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Recent advances in molecular dynamics methodology have made it possible to study routinely the microscopic
details of chemical processes in the condensed phase using high-speed computers. Thus, it is timely and
useful to provide a pedagogical treatment of the theoretical and numerical aspects of modern molecular
dynamics simulation techniques and to show several applications that illustrate the capability of these
approaches. First, the standard Newtonian or Hamiltonian dynamics based method is presented followed by
a discussion of theoretical advances related to non-Hamiltonian molecular dynamics. Examples of
non-Hamiltonian molecular dynamics schemes capable of generating the canonical and isetisetraslt
ensemble are analyzed. Next, the novel Liouville operator factorization approach to numerical integration is
reviewed. The power and utility of this new technique are contrasted to more basic methods, particularly, in
the development of multiple time scale and non-Hamiltonian integrators. Since the results of molecular dynamics
simulations depend on the interparticle interactions employed in the calculations, modern empirical force
fields and ab initio molecular dynamics approaches are discussed. An example calculation combining an
empirical force field and novel molecular dynamics methods, the mutant T4 lysozyme M61 in water, will be
presented. The combination of electronic structure with classical dynamics, the so called ab initio molecular
dynamics method, will be described and an application to the structure of liquid ammonia discussed. Last, it
will then be shown how the classical molecular dynamics methods can be adapted for quantum calculations
using the Feynman path integral formulation of statistical mechanics. An application, employing both path
integrals and ab initio molecular dynamics, to an excess proton in water will be presented.

1. Introduction can also be employed as a means of sampling from a statistical

Molecular dynamics (MD) has had a long histbr§and has mechanical en.semlble and determining equilibrium propertigs.
evolved into an important and widely used theoretical tool that | N€S€ properties include average thermodynamic quantities
allows researchers in chemistry, physics, and biology to model (pressure, temperature, volume, etc.), structure, and free energies
the detailed microscopic dynamical behavior of many different 2/0ng reaction paths.
types of systems, including gases, liquids, solids, surfaces, and In order to provide a picture of the microscopic behavior of
clusters. However, recent theoretical and numerical advancesa system from the laws of classical mechanics, MD requires,
have increased the utility of the basic methodology and made as an input, a description of the interparticle interactions. The
a pedagogical overview for a nonspecialist audience timely and quality of the results of an MD simulation depends on the
appropriate. accuracy of this description. One common approach involves

In a MD simulation, the classical equations of motion the introduction of a model diorce field The relatively low
governing the microscopic time evolution of a many-body computational overhead associated with a standard force-field
system are solved numerically subject to boundary conditions has allowed large-scale calculations to be performed on proteins,
appropriate for the geometry or symmetry of the system. Thus, membranes, and large biological assemblies. Recent applications
MD methodology is founded upon the basic principles of employing common force fields include, among many other
classical mechanics and can provide a window into the impressive examples that can be found in the literature, an
microscopic dynamical behavior of the individual atoms that exploration of protein folding pathways in solutiéstructural
make up a given system. From this information, the microscopic and dynamical properties of ion chann&fa novel approach
mechanisms of energy and mass transfer in chemical processet conformational sampling applied to the mutant T4 lysozyme
can be “observed” and dynamical properties such as absorptionM6l (see section 7.2.1), and studies of the human immunode-
spectra, rate constants, and transport properties can be calculateficiency virus protease complexed with a new class @§ C
In addition to providing a microscopic dynamical picture, MD fullerene-based inhibitor compountfs.
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The disadvantage of a model force-field is that a system is wheremy, ..., my are the masses of thé particles. Since the
restricted to a single molecular connectivity. This prohibits force force on each particle is, in principle, a function of all of the
field models from describing chemical processes involving bond position variablesk; = Fi(ry, ...,rn), €gs 3.1 constitute a set of
breaking and forming. An alternative approach is the combina- 3N, or more generallydN, whered is the number of spatial
tion of classical dynamics with electronic structure, which allows dimensions, coupled second-order differential equations. A
internuclear forces to be computed “on the fly” from an unique solution to eqs 3.1 is obtained by choosing a set of initial
electronic structure calculation as a MD simulation procéééfs. conditions{r1(0), ...,rn(0), v1(0), ...,vn(0)} . Newton’s equations
This method, known as ab initio molecular dynamics, requires completely determine the full set of positions and velocities as
no input potential model and is capable of describing chemical functions of time and thus specify th#assical stateof the
events, although it has high computational overhead. Nonethe-system at time. Except in special cases, an analytical solution
less, the ab initio MD approach has been successfully appliedto the equations of motion, egs 3.1, is not possible. An MD
to study hydrogen-bonded liquids, such as w#tkr and calculation, therefore, employs an iterative numerical procedure,
ammonial® proton transfer in wate¢-1%ice 2% and in a model called anumerical integratoor amap,to obtain an approximate
ion channef! Ziegler-Natta catalysié? and the behavior of  solution2>The accuracy of the numerical solution is determined

water on an alumina surfaé@among many other systems. by the time discretizationAt, referred to as théime step.n
_ most cases, the forceBi(ry, ..., rn), are sufficiently nonlinear
2. Overview functions of position that, if the true solution could be obtained

In this article, the basic principles that underly modern MD for a given choice of initial conditions, the numerical solution

methodology are described and a clear picture of why this would bear little resemblance to it after enough iterations of
approach is stable and accurate is developed for the nonspecialt’® Map. This is largely due to the fact that the initial conditions
ist. In order to develop a modern picture, the basic principles " only be specified to Wlthln_a flqlte precision for numerical
of Hamiltonian mechanics are reviewed and the microcanonical calculation. In a large system with highly nonlinear forces, small
statistical thermodynamics generated by the dynamics discusseddifferences between two sets of initial conditions lead to a
Next, the use of non-Hamiltonian dynamical systems in mo- d|vergenc§ betyveen the trajectories that becom_e expone_ntla_lly
lecular dynamics will be discussed and the theoretical statistical Iarg_e as time increases. However, thg numgrl_cal solution is
basi€4 underlying their use will be presented. Specific sets of statistically equivalent to the true solution withinbmunded

non-Hamiltonian equations of motion that lead to the canonical €"0r. and this is sufficient to ensure that the same physical
and isothermatisobaric ensembles will then presented in the observables are obtained on average. It is important to note that

context of this theoretical framework. The evolution operator sma}ll systems with closed orbits possesses other such statistical
formalism of classical mechanics is then used to derive €duivalences. . _

numerical multiple time step integrators for both Hamiltonian N Oorder to demonstrate the conditions required for the
(Newtonian) and non-Hamiltonian equations of motion whose statlst|cal'eqU|vaIenc§a of 'th.e numerlcal and true solutions 'to
long time stability can be clearly understood. However, the the €guations of motion, it is first useful to recast egs 3.1 in
ability of MD calculations to describe physical systems depends Hamiltonian form. The Hamiltonian for ah-particle system

on the accuracy of the interparticle interaction potentials. Both SUPiect only to interparticle interactions is

empirical force fields and ab initio techniques are discussed and

their ability to treat large molecular systems and chemical N D
reactions, respectively, evaluated. Example calculations based H(p,r) = H(Dy, ..., Py 10 s T) = Z —+U(ry, ...,Ty)
on state-of-the-art force fields and electronic structure techniques =

are presented. Finally, the problem of treating light nuclei in (3.2)
MD simulations will be discussed. In many examples involving . )
light nuclei, the approximate validity of a classical description WHereéps ..., by are the momenta of the particles definedpy
breaks down. Recently developed Feynman path integral mo- mvi andu(ry, ..., rn) is _the interparticle potential, in terms
lecular dynamics techniques, which allow this approximation of which the forces are given by

to be relaxed, are discussed and example calculations presented.

2

Although of considerable current interest, the topic of multiple F=-— il (3.3)

electronic surfaces will be not be treated here. ar;

3. The Basic Approach: Hamiltonian Mechanics The equations of motion (3.1) can be derived from eq 3.2
Molecular dynamics (MD) is employed to study the classical @ccording to Hamilton’s equations,

motion of a many-body system and extract from the dynamics

the experimental observables. As MD calculations provide a P = H_ B

window into the detailed motion of individual atoms in a system, i op, m

the microscopic mechanisms of energy and mass transfer can

be gleaned. __oH_ _u_

. .- . . pl F|(rl' ""rN) (34)

Consider a system consisting Bf particles moving under ar; ar;

the influence of the internal forces acting between them. The

spatial positions of the particles as functions of time will be Taking the time derivative of both sides of the first of Hamilton’s

denoted by a(t), ...,rn(t), and their velocitiesys(t), ..., Vn(t). If equations and substituting into the second, one easily arrives at

the forcesFy, ..., Fn, on theN particles are specified, then the  eqs 3.1. Therefore, the classical state of a system at any instant

classical motion of the system is determined by Newton'’s secondin time can also be determined by specifying the complete set

law of particle positions and corresponding momenta. Alternatively,
we may collect the full set of positions and momenta into a

i (3.1) single vectorx = (py, ..., P, 1, ..., I'n) called thephase space
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vector, which exists in a @N-dimensionalphase spaceA In mathematical terms, #(p, r) is a function corresponding
classical state of the system corresponds to a single point into a physical observable, then the microcanonical ensemble
the phase space. The phase space is thus the uradirpossible average ofA is
classical states of a system. c

Two important properties of the equations of motion should N N N
be noted. One is that they are time reversible, i.e., they take the (AL h3N£2(N,V,E)fd pr(V)d rAp.r) o(H(p.r) — E)
same form when the transformatidn— —t is made. The (3.6)
consequence dime reversal symmetrys that the microscopic
physics is independent of the direction of the flow of time. The Where€(N,V,E) is the microcanonical partition function given
second important property of the equations of motion is that Py
they conserve the Hamiltonian eq 3.2. This can be easily seen

. \ e o C
by computing the time derivative ¢f and substituting egs 3.4 Q(N.V.E) = —N [gN d O(H(.r) — E) (3.7
for the time derivatives of position and momentum: (NV.E) h3Nf pr(V) HpN =8B &0
aH ! ﬁr n H . HoH  9H 9H] 0 (35) Here,h is Planck’s constant an@y is a general combinatorial
i - .

dt .Z Pif = ; factor. As the prefactoCy/h®N does not affect the analyses
presented herein, it will be omitted from expressions subse-
The conservation of the Hamiltonian is equivalent to the quently presented in this paper. Equation 3.7 is a device for
conservation of the total energy of the system and provides an“counting” the number of microscopic states of a system that
important link between molecular dynamics and statistical obey the conditioH(p,r) = E for a given number of particles
mechanics. Recall that the latter connects the microscopic detailsN and container volum#&. The integral over thé& Cartesian
of a system to physical observables such as equilibrium positions is restricted by the spatial dom&\V) defined by
thermodynamic properties, transport coefficients, and spectra.the walls of the container, while the momentum integral is
Statistical mechanics is based on Gibbs’ ensembleoncept. unrestricted. The average of an observah|ever a trajectory
That is, many individual microscopic configurations of a very spanning a length of time/; is given by
large system lead to the same macroscopic properties, implying 1
that it is not necessary to 'know the precise Qeta|led motion pf A= Tch‘) dt A(p(t),r (t) (3.8)
every particle in a system in order to predict its properties. It is :
sufficient to simply average over a large number of identical
systems, each in a different such microscopic configuration; i.e.,
the macroscopic observables of a system are formulated in term
of ensemble gerages Statistical ensembles are usually char- lim A= A (3.9)
acterized by fixed values of thermodynamic variables such as T '
energy, E; temperature,T; pressure,P; volume, V; particle o o
numberN; or chemical potential. One fundamental ensemble ~ (Note, the system need not be mixing or even chaotic in nature
is called themicrocanonicalensemble and is characterized by {0 0bey eq 3.9. A one-dimensional harmonic oscillator is ergodic
constant particle numbek; constant volumey; and constant ~ @nd samples all the phase space available to it!)

