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An adequate representation of aqueous solvent is a fundamental problem in the field of macromolecular
simulations. To assess the ability of different solvent models to reproduce experimental data, we performed
a series of molecular dynamics simulations on a small peptide, each utilizing a different model of solvent.
The generalized Born (GB) model, the analytical continuum electrostatics (ACE) potential, the effective energy
function-1 (EEF1), the solvent accessible surface area (SASA) model, and the standard TIP3P model of
explicit solvent were evaluated in this study. For each solvent model, the potential of mean force (pmf) for
folding a 12-residue peptide from the fully extended state to a compact state, where the two ends of the pep-
tide are in close proximity, was computed. These data were compared to experimental results on the peptide’s
end-to-end distance distribution obtained with fluorescent resonance energy transfer (FRET) experiments.
For each solvent model, the FRET efficiency was computed from the corresponding pmf and compared to
the experimental result. The value obtained from the simulation with explicit solvent was in excellent agreement
with experiment. By contrast, all simulations that employed an implicit solvent model yielded values for the
FRET efficiency that significantly deviated from the experimental value. An analysis of the energetic
contributions to the pmf suggests potential etiologies for this marked discrepancy from experiment.

1. Introduction

Solvent plays a critical role in defining the conformational
landscape of proteins and nucleic acids. Consequently an
accurate representation of water is an essential component of
meaningful biomolecular simulations.1,2 Since dynamical simu-
lations with explicit solvent may be computationally intensive,
considerable effort has been directed at deriving energy functions
that adequately reproduce the same information in a fraction of
the CPU time. A number of suchimplicit solvent models have
been developed and key insights into the folding mechanism
of several proteins have been obtained with these methods.3,4

While it is clear that many of these approaches can qualitatively
reproduce important features of macromolecular thermodynam-
ics and dynamics,3 few studies have attempted to delineate the
limitations of such models with respect to their ability to quan-
titatively reproduce experimental data. In light of this, we as-
sessed the ability of different implicit solvent models to ade-
quately reproduce a known, experimentally determined, quantity.

The implicit solvent models examined in the present study
represent a range of methods that have gained acceptance in
the field of macromolecular simulations. One model, the
generalized Born (GB) approach, is an application of the Born
equation for ionic solvation to polyatomic molecules.5-7 Using
a linearized form of the GB equation introduced by Still et al.,6

Dominy and Brooks parametrized the GB model for proteins
and nucleic acids.8 In a subsequent work, the force field was
used to calculate the potential of mean force (pmf) for the
folding of a 20-residueâ-sheet protein and the resulting data
were in qualitative agreement with the pmf computed with the
TIP3P model of explicit solvent.9 Although the locations of the
global energy minima and saddle points were in approximate

agreement between the two models, important quantitative
differences were noted; e.g., the stability of the native state was
overestimated in the GB model.9 These results demonstrate the
utility of the method for calculating free energy profiles;
however, the lack of quantitative agreement between the two
approaches suggests that quantitative data arising from such
simulations should be interpreted with care.

In a related approach, Schaefer and Karplus combined an
integral equation method for the calculation of self-energies and
the generalized Born equation to yield the analytical continuum
electrostatics (ACE) potential.10 In a recent application, the
method was shown to yield stable trajectories on the order of 1
nanosecond for two homologousR/â proteins.11 When combined
with an adaptive umbrella sampling approach and a nonpolar
solvation term, simulations with the ACE potential yielded helix
and sheet propensities, for a predominantlyR-helical and a
predominantlyâ-sheet protein, that were in good agreement with
experiment.12 Moreover, the calculated3JNHR spin-spin cou-
pling constants were in good agreement with values obtained
from NMR studies.12 The method has broad appeal, but remains
untested with regard to the precise calculation of free energy
differences.

In a different approach, a Gaussian solvent-exclusion model
was developed for the calculation of solvation free energies and
incorporated into the CHARMM force field.13 This effective
energy function (EEF1) assumes that the solvation energy of a
group is equal to the solvation free energy of that group in a
small model compound minus the amount of solvation the group
loses by being in contact with other atoms within the protein.13

In its initial implementation, thermodynamic parameters for the
model were adapted from previously published values on model
compounds14,15 and long-range electrostatic effects were mod-
eled with a distance-dependent dielectric constant and neutral-* E-mail: cmstultz@csail.mit.edu.
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ized “charged” side chains.13 The potential has been used to
calculate folding trajectories of a smallR/â protein, CI2, and
to accurately discriminate between native and misfolded states
in established sets of native-misfolded pairs.16,17 Given its
computational efficiency, the method holds considerable prom-
ise. However, since charged moieties are neutralized, it is unclear
whether the approach can adequately model features that involve
interactions between charged side chains. Although it appears
to work quite well for deciphering overall “coarse-grained”
properties, it may not be appropriate for the calculation of free
energy differences between states with different but similar
conformations.

