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Recent advances in molecular dynamics methodology have made it possible to study routinely the microscopic
details of chemical processes in the condensed phase using high-speed computers. Thus, it is timely and
useful to provide a pedagogical treatment of the theoretical and numerical aspects of modern molecular
dynamics simulation techniques and to show several applications that illustrate the capability of these
approaches. First, the standard Newtonian or Hamiltonian dynamics based method is presented followed by
a discussion of theoretical advances related to non-Hamiltonian molecular dynamics. Examples of
non-Hamiltonian molecular dynamics schemes capable of generating the canonical and isothermal-isobaric
ensemble are analyzed. Next, the novel Liouville operator factorization approach to numerical integration is
reviewed. The power and utility of this new technique are contrasted to more basic methods, particularly, in
the development of multiple time scale and non-Hamiltonian integrators. Since the results of molecular dynamics
simulations depend on the interparticle interactions employed in the calculations, modern empirical force
fields and ab initio molecular dynamics approaches are discussed. An example calculation combining an
empirical force field and novel molecular dynamics methods, the mutant T4 lysozyme M61 in water, will be
presented. The combination of electronic structure with classical dynamics, the so called ab initio molecular
dynamics method, will be described and an application to the structure of liquid ammonia discussed. Last, it
will then be shown how the classical molecular dynamics methods can be adapted for quantum calculations
using the Feynman path integral formulation of statistical mechanics. An application, employing both path
integrals and ab initio molecular dynamics, to an excess proton in water will be presented.

1. Introduction

Molecular dynamics (MD) has had a long history1-6 and has
evolved into an important and widely used theoretical tool that
allows researchers in chemistry, physics, and biology to model
the detailed microscopic dynamical behavior of many different
types of systems, including gases, liquids, solids, surfaces, and
clusters. However, recent theoretical and numerical advances
have increased the utility of the basic methodology and made
a pedagogical overview for a nonspecialist audience timely and
appropriate.

In a MD simulation, the classical equations of motion
governing the microscopic time evolution of a many-body
system are solved numerically subject to boundary conditions
appropriate for the geometry or symmetry of the system. Thus,
MD methodology is founded upon the basic principles of
classical mechanics and can provide a window into the
microscopic dynamical behavior of the individual atoms that
make up a given system. From this information, the microscopic
mechanisms of energy and mass transfer in chemical processes
can be “observed” and dynamical properties such as absorption
spectra, rate constants, and transport properties can be calculated.
In addition to providing a microscopic dynamical picture, MD

can also be employed as a means of sampling from a statistical
mechanical ensemble and determining equilibrium properties.
These properties include average thermodynamic quantities
(pressure, temperature, volume, etc.), structure, and free energies
along reaction paths.

In order to provide a picture of the microscopic behavior of
a system from the laws of classical mechanics, MD requires,
as an input, a description of the interparticle interactions. The
quality of the results of an MD simulation depends on the
accuracy of this description. One common approach involves
the introduction of a model orforce field. The relatively low
computational overhead associated with a standard force-field
has allowed large-scale calculations to be performed on proteins,
membranes, and large biological assemblies. Recent applications
employing common force fields include, among many other
impressive examples that can be found in the literature, an
exploration of protein folding pathways in solution,7 structural
and dynamical properties of ion channels,8,9 a novel approach
to conformational sampling applied to the mutant T4 lysozyme
M6I (see section 7.2.1), and studies of the human immunode-
ficiency virus protease complexed with a new class of C60

fullerene-based inhibitor compounds.10

159J. Phys. Chem. B2000,104,159-178

10.1021/jp992433y CCC: $19.00 © 2000 American Chemical Society
Published on Web 12/16/1999



The disadvantage of a model force-field is that a system is
restricted to a single molecular connectivity. This prohibits force
field models from describing chemical processes involving bond
breaking and forming. An alternative approach is the combina-
tion of classical dynamics with electronic structure, which allows
internuclear forces to be computed “on the fly” from an
electronic structure calculation as a MD simulation proceeds.11,12

This method, known as ab initio molecular dynamics, requires
no input potential model and is capable of describing chemical
events, although it has high computational overhead. Nonethe-
less, the ab initio MD approach has been successfully applied
to study hydrogen-bonded liquids, such as water13,14 and
ammonia,15 proton transfer in water,16-19 ice,20 and in a model
ion channel,21 Ziegler-Natta catalysis,22 and the behavior of
water on an alumina surface,23 among many other systems.

2. Overview

In this article, the basic principles that underly modern MD
methodology are described and a clear picture of why this
approach is stable and accurate is developed for the nonspecial-
ist. In order to develop a modern picture, the basic principles
of Hamiltonian mechanics are reviewed and the microcanonical
statistical thermodynamics generated by the dynamics discussed.
Next, the use of non-Hamiltonian dynamical systems in mo-
lecular dynamics will be discussed and the theoretical statistical
basis24 underlying their use will be presented. Specific sets of
non-Hamiltonian equations of motion that lead to the canonical
and isothermal-isobaric ensembles will then presented in the
context of this theoretical framework. The evolution operator
formalism of classical mechanics is then used to derive
numerical multiple time step integrators for both Hamiltonian
(Newtonian) and non-Hamiltonian equations of motion whose
long time stability can be clearly understood. However, the
ability of MD calculations to describe physical systems depends
on the accuracy of the interparticle interaction potentials. Both
empirical force fields and ab initio techniques are discussed and
their ability to treat large molecular systems and chemical
reactions, respectively, evaluated. Example calculations based
on state-of-the-art force fields and electronic structure techniques
are presented. Finally, the problem of treating light nuclei in
MD simulations will be discussed. In many examples involving
light nuclei, the approximate validity of a classical description
breaks down. Recently developed Feynman path integral mo-
lecular dynamics techniques, which allow this approximation
to be relaxed, are discussed and example calculations presented.
Although of considerable current interest, the topic of multiple
electronic surfaces will be not be treated here.

3. The Basic Approach: Hamiltonian Mechanics

Molecular dynamics (MD) is employed to study the classical
motion of a many-body system and extract from the dynamics
the experimental observables. As MD calculations provide a
window into the detailed motion of individual atoms in a system,
the microscopic mechanisms of energy and mass transfer can
be gleaned.

Consider a system consisting ofN particles moving under
the influence of the internal forces acting between them. The
spatial positions of the particles as functions of time will be
denoted byr1(t), ..., rN(t), and their velocities,v1(t), ..., vN(t). If
the forces,F1, ..., FN, on theN particles are specified, then the
classical motion of the system is determined by Newton’s second
law

wherem1, ..., mN are the masses of theN particles. Since the
force on each particle is, in principle, a function of all of theN
position variables,Fi ) Fi(r1, ..., rN), eqs 3.1 constitute a set of
3N, or more generally,dN, whered is the number of spatial
dimensions, coupled second-order differential equations. A
unique solution to eqs 3.1 is obtained by choosing a set of initial
conditions,{r1(0), ...,rN(0),v1(0), ...,vN(0)}. Newton’s equations
completely determine the full set of positions and velocities as
functions of time and thus specify theclassical stateof the
system at timet. Except in special cases, an analytical solution
to the equations of motion, eqs 3.1, is not possible. An MD
calculation, therefore, employs an iterative numerical procedure,
called anumerical integratoror amap,to obtain an approximate
solution.6,25The accuracy of the numerical solution is determined
by the time discretization,∆t, referred to as thetime step.In
most cases, the forces,Fi(r1, ..., rN), are sufficiently nonlinear
functions of position that, if the true solution could be obtained
for a given choice of initial conditions, the numerical solution
would bear little resemblance to it after enough iterations of
the map. This is largely due to the fact that the initial conditions
can only be specified to within a finite precision for numerical
calculation. In a large system with highly nonlinear forces, small
differences between two sets of initial conditions lead to a
divergence between the trajectories that become exponentially
large as time increases. However, the numerical solution is
statistically equivalent to the true solution within abounded
error, and this is sufficient to ensure that the same physical
observables are obtained on average. It is important to note that
small systems with closed orbits possesses other such statistical
equivalences.

In order to demonstrate the conditions required for the
statistical equivalence of the numerical and true solutions to
the equations of motion, it is first useful to recast eqs 3.1 in
Hamiltonian form. The Hamiltonian for anN-particle system
subject only to interparticle interactions is

wherep1, ...,pN are the momenta of the particles defined bypi

) mivi andU(r1, ..., rN) is the interparticle potential, in terms
of which the forces are given by

The equations of motion (3.1) can be derived from eq 3.2
according to Hamilton’s equations,

Taking the time derivative of both sides of the first of Hamilton’s
equations and substituting into the second, one easily arrives at
eqs 3.1. Therefore, the classical state of a system at any instant
in time can also be determined by specifying the complete set
of particle positions and corresponding momenta. Alternatively,
we may collect the full set of positions and momenta into a
single vectorx ) (p1, ..., pN, r1, ..., rN) called thephase spacemir1i ) Fi (3.1)

H(p,r ) ≡ H(p1, ...,pN, r1, ..., rN) ) ∑
i)1

N pi
2

2mi

+ U(r1, ..., rN)

(3.2)

Fi ) - ∂U
∂r i

(3.3)

r3 i ) ∂H
∂pi

)
pi

mi

p3 i ) - ∂H
∂r i

) - ∂U
∂r i

) Fi(r1, ..., rN) (3.4)
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Vector, which exists in a 2dN-dimensionalphase space. A
classical state of the system corresponds to a single point in
the phase space. The phase space is thus the union ofall possible
classical states of a system.

