,,+AR 
due to the repulsion between the inner and outer molecule, where AR is 
related to the diameter of the solvent molecules. The effective interface for 
the dielectric reaction field and the van der Waals interactions were adjusted 
empirically; the effective dielectric interface was placed at a distance 
Rmax+AR,i,; the van der Waals interactions were modeled, based on HNC- 
REM calculations, as a smooth sphere of radius R,,+ARvdw . 

Contribution from the hard sphere restriction 

Because the radius of the hard sphere is expected to be 
much larger than the size of a solvent molecule, a simple 
asymptotic form for A%@‘& should provide an adequate ap- 
proximation, i.e., 

Aw,,,,=pV+ aS, (14) 

where V and S are the volume and.the surface corresponding 
to the hard sphere restriction of radius A,, , and p and (+ are 
the pressure and surface tension of the bulk liquid. 
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Contribution from van der Waals interactions 

For a pure solvent, the total free energy contribution 
from core repulsion and van der Waals interactions can be 
described as the total reversible work necessary to assemble 
the system of electrically neutral molecules embedded in the 
effective hard sphere restriction potential. In the case of wa- 
ter, the interaction of a neutral solvent molecule with the 
surroundings is usually represented by a simple short range 
radial potential centered on the oxygen. In particular, the 
oxygen interaction center is a Lennard-Jones potential 
4E[(ahp-- ( a/r)6] for several simple water models such 
as TIP3P3s or SPC.36 The total reversible work is obtained by 
transporting the solute and the y1 Lennard-Jones oxygens, one 
by one, to the interior of the hard sphere restriction, that is, 

+Aw@)(r, ;R max.rl,...rrn-l), (15) 

where the functions Aw(‘)(r. *R I) max ,rl ,...,r+ 1) are the 
solvent-induced cavity potentials of mean force between the 
ith Lennard-Jones oxygen and the partly assembled system 
with (i- 1) Lennard-Jones oxygens embedded in the hard 
sphere of radius R,, . The constant corresponding to the free 
energy necessary to insert one neutral water molecule in the 
bulk, away from the origin, has been ignored with no conse- 
quence since the boundary potential can be defined relative 
to an arbitrary constant according to Eq. (5). 

The first term in Eq. (15), Aw(‘)(r,;R,,), is the bulk 
solvent cavity potential of mean force between one hard 
sphere of radius R,, located at the origin and one Lennard- 
Jones oxygen located at ri. The subsequent terms represent 
the bulk solvent cavity potential of mean force between one 
Leonard-Jones center and the incompletely assembled sys- 
tem. The functions Aw(‘) do not depend on the direct inter- 
actions between the system of (i-l) neutral solvent mol- 
ecules embedded in the hard sphere and the ith solvent 
molecule but are influenced by their interactions with the 
surrounding bulk water. To find a simple approximation, it is 
assumed that the system of hard sphere and the embedded 
neutral solvent molecules is on average spherical. The influ- 
ence of the spherical system with the embedded neutral wa- 
ter oxygens is represented by an effective potential, 
ue&I,Rmox), calculated from an integral of Lennard-Jones 
centers distributed uniformly over the spherical volume V,, 
corresponding to the radius R,, with the bulk density of 
water- &lk, 

(16) 

The average cavity potential is then, 

(Aw(“)(r, ;R max,rt,r2~...,rn-A) 

=Aw$(ri ;[~,d~r~&,l>. (17) 

The approximation is illustrated schematically in Fig. 2. The 
effective cavity potential was calculated in the case of a 

Awk~(ri;[u,d)-Aw(“(rl;Rvdw). (19) 

This is due to the repulsion between the outer solvent mol- 
ecules and the inner solvent molecules lying near the edge of 
the hard sphere region (see also Fig. 2). The contribution of 
the van der Waals interaction is very similar to the solvent 
boundary potential used in the MFFA approximation.21 

Further calculations of the cavity potential of a Lennard- 
Jones oxygen with a hard sphere were done using the RISM- 
HNC integral equation with R,, varying from 2.4 to 20.0 A 
and an analytical function was constructed to obtain an ap- 
proximation valid for systems of various size. The total free 
energy contribution from the van der Waals potential is, 