o, ' op, or; op;  op; or

for a trajectory starting at = 0. The ergodic hypothesis is
Sequivalent to the statement

total energy,E, and is denoted as tHeVE ensemble. Other The meaning of the statistical equivalence between a numer-
examples include the canonicalv T ensemble, the isothermal ical trajectory and the true trajectory of a system is now clear.
isobaric orNPT ensemble, and the grand canonicalu T Although a numerical trajectory may diverge in time from the

ensemble. The thermodynamic variables that characterize anifUé trajectory, as long as the numerical trajectory conserves
ensemble can be regarded as experimental control parameter{1® €nergy to within a given toleranc&g, the numerical
that specify the conditions under which an experiment is trajectory will also generate configurations belonging to the
performed. constant energy surface that are never in error by more _than
Now consider a system &f particles occupying a container ~AE. (The existence of bounds on the error of numerical
of volume V and evolving under Hamilton's equations of frajectories is dlscuss_ed furt_her in section 6.) Assuming ergo-
motion. According to eq 3.5, the Hamiltonian will be a constant, dicity, & single numerical trajectory can also be used in eq 3.9
E, equal to the total energy of the system. In addition, the {0 compute the ensemble average of an observable._ Note, this
number of particles and the volume are assumed to be fixed.iS equally true for a regular system with closed orbits and a
Therefore, a dynamical trajectory of this system will generate chaotic or mixing system. _ )
a series of classical states having consthintV, and E, Finally, it should be noted that dynamical properties are also
corresponding to a microcanonical ensemble. If the dynamics defined through ensemble averages. Time correlation functions
generates all possible states having a fike®, andE, then an are important bgcagse of their relation to transporj[ coefficients
average over this trajectory will yield the same result as an and spectra via linear response the®¥. Consider, for
average in a microcanonical ensemble. The energy conservatiorfXample, a time correlation functiorGag(t), between two
condition, H(p, r) = E, which imposes a restriction on the observablesi(p,r) andB(p,r). In order to calculat€ag(t), one
classical microscopic states accessible to the system, defines &2 USe a set of trajectories generated by Hamilton’s equations.
hypersurface in the phase space called ¢hastant energy ~ Any trajectory is unlq_u_ely determined by its |n|t|¢_al conditions.
surface A system evolving according to Hamilton’s equations SUPPOse initial conditions for each trajectory in the set are
of motion will remain on this surface. The assumption that a S@mpled from an equilibrium phase space distribution function
system, given an infinite amount of time, will cover the entire f(P.r). The time correlation function is then defined to be
constant energy hypersurface is known astigedic hypothesis
Thus, under the ergodic hypothesis, averages over a trajectory dep dVr f(p,r) A(p.r) B(p(t),r (t))
of a system obeying Hamilton’s equations are equivalent to Cast) = T 3.10)
averages over the microcanonical ensemble. fd pdr f(p,r)
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Thus, it can be seen that a time correlation function can be systems, which possess certain undersirable features related to
calculated by evolving a trajectory in time starting from each the definition of time. It was shown that these could be corrected

set of initial conditions and then averaging the prodig,r) by going over to a non-Hamiltonian formulatiShHowever,
B(p(t),r (t)) over the set of trajectories at each instant in time. only recently has a consistent theoretical statistical framework
(In the microcanonical ensemblgp,r) = 6(H(p,r) — E).) In underlying the use of general non-Hamiltonian systems been

the thermodynamic limit, all equilibrium ensembles are equiva- presented* The theoretical underpinnings will be discussed
lent, and thus, for very large systems, a single long trajectory below.

can be used to generate a time correlation function, although Consider the dynamical system

the convergence of such an approach may be slow. For a detailed

treatment of the properties of time correlation functions, the X = &(x.t) (4.3)
reader is referred to the review by Berne and Hérp.

Despite the utility of Hamiltonian molecular dynamics, its
principle restriction is clear: although, given correct forces, the
dynamics is exact in the classical limit; it can only generate
equilibrium properties of th&lVE ensemble. However, micro-
canonical conditionsNVE) are not consistent with the many
experimental measurements under conditions of constant tem- K(X,t) = Vex = V-E(x.1) (4.4)
perature and pressure or constant temperature and volume. In ’ ’ '
order to describe the thermodynamic properties of a systemhich vanishes for a Hamiltonian system (the incompressibility
under these Conditions, it is necessary to generate the Corre'property), will genera“y be nonzero and the phase space measure
sponding ensemble. One of the more fruitful and interesting dx is no longer invariant. In order to see this, one need only
approaches to generating alternative ensemble averages is basegnsider the Jacobian of the transformation from an initial phase
on properties of hon-Hamiltonian dynamical systems. space vectok, a time-evolved vectox; given by

which is assumed to be non-Hamiltonian (i.e., expressible in
the form of eqgs 3.4). Heré(x,t) is a generalized force, which
may have an explicit time dependence. If the dynamical system
is not Hamiltonian, then itphase space compressibilijefined

to be

4. Principles of Non-Hamiltonian Statistical Mechanics 3()([1 X

Ixi%) = (4.5)

In the previous section, the concept of an ensemble was
introduced, and the specific example of the microcanonical

ensemble, as the ensemble of systems haklifpgr) = E, was wheren is the dimension of the phase space. It can be shown

discussed. In general, an ensemble is defined by its phase spac . i ofi ; ;
distribution functiorf(p,r t) = f(x,t), which may possibly depend (Jsee, e.g. ref 24) thal(x;xo) satisfies the following evolution

XX

explicitly on time. The phase space distribution function must equation:
satisfy theLiouville equation which for systems governed by d
Hamiltonian dynamics is at I(XXo0) = k(%) I(X:Xo) (4.6)
df(x.t) _ of(x.t) + V() = 0 4.1) with initial condition J(xo;o) = 1. Equation 4.6 implies thak
dt at will only be 1 for all time if x = 0, as it is for Hamiltonian

systems. For non-Hamiltonian systems, the measure transforms

whereV is the 2IN-dimensional gradient on the phase space. according to

The Liouville equation results from the requirement that the
rate of change of the number of ensemble members in an dx, = J(X;Xo) dX, 4.7)
arbitrary phase space volume is equal to the flux of members

through the boundary of the volume. It can be seen that the yhich demonstrates that = 1, dx, = dxo.

Liouville equation is a statement of the conservatioh &ince A complete statistical theory of non-Hamiltonian systems has

fis a probability distribution function, the existence of a recently been presented in ref 24. The basic tenets of the theory
conservation law fof implies the existence of a conserved phase zre as follows:

space measure,ud For Hamiltonian systems the invariant (1) There is an invariant measure that takes the form
measure is,@d= dx = d¥p d"r. It will shortly be shown below
why this is an invariant measure for Hamiltonian systems. In du = Jalx.t) dx 4.8
summary, given an ensemble distribution function satisfying eq “ gx.9 (4.8)
4.1, the average of any observabdlc) can be defined by where the metric factoc/g(x,t) is given by
dx f(x,t) A(x) Y1) = e "o 49
o J D AR @) Vol (4.9)
Jax fet) and the functionv(x.t) is related to the compressibilit(x,t)
b
Non-Hamiltonian equations of motion are typically used to y
generate ensembles other than the microcanonical, for describing dw
systems subject to nonholonomic constraints or for describing ot~ (4.10)
driven systems. The idea of generating ensembles dynamically
began with the work of Anderséf,who showed that by (2) There is a non-Hamiltonian generalization of the Liouville

extending the phase space beyond tbl @imensions of the equation for a general ensemble distribution functffnqt),
physical system, a dynamical scheme could be constructed towhich takes the form

generate an isobaric distribution of the physical subsystem. )

Isothermal extensions followeéd3°These original formulations 9 Jaf + V-(x/af) = 0 4.11
of extended phase space dynamics were based on Hamiltonian 8t( o (xvah (4.11)
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(3) In the absence of external driving and explicitly time- The parameter),, given by Q; = dNkTr2 and Qx = kT2,
dependent forces, a non-Hamiltonian microcanonical ensembledetermine the time scale of the thermostat motion via the single
can be defined on the basis of the existence of the invarianttime scaler, which should be chosen corresponding to a
measure. If the dynamical system in eq 4.3 has a sélof characteristic time scale of the system, e.qg., a vibrational period;
conserved quantitigs;(x), 1 = 1, ...,M, satisfying &;/dt = 0, In egs 5.1 M thermostats, which successively thermostat each
then the microcanonical distribution function is given by other, are coupled to the particles, thereby controlling/modulat-
ing the kinetic energy fluctuations of both particle and thermostat
degrees of freedom.

Let us apply principles 1 and 2 above to the NHC equations.
First, the compressibility and the invariant measure are com-
puted. The compressibility can be seen to be

Y
f(x) = D O(K,(x) — K)) (4.12)

and the corresponding partition function is

- - M - N M 81'7k ap,,k

QNVK,, ...Ky) = [ dxy/g(x) ﬂ oK, (x) — K;) (4.13) K= Z[V”'ri + Vil + Z —+
= 1= k= a’7k apﬂk

The microcanonical distributiori(x), together with the metric P, M P,
4/ g(x) satisfies the time-independent form of eq 4.11. This is =—dN——) —
a necessary but not sufficient condition to guarantee that a Q &=
givenf(x) is the correct equilibrium distribution function. For M
example, a distribution functiof(x) = |‘|2"=16(K,1(x) - Ky, = —dNp, — ) (5.3)
whereM' < M (i.e., a distribution constructed from a subset of ! k; K '

the conservation laws satisfied by a system), also satisfies the
generalized Liouville equation. Howevext) conservation laws
arerequiredif the correct microcanonical distribution is to be
constructed.