Two important properties of the equations of motion should
be noted. One is that they are time reversible, i.e., they take the
same form when the transformationt f -t is made. The
consequence oftime reVersal symmetryis that the microscopic
physics is independent of the direction of the flow of time. The
second important property of the equations of motion is that
they conserve the Hamiltonian eq 3.2. This can be easily seen
by computing the time derivative ofH and substituting eqs 3.4
for the time derivatives of position and momentum:

The conservation of the Hamiltonian is equivalent to the
conservation of the total energy of the system and provides an
important link between molecular dynamics and statistical
mechanics. Recall that the latter connects the microscopic details
of a system to physical observables such as equilibrium
thermodynamic properties, transport coefficients, and spectra.
Statistical mechanics is based on theGibbs’ ensembleconcept.
That is, many individual microscopic configurations of a very
large system lead to the same macroscopic properties, implying
that it is not necessary to know the precise detailed motion of
every particle in a system in order to predict its properties. It is
sufficient to simply average over a large number of identical
systems, each in a different such microscopic configuration; i.e.,
the macroscopic observables of a system are formulated in terms
of ensemble aVerages. Statistical ensembles are usually char-
acterized by fixed values of thermodynamic variables such as
energy,E; temperature,T; pressure,P; volume, V; particle
number,N; or chemical potential,µ. One fundamental ensemble
is called themicrocanonicalensemble and is characterized by
constant particle number,N; constant volume,V; and constant
total energy,E, and is denoted as theNVE ensemble. Other
examples include the canonical orNVTensemble, the isothermal-
isobaric orNPT ensemble, and the grand canonical orµVT
ensemble. The thermodynamic variables that characterize an
ensemble can be regarded as experimental control parameters
that specify the conditions under which an experiment is
performed.

Now consider a system ofN particles occupying a container
of volume V and evolving under Hamilton’s equations of
motion. According to eq 3.5, the Hamiltonian will be a constant,
E, equal to the total energy of the system. In addition, the
number of particles and the volume are assumed to be fixed.
Therefore, a dynamical trajectory of this system will generate
a series of classical states having constantN, V, and E,
corresponding to a microcanonical ensemble. If the dynamics
generates all possible states having a fixedN, V, andE, then an
average over this trajectory will yield the same result as an
average in a microcanonical ensemble. The energy conservation
condition, H(p, r ) ) E, which imposes a restriction on the
classical microscopic states accessible to the system, defines a
hypersurface in the phase space called theconstant energy
surface. A system evolving according to Hamilton’s equations
of motion will remain on this surface. The assumption that a
system, given an infinite amount of time, will cover the entire
constant energy hypersurface is known as theergodic hypothesis.
Thus, under the ergodic hypothesis, averages over a trajectory
of a system obeying Hamilton’s equations are equivalent to
averages over the microcanonical ensemble.

In mathematical terms, ifA(p, r ) is a function corresponding
to a physical observable, then the microcanonical ensemble
average ofA is

whereΩ(N,V,E) is the microcanonical partition function given
by

Here,h is Planck’s constant andCN is a general combinatorial
factor. As the prefactorCN/h3N does not affect the analyses
presented herein, it will be omitted from expressions subse-
quently presented in this paper. Equation 3.7 is a device for
“counting” the number of microscopic states of a system that
obey the conditionH(p,r ) ) E for a given number of particles
N and container volumeV. The integral over theN Cartesian
positions is restricted by the spatial domainD(V) defined by
the walls of the container, while the momentum integral is
unrestricted. The average of an observable,A, over a trajectory
spanning a length of time,u, is given by

for a trajectory starting att ) 0. The ergodic hypothesis is
equivalent to the statement

(Note, the system need not be mixing or even chaotic in nature
to obey eq 3.9. A one-dimensional harmonic oscillator is ergodic
and samples all the phase space available to it!)

The meaning of the statistical equivalence between a numer-
ical trajectory and the true trajectory of a system is now clear.
Although a numerical trajectory may diverge in time from the
true trajectory, as long as the numerical trajectory conserves
the energy to within a given tolerance,∆E, the numerical
trajectory will also generate configurations belonging to the
constant energy surface that are never in error by more than
∆E. (The existence of bounds on the error of numerical
trajectories is discussed further in section 6.) Assuming ergo-
dicity, a single numerical trajectory can also be used in eq 3.9
to compute the ensemble average of an observable. Note, this
is equally true for a regular system with closed orbits and a
chaotic or mixing system.

Finally, it should be noted that dynamical properties are also
defined through ensemble averages. Time correlation functions
are important because of their relation to transport coefficients
and spectra via linear response theory.26,27 Consider, for
example, a time correlation function,CAB(t), between two
observables,A(p,r ) andB(p,r ). In order to calculateCAB(t), one
can use a set of trajectories generated by Hamilton’s equations.
Any trajectory is uniquely determined by its initial conditions.
Suppose initial conditions for each trajectory in the set are
sampled from an equilibrium phase space distribution function
f(p,r ). The time correlation function is then defined to be

dH

dt
) ∑

i)1

N [∂H

∂r i

r3 i +
∂H

∂pi

p3 i] ) ∑
i)1

N [∂H

∂r i

∂H

∂pi

-
∂H

∂pi

∂H

∂r i
] ) 0 (3.5)

〈A〉 )
CN

h3NΩ(N,V,E)
∫dNp∫D(V)d

Nr A(p,r ) δ(H(p,r ) - E)

(3.6)

Ω(N,V,E) )
CN

h3N∫dNp∫D(V)d
Nrδ(H(p,r ) - E) (3.7)

Ahu ) 1
u∫0

u
dt A(p(t),r (t)) (3.8)

lim
uf∞

Ahu ) 〈A〉 (3.9)

CAB(t) )
∫dNp dNr f(p,r ) A(p,r ) B(p(t),r (t))

∫dNp dNr f(p,r )
(3.10)
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Thus, it can be seen that a time correlation function can be
calculated by evolving a trajectory in time starting from each
set of initial conditions and then averaging the productA(p,r )
B(p(t),r (t)) over the set of trajectories at each instant in time.
(In the microcanonical ensemble,f(p,r ) ) δ(H(p,r ) - E).) In
the thermodynamic limit, all equilibrium ensembles are equiva-
lent, and thus, for very large systems, a single long trajectory
can be used to generate a time correlation function, although
the convergence of such an approach may be slow. For a detailed
treatment of the properties of time correlation functions, the
reader is referred to the review by Berne and Harp.27

Despite the utility of Hamiltonian molecular dynamics, its
principle restriction is clear: although, given correct forces, the
dynamics is exact in the classical limit; it can only generate
equilibrium properties of theNVEensemble. However, micro-
canonical conditions (NVE) are not consistent with the many
experimental measurements under conditions of constant tem-
perature and pressure or constant temperature and volume. In
order to describe the thermodynamic properties of a system
under these conditions, it is necessary to generate the corre-
sponding ensemble. One of the more fruitful and interesting
approaches to generating alternative ensemble averages is based
on properties of non-Hamiltonian dynamical systems.

4. Principles of Non-Hamiltonian Statistical Mechanics

In the previous section, the concept of an ensemble was
introduced, and the specific example of the microcanonical
ensemble, as the ensemble of systems havingH(p,r ) ) E, was
discussed. In general, an ensemble is defined by its phase space
distribution functionf(p,r ,t) ≡ f(x,t), which may possibly depend
explicitly on time. The phase space distribution function must
satisfy theLiouVille equation, which for systems governed by
Hamiltonian dynamics is

where∇ is the 2dN-dimensional gradient on the phase space.
The Liouville equation results from the requirement that the
rate of change of the number of ensemble members in an
arbitrary phase space volume is equal to the flux of members
through the boundary of the volume. It can be seen that the
Liouville equation is a statement of the conservation off. Since
f is a probability distribution function, the existence of a
conservation law forf implies the existence of a conserved phase
space measure, dµ, For Hamiltonian systems the invariant
measure is, dµ ) dx ≡ dNp dNr . It will shortly be shown below
why this is an invariant measure for Hamiltonian systems. In
summary, given an ensemble distribution function satisfying eq
4.1, the average of any observableA(x) can be defined by

Non-Hamiltonian equations of motion are typically used to
generate ensembles other than the microcanonical, for describing
systems subject to nonholonomic constraints or for describing
driven systems. The idea of generating ensembles dynamically
began with the work of Andersen,28 who showed that by
extending the phase space beyond the 2dN dimensions of the
physical system, a dynamical scheme could be constructed to
generate an isobaric distribution of the physical subsystem.
Isothermal extensions followed.29,30These original formulations
of extended phase space dynamics were based on Hamiltonian

systems, which possess certain undersirable features related to
the definition of time. It was shown that these could be corrected
by going over to a non-Hamiltonian formulation.31 However,
only recently has a consistent theoretical statistical framework
underlying the use of general non-Hamiltonian systems been
presented.24 The theoretical underpinnings will be discussed
below.