A%&= c A (l) r=l n w (ri&d7 

with the analytical functions, 
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FIG. 3. Effective cavity potential A&)(Y) calculated by the RISM-HNC 
equation with Eq. (18). The result for the potential u&r) (solid line) and 
the simple hard sphere u&r) (dotted line) are shown. In both cases, the 
radius of the hard sphere restriction is 12 A. The cavity potential calculated 
from the analytic approximation with Eqs. (22) and (23) is also shown in 
dashed line (a value of Rvd,=11.25 A was used). 

simple hard sphere potential u&;Rmm) and in the case of 
the effective potential ueE(r;R,,,,), using the HNC-RISM in- 
tegral equation,‘7*37,38 

Aw(‘)(r;[u,fl])=c U,,*x,,*c,,h,(r;[U,Rl)r (18) 

where the symbol * represents a convolution, xUy is the site- 
site solvent density succeptibility and cLJ,+ and cXhs are the 
site-site W-solvent and solvent-hard sphere direct correla- 
tion functions, respectively. The site-site direct correlation 
functions were obtained from the RISM-HNC integral equa- 
tions for a solute at infinite dilution using standard numerical 
techniques (see Ref. 39 for more details). The calculated 
RUM-HNC cavity potentials are shown in Fig. 3 for a hard 
sphere with a radius R,, of 12 A. The result of the calcula- 
tions indicates that the cavity potential of the effective um- 
formly filled sphere is qualitatively similar to that of a hard 
sphere with an effective van der Waals radius 
R vdw=Rmax+ARvdw, i.e., 

(20) 
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Aw%i ;Rvdw)=A(RVdw)-tB(ri-R,d,), 

where, 

(21) 

A(Rvdw) = 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ if R vdwcXc 
a, if R vc@Rc (22) 

with the coefficients ao=-1.665, a,=0.562, a,=-0.072 8, 
a,=0.004 26, a4= -0.000 092 5, a,=0.084, Xc= 15.393, 
and 

i 

bp(l +~?/bt)-~+b~~~+b~ if -5CxGO 
B(X)= b, if xc-5 3 

b5+b6x2 if x>O 
(23) 

where x = ri - R vdw and the coefficients are b, = 1.320, 
b2= -0.841, b3= -0.001 60, b,= -8.393, b,=-8.475, 
b,=-9.234, bs=1.6. A value of 2.6 A was taken for the 
radius increment AR,&, . The analytical approximation is 
shown in Fig. 3. 

Contribution from the electrostatic charging free 
energy 

The last contribution to the solvent boundary potential of 
mean force corresponds to the free energy of adiabatically 
switching on the charges of the hard sphere system with the 
embedded solute and the n solvent molecules, 

AWL= I $ dA Qill/i(xQl,...,AQi,...), (24) 
1 

where ei is the electrostatic potential due the outer polar 
solvent molecules at the position of charge Qi and induced in 
reaction to the charges (hQ,,...,hQi,...) inside the sub- 
system. If the dimension of the simulation system is large 
compared to the size of the solvent molecules, the dominant 
contribution to the reaction field may be approximated by 
representing the outer region as a dielectric continuum. To 
calculate the free energy of charging it is necessary to first 
solve the Poisson differential equation for each configuration 
of the inner system, 

v.[E(r)V~Cl(r)l=-4~p,lec(r), (25) 

where P&r) is the charge density in the system and E(r) is 
a spatially varying dielectric constant E(r) defined from the 
following prescription:40 e(r) = 1 at all points in space falling 
inside the hard sphere restriction or within the core exclusion 
of any of the inner solvent molecules; e(r)=e,,,tk otherwise 
[Fig. 2(A)]. Although it is possible to solve the continuum 
electrostatic problem with numerical methods,‘4~40 it is more 
advantageous computationally to use an analytical approxi- 
mate expression. One possible approximation is obtained by 
assuming that, on average, the dielectric boundary is located 
at the surface of a sphere of radius R,, . The nature of the 
approximation involved in replacing the instantaneous di- 
electic boundary by a smooth spherical dielectric boundary 
with an effective radius Rd, is illustrated schematically in 
Fig. 2. The free energy of a distribution of point charges 

inside a spherical cavity enclosed in a dielectric continuum 
with relative dielectric constant aUtk is given by,“,41 

Awee= -; 2 4dQd2 1 
Im (21+1) R;;;’ 

(26) 

where the ( Q,,[ 2 are the square of the moments of the charge 
distribution, 

QI~=C Y&(ei,A)IrJ’~ (27) 

where the Y,, are the spherical harmonics, defined in terms 
of the Legendre polynomials, 

Y&w=; 21+ 1 (Z-m)! J T ol p,,bs( mi+. 

