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We compare the efficiencies of deterministic molecular dynamics (MD) and Monte Carlo (MC) methods for
sampling the configuration space of finite atomic systems, in both the microcanonical and canonical ensembles.
By the examples of a nonlinear molecule, Ar3, and a linear molecule, Ar3

+, and several physical observables
such as the absorption spectrum or the average kinetic energy release in unimolecular dissociation, we show
that MD sampling can exhibit significant differences with respect to MC results. At low energy or low
temperature, regular orbits and vanishing Lyapunov exponents prevent Newtonian MD from being ergodic.
Also, a larger effect is observed because of angular momentum conservation, which is neglected in conventional
MC. We show how the use of a suitable MC scheme can notably improve the ergodic properties of Newtonian
molecular dynamics sampling.

I. Introduction

The increasing development of realistic simulations for
molecular systems, including liquids, solids, biomolecules, and
clusters, has emphasized the wide interest and need for high
quality sampling of the phase space. The dynamical or statistical
study of multidimensional potential energy surfaces (PES) is
often conveniently performed by numerical simulation of the
atomic or molecular system.1,2 Molecular dynamics (MD) and
Monte Carlo (MC) methods are commonly used to sample the
configuration space but are very different in essence. Standard,
deterministic MD follows the dynamical trajectory of the real
system by solving the equations of motion. On the other hand,
MC is a stochastic approach where only the equilibrium
distribution of phase space points is meaningful. For some
purposes, it can also be helpful to incorporate some stochastic
elements in MD simulations (as in Langevin molecular dynam-
ics) or some guiding elements to MC simulations (as in force-
bias Monte Carlo). Usually, such a mixing results in the short-
time dynamics being no longer physically relevant. Obviously,
the need for measuring actual dynamical quantities in simulation
requires one to choose MD methods over stochastic techniques.
On the other hand, the sampling required for observables cast
as a statistical problem can be equally obtained from MC or
MD methods. However, the physical parameters and statistical
ensembles come into play and may affect this choice. For
instance, when simulating a bulk system at constant pressure
or temperature, the numerical integrators required by adding
extra degrees of freedom for the thermostat are generally of a
higher order than those for constant energy systems, or they
require shorter time steps. By comparison, Monte Carlo methods
are relatively straightforward to implement.

Although the situation described above is still somewhat
system-dependent, finite systems exhibit specific peculiarities
which can bring difficulties when sampling the phase space.
First, at sufficiently low energy, a Hamiltonian system will
display regular trajectories. This behavior predicted by the

Kolmogorov-Arnold-Moser (KAM) theorem occurs when
only a small perturbation is applied. As the number of degrees
of freedom increases, the KAM energy threshold will decrease
rapidly. However, for molecules or small clusters, this threshold
can be quite large, and the dynamics can be regular in a
reasonably wide energy range. Regular molecular dynamics
trajectories are not ergodic and should not be used for ergodic
sampling. Second, the statistical ensembles sampled by MD and
MC methods are not rigorously the same, regardless of whether
energy or temperature is the conserved parameter. The difference
is due to the conservation of angular momentum and is
characteristic of finite atomic and molecular systems. At constant
total energy, the microcanonical ensemble (NVE) is thus
replaced by another ensemble where the angular momentum
vector is prescribed to beJB in addition to the number of particles
N, volumeV, and energyE. The NVEJB ensemble is called the
molecular dynamics ensemble and has been devoted a few
studies in the past.3-7 At constant temperature, extended systems
which include thermostat variables also conserve angular
momentum when it is set to zero. While regular trajectories are
less likely to occur because of the extra degrees of freedom,
the ensemble sampled by such MD methods is not, strictly
speaking, the canonical (NVT) ensemble, but rather the NVTJB
ensemble withJB ) 0B. This difference may seem unimportant,
or even academic, but should be noted when dealing with phase
space averages for small molecules. More generally, this topic
is relevant in unimolecular reactions or dissociations, where
microcanonical or canonical integrals must be evaluated.