Consider the dynamical system

which is assumed to be non-Hamiltonian (i.e., expressible in
the form of eqs 3.4). Here,ê(x,t) is a generalized force, which
may have an explicit time dependence. If the dynamical system
is not Hamiltonian, then itsphase space compressibility, defined
to be

which vanishes for a Hamiltonian system (the incompressibility
property), will generally be nonzero and the phase space measure
dx is no longer invariant. In order to see this, one need only
consider the Jacobian of the transformation from an initial phase
space vectorx0 a time-evolved vectorxt given by

wheren is the dimension of the phase space. It can be shown
(see, e.g. ref 24) thatJ(xt;x0) satisfies the following evolution
equation:

with initial conditionJ(x0;x0) ) 1. Equation 4.6 implies thatJ
will only be 1 for all time if κ ) 0, as it is for Hamiltonian
systems. For non-Hamiltonian systems, the measure transforms
according to

which demonstrates that ifJ * 1, dxt * dx0.
A complete statistical theory of non-Hamiltonian systems has

recently been presented in ref 24. The basic tenets of the theory
are as follows:

(1) There is an invariant measure that takes the form

where the metric factorxg(x,t) is given by

and the functionw(x,t) is related to the compressibilityκ(x,t)
by

(2) There is a non-Hamiltonian generalization of the Liouville
equation for a general ensemble distribution functionf(x,t),
which takes the form

df(x,t)
dt

)
∂f(x,t)

∂t
+ x3 ‚∇f(x,t) ) 0 (4.1)

〈A〉t )
∫dx f(x,t) A(x)

∫dx f(x,t)
(4.2)

x3 ) ê(x,t) (4.3)

κ(x,t) ) ∇‚x ) ∇‚ê(x,t) (4.4)

J(xt;x0) )
∂(xt

1,...,xt
n)

∂(x0
1,...,x0

n)
(4.5)

d
dt

J(xt,x0) ) κ(xt,t) J(xt;x0) (4.6)

dxt ) J(xt;x0) dx0 (4.7)

dµ ) xg(x,t) dx (4.8)

xg(x,t) ) e-w(x,t) (4.9)

dw
dt

) κ (4.10)

∂

∂t
(xgf) + ∇‚(x3 xgf) ) 0 (4.11)
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(3) In the absence of external driving and explicitly time-
dependent forces, a non-Hamiltonian microcanonical ensemble
can be defined on the basis of the existence of the invariant
measure. If the dynamical system in eq 4.3 has a set ofM
conserved quantitiesKλ(x), λ ) 1, ...,M, satisfying dKλ/dt ) 0,
then the microcanonical distribution function is given by

and the corresponding partition function is

The microcanonical distribution,f(x), together with the metric

xg(x) satisfies the time-independent form of eq 4.11. This is
a necessary but not sufficient condition to guarantee that a
given f(x) is the correct equilibrium distribution function. For
example, a distribution functionfh(x) ) ∏λ)1

M′ δ(Kλ(x) - Kh λ),
whereM′ < M (i.e., a distribution constructed from a subset of
the conservation laws satisfied by a system), also satisfies the
generalized Liouville equation. However,all conservation laws
arerequired if the correct microcanonical distribution is to be
constructed.

5. Designing Non-Hamiltonian Equations of Motion

It will now be shown how the basic principles of non-
Hamiltonian statistical mechanics can be employed to design
MD equations of motion that generate the canonical and
isothermal-isobaric ensembles. In fact, the above principles
lead to a procedure for designing general-purpose MD algo-
rithms.32

The Nose´-Hoover chain (NHC) dynamics method33 is a non-
Hamiltonian MD scheme for generating the canonical ensemble.
In this method, the ordinary phase space is extended to include
a set ofM thermostat variablesη1, ...., ηM and their conjugate
momentapη1, ..., pηM, which act as a heat bath coupled to the
system. The equations of motion take the form

where the thermostat forces are

The parametersQk, given by Q1 ) dNkTτ2 and Qk ) kTτ2,
determine the time scale of the thermostat motion via the single
time scaleτ, which should be chosen corresponding to a
characteristic time scale of the system, e.g., a vibrational period;
In eqs 5.1,M thermostats, which successively thermostat each
other, are coupled to the particles, thereby controlling/modulat-
ing the kinetic energy fluctuations of both particle and thermostat
degrees of freedom.

Let us apply principles 1 and 2 above to the NHC equations.
First, the compressibility and the invariant measure are com-
puted. The compressibility can be seen to be

Sincew̆ ) κ, it is clear thatw ) -dNη1 - ∑k)2
M ηk, and the

invariant measure according to eq 4.9 is

In order to determine the microcanonical partition function,
the conserved quantities of eqs 5.1 are needed. One of the
conserved quantities is the total energy of the extended system

In addition to the energy, there ared additional conservation
laws if there are no external forces (i.e., when∑i)1

N Fi ) 0).
These conservation laws take the form

as can be seen by direct differentiation. Given the conservation
laws, the microcanonical partition function can now be con-
structed according to eq 4.13. Supposed ) 3 andM ) 2,

In order to show that eq 5.7 generates a canonical distribution
in the system Hamiltonian,H(p,r ), the integrals over the
thermostat variables need to be performed. The energyδ-func-
tion can be used to perform the integral overη2, which requires
that η2 ) (E - H(p,r ) - pη1

2/2Q1 - pη2
2/2Q2 - 3NkTη1)/kT.

One of the remainingδ-functions can be used to integrate over
η1, which will leave only ratios of components ofP in the other
two δ-functions. Finally, by, changing variables to center-of-

f(x) ) ∏
λ)1

M

δ(Kλ(x) - Kh λ) (4.12)

Ω(N,V,Kh 1, ...,Kh M) ) ∫ dxxg(x) ∏
λ)1

M

δ(Kλ(x) - Kh λ) (4.13)

r3 i )
pi

mi

p3 i ) Fi -
pη1

Q1
pi

η̆k )
pηk

Qk
k ) 1, ...,M

p̆ηk
) Gk -

pηk+1

Qk+1
pηk

k ) 1, ...,M - 1

p̆ηM
) GM (5.1)

G1 ) ∑
i)1

N pi
2

mi

- dNkT

Gk )
pηk-1

2

Qk-1
- kT k) 2, ...,M (5.2)

κ ) ∑
i)1

N

[∇r i
‚r3 i + ∇pi

‚p3 i] + ∑
k)1

M [∂η̆
k

∂η
k

+
∂p̆ηk

∂pηk
]

) -dN
pη1

Q1

- ∑
k)2

M pηk

Qk

) -dNη̆1 - ∑
k)2

M

η̆k (5.3)

dµ ) exp(η1 + ∑
k)2

M

ηM)dNp dNr dMη dMpη (5.4)

H′ ) H(p,r ) + ∑
k)1

M pηk

2

2Qk

+ kT[dNη1 + ∑
k)2

M

ηk] (5.5)

K ) eη1∑
i)1

N

pi ≡ eη1P (5.6)

Ω(N,V,T,E,K ) ) ∫dNp dNr dη1 dη2 dpη1
dpη2

exp(3Nη1 +

η2) δ(H(p,r ) +
pη1

2

2Q1
+

pη2

2

2Q2
+ 3NkTη1 + kTη2 - E)

δ(eη1Px - Kx)δ(eη1Py - Ky)δ(eη1Pz - Kz) (5.7)
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mass and normal mode momenta, ({p̃},P), the expression can
be simplified to yield

where{m̃, M} are the normal mode and total masses,â ) 1/kT,
and the proportionality constant depends onE andK . Equation
5.8 is the correct canonical partition function for the Hamiltonian
H(p,r ). Hence, the NHC equations generate the canonical
distribution function (within constants). Figure 1 shows thex-p

plane of phase space, and the position and momentum distribu-
tion functions for a one-dimensional harmonic oscillator gener-
ated by the NHC equations. The analytical distribution functions
are also shown in the figure. As can be seen, the ensemble is
correctly sampled by the NHC system. The significance of the
harmonic oscillator will become clear later in the context of
force fields (see section 7.2) and in path integral molecular
dynamics (see section 8). Following the same procedure, it can
be shown that the Nose´-Hoover thermostat method (corre-
sponding toM ) 1 in eqs 5.1) does not produce the correct
canonical distribution when∑i)1

N Fi ) 0.32 It is also interesting
to note that if more than one thermostat chain is coupled to the
system, then the momentum conservation laws are no longer
present, and the proof simplifies. An extreme example, which
has proved useful in a number of applications, is the coupling
of a separate thermostat to each degree of freedom in the system.
This scheme leads to very rapid equilibration of a system and
plays an important role both in path integral molecular dynamics
and simulations involving biological macromolecules.34,35

Next, the isothermal-isobaric orNPTensemble is considered.
In this ensemble, the volume,V, of the system must fluctuate
such that the average internal, pressure of the system,〈Pint〉, is
equal to an external applied pressure,Pext. Thus, in designing a
MD algorithm for theNPT ensemble, one should both incor-
porate the volume as a dynamical variable28 and employ a
thermostat to ensure that both instantaneous temperature and
pressure fluctuations are generated properly. A useful non-
Hamiltonian scheme for theNPTensemble36 is defined by the
following equations of motion:

Here, pε is a momentum conjugate to the logarithm of the
volume, W is its associated mass parameter,ε ) ln(V/V(0)),
Pext is the external applied pressure, andPint is the instantaneous
internal pressure of the system given by

Thus, the variablepε acts as a “barostat” which drives the system
to the steady state〈Pint〉 ) Pext. For simplicity, eqs 5.9 are written
with a single thermostat variable coupling both to the particles
and to the barostat. Thus, the case∑i)1

N Fi * 0 will be
considered. However, it is clear that when∑i)1

N Fi * 0, a
thermostat chain should be used. In fact, the optimal algorithm
employs separate thermostat chains on the particles and on the
barostat.

Figure 1. (a) Thex-p plane in the phase space of a one-dimensional
harmonic oscillator coupled to a Nose´-Hoover chain (cf. eqs 5.1). The
initial conditions arex(0) ) 0, p(0) ) 1, ηk(0) ) 0, pηk(0) ) 1. The
mass and frequency of the oscillator arem ) 1 and ω ) 1. The
thermostat time scale is determined byτ ) 1 andkT) 1. The equations
of motion are integrated for 107 steps with a time step of∆t ) 0.01
using the methods in ref 40. (b) The distribution function of momentum
for the oscillator in part a. The simulated distribution (solid line) is
shown together with the analytical distribution (dashed line). (c) The
distribution function of position for the oscillator in part a. The
simulated distribution (solid line) is shown together with the analytical
distribution (dashed line).
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The compressibility associated with eqs 5.9 is

from which it can be seen thatw(x) ) -(dN + 1)η, and the
invariant measure is

If the forces do not sum to zero, then the only conservation
law that is always present is the energy,

Using eq 4.13, the microcanonical partition function corre-
sponding to eqs 5.9 can be constructed,

Integrating overη using theδ-function and then overpη andpε

yields

the correct partition function for theNPT ensemble.
As a simple demonstration of theNPT ensemble method,

consider a single particle moving in a one-dimensional periodic
potential,

where V is the length of the box, i.e., the one-dimensional
volume. Figure 2 shows the position and volume distribution
functions,P(x) andP(L), corresponding to the choicePext ) 1,
W ) 1, Q ) 1, andkT ) 1. The distribution functions are
compared with the analytical results. It can be seen that the
proposed algorithm correctly generates the desired distribution
functions. In this example, a separate NHC is coupled to the
particle and to the barostat.