(28) 
To account for the finite size of the inner solvent mol- 

ecules lying near the surface of the hard sphere restriction, it 
is expected that the dielectric boundary will be at some dis- 
tance from the radius of the hard sphere restriction, i.e., 
Rdiel=Rmax~ARdiel . The average dielectric interface was 
chosen 2.8 A away from the farthest solvent molecule (lo- 
cated at R,a according to the position of the first peak in 
the oxygen-oxygen radial distribution function of bulk wa- 
ter. This construction of the dielectric interface avoids the 
well-known divergences due to the presence of point charges 
near the boundary of the system.2b*2g In the reaction field 
with exclusion model @FE), Rullmann and van Duijnen re- 
solved this difficulty by imposing a minimum distance be- 
tween the oxygen of the water molecules and the dielectric 
boundary.” They tested values of 1.58 and 3.16 A for the 
so-called “exclusion radius,” which plays a role similar to 
that of ARdiel in the present work. One important difference 
with the RFE method is that the radius of the spherical di- 
electric cavity is determined from Eq. (10) and, therefore, is 
variable. 

To accurately reproduce the absolute solvation free en- 
ergy of ions in simulations in which only the primary hydra- 
tion shell is included explicitly, a variable parameter AR,, 
was used 

(29) 

where Q,, is the total charge of the simulation system. This 
empirical relation may be interpreted as a manifestation of 
the electrostriction effect, i.e., the dielectric boundary is at- 
tracted closer to the simulation system when the total charge 
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FIG. 4. Normalized radial distribution of the water oxygens from the center 
of a sphere containing 100 explicit TIP3P waters (Ref. 35). The density 
distribution function was divided by 0.0334/A3 for a better comparison with 
bulk water. The results with (solid line) and without (dotted line) the angular 
potential given by Eq. (32) are shown. In the absence of angular potential, 
the density has a maximum near the boundary of the system. In the presence 
of the angular potential, the density distribution function is more uniform 
throughout the simulation system. 

of the inner region is increased. The dielectric boundary is 
not affected by Eq. (29) for neutral solutes and is located at 
2.8 A from R,,. 

TEST SIMULATIONS WITH A WATER SPHERE 

Preliminary simulations were performed with a sphere of 
100 TIP3P water molecules35 to test the solvent boundary 
potential described by Eqs. (13), (14), (20), and (26). The 
simulations were done with a modified version of the pro- 
gram CHARMM42 incorporating the boundary potential. The 
configurational sampling was achieved with by generating 
five Langevin dynamics trajectories of 10 ps at 300 K with a 
friction constant corresponding to a relaxation time of 25 
PC’. For each trajectory, the system was first heated to 400 
K for 2 ps followed by 5 ps of equilibration at 300 K. The 
averages structural properties were calculated by combining 
the configurations of the five trajectories. For all the calcu- 
lated trajectories, the bonds involving hydrogens atoms were 
kept fixed using SHAKEUP and an integration step of 0.001 ps 
was used. The electrostatic reaction.fieId was calculated us- 
ing Eq. (26) with 16 moments of the charge distribution. 

The normalized density distribution of water oxygens 
around the center of the simulation sphere is shown in Fig. 4. 
It is observed that the density distribution is close to the bulk 
value of 0.0334/A3 though it is slightly too structured near 
the edge of the simulation system. The normalized orienta- 
tional distribution function of the O-H bonds of the water 
molecules relative to the radial director in a shell of 1 A near 
the boundary shown in Fig. 5. The distribution function has a 
maximum near cos(@)=-0.2, corresponding to an O-H 
bond lying parallel to the boundary, and a maximum near 
cos(8) = 1, corresponding to an O-H bond pointing away 
from the bulk. The anisotropy is due to the approximations 
involved in constructing the solvent boundary potential. Be- 
cause the approximations to A%%‘& and A%‘& were devel- 

.._ 

2 -0.5 

FIG. 5. Angular distribution function of the O-H bonds of the water mol- 
ecules located in a 1 A shell at the boundary of a sphere containing 100 
explicit TIP3P waters (bottom) and angular potentials (top). The initial guess 
(dotted line), extracted from (p(cos)) using Eq. (30), and the empirically 
fitted angular potentials (solid line) given by Eq. (32), are shown at the top. 
For clarity, the angular potentials are plotted with the switching function 
SW(ro) equal to one. The distribution functions with (dotted line) and with- 
out (solid line) the angular potential are shown at the bottom. In the absence 
of the angular potential, the distribution is anisotropic; one O-H bond is 
pointing outward in average. In the presence of the angular potential, the 
resulting distribution is more isotropic, though some structure remains. 