In a later work, Caflisch and co-workers developed an
analogous implicit solvent potential that neutralizes charged side
chains and employs a distance-dependent dielectric to model
the dielectric screening effect of solvent. An additional term
based on the popular solvent accessible surface area (SASA)
approximation of Eisenberg and McLachlan was used to model
the hydrophobic effect.18,19 Since a number of methods exist
for the rapid estimation of an atom’s solvent accessible surface,20

algorithms that employ such approximations may, in principle,
be extremely efficient. Such approaches have been applied to
several small systems and fruitful results have been ob-
tained.18,21,22 Nevertheless, few studies have systematically
examined the limitations of this approach. In a recent study,
Shimizu et al., investigated the ability of an implicit solvent
model, based on a solvent accessible surface area approximation,
to reproduce an explicit water simulated three-body potential
of mean force and found that the implicit solvent pmf did not
reproduce the explicit solvent result.21 These data highlight the
fact that such models may not be appropriate for the calculation
of some thermodynamic parameters.

Explicit solvent models have been used extensively to study
the dynamics and thermodynamics of different biomolecular
systems with considerable success. While it has been shown
that such models may not accurately reproduce all the physical
characteristics of bulk solvent,23 a number of studies utilizing
models of explicit solvent have obtained results that agree with
experiment.24 Recently we used the TIP3P model of explicit
solvent to calculate the pmf for the folding of a small 12-residue
peptide that forms the flexible N-terminal autoregulatory region
of tyrosine hydroxylase.25 In a complementary set of experi-
ments, the fluorescent resonance energy transfer (FRET) ef-
ficiency was measured for the peptide in solution.25 In that work,
we demonstrated how FRET efficiencies could be calculated
from the pmf and showed that the calculated FRET efficiency
was in excellent agreement with the experimentally determined
value. In the present study we extend these results by calculating
free energy profiles with the implicit solvent models described
above and compare the calculated FRET efficiencies to the
experimental result. These data highlight the limitations of
implicit solvent models with regard to the calculation of this
macroscopic quantity.

2. Methods

FRET Measurements.The peptide of interest corresponds
to amino acids 24-33 of rat tyrosine hydroxylase:26 KQAE-
AVTSPR. FRET measures the energy transferred between two
fluorescent pharmacophoressa donor and an acceptorsthat have
been added to the peptide/protein of interest.27 In this study, a
dansyl group was used as the acceptor group and the indole
side chain of tryptophan was used as the donor group. The FRET
efficiency,E, is defined as the number of energy transfer events
divided by the number of photons absorbed by the donor27 and

was calculated from measurements of the emission spectrum
of the peptide.25 Peptide synthesis and purification was per-
formed by Genemed Synthesis and measurements were per-
formed as described in our prior work.25

Molecular Dynamics Simulations with Explicit Solvent.
An extended-carbon polar-hydrogen model of the peptide
KQAEAVTSPR peptide was constructed using the CHARMM
program.28 The FRET calculations utilized peptides that were
labeled with a dansyl group on the N-terminus and a tryptophan
residue on the C-terminus. Since the CHARMM parameter set
does not contain parameters for a dansyl group, we placed a
tryptophan residue on both the N and C-termini of the peptide.
This substitution was expected to yield results that would be
comparable to the data obtained in the FRET measurements
because both dansyl and tryptophan are composed of large
aromatic moieties. Moreover calculations employing a tryp-
tophan at both ends of the molecule showed excellent agreement
with experiment.25 Initial coordinates for the peptide, KQAE-
AVTSPR, were built using the IC facility of CHARMM.28

Details of the molecular simulations with explicit solvent were
presented in our prior work,25 hence, we briefly outline the
approach here.