These examples show how the principles of classical non-
Hamiltonian statistical mechanics can be applied in the design
of MD algorithms that generate different statistical ensembles.
Note, non-Hamiltonian dynamics are different from Hamiltonian
dynamics. These non-Hamiltonian systems reduce to ap-
proximate Hamiltonian dynamics when the extended system
coupling parameters (here,Q andW) are large. An important
outstanding question concerns the possibility of employing non-
Hamiltonian dynamical schemes to generate a grand canonical
or µVT ensemble sampling method.

6. The Liouville Operator and Numerical Integration
Methodology

It was noted in section 3 that a numerical Newtonian
trajectory will diverge from the true Newtonian trajectory but
that the numerical trajectory will be statistically equivalent to

the true trajectory provided there is a well-defined energy
conservation tolerance,∆E, for all time, t. The error in a
numerical trajectory decreases with decreasing time step,∆t.
However, the smaller the time step, the more iterations of the
numerical integrator/map that will be required to reach a given
total time,u. Thus, numerical integration is a balance between
using the largest possible time step and maintaining an accept-
able energy conservation tolerance,∆E.

The choice of an integration time step is determined by the
nature of the forces acting on a system. In many-body systems,
the forces arise from many different classes of interparticle
interactions and generate motion on different, and often rather
disparate, time scales. Consider, for example, a large protein in
solution. There will be local intramolecular interactions which
give rise to bond stretching, bending and torsional motion, long-
range electrostatic and van der Waals interactions within the
protein, and intermolecular interactions between the protein and
solvent molecules which give rise to global rearrangements.
Local intramolecular forces generate motion on a significantly
shorter time scale than the long-range intermolecular interac-
tions. However, the time step must be chosen such that the
fastest motion in the system can be integrated stably and
accurately. This fact leads to inefficient numerical procedures,
because the computationally expensive slower forces are updated
on time scales over which they do not change appreciably. This
type ofmultiple time scale problemis almost always present in
molecular dynamics simulations. Below, the general problem
of numerical integration is discussed, and the proposed treatment
is extended to the problem of multiple time scale motion in
dynamical systems.

Several approaches can be employed to devise numerical
integration procedures. One common technique develops low-
order solutions using the time Taylor series expansion of the
position and velocity,r i(∆t), vi(∆t), about∆t ) 0, to obtain

κ ) -(dN + 1)
pη

Q
) -(dN + 1)η̆ (5.11)

dµ ) e(dN+1)η dNp dNr dV dpε dη dpη (5.12)

H′ ) H(p,r ) +
pε

2

2W
+

pη
2

2Q
+ (dN + 1)kTη + PextV (5.13)

Ω(N,Pext,T,E) ) ∫ dV∫ dNp∫D(V) dNr dpε dpη dη

exp[(dN + 1)η] δ(H(p,r ) +
pε

2

2W
+

pη
2

2Q
+ (dN + 1)kTη +

PextV - E) (5.14)

Ω(N,Pext,T,E) ∝

∫ dV exp(-âPextV) ∫ dp ∫D(V) dr e-âH(p,r ) (5.15)

U(x,V) ) mω2

4π2V2[1 - cos(2πx
V )] (5.16)

Figure 2. (a) The position distribution function for the model potential
in eq 5.16. The simulation parameters arem ) 1, ω ) 1, kT ) 1, Pext

) 1, andW ) 18. A separate thermostat chain is used for the particle
and for the barostat withQparticle ) 1 andQbarostat) 9. The simulated
distribution (solid line) is shown together with the analytical result
(dashed line). (b) The volume distribution for the model potential
described in part a. The simulated distribution (solid line) is shown
together with the analytical result (dashed line).
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useful maps. Careful consideration of the resulting functional
form allows the time reversal symmetry of the equations of
motion to be preserved.6,28 The Taylor series based technique
is appropriate for obtaining algorithms accurate to second order
in time (local error) for Hamiltonian systems, but higher order
schemes invariably require spatial derivatives of forces, which
are difficult and computationally expensive to compute. When
applied to non-Hamiltonian systems, such as eqs 5.1 or 5.9,
the Taylor series approach generally yields schemes which do
not preserve the invariant phase space measure.37 Although time-
reversal symmetry is formally satisfied, the methods often
require iterative solutions which break the symmetry. Most
textbook numerical integrators, such as Runge-Kutta or the
Gear predictor-corrector, formally violate both conditions.

In this section, a third approach will be discussed, which will
lead to time reversible methods that posses the correct metric.
This new approach is based on an evolution operator formulation
of classical mechanics.38-40 Consider a Hamiltonian system
described by eqs 3.4. These equations can be cast in the general
form

wherex is the phase space vector andiL is the Liouville operator
given by

Equations 6.1 have the formal solution

Equation 6.3 is the starting point for the derivation of
numerical integration procedures. The unitary operator, exp-
(iLt), is theclassical propagator. Its action onx(0) cannot be
determined analytically for any but a few simple cases.
However, the formal solution to Hamilton’s equations can be
used to generate practical numerical integrators through intro-
duction of an approximation to the classical propagator into eq
6.3. Suppose, for example, that the Liouville operatoriL can
be written as the sum of two parts,iL ) iL1 + iL2, such that
the action of the classical propagator onx(0) for each part can
be evaluated analytically. The classical propagator can be
rewritten using the Trotter theorem, which states

Defining t/P ) ∆t for finite P, the approximation

can be made, which yields a numerical integration procedure
that is accurate to the second order in the time step at long times.
Consider the choice

Since the forcesFi are taken to depend only on the positions,
the operator exp(iL2∆t/2) becomes a translation operator on the
momenta: pi f pi + (∆t/2)Fi(r ). Similarly, exp(iL1∆t) is a
translation operator on the positions:r i f r i + ∆t(pi/mi).
Combining these two facts allows the action of the operator in
eq 6.5 on the full set of positions and momenta to be evaluated
analytically, yielding the approximate evolution:

Equations 6.7 constitute the so-calledVelocity Verlet41 integrator,
derived here in a new and powerful way. The power of the
operator technology lies in the fact that the same evolution can
be obtained by viewing eq 6.5 as set of three sequential update
steps without requiring the closed form expression of eqs 6.7.
The three steps are simply (i) a velocity translation by an amount
(∆t/2mi)Fi, (ii) a position translation by an amount∆tvi using
the velocity obtained in step i, and (iii) a velocity translation
by an amount (∆t/2mi)Fi using forces calculated at the position
obtained in step ii. The scheme, therefore, appears as

This procedure of translating each operator into an update
step, which then can be turned into an instruction in computer
code, is called thedirect translation technique.40 The direct
translation technique, although seemingly trivial in this example,
proves immensely powerful in complex, non-Hamiltonian
systems of the type discussed in section 5. It should be noted
that the Liouville operator approach has also been employed in
the numerial propagation of quantum systems.42,43

An important property of the map generated by eq 6.5 is that
it preserves the invariant phase space measure. This property is
known as thesymplectic property. For a Hamiltonian system,
the symplectic property of a map is equivalent to the statement
that its Jacobian is unity

wherex∆t is the approximate evolution ofx0 to xt)∆t generated
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by the numerical map. The significance of the symplectic
property is that it ensures that the error of the map is bounded,
i.e., there will be no secular growth in the energy conservation
error which can affect the long-time statistical behavior of the
dynamics, provided the time step is not too large. In order to
see this, consider the example of a one-dimensional harmonic
oscillator,H ) mV2/2 + mω2x2/2, for which the map in eq 6.7
exactly preserves the following time step-dependent Hamilto-
nian:44

whereθ(∆t) ) ω∆t/2. The difference betweenH̃ and the true
Hamiltonian is

which shows that the energy conservation is rigorously bounded,
since H̃(∆t) is exactly conserved by the velocity Verlet map
and the range ofV is, thus, restricted. Notice, however, that
H̃(∆t) diverges at∆t ) 2/ω. At such a large time step, the orbits
generated by the map undergo a transition from elliptical to
hyperbolic, and the map breaks down. The power of the
operator-based approach is that it allows symplectic integration
methods to be constructed rather easily while the other ap-
proaches alluded to above do not. This is especially important
in non-Hamiltonian systems, where it is necessary to ensure
that the integrator preserves the more complicated phase space
metric in eq 4.9.