In this article, we compare the predictions of molecular
dynamics and Monte Carlo methods, for two Hamiltonian
systems which model Ar3 and Ar3

+, respectively, in both the
microcanonical and canonical ensembles. The two molecules
illustrate very different kinds of structures, originating from
either loosely bound (van der Waals) or strongly bound forces.
As such, they can be seen as representative of the various
interactions usually found in molecular systems. Our main
results are that sampling the configuration space of these small
atomic clusters can be very difficult with MD simulations, and* To whom correspondence should be addressed.
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also that angular momentum conservation strongly affects the
equilibrium statistical distribution, especially for very asym-
metric molecules. To achieve more ergodic MD sampling, we
show that a Monte Carlo scheme can be used to generate the
suitable initial conditions of the trajectories.

The paper is organized as follows. In the next section, we
recall the basic principles of simple MD and MC methods in
the microcanonical and canonical ensembles, and we emphasize
how to include the conservation of angular momentum in Monte
Carlo simulation. In Section III, we study in detail the cases of
Ar3 and Ar3

+ modeled by a simple classical and a more
accurate quantum potential energy function, respectively. The
effect of angular momentum conservation on two observables,
the kinetic temperature and the instantaneous Lyapunov expo-
nent of Ar3, is studied in a wide energy range. We also compare
the various sampling schemes on a more physical observable
for Ar3

+, namely, the absorption spectrum, and we calculate the
average kinetic energy released during unimolecular dissociation
of an argon atom from Ar4 and Ar4

+, respectively. Finally, we
give concluding remarks in Section IV.

II. Sampling Techniques

A. Molecular Dynamics. In the microcanonical ensemble
sampling, the usual Newtonian equations of motion have been
solved using a fifth-order Adams-Moulton numerical integrator.
The initial conditions were taken at the lowest energy config-
uration with a choice of random initial velocities which satisfy
the three mechanical conditions: (a) total energy isE, (b) total
linear momentumPB is zero, and (c) total angular momentumJB
is zero. Step c requires one to invert the inertia matrix, which
is only possible for a nonlinear molecule. In the case of Ar3

+,
we slightly shifted one atom off the axis with a small amplitude,
therefore not affecting the total energy significantly.

Sampling the configuration space at constant temperature was
achieved by molecular dynamics using Nose´-Hoover chains.2

The equations of motion are now8

where{qi}, {pi} are the respective coordinates and momenta
of theN atoms, and{ηi} and{Vηi} are the respective coordinates
and velocities of theM thermostats of the chain. Following
Martyna, Klein, and Tuckerman,8 the thermostat masses were
chosen to beQ1 ) (3N - 6)kBT/ω2 andQj ) kBT/ω2 for j > 1,
ω being a typical frequency of the system found after diago-
nalizing the mass-weighted Hessian matrix at the lowest-energy
structure. The initial conditions were chosen simply at this
geometry without any nonzero velocity except for the thermostat
variables. Simple symmetry arguments9 show that an initial
angular momentum set to zero in the simulations is conserved
by the above equations of motion. This was previously noticed

by Weerasinghe and Amar in a study of cluster evaporation10

but does not hold for nonzeroJB. As a consequence, only the
3N - 6 internal vibrational degrees of freedom are thermalized
in the Nose´-Hoover chains method, out of 3N. This explains
the 3N - 6 factor in the rhs of eq 1.

As will be seen in the next section, this conservation can
lead to some deviations with respect to the actual canonical
ensemble sampling. Nose´-Hoover chains are one straight-
forward extension of the original extended-ensemble formalism
introduced by Nose´ and Hoover.11 As shown by Martyna, Klein,
and Tuckerman,8 more than one thermostat are required for
simple oscillators to behave in an ergodic way. A possible
alternative consists of using quartic feedback forces for the
thermostat variables, as recently suggested by Hoover and co-
workers.12

B. Monte Carlo. The Metropolis scheme was used for single-
temperature (or energy) simulations. The sampling of the
statistical distributionF(Γ) of phase space pointsΓ is conven-
tionally done by alternating random moves fromΓold to Γnew

and by accepting these moves with probability acc(Γold f Γnew)
) min[1, F(Γnew)/F(Γold)]. For an atomic system, the statistical
distributionF can be factorized into configuration- and momenta-
dependent parts. In the canonical ensemble,F is simply
proportional to the Boltzmann factorFNVT(R) ) e-âV(R), V(R)
being the potential energy at configurationR and â ) 1/kBT
the inverse temperature. In the microcanonical ensemble and
up to a normalization constant,F is given by13

whereΘ stands for the step functionθ(x) ) 0 if x < 0, θ(x) )
1 otherwise. Sampling the microcanonical ensemble using
Monte Carlo techniques was previously proposed in a rigorous
fashion by Schranz, Nordholm, and Nyman14 following the
pioneering work of Severin and co-workers,15 even though these
authors were not specifically interested in the ergodicity matters.
Simulations were also performed starting with the lowest-energy
configuration and doing individual moves with a step size
adjusted to yield between 40% and 60% accepted MC moves.