Sincew = «, it is clear thatw = —dNy; — S, 7, and the
invariant measure according to eq 4.9 is

M

5. Designing Non-Hamiltonian Equations of Motion du = exp{nl + Z ﬂm)de dr d'y d'p,  (5.4)
=

It will now be shown how the basic principles of non-
Hamiltonian statistical mechanics can be employed to design In order to determine the microcanonical partition function,
MD equations of motion that generate the canonical and the conserved quantities of eqs 5.1 are needed. One of the
isothermat-isobaric ensembles. In fact, the above principles conserved quantities is the total energy of the extended system
lead to a procedure for designing general-purpose MD algo-
rithms32

The Nose-Hoover chain (NHC) dynamics meth&ds a non-
Hamiltonian MD scheme for generating the canonical ensemble.
In this method, the ordinary phase space is extended to include

a set ofM thermostat variables, ...., 7w and their conjugate  |n addition to the energy, there adeadditional conservation

momentap,,, ..., Py, Which act as a heat bath coupled to the |55 if there are no external forces (i.e., whgll, Fi = 0).
system. The equations of motion take the form These conservation laws take the form

2

M p,7k
H' =H(p,r) + —+ KT
2,

M
dNy, + k; ﬂk\ (5.5)

=D N
' m K=¢e"y p=€"P (5.6)
=
Py,
Pi=F — 5P as can be seen by direct differentiation. Given the conservation
1 laws, the microcanonical partition function can now be con-
Py, structed according to eq 4.13. Suppase 3 andM = 2,
M=~ k=1, ..M
R Q(N,V,TEK) = [d"p d"r di, dn, dp, d Ny, +
p ( 1V byl )_f p r 771 772 p771 pnzexp( 771
M1 2 2
Puc = G Qg ™ K=b Mo 1,) O|H(p.r) + P + D + 3NKTy, + kT, — E
2Q, 2Q,
Py, = Cu ®-1) S(EP, — KSR, — K)O(E"P, — K)) (5.7)
where the thermostat forces are In order to show that eq 5.7 generates a canonical distribution
N p42 in the system HamiltonianH(p,r), the integrals over the
G. = o dNKT thermostat variables need to be performed. The engifgyc-
1 G m tion can be used to perform the integral oygrwhich requires
thatn, = (E — H(p,r) — p,,&2Q1 — p;,2/2Q2 — 3NKTi1)/KT.
P, 2 One of the remaining-functions can be used to integrate over
G,= 1 KT k=2,...M (5.2) 11, which will leave only ratios of components Bfin the other
Q-1 two J-functions. Finally, by, changing variables to center-of-
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Figure 1. (a) Thex—p plane in the phase space of a one-dimensional
harmonic oscillator coupled to a Noskloover chain (cf. egs 5.1). The
initial conditions arex(0) = 0, p(0) = 1, n(0) = 0, p,,(0) = 1. The
mass and frequency of the oscillator alte= 1 andw = 1. The
thermostat time scale is determineddy 1 andkT = 1. The equations

of motion are integrated for IGteps with a time step okt = 0.01
using the methods in ref 40. (b) The distribution function of momentum
for the oscillator in part a. The simulated distribution (solid line) is
shown together with the analytical distribution (dashed line). (c) The
distribution function of position for the oscillator in part a. The
simulated distribution (solid line) is shown together with the analytical
distribution (dashed line).

mass and normal mode momentg}(,P), the expression can
be simplified to yield

QNV.EK) O [ d"'pdPd Pzexp[ —p

E—l— u(r)

o (5.8)

where{ M, M} are the normal mode and total masges; 1/KT,
and the proportionality constant dependstoandK . Equation
5.8 is the correct canonical partition function for the Hamiltonian
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plane of phase space, and the position and momentum distribu-
tion functions for a one-dimensional harmonic oscillator gener-
ated by the NHC equations. The analytical distribution functions
are also shown in the figure. As can be seen, the ensemble is
correctly sampled by the NHC system. The significance of the
harmonic oscillator will become clear later in the context of
force fields (see section 7.2) and in path integral molecular
dynamics (see section 8). Following the same procedure, it can
be shown that the N6séHoover thermostat method (corre-
sponding toM = 1 in eqs 5.1) does not produce the correct
canonical distribution whel\ , F; = 0321t is also interesting
to note that if more than one thermostat chain is coupled to the
system, then the momentum conservation laws are no longer
present, and the proof simplifies. An extreme example, which
has proved useful in a number of applications, is the coupling
of a separate thermostat to each degree of freedom in the system.
This scheme leads to very rapid equilibration of a system and
plays an important role both in path integral molecular dynamics
and simulations involving biological macromolecufé$®

Next, the isothermatisobaric oNPTensemble is considered.
In this ensemble, the volum¥, of the system must fluctuate
such that the average internal, pressure of the sys®pd, is
equal to an external applied pressu?g. Thus, in designing a
MD algorithm for theNPT ensemble, one should both incor-
porate the volume as a dynamical varidbland employ a
thermostat to ensure that both instantaneous temperature and
pressure fluctuations are generated properly. A useful non-
Hamiltonian scheme for thePT ensemblé is defined by the
following equations of motion:

_ B P
t= m + W

e 12 LP Py
P =F; (1 + N)\Npi Qpi

_dvp

Y

N pl pn
dV(Pmt er + - _pe

P
77Q

_S pi2+ P (AN + 1KT (5.9)
p;y_ £ m W -

Here, p. is a momentum conjugate to the logarithm of the

volume, W is its associated mass parameters= In(V/V(0)),
Pextis the external applied pressure, dhd is the instantaneous
internal pressure of the system given by

P LIS piz S iFi (dV) (5.10)
int — dV £ m £

Thus, the variablg, acts as a “barostat” which drives the system
to the steady stat@®; (= Pex. FOr simplicity, eqs 5.9 are written
with a single thermostat variable coupling both to the particles
and to the barostat. Thus, the ca3&,F = 0 will be
considered. However, it is clear that wh&il', Fi = 0, a
thermostat chain should be used. In fact, the optimal algorithm

H(p,r). Hence, the NHC equations generate the canonical employs separate thermostat chains on the particles and on the

distribution function (within constants). Figure 1 shows the

barostat.
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The compressibility associated with eqs 5.9 is

k= —(dN + 1)% = —(dN+ 1) (5.11)

from which it can be seen thai(x) = —(dN + 1)y, and the
invariant measure is

du = €™ dNp d'r dv dp, dy dp, (5.12)
If the forces do not sum to zero, then the only conservation
law that is always present is the energy,

2 2
P, P

2W ' 2Q v

ext

H =H(p,r) + + (N + 1)kTy + P (5.13)

Using eq 4.13, the microcanonical partition function corre-
sponding to egs 5.9 can be constructed,

QNP TE)= [ aV [ d [, d"r dp, dp, dy

P’ P/
2w 2Q

exp[(dN + 1)y] S\H(p,r) + + (dN + 1)kTy +

PV —E| (5.14)

Integrating over; using thed-function and then ovep, andp.
yields

Q(N,P,,,T.E) O

J aVexp(-pPe,V) [ dp [y, dr e P (5.15)

the correct partition function for thRPT ensemble.

As a simple demonstration of thePT ensemble method,
consider a single particle moving in a one-dimensional periodic
potential,

mw?
A7\

1—co§——

U(xV) = v

Z”X)] (5.16)

whereV is the length of the box, i.e., the one-dimensional
volume. Figure 2 shows the position and volume distribution
functions,P(x) andP(L), corresponding to the choid®y = 1,

W =1, Q = 1, andkT = 1. The distribution functions are
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Figure 2. (a) The position distribution function for the model potential
in eq 5.16. The simulation parameters are= 1, w = 1, KT = 1, Pext
=1, andW = 18. A separate thermostat chain is used for the particle
and for the barostat witRparice = 1 andQparostat= 9. The simulated
distribution (solid line) is shown together with the analytical result
(dashed line). (b) The volume distribution for the model potential
described in part a. The simulated distribution (solid line) is shown
together with the analytical result (dashed line).

the true trajectory provided there is a well-defined energy
conservation toleranceAE, for all time, t. The error in a
numerical trajectory decreases with decreasing time tép,
However, the smaller the time step, the more iterations of the
numerical integrator/map that will be required to reach a given
total time, &/ Thus, numerical integration is a balance between
using the largest possible time step and maintaining an accept-
able energy conservation toleranés.

The choice of an integration time step is determined by the
nature of the forces acting on a system. In many-body systems,
the forces arise from many different classes of interparticle
interactions and generate motion on different, and often rather
disparate, time scales. Consider, for example, a large protein in
solution. There will be local intramolecular interactions which

compared with the analytical results. It can be seen that the give rise to bond stretching, bending and torsional motion, long-
proposed algorithm correctly generates the desired distributionrange electrostatic and van der Waals interactions within the
functions. In this example, a separate NHC is coupled to the protein, and intermolecular interactions between the protein and

particle and to the barostat.

These examples show how the principles of classical non-

solvent molecules which give rise to global rearrangements.
Local intramolecular forces generate motion on a significantly

Hamiltonian statistical mechanics can be applied in the design shorter time scale than the long-range intermolecular interac-
of MD algorithms that generate different statistical ensembles. tions. However’ the time Step must be chosen such that the

Note, non-Hamiltonian dynamics are different from Hamiltonian fastest motion in the system can be integrated stably and
dynamics. These non-Hamiltonian systems reduce to ap-accurately. This fact leads to inefficient numerical procedures,
proximate Hamiltonian dynamics when the extended system pecause the computationally expensive slower forces are updated

coupling parameters (her® andW) are large. An important

on time scales over which they do not change appreciably. This

outstanding question concerns the possibility of employing non- type ofmultiple time scale problenis almost always present in
Hamiltonian dynamical schemes to generate a grand canonicalmolecular dynamics simulations. Below, the general problem

or uVT ensemble sampling method.

6. The Liouville Operator and Numerical Integration
Methodology

It was noted in section 3 that a numerical Newtonian
trajectory will diverge from the true Newtonian trajectory but
that the numerical trajectory will be statistically equivalent to

of numerical integration is discussed, and the proposed treatment
is extended to the problem of multiple time scale motion in
dynamical systems.

Several approaches can be employed to devise numerical
integration procedures. One common technique develops low-
order solutions using the time Taylor series expansion of the
position and velocityri(At), vi(At), aboutAt = 0, to obtain
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useful maps. Careful consideration of the resulting functional
form allows the time reversal symmetry of the equations of
motion to be preservet®® The Taylor series based technique
is appropriate for obtaining algorithms accurate to second order
in time (local error) for Hamiltonian systems, but higher order
schemes invariably require spatial derivatives of forces, which
are difficult and computationally expensive to compute. When
applied to non-Hamiltonian systems, such as eqgs 5.1 or 5.9,
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) NP9
iL,=>% ——
s1mor
N
a
iL,=S F-— (6.6)
= p;

Since the force§; are taken to depend only on the positions,

the Taylor series approach generally yields schemes which dothe operator exjil(,At/2) becomes a translation operator on the

not preserve the invariant phase space med$édéhough time-
reversal symmetry is formally satisfied, the methods often
require iterative solutions which break the symmetry. Most
textbook numerical integrators, such as Runietta or the
Gear predictor-corrector, formally violate both conditions.

In this section, a third approach will be discussed, which will

lead to time reversible methods that posses the correct metric.