The approach illustrated above can be easily extended to treat
systems with multiple time scale motion. The method, which
was first presented in ref 39, is based on the introduction of a
reference system and a subdivision of the force,Fi, into a
contribution from the reference system and a deviation from
the true force,

If the reference system is chosen such thatFi
(ref) is a good

approximation to the true force, then propagation of the system
using the reference force with an occasional correction due to
the difference forceFi

(del) could yield an efficient and accurate
scheme. In particular, ifFi

(ref) is taken to be the fast local
intramolecular forces, which are usually computationally inex-
pensive to evaluate, then an efficient multiple time step
numerical procedure can be developed. By introducing a time
step, δt, appropriate for the reference system, a Liouville
operator,iL(ref), for the reference system and a deviation,iL(del),
from the true Liouville operator according to

such thatiL ) iL(ref) + iL(del), a propagator for the time step∆t
can be constructed in whichiL(ref) is used to propagate the system
over n steps with a time stepδt, and the correctioniL(del) is

applied in such a way that the overall scheme is time-reversible,

Here,iL1
(ref) andiL2

(ref) are defined analogously to eq 6.6 withFi

replaced byFi
(ref). The mechanism of eq 6.14 can be gleaned

by inspection. The operator in brackets corresponds ton steps
of reference system propagation using the algorithm of eq 6.7
with a time step ofδt. The correction exp(iL(del)∆t/2) is applied
both before and after the the reference system propagation,
making the scheme time reversible. This numerical integration
procedure is called the r-RESPA method,39 which stands for
reversiblereferencesystempropagatoralgorithm. The advantage
of this method is that if there is a wide separation in time scales,
choosing the reference system force equal to the “fast” force
will be a good approximation to the true force. This will allow
n and ∆t to be large. If, in addition, the fast forces are
computationally inexpensive to evaluate, then there will be a
large gain in cpu time, as the expensive slow forces will only
need to be updated once every large time step,∆t. Various forms
of this algorithm are now widely used.45-49 However, under
certain circumstances the time step can be limited by resonance
phenomena.50,51

One can also imagine extending the r-RESPA algorithm to
incorporate motion on more than two time scales. For example,
local intramolecular forces might involve fast bond and bend
forces and slower torsional forces. In addition, intermolecular
forces often separate naturally into short and long range
components, bringing in another time scale separation. In this
case, short range forces generally consist mostly of strong,
repulsive collisions, while long range forces tend to decay as
(1/rn wheren e 6. When several time scales are present, eq
6.14 can be straightforwardly generalized to incorporate each
time scale with its own time step.39,40,46 For example, for a
system with three characteristic time scales, a reference force
Fi

(ref) and two correctionsFi
(del) andFi

(Del) are chosen such that
Fi ) Fi

(ref) + Fi
(del) + Fi

(Del). If the corresponding Liouville
operators areiL(ref), iL(del), and iL(Del), defined analogously to
eq 6.13, and the corresponding time steps areδt, ∆t, and∆u,
respectively, then the three time step propagator is

Thus, the correction due to the slowest time scale is applied
only every mn time steps, and the intermediate time scale
correction is applied everyn steps. Numerical procedures such
as those of eqs 6.14 and 6.15 can lead to a considerable savings
in the cpu time needed to perform a MD calculation. Examples
will be discussed in the next section. (Unfortunately, cpu time
saving can be limited by resonance behavior that occurs when
the largest time step is close to the natural period of the fastest
motion.50,51)

Numerical integration of non-Hamiltonian systems, such as
those given in eqs 5.1 or 5.9 present a series of challenges.
First, velocity-dependent forces are present, which are generally
difficult to treat. Second, in addition to ensuring that the
conserved quantities are properly bounded by the numerical
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map, one must make certain that the invariant measurexg(x)
dx is preserved as well. It is in this aspect that the Taylor series
approach fails for non-Hamiltonian systems, and this failure has
been shown numerically to lead to nonsecular growth in the
energy.37 The operator approach, when applied correctly, solves
these problems.37

A system of equations such as eqs 4.3 can be cast in the
form of eq 6.1 by definingiL to be

with a formal solution also given by eq 6.3. For the systems
discussed in section 5, the approach that has been adopted40 is
based on a subdivision of the Liouville operator into a part that
is purely Hamiltonian in the system variables{p,r} and the
remainder, which contains all the non-Hamiltonian contributions.
Thus,

whereiLH is given by eq 6.2, andiLNH ) iL - iLH is the non-
Hamiltonian part of the operator. The operatoriLH is subdivided
according to eq 6.6, and a propagator is constructed as follows:

The form of eq 6.18 is justified by the fact that the Trotter
theorem, eq 6.4, can be generalized to the exponential of a sum
of more than two operators. The strategy of eq 6.18 is that the
non-Hamiltonian part of the dynamics is applied, in essence,
as a correction to a Hamiltonian reference system, in analogy
to eq 6.14 for the multiple time scale problem. The operator
iLNH generally contains a large number of terms. Hence, it needs
to be subdivided into simple contributions and a corresponding
factorization of the operator exp(iLNH(∆t/2)) made (see refs 52
and 40 for a more complete discussion).

Note, it is also possible to treat non-Hamiltonian systems with
multiple time scales by combining eq 6.18 with eq 6.14 or 6.15.
An example of such a system is a protein or peptide in solution
under conditions of constant temperature and pressure (theNPT
ensemble) or constant volume and temperature (theNVT
ensemble). Results of a specific study are presented in section
7.2.1.

7. Interparticle Interaction Models in Molecular
Dynamics

The preceding discussion of the MD technique has focused
on general theoretical issues and specific numerical integration
methodologies. It was assumed that the forces on the particles
were known. However, developing an adequate description of
the interparticle interactions is a difficult problem in developing
good models for molecular systems. In this section, several
approaches to this problem will be discussed. First, an empirical
approach, based on the introduction of a mathematical model,
or force field will be described, and an example study on a
complex system, the mutant T4 lysozyme M61, under the
CHARMM22 force field, will be presented. Next, a powerful
alternative approach, which combines classical dynamics with
electronic structure, referred to as ab initio molecular dynamics
will be introduced and recent examples highlighting the capabil-

ity of this method will be presented. The relative merits and
disadvantages of each scheme will be noted, as well as prospects
for combining the two approaches.

7.1. Boundary Conditions.Experimentally observable quan-
tities are formally defined in the thermodynamic limit, where
the number of particles,N, in a system and volume,V, are taken
to infinity such thatN/V remains constant. In actual computa-
tions, however, finite systems are used. This raises an important
issue concerning the calculation of forces and energies in such
systems. Particularly, given anN-particle system in a container
of volume,V, how should the boundaries of the container be
treated in order to minimize finite size effects?

One of the most common applications of the molecular
dynamics technique is to bulk condensed phases such as liquids
and solids, where it is natural to applyperiodic boundary
conditions. Under periodic boundary conditions, the system is
replicated infinitely throughout all space. Periodic boundary
conditions are a natural choice to use to treat a solid. However,
in a liquid, they are also found to reduce the influence of the
presence of boundaries on the properties of a system.

Although convenient, effective, and simple to apply, certain
subtle problems arise when periodic boundary conditions are
employed. In particular, long range forces, whose spatial range
may extend beyond the boundaries of the container into
surrounding images, present a challenge. Long range forces can
only be correctly calculated by summing over all the periodic
replicas of the original system. However, the associated
computational effort is considerable. Fortunately, methods have
been developed to treat this problem. Specifically, the Ewald
summation technique, developed originally to treat Coulomb
interactions and later extended to treat general interactions of
the form 1/rn for n e 3,53 has proved enormously successful.
The basic idea behind the technique is to divide the relevant
part of the potential into a short range and a long range
contribution. For the Coulomb potential, l/r, for example, this
can be achieved via the identity

where erf(x) and erfc(x) are the error function and complemen-
tary error function, respectively (erf(x) + erfc(x) ) 1). The
variable,R, is a convergence parameter, which can be optimized
for each system studied. The short range term, erfc(Rr)/r, is
treated as an ordinary short range interaction, i.e., using a
spherical cutoff to truncate the interaction at large spatial
distances where the potential is small. The long range term,
erf(Rr)/r, is Fourier transformed into reciprocal space, where it
takes the short-ranged form, exp(-g2/4R2), and can be evaluated
accurately by summing over only a small number of reciprocal
space vectors of the simulation cell. Such reciprocal space sums
can be evaluated with high a degree of efficiency (N log N)
using particle-mesh methods.54-57 An efficient real-space
alternative, the fast multipole method or FMM, has also been
widely adopted.58-60

Long range forces in systems that are periodic in less than
three dimensions, such as surfaces, wires, and clusters, are more
difficult to treat using reciprocal space-based methods. However,
a general reciprocal space-based technique has been developed
for systems with periodicity less than three.61,62 This new
technique is a generalization of the Ewald summation method
and requires only a small modification of the standard Ewald
method to implement. It can also be easily incorporated into
the particle-mesh Ewald scheme. In addition, the new method
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is applicable to both force-field based and ab initio molecular
dynamics calculations.

7.2. Force Fields.One approach to modeling the interactions
between particles in a MD calculation is to introduce an
empirical force field model. Here, a specific mathematical forms
for different interactions are postulated, and the parameters that
characterize the individual functions are fit to experimental data
and/or ab initio quantum chemical calculations. One example
is the CHARMM22 force field.63 The specific form for the
interaction potentialU(r ) in the CHARMM22 force field is63

In eq 7.2, the bond length,b; bend angle,θ; torsion angle,φ;
1-3 distance,S; improper torsion angle,φimp; and nonbonded
distance,rij, are functions of the Cartesian coordinates of the
system. The remaining parameters, the equilibrium bond lengths
(b0) and bond force constants (Kb), equilibrium bend angle (θ0),
and force constants (Kθ), etc., are the parameters that character-
ize the force field. A different force field, such as AMBER95,64

generally has a similar mathematical form but is characterized
by a different set of parameters. Note that eq 7.2 contains a
sum over bonded pairs, bend and torsion angle terms, and non-
bonded pairs. The bond and bend terms are harmonic oscillator
functions. The torsion angle term is a cosine function, a multiple
minimum function that allows for different conformations, e.g.,
trans and gauche. Nonbonded interactions include both Coulomb
and Lennard-Jones terms. In addition, eq 7.2 contains Urey-
Bradley (harmonic 1-3, interactions) and improper torsion angle
terms. The former allows for a better fit to experimental data
and the latter keeps planar species flat, when sp and sp2

hybridized atoms are present. Note that the use of a force field
requires imposition of a particular connectivity among the atoms
and precludes the treatment of chemical events in which bonds
are broken and formed.