It is possible to include conservation of angular momentum
in the expressions of the equilibrium densitiesFNVT andFNVE.
One finds4,5,16

I (R) being the inertia tensor of configurationR. The two above
equations are only valid for nonlinear molecules. In the systems
keeping a linear shape,xdetI should be replaced byI (R), and
the number of independent degrees of freedom should also drop
by one. For a larger, nonlinear molecule, the extra geometrical
factor 1/xdetI exhibits small variations in the range of
available configuration space. However, not including it can
cause some quantitative6,17 or even qualitative5 disagreement
with molecular dynamics data.

III. Test Cases: Ar3 and Ar3
+

For the two systems studied,N ) 3 atoms and all simulations
consisted of 103 different initial conditions and 104 time steps
(MD) or Monte Carlo cycles. The first 10% of the collected
data were rejected for equilibration, and only one MC step every

q̆i )
pi

mi

p̆i ) - ∂V
∂qi

- piVη1

η̆i ) Vηi

V̆ηi
) [∑

i)1

3N pi
2

mi

- (3N - 6)kBT] - Vη1
Vη2

V̆η1
) [Qj-1Vηj-1

2 - kBT] - Vηj
Vηj+1 1 < j < M

V̆ηM
) QM-1VηM-1

2 - kBT (1)

FNVE(R) ) [E - V(R)](3N/2-4)Θ[E - V(R)] (2)

FNVT(R, JB ) 0B) ∝
FNVT(R)

xdetI (R)

FNVE(R, JB ) 0B) ∝
FNVE(R)

xdetI (R)
(3)
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N steps was included in the Monte Carlo sample to avoid
excessive correlations.

A. Ar 3. The simple Lennard-Jones (LJ) potential was
employed to model the interaction within neutral Ar3. We did
not need more accurate descriptions for the present statistical
purposes. With the usual parameters (for argon)ε ) 172.4 cm-1,
σ ) 3.405 Å, the only equilibrium geometry is an equilateral
triangle with lengthσ and energy-3ε. The harmonic zero-
point energy, calculated from the three vibrational frequencies
at this minimum, is ZPE) 26.4 cm-1 above this minimum. At
constant temperature, the molecular dynamics simulations used
a time step ofδt ) 1 fs. At constant total energy, we were able
to get a good conservation of the mechanical quantities using a
larger time step,δt ) 10 fs.

We have plotted in Figure 1a the probability distribution of
potential energy found in microcanonical simulations with
(MC and MD) and without (MC) angular momentum conserva-
tion, at total energy corresponding to the zero-point energy.
While the two Monte Carlo distributions can hardly be distin-
guished, the molecular dynamics results show a somewhat
irregular pattern, especially at low and intermediate energies.
Repeating the computations with different sets of initial condi-
tions produced the same MC curves, but still a badly converged
MD distribution, especially in the case of fewer but longer
simulations. This poor convergence of molecular dynamics is
the signature of regular orbits and only moderate chaos and will
be explored further below.

At the total energy of 26.4 cm-1 the kinetic temperature was
estimated to be around 12 K, the value which was chosen for
the canonical simulations. The results of MC and MD have been
represented in Figure 1b, again with and without angular
momentum conservation. Only one thermostat variable was used
in the Nose´-Hoover chain, but we now find a much better
agreement between MC and MD data, although some small
disagreement can still be seen between the two MC distributions.
Therefore, the constant temperature MD simulation seems to
be ergodic thanks to the extra degree of freedom. We checked
the stability of the present MD results by performing simulations
with a larger number of thermostat variables.