This new approach is based on an evolution operator formulation
of classical mechanic8-4° Consider a Hamiltonian system

described by eqgs 3.4. These equations can be cast in the general

form
X =ILx (6.1)

wherex is the phase space vector dhds the Liouville operator
given by

iL={...H} =
NIoH 9 oH 9 NIP 9
Z —— =Z —+—+F--— (6.2)
&lor, or; or; op| E&m or, p;
Equations 6.1 have the formal solution
x(t) = €-'x(0) (6.3)

Equation 6.3 is the starting point for the derivation of
numerical integration procedures. The unitary operator, exp-
(iLt), is theclassical propagatarlts action onx(0) cannot be
determined analytically for any but a few simple cases.
However, the formal solution to Hamilton’s equations can be
used to generate practical numerical integrators through intro-
duction of an approximation to the classical propagator into eq
6.3. Suppose, for example, that the Liouville operatocan
be written as the sum of two part, = iL; + iL, such that
the action of the classical propagator x(0) for each part can
be evaluated analytically. The classical propagator can be
rewritten using the Trotter theorem, which states

exp(Lt) = exp[(L, + iL)t] =

RCEIEIE

Defining t/P = At for finite P, the approximation

lim

P—o

exp(LAt) ~ exp(L,At/2) exp(L,At) exp(L,At/2) +
O(AP)

P
exp(LPAt) ~ ﬂ exp(L,At/2) exp{L,At) exp(L,At/2) +

O(tAtY) (6.5)

can be made, which yields a numerical integration procedure

momenta: p; — pi + (At/2)Fi(r). Similarly, exp{LiAt) is a
translation operator on the positions; — r; + At(pi/m).
Combining these two facts allows the action of the operator in
eq 6.5 on the full set of positions and momenta to be evaluated
analytically, yielding the approximate evolution:

r(At) = r,(0) + Atv,(0) + mF (0)

vi(AD) = v;(0) + 2%[5(0) + Fi(AD) (6.7)

Equations 6.7 constitute the so-callezlocity Verlet! integrator,
derived here in a new and powerful way. The power of the
operator technology lies in the fact that the same evolution can
be obtained by viewing eq 6.5 as set of three sequential update
steps without requiring the closed form expression of eqs 6.7.
The three steps are simply (i) a velocity translation by an amount
(At/2m)F;, (i) a position translation by an amountyv; using

the velocity obtained in step i, and (iii) a velocity translation
by an amountAt/2m)F; using forces calculated at the position
obtained in step ii. The scheme, therefore, appears as

fori=1toN
Vv, <V, —l—ﬁF
2m

r,—r,+ Aty
endfor
get new forces
fori=1toN
At

_Fi

vi<—vi+2mi

endfor (6.8)

This procedure of translating each operator into an update
step, which then can be turned into an instruction in computer
code, is called thelirect translation techniqué® The direct
translation technique, although seemingly trivial in this example,
proves immensely powerful in complex, non-Hamiltonian
systems of the type discussed in section 5. It should be noted
that the Liouville operator approach has also been employed in
the numerial propagation of quantum systefrS.

An important property of the map generated by eq 6.5 is that
it preserves the invariant phase space measure. This property is
known as thesymplectic propertyFor a Hamiltonian system,
the symplectic property of a map is equivalent to the statement
that its Jacobian is unity

G - X0p)
(X, -

(6.9)
X0)

JXapXo) =

that is accurate to the second order in the time step at long times.

Consider the choice

wherexa is the approximate evolution of to X—at generated
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by the numerical map. The significance of the symplectic applied in such a way that the overall scheme is time-reversible,
property is that it ensures that the error of the map is bounded,

i.e., there will be no secular growth in the energy conservation _ o (@enAt o (refOt (ref)
error which can affect the long-time statistical behavior of the exp(LAY = exr(lL 2) eXF{”‘z 2) exp(li0Y

dynamics, provided the time step is not too large. In order to ox iL(ref@ " ox iL(de')g (6.14)
see this, consider the example of a one-dimensional harmonic 2 9 2 '

oscillator,H = mv4/2 + mw2x?/2, for which the map in eq 6.7
exactly preserves the following time step-dependent Hamilto- pare “_(lref) andiL(zref) are defined analogously to eq 6.6 wkh

nian:* replaced byFi(re”. The mechanism of eq 6.14 can be gleaned
by inspection. The operator in brackets correspondsdteps
+ mwzxz (6.10) of reference system propagation using the algorithm of eq 6.7
2 with a time step obt. The correction exgl( (@€)At/2) is applied
. _ both before and after the the reference system propagation,
wheref(At) = wAt/2. The difference betwee and the true  making the scheme time reversible. This numerical integration

my?/2

Alat) = 1— 64AY)

Hamiltonian is procedure is called the r-RESPA methi8dyhich stands for
0 2 reversiblereferencesystempropagatomlgorithm. The advantage
- T 11 6°(AY) of this method is that if there is a wide separation in time scales,
[H(At) — H| = —_— (6.11) . o
21— 02(At) choosing the reference system force equal to the “fast” force

will be a good approximation to the true force. This will allow

which shows that the energy conservation is rigorously bounded,n and At to be large. If, in addition, the fast forces are
since H(At) is exactly conserved by the velocity Verlet map computationally inexpensive to evaluate, then there will be a
and the range of is, thus, restricted. Notice, however, that large gain in cpu time, as the expensive slow forces will only
H(At) diverges ai\t = 2/w. At such a large time step, the orbits  need to be updated once every large time sipyarious forms
generated by the map undergo a transition from elliptical to of this algorithm are now widely useé:4° However, under
hyperbolic, and the map breaks down. The power of the certain circumstances the time step can be limited by resonance
operator-based approach is that it allows symplectic integration phenomena?>5?
methods to be constructed rather easily while the other ap- One can also imagine extending the r-RESPA algorithm to
proaches alluded to above do not. This is especially important incorporate motion on more than two time scales. For example,
in non-Hamiltonian systems, where it is necessary to ensurelocal intramolecular forces might involve fast bond and bend
that the integrator preserves the more complicated phase spacérces and slower torsional forces. In addition, intermolecular
metric in eq 4.9. forces often separate naturally into short and long range

The approach illustrated above can be easily extended to treattomponents, bringing in another time scale separation. In this
systems with multiple time scale motion. The method, which case, short range forces generally consist mostly of strong,
was first presented in ref 39, is based on the introduction of a repulsive collisions, while long range forces tend to decay as

reference system and a subdivision of the forEg,into a +1/" wheren < 6. When several time scales are present, eq
contribution from the reference system and a deviation from 6.14 can be straightforwardly generalized to incorporate each

the true force, time scale with its own time ste€j3:*%4% For example, for a
system with three characteristic time scales, a reference force

F, = Fe0 + pde F and two correction&“® and F* are chosen such that

Fi = F) + F@) 4+ FCe it the corresponding Liouville

Ede) _ g _ preh 6.12 i o den i (el . (Dol .
i = i (6.12) operators arél (e, jL@) andiL(®e), defined analogously to

eq 6.13, and the corresponding time stepsddrét, andA &/,
If the reference system is chosen such tﬁ%‘?ﬂ is a good respectively, then the three time step propagator is
approximation to the true force, then propagation of the system

using the reference force with an occasional correction due to P . (DehA T o (denAt (ref)
the difference forceFi(de') could yield an efficient and accurate exp(LA ) = eXF(IL 27){ ex;{lL 2 )’eXpQLZ )

H B (ref) H . n A m i 9
scheme. In particular, i is taken to be the fast local exp(L0t) ex IL(zref)Qt exdil @A™ o IL(Del)A_
intramolecular forces, which are usually computationally inex- 2 2 2
pensive to evaluate, then an efficient multiple time step (6.15)
numerical procedure can be developed. By introducing a time
step, ot, appropriate for the reference system, a Liouville Thus, the correction due to the slowest time scale is applied
operatorjL(®, for the reference system and a deviatii*), only every mn time steps, and the intermediate time scale
from the true Liouville operator according to correction is applied eveny steps. Numerical procedures such
as those of egs 6.14 and 6.15 can lead to a considerable savings
) NIP 9 in the cpu time needed to perform a MD calculation. Examples
[ eh = SR () . . . . "
I Z 5 i 5 will be discussed in the next section. (Unfortunately, cpu time
Sm o P saving can be limited by resonance behavior that occurs when

N P the largest time step is close to the natural period of the fastest
iL ) = Fi(de') . — (6.13) motion>0>)
= P, Numerical integration of non-Hamiltonian systems, such as
those given in eqgs 5.1 or 5.9 present a series of challenges.
such thailL = iLe) + iL(@), a propagator for the time stext First, velocity-dependent forces are present, which are generally

can be constructed in whi¢h(®? is used to propagate the system difficult to treat. Second, in addition to ensuring that the
over n steps with a time stept, and the correctionl (9e) is conserved quantities are properly bounded by the numerical
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map, one must make certain that the invariant meaglg() ity of this method will be presented. The relative merits and
dx is preserved as well. It is in this aspect that the Taylor series disadvantages of each scheme will be noted, as well as prospects
approach fails for non-Hamiltonian systems, and this failure has for combining the two approaches.

been shown numerically to lead to nonsecular growth in the 7.1. Boundary Conditions.Experimentally observable quan-
energy?’ The operator approach, when applied correctly, solves tities are formally defined in the thermodynamic limit, where

these problem¥’ the number of particledy, in a system and volum¥/, are taken
A system of equations such as eqs 4.3 can be cast in theto infinity such thatN/V remains constant. In actual computa-
form of eq 6.1 by definingL to be tions, however, finite systems are used. This raises an important

issue concerning the calculation of forces and energies in such

) I n 9 systems. Particularly, given &particle system in a container
IL= Z —=% &) — (6.16) of volume, V, how should the boundaries of the container be
= X 1= % treated in order to minimize finite size effects?

One of the most common applications of the molecular
dynamics technique is to bulk condensed phases such as liquids
and solids, where it is natural to appperiodic boundary
conditions Under periodic boundary conditions, the system is
replicated infinitely throughout all space. Periodic boundary
conditions are a natural choice to use to treat a solid. However,

with a formal solution also given by eq 6.3. For the systems
discussed in section 5, the approach that has been addjsted
based on a subdivision of the Liouville operator into a part that
is purely Hamiltonian in the system variablég,r} and the
remainder, which contains all the non-Hamiltonian contributions.