The calculations began with the fully extended conformation
of the peptide. The peptide model was minimized for 100 steps
of steepest descent minimization using a distance-dependent
dielectric to minimize any unfavorable atomic overlaps within
the structure. The extended structure was then overlaid with a
set of 1000 equilibrated TIP3P water molecules,28 and waters
that overlapped with the structure were removed. The remaining
water molecules were equilibrated in the field of the fixed
peptide structure with 100 steps of steepest descent minimization
followed by 5 ps of standard molecular dynamics at 300 K.
Repeated cycles of solvent overlay followed by minimization
yielded a total of 1649 water molecules that were added to the
structure. Molecular dynamics simulations employed a non-
bonded cutoff of 13 Å. van der Waals interactions were switched
to 0 between 10 and 12 Å and electrostatic interactions were
shifted to 0 at a distance of 12 Å. Water molecules were
restrained to lie within a sphere of radius 30 Å surrounding the
peptide of interest using a stochastic boundary potential.29 All
simulations were performed at 300 K using a Nose-Hoover
thermostat30,31 as implemented in CHARMM.28

For these calculations the end-to-end distance was defined
as the distance between the CR carbons of each tryptophan
residue located at each end, i.e., thereaction coordinate,ú. At
each simulation window,ú was restrained to a specified distance
using a harmonic biasing potential with a force constant of 25
kcal/mol/Å2. The first window began with the fully extended
state which corresponds toú ) 36.4 Å. Each subsequent window
began with an end-to-end distance that was 0.5 Å less than the
prior value; e.g., windows were centered at 36.4, 35.9, 35.4,
34.9, 34.5...6.9 Å. A total of 60 windows were performed. Each
window consisted of 20 ps of equilibration followed by 20 ps
of production dynamics. The value of the reaction coordinate
during the simulations was saved every 0.01 ps; yielding 2000
data points per window. The pmf at each windowi, Gi(ú), was
calculated from the resulting frequency distribution,pi, and the
biasing potential,Vi(ú), using the equationGi(ú) ) - kT ln pi-
(ú) - Vi(ú) + Ci, whereCi is a function of the temperature,T,
and the biasing potential,Vi(ú).25,32 Representative average
structures for each window were generated using the COOR
facility in CHARMM.28 Average structures were energy mini-
mized for 100 steps of steepest descent minimization to relieve
any poor van der Waals overlaps within the molecule.
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The pmfs arising from the different windows were linked to
form one continuous pmf over the entire range of end-to-end
distances using an automated procedure as implemented in the
program SPLICE.32 Briefly, the potentials of mean forces from
two sequential windows were linked by first comparing the
overlapping regions to find a common point where the potentials
had similar slopes. The second potential was then adjusted to
agree with the first at this common point. The final potential of
mean force was smoothed using the moving average window
method with a window span of 3. Smoothing did not affect the
positions of saddle points or energy minima for either potential
of mean force.

For each of the solvent models analyzed in this work, the
umbrella sampling windows, restraining potentials, and proce-
dure for splicing the various windows together to form one con-
tinuous potential of mean force were identical to that described
above. Below we discuss computational issues that are specific
to each model. In particular, the nonbond cutoff for each implicit
solvent model was chosen based on previously published work.
The goal was to maximize the likelihood that a given solvent
model would reproduce the explicit solvent results.

Molecular Dynamics Simulations with GB.GB simulations
utilized the method implemented by Dominy and Brooks within
the CHARMM program.8 In their previous work, the GB model
was used to calculate the folding free energy landscape for a
small â-sheet protein and qualitative agreement with explicit
solvent simulations was obtained.9 In that study, all pairwise
interactions were included in each of the GB simulations and
no cutoffs were used. Therefore, we follow the same approach
and conduct all of our GB calculations without any truncation
of the nonbond interactions.

Molecular Dynamics Simulations with ACE. The ACE
potential as implemented in the CHARMM program was utilized
in this work.10 Prior work suggests that the ACE potential with
standard nonbond cutoffs yields agreement with experimental
data on helix and sheet propensities and measured3JNHR spin-
spin coupling constants.12 We follow a similar approach and
employ electrostatic and van der Waals cutoffs tidentical to those
used in the explicit solvent simulations. The implementation of
ACE employed in this work also utilized a nonpolar solvation
term as previously described.12

Molecular Dynamics Simulations with EEF1. The EEF1
potential, as previously described, was used in this work.13 Since
the nonbond cutoffs for the EEF1 potential are part of the model,
they are predetermined as specified in the original implementa-
tion; i.e., van der Waals interactions were switched to 0 between
7 and 9 Å and electrostatic interactions were shifted to 0 at a
distance of 9 Å. Charged side chains were neutralized as
previously described.13

Molecular Dynamics Simulations with SASA.The SASA
potential as implemented in CHARMM29 was used in this
work.18 Since SASA is based, in part, on the EEF1 potential,
its nonbond cutoffs are identical to those used in the EEF1
potential.18

Calculating the FRET Efficiency from the PMF. The
FRET efficiency was calculated from the potential of mean force
as described in our preceding work.25 Here we briefly review
the procedure employed for these calculations.