The previous results show that neglecting angular momentum
conservation only affects low energy or temperature sampling
in small amounts. We have also performed a series of simula-
tions in a wide range of total energies. When the cluster is hot
enough, the linear saddle configuration located about 170 cm-1

above the minimum can be crossed and spontaneous isomer-
ization between two equivalent triangular shapes (but with
different labelings of the atoms) can occur. Isomerization in
Ar3 can be seen as the precursor to the so-called “phase changes”
seen in larger clusters such as Ar13.18 To estimate the influence
of the extra factor 1/xdetI (R) on the thermodynamic behav-
ior, we have calculated two specific indicators which can be
sensitive to changes in geometry, hence inI (R). The first
indicator is simply the kinetic temperature:

where the average of the kinetic energy〈K〉 is a microcanonical
one. When isomerization occurs, the cluster spends relatively
long times near the saddle configuration, which results in a
decrease of the kinetic temperature. The general shape of the
cluster is then characterized by very large values of 1/xdetI .
In Figure 2a, we see that the variations ofTK with respect to
energy are significantly changed by whether we consider this
weight or not in the Monte Carlo sampling scheme. The
deviations become notably large below the onset of isomeriza-
tion and increase even further at higher energies.

The second observable computed here is a finite-time
Lyapunov exponent. Lyapunov characteristic exponents (LCEs)
can contain a lot of information related to the topography of
the potential energy surface, as they probe the different
convexities of this surface near a minimum and near a saddle
point. While calculating LCEs is in principle a purely dynamical
task, recent analytical theories19 have been developed for high-
dimensional Hamiltonian systems. These theories give estimates
of the LCEs as functions of various geometrical parameters such
as the Gaussian curvature, its mean, and its variance values.
They have been previously used in the context of clusters,20

but they were much less accurate for small systems. A
complementary approach is that of short-time LCEs. In the limit
of infinitely short times, Wales and Berry21 have found an exact,
simple expression for the local Lyapunov exponents{λj}:

In the above expression, theωj
2 are the eigenvalues of the

mass-weighted Hessian matrix at the current configuration. Only

Figure 1. Potential energy distribution of Ar3 from Monte Carlo simulations with (J ) 0) and without conservation of angular momentum and also
from molecular dynamics simulations. (a) Microcanonical ensemble at total energyE ) 26.4 cm-1; (b) canonical ensemble at temperatureT ) 12
K.

TK(E) )
2〈K〉(E)

(3N - 6)kB

(4)

λ2
j ) max

ωj
2<0

(-ωj
2, 0) (5)

How Ergodic Is Molecular Dynamics? J. Phys. Chem. A, Vol. 106, No. 16, 20024147



one specific aspect of Lyapunov instability is accounted for here,
namely, the existence of negative curvature of the potential
energy surface. Other contributions such as the fluctuations of
positive curvature19 are neglected. However, for small systems
eq 5 was seen to yield a reasonable approximation of the large-
time, asymptotic Lyapunov exponents by averaging over many
instantaneous values.21,22 Here, we have measured both by the
MD and MC methods the largest local Lyapunov exponentΛ
in the microcanonical ensemble:

The results for Ar3 are plotted in Figure 2b. The general shape
is similar to the “exact” largest Lyapunov exponent calculated
by Yurtsever23 and Calvo24 and also bears some great resem-
blance with the Kolmogorov entropy calculated by Hinde, Berry,
and Wales.22 Below some threshold energy, no instability is
seen andΛ ) 0. The onset of chaos, when the KAM theorem
appears to be no longer valid, is located near 20 cm-1 above
the minimum energy.Λ then increases and shows a plateau or
even a small drop at the isomerization energy, and increases
further at higher energy. The drop inΛ has been previously
interpreted by Wales and Berry as resulting from the momentary
greater harmonicity as the cluster is likely to be located more
often (or with a larger probability) near the saddle point.21 As
for the kinetic temperature, we observe some disagreement
between the results with and without angular momentum
conservation. However, and to our surprise, this disagreement
is small compared to the kinetic temperature itself. Thus, even
for a system as small as three atoms these results show that
molecular dynamics samples the configuration space in an
ergodic way at high energy and that the microcanonical
ensemble is essentially identical to the molecular dynamics
ensemble, once the trajectories have become chaotic enough.
At the zero-point energy, the largest Lyapunov exponent is only
slightly larger than zero, hence the longer time required for
ergodic convergence.