oped based on the assumption that the simulation system is 
on average spherical, the present implementation of the 
boundary potential has the characteristics of a smooth re- 
straining boundary. It is well known that the water molecules 
near smooth spherical and planar boundaries do not have an 
isotropic orientational distribution.24V44,45 To correct the spu- 
rious anisotropy introduced by the average spherical approxi- 
mation, an empirical angular potential acting on the orienta- 
tion of the waters located near the boundary was introduced. 
As a first guess, the angular potential necessary to compen- 
sate the edge effect in the system was constructed based on 
the the average orientational distribution function of the 
O-H bonds of the water molecules in a shell of 1 A near the 
boundary, 

fi(cOsi) y + kffT ~~[(P(~~~))~&J x SW(ro), (30) 

where pjso is the value of the distribution function in an iso- 
tropic system (equal to 0.5) and SW(ro) is a half-harmonic 
switching function, 

SW( t-0) = 
(ro-Rmax+ 1 .0)2 if r$R,,- 1 .O 
0 otherwise , 

(31) 

where r. is the distance of the water oxygen from the center 
of the sphere (in A). The initial guess, extracted from 
(P(COS>> +gEq. (30) is shown in Fig. 5. The initial form of 
the angular potential was further relined empirically by trial 
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and error, using several simulations of a sphere of 100 water 
molecules. The resulting angular potential was represented in 
terms of a polynomial, 

f(COSi)=SW(rO)(C, COS4+C2 COS:+C3 COSf 

+ C4 COSi+ C5) (32) 
with c,=2.409, cs=1:767, c,=-3.067, c,=-1.201, 
cs=O.841. The empirically fitted angular potential is shown 
in Fig. 5. It can be observed that the fitted potential is similar 
to the initial guess bu differ in amplitude. This is due to the 
switching function Eq. (31) which is less than one in the 1 A 
shell at the boundary of the system. 

The structural properties of the pure water, recalculated 
from simulations including the angular correction Eq. (32) in 
the boundary potential, are shown in Figs. 4 and 5. The av- 
erage structural properties were calculated by combining the 
configurations of five trajectories of 10 ps at 300 K generated 
with the same procedure as described above. In the presence 
of the angular potential, it observed that the density distribu- 
tion is improved towards the normal’value of 0.0334JA3. The 
orientation distribution function of the O-H bonds is also 
more isotropic, though some structure remains near 
cos(6)= - 1 and cos(@ =0.5. Attempts to further refine the 
angular potential were unsuccessful. 

APPLICATION OF THE METHOD 

To illustrate the present approach, the salvation proper- 
ties of charged and polar solutes and the intramolecular con- 
formational equilibrium of flexible molecular solute in bulk 
water were examined. The absolute free energy of solvation 
of a single solute-water molecule and single sodium and 
potassium ions was calculated with free energy perturbation 
techniques.5*33 The potential of mean force (PMF) along the 
dihedral angle of n-butane and the relative free energy of the 
C 7ax and CY~ conformations of the alanine dipeptide were 
calculated using umbrella sampling techniques.46 

The purpose of these calculations is primarily to exam- 
ine the performance of the boundary potential developed for 
bulk water simulations. The ability of the solvent boundary 
potential to yield accurate estimates of the absolute free en- 
ergy of solvation of charged and polar solutes with a small 
number of explicit water molecules is very important and 
must be verified. The absolute solvation free energy of 
charged and polar solutes is difficult to calculate accurately 
with simulation based on conventional periodic boundary 
conditions.5 In addition, the ability of the boundary potential 
to reproduce the influence of bulk solvation on the intramo- 
lecular conformational equilibrium of flexible molecular sol- 
utes must be examined. The n-butane and the alanine dipep- 
tide were chosen because they are well-known systems for 
which similar calculations have been reported in the litera- 
ture. The solvent-induced potential of mean force around the 
dihedral angle of n-butane has been used to study the hydro- 
phobic effect,47-4g and the alanine dipeptide molecule has 
been used to study the influence of solvation on the confor- 
mational equilibrium of polypeptides and proteins.‘7,50 

In all cases, the configurational sampling was performed 
by generating Langevin dynamics trajectories with a friction 

TABLE I. Lemmrd-Iones parameters. 