Thus, in a liquid, they are also found to reduce the influence of the
iL =L, + il (6.17) presence of boundaries on the properties of a system.
Although convenient, effective, and simple to apply, certain
whereily is given by eq 6.2, aniLyy = iL — iLy is the non- subtle problems arise when periodic boundary conditions are

Hamiltonian part of the operator. The operaitoy is subdivided employed. In particular, long range forces, whose spatial range

according to eq 6.6, and a propagator is constructed as follows:May extend beyond the boundaries of the container into
surrounding images, present a challenge. Long range forces can

. @At @ only be correctly calculated by summing over all the periodic
F{'LH 7) exp(LyAt) replicas of the original system. However, the associated
(@At AL computational effort is considerable. Fortunately, methods have
eXF(ILH 7) eXF(ILNH?) (6.18) been developed to treat this problem. Specifically, the Ewald
summation technique, developed originally to treat Coulomb
The form of eq 6.18 is justified by the fact that the Trotter interactions and later extended to treat general interactions of
theorem, eq 6.4, can be generalized to the exponential of a sunthe form 1f" for n < 3,53 has proved enormously successful.
of more than two operators. The strategy of eq 6.18 is that the The basic idea behind the technique is to divide the relevant
non-Hamiltonian part of the dynamics is applied, in essence, part of the potential into a short range and a long range
as a correction to a Hamiltonian reference system, in analogy contribution. For the Coulomb potentialy,|for example, this
to eq 6.14 for the multiple time scale problem. The operator can be achieved via the identity
iLnn generally contains a large number of terms. Hence, it needs
to be subdivided into simple contributions and a corresponding 1 erf(ar) | erfc(ar)
factorization of the operator expgH(At/2)) made (see refs 52 T + r
and 40 for a more complete discussion).
Note, itis also possible to treat non-Hamiltonian systems with \here erfg) and erfc) are the error function and complemen-
multiple time scales by combining eq 6.18 with eq 6.14 or 6.15. tary error function, respectively (ex) + erfc(x) = 1). The
An example of such a system is a protein or peptide in solution yariable,a, is a convergence parameter, which can be optimized
under conditions of constant temperature and pressur@l@fie  for each system studied. The short range term, erjiq is

exp(LAt) = exp(iLNH%) ex

(7.1)

ensemble) or constant volume and temperature (0T treated as an ordinary short range interaction, i.e., using a
ensemble). Results of a specific study are presented in sectionspherical cutoff to truncate the interaction at large spatial
7.2.1. distances where the potential is small. The long range term,

erf(ar)/r, is Fourier transformed into reciprocal space, where it
takes the short-ranged form, exig@4a0), and can be evaluated
accurately by summing over only a small number of reciprocal
The preceding discussion of the MD technique has focused space vectors of the simulation cell. Such reciprocal space sums
on general theoretical issues and specific numerical integrationcan be evaluated with high a degree of efficienbyl¢g N)
methodologies. It was assumed that the forces on the particlesusing particle-mesh method$!” An efficient real-space
were known. However, developing an adequate description of alternative, the fast multipole method or FMM, has also been
the interparticle interactions is a difficult problem in developing widely adopted3-¢°
good models for molecular systems. In this section, several Long range forces in systems that are periodic in less than
approaches to this problem will be discussed. First, an empirical three dimensions, such as surfaces, wires, and clusters, are more
approach, based on the introduction of a mathematical model, difficult to treat using reciprocal space-based methods. However,
or force field will be described, and an example study on a a general reciprocal space-based technique has been developed
complex system, the mutant T4 lysozyme M61, under the for systems with periodicity less than thiéé2 This new
CHARMM22 force field, will be presented. Next, a powerful technique is a generalization of the Ewald summation method
alternative approach, which combines classical dynamics with and requires only a small modification of the standard Ewald
electronic structure, referred to as ab initio molecular dynamics method to implement. It can also be easily incorporated into
will be introduced and recent examples highlighting the capabil- the particle-mesh Ewald scheme. In addition, the new method

7. Interparticle Interaction Models in Molecular
Dynamics
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Figure 3. A conformer of the M6l T4 lysozyme in water solution at 300 K with the hinge-bending angle=085°. Secondary structure elements
shown on the left and the solvent-accessible Connolly surface on the right.

is applicable to both force-field based and ab initio molecular
dynamics calculations.

7.2. Force FieldsOne approach to modeling the interactions
between particles in a MD calculation is to introduce an
empirical force field model. Here, a specific mathematical forms
for different interactions are postulated, and the parameters that
characterize the individual functions are fit to experimental data
and/or ab initio quantum chemical calculations. One example
is the CHARMM22 force field® The specific form for the
interaction potentiaU(r) in the CHARMM22 force field i8®

ur)=U(ry, .1y
Kob— b2+ S Ky0 — 6)° +

bonds angle . . .
2 Figure 4. A conformer of the M6l T4 lysozyme in water solution
; Kus(S— &)+ z K,(1 + cosfg — 9)) + with a hinge-bending angle ¢f= 95° aligned with a crystal conformer
torsion obtained from the Brookhaven Protein Databank (entry 150L, conformer

A) (rms = 1.5 A2).

012 o\12

K;

% mp(Pimp ~ Pimp) nogond [ in solution phase. In the case of the CHARMM22, the particular
qq water model is the TIP3P model, a rigid water model with

Z — (7.2) the OH distance and HO—H angle fixed at 0.9572 A and

noffond T 104.52, respectively, a charge 6f0.834 on the oxygen and
0.41% on each hydrogen, and Lennardbnes parametees—
In eq 7.2, the bond lengtl; bend anglep; torsion angleg; 76.54 K ando = 3.15 A.
1-3 distance S improper torsion anglepimp; and nonbonded 7.2.1. The mutant T4 Lysozyme M6l.The mutant phage

distance j, are functions of the Cartesian coordinates of the T4 lysosyme M6l is a two-domain single macromolecular
system. The remaining parameters, the equilibrium bond lengthsenzyme which belongs to the hinge-bending class of proteins.
(bo) and bond force constantiy), equilibrium bend anglet), It is characterized by two large lobes connected by a narrow
and force constant¥g), etc., are the parameters that character- waist region. An active site cleft is formed between the lobes
ize the force field. A different force field, such as AMBERY5, and a hinge-bend angle can be defined that measures the
generally has a similar mathematical form but is characterized accessibility of the cleft (i.e., open or shut, see Figures 3 and
by a different set of parameters. Note that eq 7.2 contains a4).5¢ The enzyme possesses two unique crystalline solid forms
sum over bonded pairs, bend and torsion angle terms, and nonin which five different protein conformations, each with a
bonded pairs. The bond and bend terms are harmonic oscillatordifferent hinge-bend angle are present. These observed angles
functions. The torsion angle term is a cosine function, a multiple span a range of 30(65°—95°) implying a high degree of
minimum function that allows for different conformations, e.g., mobility in the hinge-bend degree of freedéft is, therefore,
trans and gauche. Nonbonded interactions include both Coulombof interest to study, theoretically, the hinge-bend angle equi-
and Lennare-Jones terms. In addition, eq 7.2 contains Urey librium in both gas and solution phases and to examine the
Bradley (harmonic %3, interactions) and improper torsion angle behavior of this highly mobile degree of freedom (the hinge-
terms. The former allows for a better fit to experimental data bend angle) as a function of environment. In addition, the studies
and the latter keeps planar species flat, when sp add sp will stringently test the effectiveness of modern force field
hybridized atoms are present. Note that the use of a force field models and methodology on a complex realistic system.
requires imposition of a particular connectivity among the atoms  Recent theoretical work has been conducted on the mutant
and precludes the treatment of chemical events in which bondsT4 lysozyme M6l in water solution to examine the mobility of
are broken and formed. the hinge-bend motion in this environméft’2 However, the

In addition to the functional form of the potential, a force utility of standard MD calculations is limited by the short time
field is generally designed to work with a specific water model scales that can be examined and the comparatively long time
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scale associated with the hinge-bend motion. As a result, L B L B L LA B
simulation studies must be carried out to long times in order
for the system to sample configuration space, adequately.
Normal mode or essential dynamics techniques have been L ; ]
employed to perform postsimulation analysis of domain motion. 0.8~ -
No direct probes of equilibrium properties such as the hinge- i
bend probability distribution function have been undertaken due
to the sampling problem.

Using methodology borrowed from path integrals molecular
dynamics simulations (see section®8)specifically orderN
noncanonical variable transformations, ergodic (for systems with
small barriers) constant temperature molecular dynamics meth-
ods (cf. egs 5.1), and the multiple time scale integration
described in section 6, it is possible to enhance the sampling
efficiency of Gaussian random coil calculations by a factor of
over 200. Most of the increase in efficiency can be ascribed to
the noncanonical variable transformations, which permit the long
wavelength fluctuations of the coil to occur on a fast time scale.
These transformations can be applied without loss of generality
or any approximation to realistic all-atom models of proteins
in order to enhance large scale domain motion. The new method
performs well simply because the “essential” modes of the
protein backbone have random coil-like character and properly
exciting these modes drives large domain motion. In contrast
to essential dynamics or normal mode techniques, input 0.2 . . . — . . .
trajectories, atomic Hessians, and/or a matrix diagonalization &

Figure 5. The biased hinge-bending angle probability distribution
function of the M6l T4 lysozyme in vacuo with (solid line) and without
(dashed line) random coil transformations.

; 0.18f .
are not required.
Here, random coil variable transformations are employed to 9161 1
improve configurational sampling of the hinge-bend motion 0.14F .
during extended system molecular dynamics simulations (see 012

section 8) on the T4 phage lysozyme. These are coupled to
extended system multiple time step algorithms which alone £ o.1}+
increase simulation time by a factor of 6 over conventional

, : . 0.08 .
methods. Finally, umbrella sampling techniques are also em-
ployed to ensure the effective sampling of the hinge-bend  0.08f T
equilibrium. Using this novel suite of methodology, the hinge- 0.04+ i
bend probability distribution function in both gas and solution
phases al = 300K under the CHARMM2% force field was 0.02 ]
determined. The simulations were performed the PINY_MD 0 . . L . .

50 & 8 B85 0 75 80 B 90

simulation code?3

Hinge bendi !
The efficiency of the random coil methodology is demon- inge bending angle [

strated in Figure 5. Without the transformations, the hinge-bend
angle of the molecule samples only a fraction of its available
configuration space during the 200 ps run. The full hinge-bend

probability distribution function in the gas phase is given in g weir fajlure to include polarization effects, although polariz-
Figure 6. The distribution is narrow because the lid of the cleft _,) o torce fields have been introduced very receftiyhe

“collapses” to form hydrogen bond contacts (see Figure 7). In technique known as ab initio molecular dynamics (AIMD)
contrast, the solution phase distribution is broad and the g4y es these problems by combining “on the fly” electronic
conformers align well with those taken from crystal structures gy ,ctyre calculations with finite temperature dynamics. Not
(rms < 2 AZ for conformers with similar hinge-bend angles). q,yrisingly, AIMD simulations are substantially more expensive
This indicates that the methodology has not “damaged” the y,an calculations based on empirical force fields. However,
conformational equilibrium but rather sampled it, appropriately. ecent advances in electronic structure theory as well as readily
The results presented above indicate that the MD methodol- available high-speed computers have begun to render the AIMD
ogy is sufficiently accurate to test the force fields. Second, the approach a viable one for studying chemical processes in the
force fields seem to yield a reasonable approximation to the condensed phase.
biomolecular system. Thus, a synergy between new potential The most important element in an AIMD calculation is the
models and methods development has resulted in a leap forwardepresentation of the electronic structure. Clearly, calculation
for simulation. of the exact ground-state electronic wavefunction is intractable,
7.3. Ab Initio Molecular Dynamics. An accurate force field and approximations must be used. The electronic structure theory
is an important element in the MD method, as it permits large employed should be reasonably accurate yet not too computa-
systems to be studied at relatively little computational cost. tionally demanding. One formulation of the electronic structure
However, as noted previously, current force field technology problem that satisfies these criteria is density functional theory
is not capable of describing chemical events involving bond (DFT).”>~77 DFT formulates the many-electron problem in terms
breaking and forming. Another deficiency of current force fields of the electron densityn(r), rather than the many-body