B. Ar 3
+. The charge in Ar3

+ clusters is delocalized, and a
realistic model must include these quantum effects at the atomic
level. A relatively simple approach is found in the so-called
diatomic-in-molecules (DIM) approximation.25 We refer the
reader to the article26 for further details on the DIM method.
The full description of the parameters used here is given in ref
27. In particular, the interaction between neutral atoms is
described by the semiempirical potential of Aziz.28

In a previous work on Ar3
+, Bastida and Gade´a27 already

noticed the presence of periodic orbits and poor ergodicity of
this system when modeled with the Foreman potential.29

However, with the present Aziz potential, a reasonable conver-
gence of the absorption spectra could be obtained from MD
simulations at constant total energy. The initial conditions were
generated by very slightly distorting the global minimum
geometry so that the inertia matrix could be inverted and a set
of velocity vectors could yield the total energy required without
any global linear momentum or any global angular momentum.
The time step used was taken as 1 fs in both the constant energy
and constant temperature MD runs.

In contrast with Ar3, there is an added interest in studying
charged systems, as they are much more conveniently produced
experimentally. Moreover, the DIM approach allows one to
calculate new physical observables of spectroscopic type, which
are also more readily accessible in measurements. The potential
energy surface of Ar3

+ is very different from that of Ar3, and
the ground-state geometry of Ar3

+ is that of a linear molecule,
with effective Coulombic charge of 0.5e on the center atom
and 0.25e on each other atom. The atoms are also much more
tightly bound to one another in Ar3

+, the ZPE being about 225
cm-1.

The equilibrium distributions of potential energy in both the
microcanonical and canonical ensembles have been plotted in
Figures 3a and b. The canonical temperature,T ) 100 K, is
close to the kinetic temperature in microcanonical ensemble
runs. Compared to Ar3, we now observe a much larger
disagreement between MD and MC results and between the two
MC results with and without angular momentum conservation.
First, the microcanonical MD distribution exhibits strong
irregularities which again reveal the existence of periodic
trajectories. Even by adding one thermostat variable, molecular
dynamics remains somewhat nonergodic, since at least two
thermostats are needed to get agreement with MC results at
constantJB ) 0B. Conservation of angular momentum plays here
a greater role, simply because the molecule is nearly linear.
Therefore 1/xdetI has very large variations, that is, several
orders of magnitude.

We have also simulated the absorption spectra of Ar3
+ using

the different samplings above. The absorption spectrum is
calculated following semiclassical ideas.27,30 In a histogram
corresponding to energy differences from the ground electronic
state to the various excited states, a quantity proportional to

Figure 2. Variations of some statistical observables with total energy in microcanonical simulations of Ar3, from MC and MD. (a) Kinetic temperature;
(b) local largest Lyapunov exponent. The vertical line marks the zero-point energy, 26.4 cm-1.

Λ(E) ) 〈max
j xmax

ωj
2<0

(0, -ωj
2)〉 (6)
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the absorption efficiency is accumulated using a set of geom-
etries which sample the selected characteristic ensemble. We
refer the reader to articles 27, 30, and 31 for further details on
this subject.

The different Monte Carlo and molecular dynamics samplings
induce some changes in the absorption spectrum, as can be seen
in Figure 4. The nonergodic character of microcanonical MD
simulation is reflected in these curves, as the four absorption
peaks may again show very irregular patterns. The two peaks
at 430 and 700 nm are the most sensitive to the sampling of
configuration space near the linear geometry, and the intensity
gets 20-40% lower if we include conservation ofJB.

To reduce the ergodicity problems of MD simulations in the
microcanonical ensemble, we have implemented a hybrid MD/
MC approach where the initial conditions of MD are taken from
a MC run at the same total energy andJB ) 0B. The initial
velocities are randomly chosen to yield the total energy and
linear and angular momenta wanted. The absorption spectrum
obtained this way is much closer to the Monte Carlo results, as
can be seen in Figure 4a. The regions of phase space visited by
the corresponding trajectories are more chaotic than those
starting exactly at the equilibrium geometry. To further support
these results, we have compared in Figure 5 the distributions
of the largest Lyapunov exponent calculated along the 103

trajectories. These numbers have been estimated by solving the

tangent space equation of motion in the usual way,32 but not
by accumulating the instantaneous exponents as was made
above. The two distributions clearly show that the trajectories
starting at the equilibrium geometry are much less chaotic than
those where the initial conditions are sampled in a ergodic way.