Parameters 

Particles E (kcaUmo1) 

K+ -0.0870 3.5275 
Na+ -0.0469 2.7275 
0a -0.1521 3.5365 

“Parameters corresponding to the TIP3P water model (Ref. 35). 

constant corresponding to a relaxation time of 5 ps-’ applied 
to the oxygens; an integration time step of 1 ps was used and 
the bonds involving hydrogen atoms were kept fixed using 
SHAKE.~~ The center of mass of the solute was constrained at 
the center of the simulation system. The solvent boundary 
potential including the angular potential correction was used. 
The electrostatic reaction field was calculated with 16 mul- 
tipoles. The Lennard-Jones parameters used in calculations 
are given in Table I. More specific details about the simula- 
tion are given below. The performance of the solvent bound- 
ary potential was tested by considering a number of explicit 
water molecules varying from 4 to 100. 
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PIG. 6. Solute water molecule. Radial distribution function of the solvent 
water oxygen (top) and of the solvent water hydrogen (bottom) around the 
oxygen of one solute water molecule kept in the center of a sphere of 25,50, 
and 100 explicit waters. The average was calculated from a trajectory of 
Langevin dynamics of 50 ps. 
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0.20 TABLE II. Solvation free energy of a solute water molecule (kcaYmo1). 

Water molecule 

Systems” Charging Cavity 

4 -6.6 3.9 
6 -6.5 3.2 

25 -8.7 2.7 
50 -8.8 3.0 

100 -8.8 2.4 

‘Number of explicit waters around the central solute water. 

Total 

-2.1 
-3.3 
-6.0 
-5.8 
-6.4 

0.15 

Solvation of one water molecule 

The solvation structure around a solute water molecule 
constrained at the center of a water sphere was calculated for 
simulation systems including different numbers of explicit 
solvent molecules. Simulation systems containing 25, 50, 
and 100 explicit solvent waters were examined. For each 
case, the averages were calculated from a Langevin trajec- 
tory of 50 ps. The oxygen-oxygen and oxygen-hydrogen 
radial pair distribution functions are shown in Fig. 6. It is 
observed that the solvent structure around the solute water 
molecule is well reproduced by the solvent boundary poten- 
tial when 50 or 100 waters are included explicitly, though the 
edge effects are stronger with 25 waters. The positions of the 
strong first and weak second peaks in the oxygen-oxygen 
radial distribution function (near 3.0 and 5.5 A) are in good 
agreement with previous simulations of TIP3P water.35 The 
positions and amplitude of the first and second peaks of the 
oxygen-hydrogen radial distribution function (near 1.9 and 
3.3 A) are also in good agreement with previous 
simulations.35 

0.30 I I 
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The free energy of solvation of a solute water molecule 
was calculated using standard free energy perturbation 
techniques.5*33 The total free energy of solvation of the solute 
was calculated as a sum of two contributions: the free energy 
to insert a neutral solute in the solvent (“cavity formation”) 
and the free energy to switch-on the charge of the solute 
(“charging”). The free energy for cavity formation was cal- 
culated using ten windows with the scaled Lennard-Jones 
parameters Xiol,,, and Ai +,n. Langevin dynamic trajectories 
of 10 ps each were generated for each window, varying Ai 
from 0.05 to 0.95 with a step increment of 0.1. Each trajec- 
tory was started from the last configuration of the previous 
window and equilibrated during 10 ps. Free energy perturba- 
tions were calculated for values of Xi+0.05 according to Eq. 
(7). An identical procedure was used to calculate the charg- 
ing free energy. The results of the calculations for the solva- 
tion free energy of a solute water molecule are given in Table 
II. The results obtained with 25 to 100 waters are very simi- 
lar. The total solvation free energy is around -6 kcal/mol, 
with contributions of 4-2.8 kcal/mol from the cavity forrna- 
tion and -8.8 kcal/mol from charging. The free energy cal- 
culated with four and six waters is underestimated due to a 
combination of errors. The charging free energy is smaller 
(-6.6 and -6.5 kcal/mol) and the cavity formation is larger 
(+3.9 and +3.2 kcal/mol). As observed in other calculations, 
the relative error is dominated by the free energy for cavity 
formation.33 Based on separate calculations done with differ- 

FIG. 7. Radial distribution function of the solvent water oxygen around one 
solute K+ (top) and Na+ (bottom) ion constrained in the center of a sphere 
of 25, 50, and 100 explicit waters. The average was calculated from trajec- 
tories of Langevin dynamics of 50 ps. 

ent starting conditions, the uncertainty is estimated to be on 
the order of 0.5 kcalJmo1. 