In addition to the functional form of the potential, a force
field is generally designed to work with a specific water model

in solution phase. In the case of the CHARMM22, the particular
water model is the TIP3P65 model, a rigid water model with
the OH distance and H-O-H angle fixed at 0.9572 Å and
104.52°, respectively, a charge of-0.834e on the oxygen and
0.417e on each hydrogen, and Lennard-Jones parametersε )
76.54 K andσ ) 3.15 Å.

7.2.1. The mutant T4 Lysozyme M6I.The mutant phage
T4 lysosyme M6I is a two-domain single macromolecular
enzyme which belongs to the hinge-bending class of proteins.
It is characterized by two large lobes connected by a narrow
waist region. An active site cleft is formed between the lobes
and a hinge-bend angle can be defined that measures the
accessibility of the cleft (i.e., open or shut, see Figures 3 and
4).66 The enzyme possesses two unique crystalline solid forms
in which five different protein conformations, each with a
different hinge-bend angle are present. These observed angles
span a range of 30° (65°-95°) implying a high degree of
mobility in the hinge-bend degree of freedom.66 It is, therefore,
of interest to study, theoretically, the hinge-bend angle equi-
librium in both gas and solution phases and to examine the
behavior of this highly mobile degree of freedom (the hinge-
bend angle) as a function of environment. In addition, the studies
will stringently test the effectiveness of modern force field
models and methodology on a complex realistic system.

Recent theoretical work has been conducted on the mutant
T4 lysozyme M6I in water solution to examine the mobility of
the hinge-bend motion in this environment.67-72 However, the
utility of standard MD calculations is limited by the short time
scales that can be examined and the comparatively long time

Figure 3. A conformer of the M6I T4 lysozyme in water solution at 300 K with the hinge-bending angle ofθ ) 95°. Secondary structure elements
shown on the left and the solvent-accessible Connolly surface on the right.
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Figure 4. A conformer of the M6I T4 lysozyme in water solution
with a hinge-bending angle ofθ ) 95° aligned with a crystal conformer
obtained from the Brookhaven Protein Databank (entry 150L, conformer
A) (rms ) 1.5 Å2).
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scale associated with the hinge-bend motion. As a result,
simulation studies must be carried out to long times in order
for the system to sample configuration space, adequately.
Normal mode or essential dynamics techniques have been
employed to perform postsimulation analysis of domain motion.
No direct probes of equilibrium properties such as the hinge-
bend probability distribution function have been undertaken due
to the sampling problem.

Using methodology borrowed from path integrals molecular
dynamics simulations (see section 8),34 specifically orderN
noncanonical variable transformations, ergodic (for systems with
small barriers) constant temperature molecular dynamics meth-
ods (cf. eqs 5.1), and the multiple time scale integration
described in section 6, it is possible to enhance the sampling
efficiency of Gaussian random coil calculations by a factor of
over 200. Most of the increase in efficiency can be ascribed to
the noncanonical variable transformations, which permit the long
wavelength fluctuations of the coil to occur on a fast time scale.
These transformations can be applied without loss of generality
or any approximation to realistic all-atom models of proteins
in order to enhance large scale domain motion. The new method
performs well simply because the “essential” modes of the
protein backbone have random coil-like character and properly
exciting these modes drives large domain motion. In contrast
to essential dynamics or normal mode techniques, input
trajectories, atomic Hessians, and/or a matrix diagonalization
are not required.

Here, random coil variable transformations are employed to
improve configurational sampling of the hinge-bend motion
during extended system molecular dynamics simulations (see
section 8) on the T4 phage lysozyme. These are coupled to
extended system multiple time step algorithms which alone
increase simulation time by a factor of 6 over conventional
methods. Finally, umbrella sampling techniques are also em-
ployed to ensure the effective sampling of the hinge-bend
equilibrium. Using this novel suite of methodology, the hinge-
bend probability distribution function in both gas and solution
phases atT ) 300K under the CHARMM2263 force field was
determined. The simulations were performed the PINY_MD
simulation code.73

The efficiency of the random coil methodology is demon-
strated in Figure 5. Without the transformations, the hinge-bend
angle of the molecule samples only a fraction of its available
configuration space during the 200 ps run. The full hinge-bend
probability distribution function in the gas phase is given in
Figure 6. The distribution is narrow because the lid of the cleft
“collapses” to form hydrogen bond contacts (see Figure 7). In
contrast, the solution phase distribution is broad and the
conformers align well with those taken from crystal structures
(rms e 2 Å2 for conformers with similar hinge-bend angles).
This indicates that the methodology has not “damaged” the
conformational equilibrium but rather sampled it, appropriately.

The results presented above indicate that the MD methodol-
ogy is sufficiently accurate to test the force fields. Second, the
force fields seem to yield a reasonable approximation to the
biomolecular system. Thus, a synergy between new potential
models and methods development has resulted in a leap forward
for simulation.

7.3. Ab Initio Molecular Dynamics. An accurate force field
is an important element in the MD method, as it permits large
systems to be studied at relatively little computational cost.
However, as noted previously, current force field technology
is not capable of describing chemical events involving bond
breaking and forming. Another deficiency of current force fields

is their failure to include polarization effects, although polariz-
able force fields have been introduced very recently.74 The
technique known as ab initio molecular dynamics (AIMD)
solves these problems by combining “on the fly” electronic
structure calculations with finite temperature dynamics. Not
surprisingly, AIMD simulations are substantially more expensive
than calculations based on empirical force fields. However,
recent advances in electronic structure theory as well as readily
available high-speed computers have begun to render the AIMD
approach a viable one for studying chemical processes in the
condensed phase.

The most important element in an AIMD calculation is the
representation of the electronic structure. Clearly, calculation
of the exact ground-state electronic wavefunction is intractable,
and approximations must be used. The electronic structure theory
employed should be reasonably accurate yet not too computa-
tionally demanding. One formulation of the electronic structure
problem that satisfies these criteria is density functional theory
(DFT).75-77 DFT formulates the many-electron problem in terms
of the electron density,n(r ), rather than the many-body

Figure 5. The biased hinge-bending angle probability distribution
function of the M6I T4 lysozyme in vacuo with (solid line) and without
(dashed line) random coil transformations.

Figure 6. The true hinge-bending angle probability distribution
function of the M6I T4 lysozyme in in vacuo at 300 K. The results of
two independent runs of length 2.5 ns are shown.
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wavefunction. Thus, in principle, the central quantity is a
function of just three rather than of 3N variables, a fact that
renders calculations based on DFT computationally tractable.
The basic tenet of DFT is that the energy of a quantum many-
body system can be expressed as a unique functional of its
density. By minimizing the density functional over all densities
that give rise to a particular number of electrons, one obtains
the ground state density and energy for a given system.
Unfortunately, the explicit and unique form of this functional
is not known. However, in the orbital-based formulation of DFT
by Kohn and Sham, reasonable approximations to the density
functional have been developed. In the Kohn-Sham formula-
tion, the energy is expressed in terms of a set ofn occupied
single-particle orbitalsψ1(r ), ..., ψn(r ) and the N nuclear
positions,R1, ..., RN, and takes the form

where the densityn(r ) is related to the orbitals by

and the orbitals are required to be mutually orthonormal,

In eq 7.3,Vext represents the external potential due to theN
nuclei and is given exactly byVext ) -∑I)1

N ) qI/|r - RI|,
whereqI is the charge on each nucleus. The first two terms in
eq 7.3 are the electronic and Hartree energy terms, respectively.
The functional Exc[n] of the density, called the exchange-
correlation functional, is unknown and must be approximated.
For certain classes of systems, it has proved sufficient to
approximate this functional by taking the exchange and cor-
relation energies of. a homogeneous electron gas and substituting
for the constant density,n, the inhomogeneous densityn(r ). This
approximation, known as thelocal density approximation
(LDA), has proved useful and reasonably accurate in many
problems of interest in metallic and semiconductor solids.

However, it fails, for example, in hydrogen-bonded systems,
where spatial variations in the electron density are too rapidly
varying to be described adequately by LDA. The most common
approach in such cases is to extend the dependence of-this
functional to include the densityn(r ) and its gradient∇n(r ):
Exc ) Exc[n,∇n]. This approximation is known as thegeneralized
gradient approximation(GGA) and has become a popular
approach due to the recent development of improved func-
tionals.78-83

A possible strategy for combining electronic structure with
molecular dynamics is the following: for a given set of initial
nuclear positionsR1, ...,RN, minimize the energy functional in
eq 7.3 to obtain the ground state densityn0(r ) and corresponding
orbitals ψ1

(0)(r ), ..., ψn
(0)(r ). Given these quantities, the forces

between the nuclei are given by the Hellman-Feynman
theorem:

The forces are then fed into a numerical integration procedure
together with a set of initial velocities for the nuclei, and a step
of molecular dynamics is carried out, yielding a new set of
positions and velocities. At the new nuclear positions, the energy
functional is minimized again and a new set of forces is obtained
and used to perform another step of MD propagation. This
procedure is repeated until an entire trajectory has been
generated. An elegant alternative formulation of this procedure
was proposed by Car and Parrinello,11 in which, rather than
minimizing the functional at each new nuclear configuration, a
fictitious dynamics for the electronic orbitals is introduced that
allows them to follow the motion of the nuclei adiabatically.
This dynamical procedure is constructed in such a way that if
the orbitals are initially chosen corresponding to the ground state
density at the initial nuclear configuration, they will remain
approximately in the ground state as the nuclear configuration
evolves in time. In the original formulation of the Car-
Parrinello scheme, the orbitals are expanded in a plane wave
basis,

where cg
i are the expansion coefficients. (This form of the

plane wave expansion is actually a special case of a more general
plane-wave expansion, in which the orbitals are assumed to
be Bloch functions,ψi,k(r ). Here, the choicek ) (0,0,0), the so
called gamma point, has been made.) The fictitious adiabatic
dynamics is then formulated for the coefficients by introducing
a set of velocitiesVcg

i ) c̆g
i and an associated mass parameterµ

(having units of energy‚(time)2). In a Newtonian scheme, the
equations of motion for the particles and coefficients then take
the form

where Λij is a set of Lagrange multipliers for enforcing the
orthonormality constraint. Various modifications of eqs 7.8,
including versions for generating theNVT52 and NPT84,85

Figure 7. The true hinge-bending angle probability distribution
function of the M6I T4 lysozyme in water solution at 300 K.
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ensembles and formulations which allow for nonorthogonal
orbitals86,87 or do not require explicit orthonormality con-
straints.52,88

Ab initio molecular dynamics has been used to predict, from
first principles, the structural and dynamical properties of a
number of neat molecular liquids and solids including wa-
ter,13,14,89 ice,20,90,91 mono- and trihydrates of HCl,92,93 nitro-
methane,94 nitric acid trihydrate,95 and ammonia.15 It has also
been used recently to study solutions, including trioxane in
formaldehyde,96,97HCl,98 HF,99 and H2SO4,100water wires,101,102

and the ions, H3O+ and OH- 16-19,103in water. In section 7.3.1,
results of a recent study of the structure of neat liquid ammonia
are presented.15

An important, developing area of MD methodology is the
combination of the ab initio approach with empirical force fields.
Such a combined scheme is expected to be of considerable utility
in the treatment of large systems, in which chemical processes
occur in a relatively localized region, e.g., at the active site of
an enzyme or a chemical reaction in solution. In such systems,
ab initio MD can be used to treat the chemically active region
and a force field employed to describe the rest of the system.
One of the difficult problems associated with a combined
scheme is specifying how the electrons and nuclei in the ab
initio region interact with the atoms in the force-field region.
This is an especially challenging problem when it is necessary
to “cut” bonds within a molecule, for example, in treating a
reaction at the active site of an enzyme. The interested reader
is referred to refs 104-108 for recent progress in this area.

7.3.1.Ab Initio Liquid Ammonia. Hydrogen-bonded liquids,
such as water and ammonia, play an important role in solution
chemistry. Liquid ammonia is employed as a solvent in various
common organic reactions. In addition, metal-ammonia solu-
tions (small amounts of metal dissolved in ammonia), exhibit
many interesting properties, including a metal-insulator transi-
tion. At low concentration, these solutions are used to catalyze
organic reactions. Predicting the structural and dynamical
properties of hydrogen-bonded liquids has proved particularly
challenging for the DFT, as the LDA approximation to the
exchange-correlation functional fails. The situation improved
dramatically with the advent of the GGA, and currently,
structural and dynamical properties of water have been shown
to be well reproduced14,89 employing, for example, the B-LYP
functional.78,79 Although excellent empirical model potentials
exist for ammonia (see, e.g., ref 109), it is important to
demonstrate the applicability of DFT to this system if one desires
to examine chemical reactions in this solvent. Here, we show
that the B-LYP functional also provides a reasonably accurate
description of the structure of bulk liquid ammonia.

In this study, a system of 32 ammonia molecules in a cubic,
periodic box of length 11.229 Å was equilibrated atT ) 273 K
using the empirical liquid ammonia model of Impey and
Klein.109 Thereafter, Car-Parrinello ab initio molecular dynam-
ics (cf. eqs 7.8) was performed using a plane wave basis set
and the core electrons removed using the pseudopotentials of
Bachelet-Hamann and Schlu¨ter.110 Tests comparing the use of
these pseudopotentials against those of Troullier and Martins111

at the chosen plane wave energy cutoff (Ec ) 70 Rydbergs)
yielded good agreement and, therefore, justifies their use.
Equations 7.8 were integrated using a time step of 0.125 fs,
generating a trajectory of 5 ps total length. These simulations
were carried using the PINY_MD simulation code.73

In Figure 8, the NN, NH, and HH radial distribution functions
generated from the ab initio trajectory are shown together with
the experimental results of Soper et al.112 It can be seen that

the DFT is capable of reproducing the experimental peak
locations and approximate peak heights. In Figure 9, the
corresponding structure factors are shown together with the
experimental results. This quantity is a more stringent test of
the results with experiment, and it can be seen that the DFT
results are in good agreement with the experiment. In addition,
the coordination numbers, computed from the area under the
first peak of the radial distribution functions, yield 13.2 for
gNN(r) and 41 forgHH(r). Both numbers are in good agreement
with the experimental values of 14 and 42 forgNN and gHH,
respectively. These results open up a number of interesting
possibilities for ab initio MD studies involving chemical
reactions in liquid ammonia.

A unique aspect of the AIMD method is the availability of
electronic properties of the system, which can be used, for

Figure 8. Experimental (square) and ab initio radial distribution
functions of liquid ammonia at 273 K: (a) Nitrogen-nitrogen, (b)
hydrogen-hydrogen, and (c) nitrogen-hydrogen.

Figure 9. Experimental (square) and ab initio partial structure factors
of liquid ammonia at 273 K: (a) Nitrogen-nitrogen, (b) hydrogen-
hydrogen, and (c) nitrogen-hydrogen.
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example, to calculate the electric dipole moment113 and, hence,
IR intensities.89 In ref 15, the electronic density of states and
Kohn-Sham eigenvalue spectra for the ammonia monomer,
dimer, and liquid atT ) 273 K are discussed in detail.

8. Path Integral Molecular Dynamics. In the preceding
discussion, it has been assumed that theN particles in the system
under consideration could be treated as classical point particles.
In many cases, this treatment is justifiable, however, there is a
large class of systems for which such an approximation is not
valid. In general, systems where hydrogen/proton motion is
important, for example, proton transfer processes, often have
significant nuclear quantum effects. The problem of treating
nuclear quantum effects in a system at finite temperature requires
the solution of a quantum statistical mechanical problem. One
approach that has been applied with considerable success is
based on the Feynman path integral formalism of statistical
mechanics.114,115

Consider the quantum canonical partition function for a single
particle in one spatial dimension. The partition function is given
by the trace:

where the trace is carried out in the coordinate basis. Assuming
H ) T + U, whereT is the kinetic energy operator, andU is
the potential, the Trotter theorem, eq 6.4, allows exp(-âH) to
be expressed as [exp(-âU/2P) exp(-âT/P) exp(-âU/2P)]P in
the limit P f ∞. The Trotter theorem expression for exp(-
âH) is then substituted into eq 8.1, and an identity operator in
the form ofI ) ∫ dx|x〉〈x| is inserted in between each factor of
exp(-âU/2P) exp(-âT/P) exp(-âU/2P), yielding

Then, using the fact

one obtains the final expression forQ as a function ofP

whereΦ is an effective potential given by

with ωP ) xP/âp.
Equation 8.4 is in the form of a configurational partition

function for aP-particle system in one dimension subject to a
potential,Φ(x1, ..., xP). The configurational partition function
can also be expressed in a quasiphase space form by recognizing
that the prefactor can be written as a product ofP uncoupled
Gaussian integrals

where

In eq 8.6, the constantN is an overall constant that ensures the
equality of eqs 8.6 and 8.4. In addition, the massm′, being a
fictitious mass, is arbitrary, a fact that can be exploited in
devising an MD scheme for eq 8.6, as will be shown below.
As was pointed out by Chandler and Wolynes,116 eqs 8.6 and
8.7 together show that, for finiteP, the path integral of a single
quantum particle is isomorphic to a classical system ofP
particles subject with a Hamiltonian given by eq 8.7. Inspection
of eq 8.5 shows that theP particles form a closed polymer chain
with nearest neighbor harmonic coupling and are subject to a
potential U. The classical isomorphism allows molecular
dynamics to be used to simulate a finite-temperature quantum
system. The extension of the path integral scheme toN particles
in three dimensions is straightforward if it is assumed that the
particles obey Boltzmann statistics, i.e., all spin statistics are
neglected. In this case, the partition function is

where the classical Hamiltonian is given by

In principle, the equations of motion resulting from eq 8.9 could
be implemented as a MD procedure, from which the quantum
equilibrium properties of a system could be computed.117 A
number of well-known difficulties arise in a straightforward
implementation of MD to the path integral. Primarily, sinceωP

2

∼ P, the force constant of the harmonic coupling increases as
P increases, giving rise to a stiff harmonic interaction and a
time scale separation. As was shown by Hall and Berne,118 this
time scale separation gives rise to nonergodic trajectories that
do not sample the available canonical phase space. A solution
to this problem was first presented in ref 34. There, it was shown
that several elements are needed to devise an efficient MD
scheme for path integrals. First, a change of variables that
diagonalizes the harmonic coupling is introduced. This has the
effect of isolating the various time scales present in the
Hamiltonian of eq 8.9. The change of variables is linear, having
the general form

where the matrixU is a constant matrix of unit determinant.
Two different choices of the matrixU, discussed in refs 119
and 120, lead to thestagingandnormal modetransformations.
The transformed coordinatesui

(s) are known as staging or
normal mode variables. If the change of variables is made in
eq 8.8, then the corresponding classical Hamiltonian takes the
form

Q ) Tr(e-âH) ) ∫ dx(x|e-âH|x〉 (8.1)

Q ) lim
Pf∞

∫ dx1‚‚‚dxP∏
s)1

P

〈x(s)|e-âU/2Pe-âT/Pe-âU/2P|x(s+1)〉|x(P+1))x(1) (8.2)
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where thes-dependent massesmi
(s) result from the variable

transformation. For a staging transformation, the masses are
mi

(1) ) 0 andmi
(s) ) mis/(s - 1) for s g 2, while for the normal

mode transformation, the masses are proportional to the normal
mode eigenvalues. Thus, it is clear that the fictitious masses
should be chosen according tomi

(1′) ) mi and mi
(s′) ∝ mi

(s). In
this way, all modes will move on the same time scale, leading
to maximally efficient exploration of the configuration space.