Figure 3. Same as Figure 1 for Ar3
+. (a) Microcanonical ensemble at total energyE ) 225 cm-1; (b) canonical ensemble at temperatureT ) 100

K.

Figure 4. Absorption spectra of Ar3
+ from MC and MD samplings. (a) Microcanonical ensemble at total energyE ) 225 cm-1; (b) canonical

ensemble at temperatureT ) 100 K.

Figure 5. Probability distributions of largest Lyapunov exponent from
MD simulations of Ar3

+ at total energyE ) 225 cm-1, with initial
conditions starting at the global minimum (MD) or taken from set of
MC configurations (MD/MC).
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The poorly ergodic cases studied here could be quite general.
Nonergodic behavior can be quite easily identified. Quasier-
godicity, on the other hand, may be much more difficult to
detect. Even when convergence seems to have been reached,
different pictures could emerge from, for instance, different sets
of initial conditions. The absorption spectrum obtained from
constant energy MD simulations at 225 cm-1 did not converge
correctly in the present work, while the alternate choice of initial
conditions used by Bastida and Gade´a seems to have worked
quite well for the same statistics.27 Therefore, the usual warning
of difficulty in reaching converged observables does not apply
systematically. Quasiergodicity, as illustrated here for a small
system, could also be the rule rather than the exception for short-
time dynamics in larger molecules, often driven by local
interactions.

C. Statistics of Unimolecular Dissociation.Phase space
integrals are a common ingredient in the calculation of reaction
rates or in the distribution of energy released during dissociation.
The simple monomer evaporation from Arn

q+ with q ) 0 or 1 is
a barrierless process,

and the product molecule Arn
q+ is the transition state. One can

estimate such quantities using various statistical theories (for a
review, see ref 33, for instance). The evaluation of absolute
evaporation rates is usually difficult because most of the
prefactors are unknown a priori. Another physical observable
which involves a smaller number of parameters or functions is
the average kinetic energy release (KER). Most importantly in
the present work, this quantity is closely related with the
thermodynamics of the parent cluster.

We have employed three distinct statistical theories to give
estimates of the KER at various total energies of the reactant.
These theories will not be described in detail, as this is not the
purpose of the present article. The Rice-Ramsperger-Kassel
(RRK) theory assumes that the dissociating molecule is a
ν-dimensional harmonic oscillator and that evaporation corre-
sponds to the breaking of one harmonic bond. In the RRK
theory, the average KER〈ε〉 (E) at total energyE of the reactant
system is given by

In this equation,E0 is the dissociation energy andν ) 3n - 3.
Phase space theory (PST), in the sense of Chesnavich and
Bowers,34 includes the restriction in the phase space integrals
because of the rotation of the product. Parneix, Amar, and
Bréchignac35 have shown that a good approximation to the
rotational density of states (DOS)Γ(ε, JB ) 0B) is given by the
kinetic energy ε of the fragment, up to a multiplicative
constant.36 This leads to the expression for the average KER:
35,36

whereΩn(E) is the vibrational DOS of the (nonrotating) product
molecule. The functionΩn can be calculated from simulations
of the product molecule, either in the microcanonical or
canonical ensembles, by the multi-histogram method.5 This
method requires one to perform several simulations at various
total energies or temperatures and to buildΩn from the

overlapping potential energy distributions. The calculation of
〈ε〉PST thus offers a direct way to compare the microcanonical
and molecular dynamics ensemble samplings.

Alternatively, a simple analytical expression for〈ε〉 is found
by simplifying the above densities of states in the PST equation
by their harmonic approximation. This is the basis of the
Engelking and Weisskopf models:37

The Engelking prediction can be used to quantify the extent of
harmonicity in the product molecule by comparing its value to
the PST estimate. As seen in previous works,10,35,38calculating
the average KER can reveal the existence of phase changes,
provided that a proper estimation of the vibrational DOS is made
first.