Properties of solvated ions 

The solvation structure around one ion constrained at the 
center of a water sphere was calculated for simulation sys- 
tems including 25,50, and 100 explicit waters. For both ions, 
the averages were calculated from a single 50 ps Langevin 
trajectory. The ion-water oxygen radial pair correlation 
functions for Na+ and K+ are shown in Fig. 7. It is observed 
that the first peak, representing the primary hydration shell, 
is well reproduced in the three simulation systems. The sec- 
ond hydration shell is reproduced with 50 and 100 explicit 
waters. The number of waters is not sufficient to provide a 
second hydration shell in the system with 25 waters. The 
calculated free energy of solvation and the relative free en- 
ergy difference are given in Table IB for Naf and K*. The 
free energy simulation procedure was similar to that used in 
the water solute calculations (see above). The relative free 
energy of Naf and K+ was calculated using Eq. (7) with 
linearly interpolated Lennard-Jones parameters O.~(V,,+(T,) 
and O.~(G~+C$ from 50 ps Langevin dynamics trajectories 
of the ions. 

9059 

K* 

100 waters 

100 waters - 100 waters - 
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TABLE RI. Solvation free energy of ions (kcaVmo1). 

Kf Na+ Relative 

System? Charging Cavity Total Charging Cavity Total Difference’ Perturbationd 

exptb -80.6 -98.2 - 17.6 
6 -106.2 2.2 - 104.0 
8 -82.0 3.3 -78.7 

2.5 -82.3 3.2 -79.1 - 103.5 2.8 - 100.7 -21.6 -21.5 
50 -83.9 3.5 -80.4 - 103.4 2.6 - 100.8 -20.4 -21.5 

100 -84.3 2.8 -81.5 -105.1 2.5 - 102.6 -21.1 -20.5 

“Number of explicit water molecules around the ions. 
bExperimental chemical potentials taken from Ref. 51. 
“Calculated directly from the difference between the absolute free energy (column 3 and 6). 
dCalculated from a free energy perturbation approach. 

The free energy of Na+ and K’ calculated with different 
numbers of water molecules are very similar. To provide 
more realistic models, the Lennard-Jones parameters used for 
the ions were adjusted to reproduce the experimentally de- 
termined chemical potentials with the free energy 
calculations5t The charging free energy of Kf is around 
-83.5 kcal/mol and the free energy for cavity formation is 
+3.2 kcal/mol (averaged over the 25, 50, and 100 systems). 
Due to the smaller radius of Naf, the charging free energy is 
larger (- 104 kcal/mol) and the free energy for cavity forma- 
tion is slightly smaller (+2.6 kcal/mol). The relative free 
energy difference of K+ to Naf, calculated with the free 
energy perturbation is consistent with the difference in abso- 
lute solvation free energy. The free energy of the ions calcu- 
lated with only the first hydration shell (six waters for Na+ 
and eight waters for K+) is very similar to the values ob- 
tained with the larger systems. The relation Eq. (29), deter- 
mining the location of the dielectric boundary hRdid, was 
adjusted empirically to yield the good agreement. In the sys- 
tems with 25-100 waters, the value of ARdiel is nearly con- 
stant and around 2.7-2.8 A. In the systems including only 
the first shell, the value of AR,,, is 2.33 %, for Na+ and 2.47 
A for K+. Because the free energy calculations with these 
small systems are computationally inexpensive, this approxi- 
mation useful in the early stage of parametrization of new 
ion models. 