If the donor and acceptor are separated by a fixed distance,
ú, then the FRET efficiency can be written as27

whereR0 denotes the Fo¨rster critical distance; i.e., the distance
at whichE is equal to 0.5. For the dansyl/tryptophan pair,R0

equals 23.6 Å.27 In the case of flexible peptides, the interpreta-
tion of the FRET efficiency is not straightforward. Since most
peptides can adopt a number of distinct conformational states
in solution, the observed emission spectra correspond to an
average of the different spectra from all of the peptide’s
accessible conformational states. Thus for peptides, the statistical
mechanical expression for the FRET efficiency becomes

It follows that the FRET efficiency can be calculated from the
pmf using the relationship

wherem andM denote the minimum and maximum values for
the end-to-end distance for the peptide of interest andG(ú)
denotes the pmf as a function of the end-to-end distance.25

FDPB Calculations. To determine how results from the
various implicit solvent models compare to results obtained with
a standard continuum electrostatic model, we calculated the
electrostatic solvation energy of representative structures using
the linear Possion-Boltzmann equation as implemented in the
program UHBD.33 The structures chosen for the UHBD calcula-
tions are described in the text. The solvation energy of each
structure is the energy associated with transferring the peptide
from low dielectric medium whereε ) 1 to a high dielectric
medium whereε ) 80. For each structure, the solvation energy
was computed using a focused grid spacing of 0.21 Å in a
manner similar to that previously described.10

3. Results and Discussion

Comparison of the Implicit and Explicit Solvent pmfs. The
experimentally measured FRET efficiency is in excellent
agreement with the result obtained using a TIP3P model of
solvent; i.e., the explicit solvent pmf (Table 1). The fact that
the calculated FRET efficiency agrees with the experimentally
determined value argues that the explicit solvent simulations
adequately describe the experimental conditions. By contrast,
the calculated FRET efficiencies from the implicit solvent pmfs
significantly differ from the experimentally determined value
and, not surprisingly, the implicit solvent pmfs themselves differ
from the explicit solvent profile (Figure 1A-E, dark lines). Of
the four implicit solvent models, the GB and ACE potentials
are most similar to the explicit solvent pmf. The TIP3P, GB,
and ACE pmfs all contain states with end-to-end distances
between 5 and 25 Å that have energies within 5 kcal/mol of
the lowest energy state (Figure 1A, B, and C). However, the
free energy profiles generated with the EEF1 and SASA models

TABLE 1: Measured and Calculated FRET Efficiencies

method value

experiment 0.46
TIP3P 0.50
GB 0.97
ACE 0.99
SASA 1.00
EEF1 1.00

E(ú) )
R0

6

R0
6 + ú6

E ) 〈 R0
6

R0
6 + ú6〉 ) 〈E(ú)〉

E ≈
∫m

M
E(ú)e-G(ú)/kTdú

∫m

M
e-G(ú)/kTdú
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are significantly differentsboth have prominent minima near
6 Å and a rapidly increasing energy fromú) 10 to 25 Å.

The TIP3P pmf contains three prominent local energy minima
located at approximately 9, 11, and 24 Å, where the minimum
near 24 Å corresponds to the lowest energy state (Figure 1A).
The implicit solvent pmfs, however, have low energy states with
end-to-end distances that are significantly smaller than 24 Å
(Figure 1B-E). The lowest energy states for the GB and ACE
potentials, methods based on the generalized Born equation,
have global energy minima with end-to-end distances near 10
Å (Figure 1B and C). Likewise, the EEF1 and SASA potentials,
methods that neutralize charged side chains, have more compact
lowest energy states with end-to-end distances in the vicinity
of 6 Å (Figure 1D and E).

The peptide of interest contains five charged groups: an
N-terminus, Lys 2, Glu 5, Arg 11, and a C-terminus. Since these
charged moieties are expected to be well solvated in the peptide,
it is likely that the particular solvent model used will have a
significant impact on the local conformation of these groups.
To gain insight into the physical basis behind the differences
in the form of the pmfs, we examined representative structures
from each free energy profile to determine how the structure of
these charged groups, and the peptide as a whole, are affected
by the particular model of solvent. The lowest energy state from
the explicit solvent pmf has a well-defined minimum atú )
24.4 Å (Figure 1A), and more than 90% of the structures arising
from the simulation centered at 24.4 Å contain a salt bridge
between Glu 5 and Arg 11 (Figure 2A).25 However, the lowest
energy states arising from the GB and ACE potentials cor-
respond to conformations that do not contain a salt bridge
between any charged groups (Figure 2B and C). The only
hydrogen bond involving a charged side chain is formed in the
GB model and involves the side chain of Arg 11 and the
backbone carbonyl of Lys 2. All other charged groups are
solvent exposed and do not interact with other moieties within
the peptide.