For each system investigated previously, we have performed
a series of 30 MC simulations at constant energies, up to 150
cm-1 for Ar3 and 800 cm-1 for Ar3

+, and we have calculated
the vibrational DOS. Then, the average kinetic energy release
in the reactions Ar4

q+ f Ar3
q+ + Ar, q ) 0 or 1, has been

estimated using the RRK, PST, and Engelking statistical rate
theories. The results are represented in Figure 6 for the two
molecules. Phase space theory is known to be fairly accurate
with respect to the statistics gathered from actual molecular
dynamics simulation of the evaporation process, as shown by
Weerasinghe and Amar in argon clusters10 or more recently by
Calvo in C60 clusters.38 As was also seen in these works, the
RRK value strongly underestimates both the PST and Engelking
predictions.

The average kinetic energy release in the dissociation of Ar4

follows the same qualitative behavior as the kinetic temperature
of Ar3, with a small backbending at the isomerization threshold
near 90 cm-1. The effect of including the conservation of angular
momentum in the phase space sampling has the same magnitude
as in Figure 2 and gets notable as the cluster starts to isomerize.
The deviation from the harmonic line of the Engelking value
becomes apparent near 30 cm-1, which is consistent with the
rise in the Lyapunov exponent of Figure 2b.

The average kinetic energy released in the dissociation of
Ar4

+ into Ar3
+ + Ar is much larger, which simply reflects the

stronger bonding of this molecule. The difference between the
two sampling schemes shows again that conservation of angular
momentum has the effect of increasing harmonicity. However,
the reasons for this increase are different for the two molecules.
Angular momentum conservation favors the linear configuration
of Ar3

q+, which is a saddle point for Ar3, but the equilibrium
structure of Ar3

+. In the former case, harmonicity increases as
the system gets close to the saddle point, as previously shown
by Wales and Berry.21 On the contrary, distortions from the
linear geometry are disfavored at low energies in Ar3

+, and
harmonicity is further reinforced. As can be seen in Figure 6b,
even at 800 cm-1, Ar3

+ behaves in a quite harmonic way. This
is in agreement with the observed regular trajectories in
molecular dynamics simulations and the difficulty to achieve
ergodicity in this system.

IV. Discussion and Conclusion

From a conceptual point of view, isolated finite atomic or
molecular systems are conveniently studied at constant total
energy rather than at constant temperature. Because the mo-
lecular dynamics approach closely mimics the actual physical
behavior, it may be thought to be more accurate in providing a

〈ε〉Engelking(E) ) 2
E - E0

ν - 1
(9)

Arn+1
q+ f Arn

q+ + Ar

〈ε〉RRK(E) )
E - E0

ν
(7)

〈ε〉PST(E) )
∫0

E - E0E2Ωn(E - E0 - E)dE

∫0

E - E0
εΩn(E - E0 - ε)dε

(8)
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representative set of configurations than nondeterministic,
stochastic methods. However, the typical time required for
convergence can be approximated as the Lyapunov timeτ )
1/Λ. Therefore at low energies,τ may rise to very large values
or even to infinity in the KAM regime. This can cause some
major limitations for MD simulations to reach convergence, as
was seen in the present work. Our two examples, Ar3 and Ar3

+,
have only a modest number of degrees of freedom, but they
both show such nonergodic properties at low (but physically
sound) energies. In our examples, the statistical data was
gathered over 103 independent initial conditions and accumulated
over 104 steps each. If only one initial condition had been
chosen, the disagreement between MC and MD data would have
been worse. In fact, a 107-time steps long MC simulation
converges exactly the same way, but the unique MD trajectory
can remain close to a periodic orbit, therefore preventing ergodic
convergence. Moreover, such long trajectories can raise prob-
lems for the accurate conservation of mechanical quantities.

In the two cases presently investigated, only one basin of
the potential energy surface is accessible, and standard Monte
Carlo simulation can easily produce ergodic sampling. Never-
theless, MC and MD predictions could be brought to agreement
only if we included conservation of angular momentum in the
Monte Carlo scheme. This can be achieved by adding a
geometrical factor 1/xdetI to the equilibrium phase space
density. In Ar3

+, this weight 1/xdetI can be especially large
near the linear geometry. For Ar3, some differences in several
observables occur when the linear configurations become
available.