Figure 6. The true hinge-bending angle probability distribution
function of the M6l T4 lysozyme in in vacuo at 300 K. The results of
two independent runs of length 2.5 ns are shown.
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0.15 : , . - T - - , - However, it fails, for example, in hydrogen-bonded systems,
where spatial variations in the electron density are too rapidly
varying to be described adequately by LDA. The most common
approach in such cases is to extend the dependence of-this
functional to include the density(r) and its gradientvn(r):

0.1y I Exc = Ex[n,Vn]. This approximation is known as tlgeneralized
gradient approximation(GGA) and has become a popular

g approach due to the recent development of improved func-
tionals78-83
0.051 | A possible strategy for combining electronic structure with
' molecular dynamics is the following: for a given set of initial
nuclear positiong;, ..., Ry, minimize the energy functional in
eq 7.3 to obtain the ground state densgfr) and corresponding
orbitals p{O(r), ..., p(r). Given these quantities, the forces
0 s : . . ' . between the nuclei are given by the Hellmdeynman
60 65 70 75 80 8 90 95 100 105 110 theorem:
Hinge bending angle 6 [°}
Figur'e 7. The true hinge-bend_ing angle prpbability distribution 9 ©
function of the M6l T4 lysozyme in water solution at 300 K. F=- ﬁE[{U) Y {R}] (7.6)
[

wavefunction. Thus, in principle, the central quantity is a ) o )

function of just three rather than oNBvariables, a fact that The forces are then fed into a numerical integration procedure
renders calculations based on DFT computationally tractable. ©°9€ther with a set of initial velocities for the nuclei, and a step

The basic tenet of DFT is that the energy of a quantum many- of molecular dynamics is carried out, yielding a new set of

body system can be expressed as a unique functional of itsPositions e_md \_/e_loc_|t|es. At _the new nuclear posmons,_the energy
density. By minimizing the density functional over all densities functional is minimized again and a new set of forces is obtained
that give rise to a particular number of electrons, one obtains @1d used to perform another step of MD propagation. This
the ground state density and energy for a given system. procedure is repeated until an entire trajectory has been
Unfortunately, the explicit and unique form of this functional 9enerated. An elegant alternative formulation of this procedure
is not known. However, in the orbital-based formulation of DFT Was proposed by Car and Parrinettoin which, rather than

by Kohn and Sham, reasonable approximations to the densityMinimizing the functional at each new nuclear configuration, a

functional have been developed. In the KefSham formula- fictitious dynamics for the electronic orbitals is introduced that
tion, the energy is expressed in terms of a seh afccupied allows them to follow the motion of the nuclei adiabatically.
single-particle orbitalsys(r), ..., ya(r) and the N nuclear This dynamical procedure is constructed in such a way that if
positions,Ry, ..., Ry, and takes the form the orbitals are initially chosen corresponding to the ground state

density at the initial nuclear configuration, they will remain

1n approximately in the ground state as the nuclear configuration
E{y}{R}] = ——Zf dr wi*(r)Vzwi(r)-i- evolves in time. In the original formulation of the Car
2 Parrinello scheme, the orbitals are expanded in a plane wave
1 n(r)n(r’) basis,
5 [ ar dr'ﬁ-i- Eldnl + [ dr Vo(r Ry,... RYN(r)
(7.3) Pi(r) = zC'ge'gr (7.7)
]

where the density(r) is related to the orbitals by _
where cg are the expansion coefficients. (This form of the

: plane wave expansion is actually a special case of a more general

n(r) = Iwi(r)|2 (7.4) plane-wave expansion, in which the orbitals are assumed to
= be Bloch functionsy; k(r). Here, the choic& = (0,0,0), the so
and the orbitals are required to be mutually orthonormal, calledgamma pointhas been made.) The fictitious adiabatic
dynamics is then formulated for the coefficients by introducing
ily, 0= o (7.5) a set of velocities), = ¢, and an associated mass paramgter

(having units of energytime)?). In a Newtonian scheme, the
In eq 7.3,Vex represents the external potential due to fhe  equations of motion for the particles and coefficients then take
nuclei and is given exactly by/ex = —2|N:1= a/lr — Ry, the form
whereq; is the charge on each nucleus. The first two terms in
eq 7.3 are the electronic and Hartree energy terms, respectively. _ oE )
The functional Exn] of the density, called the exchange- peg=———+ ZA“C]Q
correlation functional, is unknown and must be approximated. BC*'g ]
For certain classes of systems, it has proved sufficient to
approximate this functional by taking the exchange and cor- MB, = — 9E

(|

relation energies of. a homogeneous electron gas and substituting R,
for the constant density, the inhomogeneous densitr). This
approximation, known as théocal density approximation  whereAj is a set of Lagrange multipliers for enforcing the
(LDA), has proved useful and reasonably accurate in many orthonormality constraint. Various modifications of eqs 7.8,
problems of interest in metallic and semiconductor solids. including versions for generating thNVT>? and NPT8485

(7.8)
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ensembles and formulations which allow for nonorthogonal T 3 2.5
orbital$%87 or do not require explicit orthonormality con- - (@) 2
straints>2.88 gz N G 415
Ab initio molecular dynamics has been used to predict, from & O N’ e 1
first principles, the structural and dynamical properties of a - | | — 0.5
number of neat molecular liquids and solids including wa- o ' > 4 p 80
ter314.89ice 20.90.91mono- and trihydrates of HCP®S nitro- e | 15
methané nitric acid trihydrat€’®®> and ammonid® It has also E q
been used recently to study solutions, including trioxane in o F =1
formaldehydé5.97HCI,% HF 2° and HSOy, 1% water wiresto1.102 EL E 0
and the ions, KD and OH- 16-19.103jn water. In section 7.3.1, E 17
results of a recent study of the structure of neat liquid ammonia £ | 19
are presentet. 0 4 8
An important, developing area of MD methodology is the - ‘ 415
combination of the ab initio approach with empirical force fields. ~E i E .
Such a combined scheme is expected to be of considerable utility EE e E
in the treatment of large systems, in which chemical processes ®E -405
occur in a relatively localized region, e.g., at the active site of - L ] 0
an enzyme or a chemical reaction in solution. In such systems, 0 2 4 6 8

ab initio MD can be used to treat the chemically active region r (&)

and a force field employed to describe the rest of the system. rigyre 8. Experimental (square) and ab initio radial distribution
One of the difficult problems associated with a combined functions of liquid ammonia at 273 K: (a) Nitrogenitrogen, (b)
scheme is specifying how the electrons and nuclei in the ab hydrogen-hydrogen, and (c) nitrogerhydrogen.

initio region interact with the atoms in the force-field region.
This is an especially challenging problem when it is necessary
to “cut” bonds within a molecule, for example, in treating a
reaction at the active site of an enzyme. The interested reader
is referred to refs 104108 for recent progress in this area.

7.3.1.Ab Initio Liquid Ammonia. Hydrogen-bonded liquids,
such as water and ammonia, play an important role in solution
chemistry. Liquid ammonia is employed as a solvent in various
common organic reactions. In addition, metammonia solu-
tions (small amounts of metal dissolved in ammonia), exhibit
many interesting properties, including a metasulator transi-
tion. At low concentration, these solutions are used to catalyze
organic reactions. Predicting the structural and dynamical
properties of hydrogen-bonded liquids has proved particularly
challenging for the DFT, as the LDA approximation to the
exchange-correlation functional fails. The situation improved
dramatically with the advent of the GGA, and currently,
structural and dynamical properties of water have been shown
to be well reproducéd® employing, for example, the B-LYP
functional’®79 Although excellent empirical model potentials
exist for ammonia (see, e.g., ref 109), it is important to
demonstrate the applicability of DFT to this system if one desires
to examine chemical reactions in this solvent. Here, we show Q (A1)
that the B-LYP functional also provides a reasonably accurate Figure 9. Experimental (square) and ab initio partial structure factors
description of the structure of bulk liquid ammonia. of liquid ammonia at 273 K: (a) Nitrogemitrogen, (b) hydrogen

In this study, a system of 32 ammonia molecules in a cubic, hydrogen, and (c) nitrogerhydrogen.

periodic box of length 11.229 A was equilibratedTat: 273 K the DFT is capable of reproducing the experimental peak
using the empirical liquid ammonia model of Impey and |ocations and approximate peak heights. In Figure 9, the
Klein.1% Thereafter, CarParrinello ab initio molecular dynam-  corresponding structure factors are shown together with the
ics (cf. egs 7.8) was performed using a plane wave basis setexperimental results. This quantity is a more stringent test of
and the core electrons removed using the pseudopotentials othe results with experiment, and it can be seen that the DFT
Bachelet-Hamann and Schitar° Tests comparing the use of  results are in good agreement with the experiment. In addition,
these pseudopotentials against those of Troullier and M&1ins  the coordination numbers, computed from the area under the
at the chosen plane wave energy cutdif ¢ 70 Rydbergs)  first peak of the radial distribution functions, yield 13.2 for
yielded good agreement and, therefore, justifies their use. gnn(r) and 41 forgun(r). Both numbers are in good agreement
Equations 7.8 were integrated using a time step of 0.125 fs, with the experimental values of 14 and 42 fgu and gy,
generating a trajectory of 5 ps total length. These simulations respectively. These results open up a number of interesting
were carried using the PINY_MD simulation cotfe. possibilities for ab initio MD studies involving chemical

In Figure 8, the NN, NH, and HH radial distribution functions reactions in liquid ammonia.
generated from the ab initio trajectory are shown together with A unique aspect of the AIMD method is the availability of
the experimental results of Soper et#lIt can be seen that  electronic properties of the system, which can be used, for

Hw(Q)

Hyy(Q)

He(Q)
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example, to calculate the electric dipole momé&rdand, hence, _ P APy ~BH
IR intensities®® In ref 15, the electronic density of states and Qp Nfd pdxe (8.6)
Kohn—Sham eigenvalue spectra for the ammonia monomer, yhere

dimer, and liquid aff = 273 K are discussed in detail.