Although simulations with the EEF1 and SASA potentials
result in the formation of a number of hydrogen bonds between
polar moieties, including a salt bridge between Glu 5 and Lys
2, the salt bridge that occurs in the explicit solvent simulations
never forms (Figure 3D and E). The lowest energy states from
the EEF1 and SASA potentials are more compact, and repre-
sentative structures from simulations centered at these end-to-
end distances (ú ) 6 Å) have significantly more hydrogen bonds
between the various polar groups (Figure 2D and E). Moreover,
virtually all charged groups hydrogen bond to other polar
moieties in the peptide. As charged groups are neutralized in
these models, the Coulombic contribution to the potential energy
from two charged groups is similar to that which arises from
hydrogen bonds between uncharged, polar moieties. It follows
that charged groups in this model form hydrogen bonds in a
manner similar to that of uncharged polar moieties.

This analysis suggests that models based on the generalized
Born approach (i.e., ACE and GB), have low energy structures
where charged residues prefer solvent exposed conformations,
and methods that employ neutralized side chains (i.e., EEF1
and SASA) have compact low energy structures where charged
side chains are involved in multiple hydrogen bonds with polar
moieties.

Explaining the Difference between the Calculated FRET
Efficiencies. If a fluorescent donor and acceptor are separated
by a fixed end-to-end distance,ú, the FRET efficiency is given
by

where R0 denotes the Fo¨rster critical distance (23.6 Å for a
dansyl-tryptophan pair).27 If the molecule of interest has a fixed
end-to-end distance of 24 Å the corresponding FRET efficiency
is 0.47sa value close to the experimentally determined value
of 0.46.

Figure 1. Potential of mean force (pmf) for the different solvent models analyzed in this work (solid dark line). Each plot is labeled with the
solvent model used for that simulation. The average potential energy as a function of the end-to-end distance is depicted as a dotted red line in each
plot.

E(ú) )
R0

6

R0
6 + ú6
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The dominant state of the explicit solvent pmf has an end-
to-end distance near 24 Å and therefore the calculated end-to-
end distance is close to the experimental value of 0.46. As the
most favorable end-to-end distances in the implicit solvent pmfs
are smaller, the FRET efficiencies from the implicit solvent
models are significantly larger; i.e., energy transfer is much more
efficient when the ends are in close proximity. Since the correct
calculation of the FRET efficiency is likely dependent on the
presence of a prominent minimum at approximately 24 Å, the
failure of the implicit solvent models to mimic the experimental
data can be explained, in part, by the fact that each implicit

solvent pmf lacks a well-defined minimum near 24 Å. Therefore,
to understand why each implicit solvent model does not
reproduce the experimentally determined FRET efficiency, we
explore why the implicit solvent pmfs have global energy
minima far from 24 Å.

To determine the relative importance of the enthalpy and the
configurational entropy in each pmf, we computed the average
potential energy as a function of the end-to-end distance (Figure
1A-E, red dotted lines). We note that fluctuations in the
potential energy of the TIP3P simulations are larger than
fluctuations in the implicit solvent simulations. This is due to

Figure 2. (Representative structures from the lowest free energy state in each solvent model.

Figure 3. Representative structures from states withú ≈ 24. For clarity Figure 2A is reproduced as 3A.

PMF Calculations with Implicit Solvent Models J. Phys. Chem. B, Vol. 108, No. 42, 200416529



the fact that the explicit solvent calculations included over 1000
TIP3P molecules, and therefore the total energy of the system,
is significantly larger than the energies arising from the implicit
solvent models. Nevertheless, although the rms fluctuations are
larger, these fluctuations represent a small fraction of the total
energy of the system.