Conformational equilibrium 

The potential of mean force around the dihedral angle of 
n-butane was calculated using the umbrella sampling 
technique.46 The butane was modeled in the extended atom 
representation, in which the nonpolar hydrogens are included 
in the carbon to which they are attached. The parameters of 
the butane model were taken from previous studies.4g A har- 
monic window potential VLrnb = 0.5k( 4 - ~i)2 with kz4.0 
kcal/(mol rad2) was used. The configurational sampling was 
performed from Langevin dynamics trajectories of 100 ps for 
each window successively centered at -270”,-240”,...,90”. 
Each window was equilibrated during 20 ps starting from the 
last configuration of the previous window. The intrinsic tor- 
sional potential of butane was removed to obtain the solvent- 
induced contribution. The histograms were unbiased and 
combined using a statistical weighting method.52 The sym- 

metry of the PMF around 0” and 180” was used to improve 
the statistical convergence of the calculation. The PMF was 
calculated with 25 and 100 explicit water molecules. The 
results are shown in Fig. 8. In both the cases, solvation fa- 
vors the cis conformation relative to the tram conformation 
by approximately 0.5 kcal/mol. It is remarkable that the cor- 
rect free energy difference between the cis and tram con- 
formers is reproduced even when only 25 water molecules 
are included explicitly. As shown in Fig. 9, this number of 
waters is barely sufficient to provide a first hydration shell 
around the n-butane molecule. 

The relative free energy of the C,, (+=60, e-60) 
and aL (4=60, Q=60) conformations of the alanine dipep- 
tide was calculated from the PMF along the dihedral z++ with 
a constant value of 60” for the dihedral 4. The simulation 
procedure was similar to that used in the n-butane umbrella 
sampling calculations (described above). The potential en- 
ergy function of the system was biased by the torsional um- 
brella potential Vtmb = 0.5k( $ - $n)2 with k=4.0 
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PIG. 8. Solvent-induced n-butane dihedral PI@ calculated by umbrella 
sampling in a cluster of 100 (solid line) and 25 (dotted line) explicit water 
molecules. The calculation was performed in the absence of the intramo- 
lecular dihedral potential of n-butane for the sake of clarity. The PMF was 
extracted from 19 windows histograms calculated from 100 ps trajectory of 
Langevin dynamics in the presence of a dihedral harmonic potential of 2 
kcal/(mol rad’). The histograms were binned with 5 degrees intervales and 
were symmetrized with respect to +=O and 4=180 to increase the statistical 
convergence. 
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FIG. 9. Stereo representation of the system with n-butane and 25 waters. 
Thevalueof R,, is 5.5 A for this configuration. 

kcal/(mol rad’); the value of the dihedral 4 was restrained 
around 60” with a strong harmonic potential. Successive 
windows with ~i=-lOOO, -go”,..., 80” were generated. The 
polar hydrogen potential function of CHARMM4’ was used to 
model the alanine dipeptide (see also Ref. 50). The results of 
the calculations in the system with 50 and 100 waters are 
shown in Fig. 10. For comparison, the PMF calculated in 
vacuum is also shown. In both cases, the free energy differ- 
ence between the cu, and CTax conformations is only 0.1 
kcal/mol, while it is 8 kcal/mol in vacuum. As in the case on 
n-butane, it is remarkable that the PMF is reproduced accu- 
rately, even when only 50 water molecules are included ex- 
plicitly. It can be seen in Fig. 11 that this number of waters 
corresponds to a first hydration shell around the alanine 
dipeptide. The PMF determined by Tobias and Brooks has 
been replotted (Fig. 5 from Ref. 50). Their result was ob- 
tained from molecular dynamics simulations of the alanine 
dipeptide molecule surrounded by 202-207 explicit water 
molecules treated with conventional periodic boundary con- 
ditions; a method based on holonomic internal coordinate 
constraints with free energy perturbation was used. The same 
potential function was used. Despite the differences in simu- 
lation systems and in free energy methodologies, the results 
obtained with the boundary potential are in good agreement 
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FIG. 10. Alanine dipeptide relative free energy difference for conforma- . . tional transrtron C,, to oL in a gas phase (vacuum) and in presence of 50 
and 100 explicit water molecules. The histograms were binned with 5 de- 
grees intervales. The result of the study by Tobias and Brooks (Ref. 50) is 
also shown for comparison. 
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FIG. 11. Stereo representation of the system with the alanine dipeptide and 
50 waters. The value of R,, is 7.2 A for this configuration. 

with their calculations. The largest discrepancy is at the bar- 
rier between the CTax and aL conformations. In the present 
calculations it is lower by about 1.0 kcaUmo1 relative to their 
calculations. 