8. Path Integral Molecular Dynamics. In the preceding P (p(s) 2
discussion, it has been assumed thatdiparticles in the system H= Z —+ o, .. xP) (8.7)
under consideration could be treated as classical point particles. & 2m

In many cases, this treatment is justifiable, however, there is a ]
large class of systems for which such an approximation is not /N €d 8.6, the constam is an overall constant that ensures the
valid. In general, systems where hydrogen/proton motion is €quality of egs 8.6 and 8.4. In addition, the massbeing a
important, for example, proton transfer processes, often havefictitious mass, is arbitrary, a fact that can be exploited in
significant nuclear quantum effects. The problem of treating devising an MD scheme for eq 8.6, as will be shown below.
nuclear quantum effects in a system at finite temperature requires®S Was pointed out by Chandler and Wolyriésegs 8.6 and
the solution of a quantum statistical mechanical problem. One 8.7 together show that, for finite, the path integral of a single
approach that has been applied with considerable success iguantum particle is isomorphic to a classical systemPof
based on the Feynman path integral formalism of statistical Particles subject with a Hamiltonian given by eq 8.7. Inspection
mechanicd14.115 of eq 8.5 shows that the particles form a closed polymer chain
Consider the quantum canonical partition function for a single With nearest neighbor harmonic coupling and are subject to a

particle in one spatial dimension. The partition function is given Potential U. The classical isomorphism allows molecular
by the trace: dynamics to be used to simulate a finite-temperature quantum

system. The extension of the path integral scheniparticles
Q= Tr(e—ﬁH) _ f dx(x|e7ﬁH|xD (8.1) in three dimensions is straightfor'warq if it is as;umeq that the

particles obey Boltzmann statistics, i.e., all spin statistics are

where the trace is carried out in the coordinate basis. Assumingneglected. In this case, the partition function is

H =T + U, whereT is the kinetic energy operator, ahdlis N

the potential, the Trotter theorem, eq 6.4, allows exjifl) to _ P. P o BH

be expressed as [expBU/2P) exp(—AT/P) exp(—AUI2P)IP in Qp= Nf I dr dpe (8.8)

the limit P — c. The Trotter theorem expression for exp( B

BH) is then substituted into eq 8.1, and an identity operator in where the classical Hamiltonian is given by

the form ofl = f dx|x[¥| is inserted in between each factor of

exp(—pBU/2P) exp(—AT/P) exp(—pU/2P), yielding N [(p@)?

P
H= - 4+ CUZ(r-(S) _ r._(S+1))2 +
P FZ ; o zm Pl i

— lim [ dx.---d
Q=lim [ dx XPL_'

P—oo l
_ (s) (s)
Dk(s)| e—[fUIZPe—ﬁT/Pe—ﬁU/2P|X(s+1)[ll((P+1):x(1) (8.2) PU(rl e (8.9)

Then, using the fact In principle, the equations of motion resulting frpm eq 8.9 could
be implemented as a MD procedure, from which the quantum
5O ef/iUIZPefﬁTIZPefﬁUIZPIX(s+l)D= mP |12 equilibrium properties of a system could be compufgda
27 8hH? number of well-known difficulties arise in a straightforward

implementation of MD to the path integral. Primarily, singg?
exr{— %(U(X(S)) + U(X(SH)))] exy{— m—PZ(X(S) - X(SH))Z] ~ P, the force constant of the harmonic coupling increases as
2Bk P increases, giving rise to a stiff harmonic interaction and a
(8.3) time scale separation. As was shown by Hall and Béthis
time scale separation gives rise to nonergodic trajectories that

one obtains the final expression fQras a function ofP : ) i
do not sample the available canonical phase space. A solution

— i mP \P2 @ Pl AL, ) to this problem was first presented in ref 34. There, it was shown

Q= p'fl, Znﬂhz f X X e that several elements are needed to devise an efficient MD

] scheme for path integrals. First, a change of variables that

= limQ, (8.4) diagonalizes the harmonic coupling is introduced. This has the

effect of isolating the various time scales present in the

where® is an effective potential given by Hamiltonian of eq 8.9. The change of variables is linear, having

the general form

P 1 1
o, ..., xXP) = Z [—mwg(x@ — x5+ Zy((x)

P
O=Y u o 8.10
(8.5) ’ qZ| ! (620

with wp = ﬁ/ﬁh_ where the matriXJ is a constant matrix of unit determinant.

Equation 8.4 is in the form of a configurational partition Two different choices of the matrikl, discussed in refs 119
function for aP-particle system in one dimension subject to a and 120, lead to thstagingandnormal moderansformations.
potential, ®(xy, ..., Xxp). The configurational partition function = The transformed coordinatesa(s) are known as staging or
can also be expressed in a quasiphase space form by recognizingormal mode variables. If the change of variables is made in
that the prefactor can be written as a producPaincoupled eg 8.8, then the corresponding classical Hamiltonian takes the
Gaussian integrals form
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p[ N (p(2))2 D* in liquid D,O using ab initio MD and classical nuclei
H= ' + ZmPw2u®)?| + revealed that bDs" and HO," occur with roughly equal
&l £ Zm(s) 2 probability6-18 In addition, these studies revealed that proton

transport is driven by coordination fluctuations of first solvation
1 shell members of ED*. When the coordination of a first shell
“UrPud), . r@uh)} (8.11)  water decreases from four to three as a result of the breaking
P of a hydrogen bond with a second solvation shell member, the

ndercoor

where thegdependent ma_ssersg(s) result fr_om the variable -llj-hgeég;dfg?;idavga;riEfé?nn;?j?a?epgﬂ;Eicsgt%r gﬁg‘ the
tralnsformauon. For a staging transformation, the masses aréy oion transfer reaction. This mechanism was discovered
m® = 0 andm{® =ms/(s— 1) fors> 2, while for the normal  jyqependently in ref 130 and was shown to be consistent with
mode transformation, the masses are proportional to the normalyy5ilable experimental data. A very rough estimate of the proton
mode eigenvalues. Thus, it is cill)ear that the (L')C“t'ou(g MasSeS transfer rate from the ab initio MD trajectories gave a result of
should be chosen according " = m andm® 0 m®. In approximately 2 ps. Scaling this estimate i, /M, there-

this way, all modes will move on the same time scale, leading fore, yields an approximate proton transfer rate of 1.4 ps, in
to maximally efficient exploration of the configuration space. 4ccordance with NMR measuremebis.

In addition to variable transformations, it is necessary to
ensure that a canonical phase space is generated. This can bt‘ﬁ
achieved via one of the non-Hamiltonian MD schemes for
generating th&VT ensemble. It has been found that maximum
efficiency is obtained if each Cartesian direction of each mode
variable is coupled to its own thermostat, as was clearly
demonstrated in ref 119, and multiple time scale integration
techniques are employétl.

It is worth mentioning that the path integral MD scheme

outlined here has been combined with ab initio MD to yield an C P .
ab initio path integral CarParrinello method®121This aliows the Troullier-Martins pseudopotentiald! This particular DFT

quantum effects on chemical processes to be studied. Moresf:henlge2 has been S?fwn toyield a good .desécription of the water
recently, the ab initio path integral scheme has been extendedgggienr’th;'?mufs‘;\;?;e(r’se?gggg;%%f;?g:;oﬁ '\(Ie?jsgl;(;qxg'n

to incorporate approximate quantum dynamical propéffies " ploy: intal

the so-called centroid dynamics methi@éi124Finally, the path a temperature of 300 K. In ad(_jlt_|c_)n to ‘h‘? path_ mtegral
integral MD scheme has been modified to allow path integral simulation, a corresponding ab initio MD simulation with

simulations under conditions of constant temperature and \legrssl((:::rlriglécclﬁt%s:inl)C\Aléal\jDCslglri? r?léth?esettsTnglagérsn
pressure to be carried ot 9 on 3.0 (J. Hutter, P. Ballone,

8.1. Ab Initio Path Integral Simulation of an Excess M. Bernasconi, P. Focher, E. Fois, S. Goedecker, D. Marx, M.

Proton in Water. Excess protons in liquid water have an Parrinello, Mj Tuckerman). .
anomalously high mobility. Explanations of this phenomenon  The solvation structures of @ in water can be analyzed
began with the idea of structural diffusion proposed by de by examining the two-dimensional prgbablllty distribution
Grotthuss nearly 2 centuries aif§:2%In the Grotthuss picture,  function P(Roo, 0) of the shared proton in a hydrogen bond.
an overall motion of excess charge occurs via a chain of proton The coordinat® = RoH — Ro,H is the difference in distance
transfer reactions through the interconnected hydrogen bondPetween the proton and each of the two oxygens, i.e., propor-
network of water. Although the Grotthuss concept is generally tional to the asymmetric stretch, aRgo is the oxyger-oxygen
believed to be the correct explanation of the high mobility of Separation. In order that the analysis be as unbiased as possible,
protons in water, the exact Grotthuss mechanism has remainedhis distribution function is analyzed in three stages. Fittoo,
a mystery for 200 years. Moreover, as a result of the high ) is computed for all hydrogen bonds, The distribution (not
mobility, identifying the solvation structure of the hydrated Shown) is characterized by two high peaksRéd, o) = (2.8
proton has led to controversy. The classic freshman chemistryA, 0.9 A), which arise from hydrogen bonds between neutral
picture identifies the excess proton as attached to a waterWater molecules. The distribution, however, also has a nonzero
molecule, forming the hydronium ion, a picture that is generally Value around|o] ~ 0, which indicates the existence of
agreed upon. However, the solvation structure of hydronium in Ce€ntrosymmetric ED,* complexes in which the excess proton
water remains unresolved. Within the last 50 years, two is shared between two water molecules. Thus, a description
predominant structural models emerged. Ei§éeproposed solely in terms of HO" or HyO™ must be ruled out.
the formation of a O, complex in which the BO™ core is In the second stage, the analysis is refined by excluding all
strongly hydrogen bonded to three water molecules. If Eigen’s “irrelevant” hydrogen bonds. Irrelevant hydrogen bonds are
model is correct, then the Grotthuss mechanism would be defined to exist between neutral water molecules. In order to
characterized by tunneling from ones®* complex state to identify these irrelevant bonds, the defect sitgDH, must be
another. Zunde¥?® on the other hand, based on certain broad located. This can be accomplished uniquely by listing, for each
features of spectroscopic data, proposed the existence of arhydrogen, the oxygen atom that is closest and then determining
HsO.™ complex in which the proton is shared between two water which oxygen atom appears three times in the list of oxygen
molecules. Clearly, these two structural models lead to different atoms. Then, only the three hydrogen bonds involving this
interpretations of the Grotthuss picture of proton transport.  oxygen are considered. The corresponding distribution is shown
The combination of ab initio molecular dynamics and path in Figure 10a. The effect of excluding the irrelevant hydrogen
integrald®121provides a powerful tool for probing the contro-  bonds is to enhance thé| = 0 corresponding to the centrosym-
versial details of the solvation and transport of hydronium in metric complex contribution and also to bring out two wings
water including nuclear quantum effects. Previous studies of due to asymmetric hydrogen bonds.