All implicit solvent pmfs have global energy minima within
5 Å of the state of lowest potential energy (Figure 1B-E). By
contrast, the lowest energy state from the explicit solvent model
is separated from the state of lowest potential energy by more
than 15 Å (Figure 1A). These findings suggest that enthalpic
contributions dominate the position of the global energy
minimum in the implicit solvent pmfs, whereas the configuration
entropy of the peptide plays an important role in stabilizing the
lowest energy state in simulations with the TIP3P model of
explicit solvent. An analysis of representative structures from
the global energy minimum positions in the implicit solvent
pmfs (Figure 2B-E) reveals that low energy states from the
implicit solvent simulations have considerably more hydrogen
bonds relative to the state corresponding toú ) 24.4 Å (Figure
3B-E). As the enthalpy appears to be an essential determinant
of the position of the lowest energy state, compact states
containing multiple hydrogen bonds dictate the position of the
lowest free energy state.

Comparison with FDPB Calculations.A number of implicit
solvent models have been developed and parametrized based
on data obtained from finite difference Poisson-Boltzmann
(FDPB) methods.3 Since Poissson-Boltzmann calculations have
been shown to agree with experimentally determined solvation
energies of small compounds, ensuring that novel implicit
solvent methods agree with FDPB calculations guarantees that
the resulting potentials will yield accurate values for small
groups such as amino acid side chains and peptide backbone
analogues.34 In its initial implementation, parameters for the GB
model were obtained, in part, by ensuring that calculations of
the GB polarization energy yielded Born radii that were similar
to radii obtained with FDPB calculations.8 Likewise, previous
work has demonstrated that ACE solvation energies for small
compounds were similar to that obtained with FDPB calcula-
tions.10 As such, both models, in principle, produce solvation
energies for small molecules that are comparable to what would
be obtained with FDPB. Therefore, for these calculations, we
focus on the GB and ACE potentials to determine if FDPB
calculations would also yield results that were similar to the
GB and ACE findings.

The GB and ACE simulations both suggest that structures
containing a salt bridge between Glu 5 and Arg 11 are relatively
unfavorablesa finding at odds with the explicit solvent result.
To determine whether the relative PB energy of these structures
would agree with the GB and ACE results, we compared the
electrostatic energies of conformations arising from the explicit
solvent simulations centered atú ) 24.4 (e.g., Figure 3A) to
corresponding structures obtained with the GB and ACE
potentials (e.g., Figure 3B and C).

Ten structures were chosen from each of the TIP3P, GB, and
ACE simulations centered atú ) 24.4Å; one structure every 2
ps. For each of the TIP3P structures, all water molecules were
deleted and the structures of the peptide were used for the
solvation energy calculations. The collection of representative
structures from the TIP3P simulation is denoted by{ú ) 24.4}ER

where the superscript ER is used to emphasize the fact that Glu
5 and Arg 11 form a salt bridge in all 10 structures. Similarly,
the collection of 10 structures from the GB and ACE simulations
are denoted by{ú ) 24.4}GB and{ú ) 24.4}ACE, respectively.

None of the representative structures from the GB and ACE
simulations contain hydrogen bonds to charged groups (e.g.,
Figure 3B and C). To determine how FDPB solvation energies
compare to the GB and ACE results we computed the
electrostatic energy of the representative structures in each data
set using a FDPB algorithm as implemented in the program
UHBD.33 The FDPB solvation energy is defined as the average
FDPB energy of the 10 structures in{ú ) 24.4}ER, similarly,
the GB and ACE solvation energies were defined as averages
over their corresponding structure sets. The results are expressed
as the difference between the electrostatic energy of the set
containing the salt bridge,{ú ) 24.4}ER, and the electrostatic
energy of sets containing structures with exposed side chains;
i.e., {ú ) 24.4}GB and{ú ) 24.4}ACE.

Both the GB and ACE results suggest that conformations with
exposed side chains have more favorable electrostatic energies
than structures containing the salt-bridge of interest (Table 2).
Moreover, the FDPB calculations yield electrostatic free energy
differences that are similar to those obtained with the GB and
ACE potentialsswith the GB result begin closest to the FDPB
results (Table 2). As such, FDPB, GB, and ACE all suggest
that conformations containing a Glu 5 to Arg 11 salt-bridge
are less stable than corresponding structures with no charge-
charge interactions.

Structures arising from the TIP3P simulations centered atú
) 24.4 contain a salt bridge, whereas structures arising from
the GB and ACE simulations do not. To assess how the
formation of an individual salt bridge influences our results,
we computed the electrostatic binding energy associated with
the formation of the salt bridge between Glu 5 and Arg 11. For
these calculations, the orientations of the Glu 5 and Arg 11
residues were obtained from the{ú ) 24.4}ER data set; i.e., a
collection of 10 coordinate files, each one containing only the
coordinates for Glu and Arg, was constructed from{ú )
24.4}ER. Each coordinate file in this collection contains the
conformation of a salt bridge involving a Glu and an Arg
residue. For each salt-bridge configuration, the electrostatic
binding energy was computed using the thermodynamic path
shown in Figure 4 and the results are listed in Table 3. Each
entry represents the average over the 10 different salt-bridge
configurations taken from the{ú ) 24.4}ER structure set.