CONCLUDING DISCUSSION 

An approach to approximate the effect of bulk solvation 
from molecular dynamics simulations of a finite cluster has 
been described. The approximation follows from a formal 
separation of the multidimensional configurational integral in 
terms of n inner solvent molecules nearest to the solute and 
the remaining outer bulk solvent molecules. Using this for- 
mulation, it was shown that averages can be expressed in 
terms of a finite cluster with one arbitrary solute and II ex- 
plicit solvent molecules under the influence of a solvent 
boundary potential. The solvent boundary potential corre- 
sponds to the solvation free energy of an effective object 
composed of one hard sphere of radius R,, , one solute and 
II solvent molecules in a frozen configuration. This interpre- 
tation is helpful in constructing a boundary potential to ap- 
proximate the influence of the surrounding bulk solvent. 

Following the theoretical formulation, an approximate 
effective potential of mean force was constructed to repro- 
duce the main feature of solvation in bulk water. The water 
boundary potential is practically realized as a part of a modi- 
fied version of the CHARMM program4’ but could be easily 
implemented in other biomolecular simulation programs. 
The water boundary potential was adjusted empirically for 
simulations of the TIP3P mode1,35 although it might also be 
appropriate for other similar water models such as SPC.36 In 
the present implementation, many features of the boundary 
potential are closely related to others developed previously. 
For example, the van der Waals contribution, AWvd, is very 
similar to the MFFA potential calculated by Brooks and 
Karplu~.~~ Similarly, the position of the dielectric interface 
used in the calculation of the Kirkwood reaction field calcu- 
lation is analogous to the exclusion radius of Rullmann and 
van Duijnen.26 One important difference here is that the 
present boundary potential was derived from the exact ex- 
pression given by Eq. (12). We consider this equation a main 
result of this article. The approximate boundary potential de- 
veloped here is not unique and could be improved further. 
For example, improvements of the angular correction poten- 
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tial are possible. Several difficulties may be resolved by go- 
ing beyond the simplifying assumption that the boundary is 
on average spherical. 

The boundary potential was tested with standard sys- 
tems. The solvation free energy of a water molecule and of 
sodium and potassium ions was calculated. The influence of 
bulk solvent on the conformational equilibrium of molecular 
solutes is illustrated by performing umbrella sampling calcu- 
lations of n-butane and alanine dipeptide in water. The 
boundary potential was tested to examine the dependence of 
the results on the number of water molecules included ex- 
plicitly in the simulations. It was observed that bulklike re- 
sults were obtained, even when only the waters of the first 
hydration shell were included. The boundary potential is 
flexible for any number of solvent molecule such that the 
density corresponding to a constant pressure is adjusted au- 
tomatically. This can be useful in alchemical free energy cal- 
culations in which the difference in molecular size between 
two solutes is significant.28 The formal separation of the con- 
figurational integral was developed for the case of a spherical 
inner region. The formalism can also be developed for other 
geometries, e.g., extensions to a planar boundary should be 
straightforward. However, it may be more difficult to find 
satisfactory approximations in the case of a nonspherical in- 
ner region such as ellipsoids. The solvent boundary potential 
approach may also be useful to provide a primary hydration 
around a small subset of atoms described with ab initio 
quantum chemical potentials. 

APPENDIX 

In this Appendix, the formal equivalence of Eqs. (1) and 
(4) is demonstrated in the case of an ideal monoatomic gas of 
N particles in a volume V. The classical ideal gas configu- 
ration integral, expressed as in ECq. (4) in terms of n inner 
particles and (N-n) outer particles, is, 

Zided(NpV)=$ 
.I I 

dr, dr2---dr, 
(V- V,p+) 

(N-n)! ;‘.; -. 

(Al) 

where the outer particIes have been integrated over the full 
space except the volume V,, occupied by the sphere of ra- 
dius R defined by the distance of the farthest of the inner 
particle with R=MAX (rlr...,r2). 

To solve the multidimensional integral, the inner par- 
ticles are renumbered from 1 to n, starting from the center of 
the system. In the ordered integral, the n ! is removed. As- 
suming that the ideal gas in contained in a sphere of radius 
R, and volume V, the partition function is expressed in 
spherical coordinates, 

Zi~~~(N,V)=/ORV4~r: drl/rIv4Tri dr2* * * 

X 
I 

Rv 
4~; dr, 

(V-7&y”) 

‘n-1 (N-n)! ’ 
642) 

making the change of variables, vi=4rrr?/3, the integral is 

Performing the integral over the nth inner particle, 
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(A41 

yields a similar expression for (n - 1) inner particles and (N 
- n + 1) outer particles. Repeating the process n times yields 
the familiar VNIN! of the ideal gas. 
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