In order to probe both thermal and quantum fluctuations of
e hydrated proton, ab initio path integral simulations have been
carried out on a system of 32 water molecules with one excess
proton!® The imaginary time paths were discretized iRte= 8

time slices, and trajectories consisting of 100 000 steps with a
time step of 7.0 au were generated. Exchange and correlation
were treated within the GGA (see discussion in section 7.3)
using the B-LYP&7%functional, and the planewave basis was

cut off at an energy of 70 Ry. Core electrons were treated using
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Figure 10. (a) The quantum mechanical two-dimensional probability distribution fund®@®wo, o) for the three hydrogen bonds of the®t
complex in water. (b) The quanum mechanical two-dimensional probability distribution furle(Rsb, o) for the “most active” of the three
hydrogen bonds described in part a, as characterized by the smallest value of

In the final refinement step, the distribution corresponding which indicates that essentially a continuum of other unclassified
to the hydrogen bond with the smallest valugdifis computed. structures exists between these two “limiting” forms. In fact,
In this way, the “most active” hydrogen bond, i.e., the hydrogen the free energy profile[F(d), obtained by integrating the
bond through which proton transfer is most likely to occur, is distribution in Figure 10b oveRoo values and taking-kT times
isolated. The distribution, shown in Figure 10b, exhibits a broad, the logarithm of the result, possesses a single, flat well
unstructured character. The unstructured nature of the distribu-characteristic of a fluxional complex (see Figure 11). This also
tion is a clear indication that an unambiguous identification of implies that the HO,™ complex cannot be regarded as a typical
solely HO4* or HsO,* complexes cannot be made. Rather, it transition state. Rather, the protonic defect complex is most
is observed that fofd| small, the complex corresponds to an accurately described as being of a fluxional nature, with Eigen’s
equal sharing of the proton between two waters, in accordanceHgsO, and Zundel's HO," complexes as its limiting forms.
with Zundel’s view, and forld| large, the complex possesses Also shown in Figure 11 is the free energy profile computed
the features associated with Eigen'sQ4" complex picture. from the classical trajectory. It can be seen that a small free
Note, however, that between large and small values, the energy barrier of~0.56 kcal/mol exists (at 300 KT ~ 0.59
distribution function is characterized by a featureless, flat ridge, kcal/mol), which is washed out in the quantum case by zero-
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25

defect is characterized by strong, short hydrogen bonds. The
first peak in the OO distribution function for water is lat=
2.8 A. Note also the broad shoulder in the O*H distribution
function betweerr = 1.6 A andr = 2.5 A. This, again, gives
further evidence of the existence of a fluxional complex. This
particular feature is also present in the classical O*H radial
distribution function; however, it is somewhat less pronounced.
The analysis presented in the context of this ab initio path
integral study underscores the complex behavior of the hydrated
proton, indicating that both the Eigen and Zundel pictures are
important but that the defect complex is actually of a fluxional
character and cannot be understood entirely within either of these
views. Typically, we tend to think of solution complexes in
terms of well-defined solvation structures. The case of the
hydrated proton serves to show that this concept can be
misleading and suggests the possibility that many of the
Aifficulties in the interpretation of experimental data might have
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Figure 11. The free energy profiles along the proton transfer coordinate
o for the classical (dashed line) and quantum (solid line) simulations

of an excess proton in water. The short dashed line corresponds to 30

K. arisen from this imposition of such a prejudice.
5.0 ' ' ‘ ' 9. Conclusion
40| 7 Recent developments in molecular dynamics methodology
have been presented together with representative applications.
93'0 I The basis of MD in terms of Newtonian or Hamiltonian
gz.o | equations of motion has been reviewed. In addition, a theoretical
o statistical mechanical treatment has been developed which
10+ extends the Hamiltonian case to non-Hamiltonian dynamical
systems. The latter can be used to generate statistical ensembles
00 o other than the microcanonical within the framework of a
continuous dynamics. Thus, all the techniques for analyzing
dynamical systems (e.g. conservation laws, stability analysis)
5.0 . . T : can be applied. Dynamical systems capable of generating the
canonical NVT) and isothermatisobaric NPT) ensembles have
40 r ) been presented. Next, it was shown how the classical propagator
a0l | expressed in terms of the Liouville operator can be used to
= derive stable, reversible numerical integration procedures for
Eo0l , both Hamiltonian and non-Hamiltonian dynamical equations,
o including decompositions for systems with multiple time scale
10 - motion. In particular, it has been shown how multiple time step
factorization schemes lead to more efficient procedures for
0000 10 20 30 20 5.0 dynamical systems characterized by a separation of two or more
r [A] time scales.

Figure 12. The O*~0 (a) and O*H (b) quantum radial distribution The question of how interparticle interactions are computed
functions for an excess proton in water. Here, O* indicates the defect in molecular dynamics has been addressed. The problem of the
oxygen site. choice of boundary conditions has been discussed, and the
existence of new methodology to treat zero-, one-, two- and
point motion. Thus, an important manifestation of nuclear three-dimensional periodicity within the same framework for
quantum effects is the destabilization of theQa" complex systems with long range interactions was presented. The basic
by removal of the free energy barrier. ideas behind modern force fields were given, and an application
The mechanism of proton transfer described in refs 17 and of force field model to a problem of biological interest, the
18 was also investigated. Since dynamical properties are notmutant T4 lysozyme M61, has been presented, in order to
available from these studies, an indirect approach was taken.demonstrate the use of force fields with the multiple time scale
The coordination number of the receiving water molecule in integration techniques discussed in section 6 and non-Hamil-

the hydrogen bond with the smallegt] was computed for
different ranges ofd|. It was found that the coordination of
this water, which is a first solvation shell water, decreased
steadily from 4 at largéd| to 3.5 at smalld|, indicating that
the fluxional complex takes on the centrosymmetrigOpt

tonian evolution. Since the model force field approach breaks
down in reacting chemical systems, the ab initio MD technique
was reviewed. It was demonstrated how an efficient scheme
for combining “on the fly” electronic structure with finite

temperature dynamics could be achieved within the gradient-

character when the receiving water is undercoordinated. This corrected Koha-Sham local density functional theory and how
is in accordance with the mechanism obtained from our previous the Car-Parrinello adiabatic dynamics approach leads to a stable

calculations and with that described in ref 130.
Finally, the quantum radial distribution functiogs-o(r) and

scheme for carrying out ab initio MD calculations. The results
of a recent application of ab initio MD to liquid ammonia were

doH(r) are shown in parts a and b of Figure 12, respectively, presented. It was seen that gradient-corrected DFT applied to
whereO* indicates the defect oxygen site. The first peak in the liquid ammonia gives structural properties that are in good
O*O distribution function ar = 2.5 A shows clearly that the ~ agreement with experiment.
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Finally, it has been shown how quantum nuclear effects at
finite temperature can be studied via Feynman’s path integral

J. Phys. Chem. B, Vol. 104, No. 2, 200077

(16) Tuckerman, M. E.; Laasonen, K.; Sprik, M.; Parrinello, MPhys.

| Condens. Matted 994 4, A93.

(17) Tuckerman, M. E.; Laasonen, K.; Sprik, M.; Parrinello, MPhys.

formulation of quantum statistical mechanics. It was shown how cpem’1995 99, 5749.

the discrete Feynman path integral for the canonical partition

function for anN-particle system could be mapped onto that of

(18) Tuckerman, M. E.; Laasonen, K.; Sprik, M.; Parrinello, MChem.
Phys.1995 103, 150.
(19) Marx, D.; Tuckerman, M. E.; Hutter, J.; Parrinello, Neature1999

a classicaNP-particle system consisting of interacting cyclic 5977551

ring polymer chains, the latter being amenable to molecular
dynamics methods. The classic problems surrounding MD
evaluation of path integrals have been discussed and effectivell
solutions to these problems presented. The combination of path

integrals with ab initio MD was briefly discussed, and an

(20) Benoit, M.; Marx, D.; Parrinello, MNature 1998 392, 258.
(21) Sagnella, D. E.; Laasonen, K.; Klein, M. Biophys. J1996 71,
72.

(22) M. Boero, M. P.; Terakura, Kl. Am. Chem. Sod998 120,2746.
(23) K. C. Hass, W. F. S. A. C.; Andreoni, VBciencel998 282,265.
(24) Tuckerman, M. E.; Mundy, C. J.; Martyna, G.Europhys. Lett.

application of the combined ab initio path integral scheme to 1999 45, 149.

the classic problem of the hydrated proton was presented. A
number of critical conclusions were drawn from the analysis

(25) Swope, W. C.; Andersen, H. C.; Berens, P. H.; Wilson, KJR.

Chem. Phys1982 76, 637.

(26) Kubo, R.; Toda, M.; Hashitsume, Statistical Physics |ISpringer-

that could potentially resolve the 200 year-old questions of how Verlag: Berlin, 1978.
does an excess proton in water solvate and what is the nature (27) Berne, B. J.; Harp, G. DAdv. Chem. Phys197Q 17, 63.

of the Grotthuss mechanism?

Molecular dynamics, based either on empirical force fields

or “on the fly” ab initio-derived forces, is a powerful tool, both

as a means of conformational sampling and for obtaining

dynamical properties of systems. The flexibility of the method
permits a good deal of creativity in the development of novel

MD algorithms for different purposes. The authors are currently

exploiting this flexibility to further extend multiple time scale

(28) Andersen, H. CJ. Chem. Phys198Q 72, 2384.

(29) Nose S.; Klein, M. Mol. Phys.1983 50, 1055.

(30) Nose S. J. Chem. Phy4.984 81, 511.

(31) Hoover, W. GPhys. Re. A 1985 31, 1695.

(32) Tuckerman, M. E.; Martyna, G. J.; Ciccotti, G. Manuscript in
preparation.

(33) Martyna, G. J.; Tuckermana, M. E.; Klein, M. I. Chem. Phys.
1992 97, 2635.

(34) Tuckerman, M. E.; Martyna, G. J.; Klein, M. L.; Berne, B.JJ.

Chem. Phys1993 99, 2796.

(35) Tobias, D. J.; Martyna, G. J.; Klein, M. lJ. Phys. Chem1993

integration methodology along the lines first introduced in ref 97, 12959,

133 and to develop efficient MD-based conformational sampling
techniques for biological macromolecules based on variable
transformation techniques. Promising avenues for future devel-

(36) Martyna, G. J.; Tobias, D. J.; Klein, M. ll. Chem. Phys1994
101,4177.

(37) Tuckerman, M. E.; Martyna, G. J. Chem. Physl999 110,3623.

(38) Goldstein, H.Classical Mechanics2nd ed.; Addison-Wesley:

opment include the combining of multiple time scale methodol- Reading, MA, 1980.

ogy with the recently introduced transition path sampling
method34135 for the calculation of rate constants and the
development of multiple time scale hybrid Monte Céaffo

algorithms for efficient conformational sampling. It is expected

that, as the power of readily obtainable computational resources
increases and new algorithms are devised, MD will start to play

(39) Tuckerman, M.; Martyna, G. J.; Berne, BJJChem. Physl992

97,1990.

(40) Martyna, G. J.; Tuckerman, M.; Tobias, D.; Klein, Mol. Phys.
1996 87, 1117.

(41) Andersen, H. CJ. Comput. Phys1983 52, 24.

(42) Berne, B. JJ. Stat. Phys1986 43, 911.

(43) Cao, J.; VothG. A. J. Chem. Phy4.994 104,273.

(44) Friedman, A.; Auerbach, S. Comp. Phys1991, 93, 171.

a greater role in the areas of drug design and screening and in  (45) Watanabe, M.; Karplus, M. Chem. Phys1993 99, 18063.

investigations of the properties of novel materials. It is also
expected that ab initio MD modules will soon appear as a feature

(46) Procacci, P.; Darden, T.; Marchi, M. Phys. Chem1996 100,

(47) Mizan, T. |.; Savage, P. E.; Ziff, R. M. Phys. Chem1994 98,

in molecular modeling packages and, hence, will eventually 13067.

become a standard tool in many experimental labs.
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