Although the GB and ACE solvation energies are similar to
the FDPB results, only the FDPB calculations predict that
formation of the Glu-Arg salt bridge is favorable. Nonetheless,
the calculated binding energy is smallsonly -0.7 kcal/mol, a
value similar tokT at room temperaturessuggesting that the
salt bridge is only marginally stable (Table 3). However, the
GB electrostatic binding energy suggests that the formation of
the Glu-Arg salt bridge is unfavorable. The discrepancy
between the two results is explained by the difference in the
solvation energies of the Glu residue and the Glu-Arg pair

TABLE 2: Electrostatic Free Energy Difference, ∆G, of
Conformations from Various Solvent Models (in kcal/mol)

∆G ) G({ú)24}ER) - G({ú)24}GB)

G ) FDPB G ) GB

Coulombic 0.1 0.1
solvation 21.5 24.4
∆G 21.6 24.5

∆G ) G ({ú)24}ER) - G({ú)24}ACE)

G ) FDPB G ) ACE

Coulombic -26.5 -26.5
Solvation 47.4 59.1
∆G 20.9 32.6
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(Table 3). Similar results are noted for the ACE potential,
however, the ACE electrostatic binding energy deviates more
from the FDPB result (Table 3). Again, the etiology of this
difference is explained, almost exclusively, by the less favorable
solvation energy of the Glu-Arg pair. Nevertheless, of the two
implicit solvent models, the GB result is closest to the FDPB
calculation.

4. Conclusions

A number of studies have demonstrated the utility of implicit
solvent models for obtaining structural information on biomol-
ecules. The main advantage of such methods is that they
simulate trajectories in a fraction of the time that would be
required for comparable simulations with explicit solvent.1,3

Such methods have been used to calculate folding trajectories
of small proteins,4,9,16to discriminate between correctly folded
and misfolded states,17 and to understand the solution dynamics
of a variety of peptides and proteins.3,12,21 As such, these
methods have an important role in the study of proteins and
nucleic acids.

The objective of this work was to evaluate how well several
of these models perform with regard to the calculation of a
specific macroscopic observablesthe FRET efficiency. The
calculated FRET efficiency from the explicit solvent pmf is in
excellent agreement with the experimental value, while the
calculated values from each implicit solvent pmf markedly
differs from the experimental result. Moreover, all of the solvent
models investigated here, including the TIP3P model, have
enthalpic minima with end-to-end distances below 15 Å. The
main difference between the implicit solvent model and the
TIP3P model is that the global free energy minimum for each
implicit solvent model lies near the state of lowest enthalpy,
whereas the explicit solvent pmf has a global free energy
minimum that is more than 10 Å from the state of lowest
enthalpy. This suggests that the enthalpy dominates the position
of the global free energy minimum in the implicit solvent
models, but the entropy plays a significant role in defining the
position of the explicit solvent global free energy minimum.

The pmf is the free energy as a function of the peptide’s end-
to-end distance. Extended states, with relatively large end-to-
end distances, have larger configurational entropies. As such,
there is an implicit dependence of the entropy on the length of
the polymer. By contrast, the enthalpy of the peptide is
determined by the formation of close, energetically favorable
contacts (e.g., hydrogen bonds, salt bridges). Therefore, the
enthalpy favors the formation of more compact states. In
particular, if all the interatomic interactions were turned off,
the simulations would favor extended states as the entropic term
would then dominate. It follows that the extent to which more
compact states are favored is determined, in part, by the relative
importance of the enthalpic contribution. As the implicit solvent
models have global free energy minima with smaller end-to-
end distances, these data suggest that the enthalpic contribution
dominates the free energy profile for these models, while in
the explicit solvent model, the configurational entropy of the
peptide plays a more significant role. Representative structures
from the lowest energy state in each pmf are consistent with
these data in that the lowest energy states from the implicit
solvent pmfs contain a significant number of hydrogen bonds
and have a lower potential energy than corresponding structures
from the explicit solvent simulations.