Strictly speaking, deterministic molecular dynamics at con-
stant energy does conserve all mechanical quantities including
angular momentumJB, so do Nose´-Hoover type methods at
constant temperature, provided thatJB ) 0B. The corresponding
“NVT JB ) 0B” statistical ensemble is somewhat unphysical, as
there is no reason the system should keep its angular momentum
constant while being thermostated. It appears as a natural
restriction because of the use of deterministic MD methods,
which will affect the outcome of simulation results for any finite
system.

Thus, we expect that sampling the configuration space of
linear systems must be done carefully depending on the physical
or chemical situation, which may or may not require to keepJB
constant. Obviously, the disagreement between the sampling

obtained from MD and the ones from standard MC (i.e., without
constantJB) simulations should be less important for larger
systems, as linear configurations are less frequent. However,
the increasing complexity of the potential energy landscape
should also be seen in the much larger number of isomers or
stable configurations. The competition between available iso-
mers may yield new nonergodicity or quasiergodicity problems
because of the long relaxation time required to cross the barriers
separating these isomers. Even stochastic methods, in their basic
form, can be very slow in reaching convergence.39,40They must
be improved using specific techniques such as jump-walking41

or parallel tempering,42 which have been shown to be efficient
in both the microcanonical and canonical ensembles.6,43

Finally, by seeding the molecular dynamics runs with
configurations taken from a properly made Monte Carlo
simulation within the same statistical ensemble, we have
significantly improved the ergodic properties of MD simulations.
Of course, this hybrid MD/MC approach is rigorously equivalent
to a pure Monte Carlo method in the limit of many infinitely
short MD trajectories. In practice, the length of the MD
trajectories and the time spent doing MD simulation relative to
the time spent doing MC simulation should be adapted to the
system under study. When the forces are computationally
expensive, Monte Carlo could be a better choice. On the other
hand, the dynamics may be faster than MC in some cases. For
instance, Car-Parrinello dynamics offers a convenient way to
accelerate the computation of the potential energy in the ground
electronic state. This method is nevertheless also sensitive to
nonergodic troubles.

In the present work, we have focused on nonrotating systems.
By emphasizing the possibly important role of angular momen-
tum conservation atJB ) 0B, we have studied physical observables
that can be amenable to experimental comparison, such as the
photoabsorption spectrum or the average kinetic energy released
in unimolecular dissociation. This situation is relevant to any
molecular system whose vibrational energy is much larger than
its rotational energy, as in the experimentally studied Ar3

+.
Rotating systems with constant but nonzeroJB can also be
investigated with means of Monte Carlo methods, as first shown
by Nyman and co-workers.4 Constant energy or constant
temperature simulations with finiteJB involve the effective
rovibrational potential energy surfaceVJB(R) ) V(R) +
JB†I-1(R)JB/2 but also the geometrical weight 1/xdetI in

Figure 6. Average kinetic energy release during monomer evaporation in the reactions (a) Ar4
+ f Ar3

+ + Ar; (b) Ar4 f Ar3 + Ar. For each panel,
the two straight lines are the predictions of the RRK and Engelking theories, respectively. The two other curves are the result of phase space theory
using the vibrational densities of states from Monte Carlo microcanonical sampling in the NVE and NVEJB ) 0B ensembles.
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the phase space integrals. A comparison with molecular dynam-
ics data has shown previously that this weight should not be
neglected even for quite large systems such as Ar13 in the
vicinity of the solidlike-liquidlike phase change.5

However, and whatever the angular momentum, constant
energy molecular dynamics has inherent limitations when several
basins of the energy landscape are available but not connected.
In this case, the energy barriers higher than the total energy
prevent isomerization and hinder ergodicity, which can only
be restored by exchange techniques and the use of simultaneous
trajectories as in parallel-tempering Monte Carlo.6

In conclusion, stochastic simulation methods have several
advantages over deterministic molecular dynamics in terms of
exploring the configuration space ergodically. These advantages
must be balanced with the need for time-dependent observables.
At constant temperature, Langevin dynamics offers an interest-
ing alternative to extended ensemble molecular dynamics, even
though it is known to be inaccurate at short times. An isolated
system, that is, with constant energy but also with linear and
angular momentum, still requires standard MD simulations to
get explicit dynamical information. A proper use of Monte Carlo
methods appears then as the natural choice for selecting the
initial conditions.
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