The explicit solvent pmf contains a well-defined minimum
at approximately 24 Åsan end-to-end distance that corresponds
to a FRET efficiency near the experimental value. The implicit
solvent models, however, contain global energy minima at end-
to-end distances that are significantly shorter, and this explains,
in part, the significant deviation from the experimental value.
The lowest energy state from the explicit solvent pmf contains
a salt-bridge between a Glu and an Arg residue. By contrast,
representative structures from each implicit solvent pmf that
have an end-to-end distance of 24 Å do not contain the “correct”
salt bridge relative to the structure obtained from the explicit
solvent pmf. Moreover, representative structures arising from
both the GB and ACE simulations atú ≈ 24 Å have charged
side chains that are fully solvent exposedssuggesting that
charged residues in the GB and ACE simulations prefer solvent
exposed orientations.

Although the GB and ACE results differ from the explicit
solvent data, these implicit solvent pmfs are more similar to
the explicit solvent result than the EEF1 and SASA pmfs (Figure
1). The GB, ACE, and explicit solvent pmfs predict that a range
of end-to-end distances have similar energies, whereas the EEF1
and SASA pmfs have a small number of low energy states with
end-to-end distances below 10 Å. Structures with larger end-
to-end distances have significantly larger energies (Figure 1).

In earlier work, it was demonstrated that both the GB and
ACE potentials yield solvation energies for small compounds
that are similar to data obtained with FDPB.8,10 FDPB calcula-
tions on representative structures from the different solvent
models yield electrostatic energy differences that are similar to
data obtained from direct energy calculations using the GB and
ACE potentials, with the GB results being closest to the FDPB
energies. These calculations agree with prior data in that the
GB and ACE calculations yield energies that are comparable
to the FDPB result. However, it is interesting to note that the
FDPB calculations incorrectly predict the peptide structure
containing a salt bridge to be less favorable than the corre-
sponding structure with solvent exposed side chains. As such,
implicit solvent models that attempt to reproduce FDPB energies
are doomed to incorrect predictions of the relative stability of
different conformational states of this peptide. These results
suggest that agreement with FDPB alone may be an inadequate

Figure 4. Thermodynamic cycle used to calculate the electrostatic
binding energy,∆Ebind, for the formation of a salt bridge between a
glutamate residue,E, and an arginine residue,R. The separated residues
are transferred from solvent to vacuum and the associated free energies
are -∆GsolV

E and -∆GsolV
R . The separated residues then form a salt

bridge and the associated Coulombic interaction term is∆GCoul. The
complex is then resolvated and the corresponding contribution is
denoted by∆GsolV

ER . The overall electrostatic binding energy,∆Gbind,
equals the sum of the contributions along each path.

TABLE 3: Electrostatic Binding Energy, ∆Gbind, for the
Formation of a Salt Bridge (in kcal/mol)

contribution FDPB GB ACE

-∆GsolV
E 78.6 81.9 74.5

-∆GsolV
E 98.5 90.2 97.0

∆GCoul -73.8 -73.8 -73.8
∆GsolV

ER -104.0 -97.1 -93.6
∆Gbind -0.7 1.8 4.1
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way to parametrize an implicit solvent model if such a model
is to be used for the calculation of free energy differences.

As an aside, we note that in this study we were primarily
concerned with conformations of the peptidesthe quantity that
can be compared to an experimentally determined value. Con-
sequently, we chose a reaction coordinate that could be easily
related to the measured FRET efficiency. The contribution of
the configurational entropy of the explicit solvent is not easily
determined using this reaction coordinate, and therefore our
analysis does not include an investigation into these affects.
Nevertheless, we believe that important insights into the
limitations of these different solvent models arise from this
limited analysis.

Although the computational efficiency of implicit solvent
models makes their application to a wide array of problems
tempting, such an approach is likely not justified based on our
results. In particular, estimates of detailed free energy differences
between distinct conformational states may not be accurately
obtained with such methods. Moreover, given that representative
structures obtained from the implicit solvent pmfs significantly
differ from corresponding structures taken from explicit solvent
simulations, it is unclear whether these approaches, in their
current implementation, are appropriate for the analysis of
specific conformational changes in peptides. Given that the
different models treat charged side chains in very different ways,
the discrepancy between implicit solvent and explicit solvent
results is likely to be most egregious for peptides and small
proteins with several charged moieties.

It is important to remember that useful insights into the
conformational dynamics of proteins and peptides have been
obtained with a number of implicit solvent models, and their
existence enables an analysis of protein trajectories on long time
scales.3 As such they remain valuable tools in the arsenal of
molecular simulation algorithms. Our data, however, suggest
that results obtained with such models need to be interpreted
with care especially when they are used for the determination
of detailed free energy differences.
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