In addition to variable transformations, it is necessary to
ensure that a canonical phase space is generated. This can be
achieved via one of the non-Hamiltonian MD schemes for
generating theNVTensemble. It has been found that maximum
efficiency is obtained if each Cartesian direction of each mode
variable is coupled to its own thermostat, as was clearly
demonstrated in ref 119, and multiple time scale integration
techniques are employed.34

It is worth mentioning that the path integral MD scheme
outlined here has been combined with ab initio MD to yield an
ab initio path integral Car-Parrinello method.119,121This allows
quantum effects on chemical processes to be studied. More
recently, the ab initio path integral scheme has been extended
to incorporate approximate quantum dynamical properties122 via
the so-called centroid dynamics method.123,124Finally, the path
integral MD scheme has been modified to allow path integral
simulations under conditions of constant temperature and
pressure to be carried out.120

8.1. Ab Initio Path Integral Simulation of an Excess
Proton in Water. Excess protons in liquid water have an
anomalously high mobility. Explanations of this phenomenon
began with the idea of structural diffusion proposed by de
Grotthuss nearly 2 centuries ago.125,126In the Grotthuss picture,
an overall motion of excess charge occurs via a chain of proton
transfer reactions through the interconnected hydrogen bond
network of water. Although the Grotthuss concept is generally
believed to be the correct explanation of the high mobility of
protons in water, the exact Grotthuss mechanism has remained
a mystery for 200 years. Moreover, as a result of the high
mobility, identifying the solvation structure of the hydrated
proton has led to controversy. The classic freshman chemistry
picture identifies the excess proton as attached to a water
molecule, forming the hydronium ion, a picture that is generally
agreed upon. However, the solvation structure of hydronium in
water remains unresolved. Within the last 50 years, two
predominant structural models emerged. Eigen127,128proposed
the formation of a H9O4

+ complex in which the H3O+ core is
strongly hydrogen bonded to three water molecules. If Eigen’s
model is correct, then the Grotthuss mechanism would be
characterized by tunneling from one H9O4

+ complex state to
another. Zundel,129 on the other hand, based on certain broad
features of spectroscopic data, proposed the existence of an
H5O2

+ complex in which the proton is shared between two water
molecules. Clearly, these two structural models lead to different
interpretations of the Grotthuss picture of proton transport.

The combination of ab initio molecular dynamics and path
integrals119,121provides a powerful tool for probing the contro-
versial details of the solvation and transport of hydronium in
water including nuclear quantum effects. Previous studies of

D+ in liquid D2O using ab initio MD and classical nuclei
revealed that H9O4

+ and H5O2
+ occur with roughly equal

probability.16-18 In addition, these studies revealed that proton
transport is driven by coordination fluctuations of first solvation
shell members of H3O+. When the coordination of a first shell
water decreases from four to three as a result of the breaking
of a hydrogen bond with a second solvation shell member, the
undercoordinated water becomes a proton acceptor from H3O+.
The H5O2

+ forms as an intermediate complex state during the
proton transfer reaction. This mechanism was discovered
independently in ref 130 and was shown to be consistent with
available experimental data. A very rough estimate of the proton
transfer rate from the ab initio MD trajectories gave a result of
approximately 2 ps. Scaling this estimate byxMH/MD, there-
fore, yields an approximate proton transfer rate of 1.4 ps, in
accordance with NMR measurements.131

In order to probe both thermal and quantum fluctuations of
the hydrated proton, ab initio path integral simulations have been
carried out on a system of 32 water molecules with one excess
proton.19 The imaginary time paths were discretized intoP ) 8
time slices, and trajectories consisting of 100 000 steps with a
time step of 7.0 au were generated. Exchange and correlation
were treated within the GGA (see discussion in section 7.3)
using the B-LYP78,79functional, and the plane-wave basis was
cut off at an energy of 70 Ry. Core electrons were treated using
the Troullier-Martins pseudopotentials.111 This particular DFT
scheme has been shown to yield a good description of the water
dimer,132 liquid water,14 and water dissociation.103Nosé-Hoover
chain thermostats (see section 5)33 were employed to maintain
a temperature of 300 K. In addition to the path integral
simulation, a corresponding ab initio MD simulation with
classical nuclei (P ) 1) was carried out. These simulations19

were carried out using CPMD Version 3.0 (J. Hutter, P. Ballone,
M. Bernasconi, P. Focher, E. Fois, S. Goedecker, D. Marx, M.
Parrinello, M. Tuckerman).

The solvation structures of H3O+ in water can be analyzed
by examining the two-dimensional probability distribution
function P(ROO, δ) of the shared proton in a hydrogen bond.
The coordinateδ ) ROaH - RObH is the difference in distance
between the proton and each of the two oxygens, i.e., propor-
tional to the asymmetric stretch, andROO is the oxygen-oxygen
separation. In order that the analysis be as unbiased as possible,
this distribution function is analyzed in three stages. First,P(ROO,
δ) is computed for all hydrogen bonds, The distribution (not
shown) is characterized by two high peaks at (ROO, δ) ) (2.8
Å, 0.9 Å), which arise from hydrogen bonds between neutral
water molecules. The distribution, however, also has a nonzero
value around |δ| ≈ 0, which indicates the existence of
centrosymmetric H5O2

+ complexes in which the excess proton
is shared between two water molecules. Thus, a description
solely in terms of H3O+ or H9O+ must be ruled out.

In the second stage, the analysis is refined by excluding all
“irrelevant” hydrogen bonds. Irrelevant hydrogen bonds are
defined to exist between neutral water molecules. In order to
identify these irrelevant bonds, the defect site, H3O+, must be
located. This can be accomplished uniquely by listing, for each
hydrogen, the oxygen atom that is closest and then determining
which oxygen atom appears three times in the list of oxygen
atoms. Then, only the three hydrogen bonds involving this
oxygen are considered. The corresponding distribution is shown
in Figure 10a. The effect of excluding the irrelevant hydrogen
bonds is to enhance the|δ| ) 0 corresponding to the centrosym-
metric complex contribution and also to bring out two wings
due to asymmetric hydrogen bonds.
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In the final refinement step, the distribution corresponding
to the hydrogen bond with the smallest value of|δ| is computed.
In this way, the “most active” hydrogen bond, i.e., the hydrogen
bond through which proton transfer is most likely to occur, is
isolated. The distribution, shown in Figure 10b, exhibits a broad,
unstructured character. The unstructured nature of the distribu-
tion is a clear indication that an unambiguous identification of
solely H9O4

+ or H5O2
+ complexes cannot be made. Rather, it

is observed that for|δ| small, the complex corresponds to an
equal sharing of the proton between two waters, in accordance
with Zundel’s view, and for|δ| large, the complex possesses
the features associated with Eigen’s H9O4

+ complex picture.
Note, however, that between large and small|δ| values, the
distribution function is characterized by a featureless, flat ridge,

which indicates that essentially a continuum of other unclassified
structures exists between these two “limiting” forms. In fact,
the free energy profile,F(δ), obtained by integrating the
distribution in Figure 10b overROO values and taking-kT times
the logarithm of the result, possesses a single, flat well
characteristic of a fluxional complex (see Figure 11). This also
implies that the H5O2

+ complex cannot be regarded as a typical
transition state. Rather, the protonic defect complex is most
accurately described as being of a fluxional nature, with Eigen’s
H9O4

+ and Zundel’s H5O2
+ complexes as its limiting forms.

Also shown in Figure 11 is the free energy profile computed
from the classical trajectory. It can be seen that a small free
energy barrier of∼0.56 kcal/mol exists (at 300 K,kT ≈ 0.59
kcal/mol), which is washed out in the quantum case by zero-

Figure 10. (a) The quantum mechanical two-dimensional probability distribution functionP(ROO, δ) for the three hydrogen bonds of the H3O+

complex in water. (b) The quanum mechanical two-dimensional probability distribution functionP(ROO, δ) for the “most active” of the three
hydrogen bonds described in part a, as characterized by the smallest value ofδ.
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point motion. Thus, an important manifestation of nuclear
quantum effects is the destabilization of the H9O4

+ complex
by removal of the free energy barrier.

The mechanism of proton transfer described in refs 17 and
18 was also investigated. Since dynamical properties are not
available from these studies, an indirect approach was taken.
The coordination number of the receiving water molecule in
the hydrogen bond with the smallest|δ| was computed for
different ranges of|δ|. It was found that the coordination of
this water, which is a first solvation shell water, decreased
steadily from 4 at large|δ| to 3.5 at small|δ|, indicating that
the fluxional complex takes on the centrosymmetric H5O2

+

character when the receiving water is undercoordinated. This
is in accordance with the mechanism obtained from our previous
calculations and with that described in ref 130.

Finally, the quantum radial distribution functionsgO*O(r) and
gO*H(r) are shown in parts a and b of Figure 12, respectively,
whereO* indicates the defect oxygen site. The first peak in the
O*O distribution function atr ) 2.5 Å shows clearly that the

defect is characterized by strong, short hydrogen bonds. The
first peak in the OO distribution function for water is atr )
2.8 Å. Note also the broad shoulder in the O*H distribution
function betweenr ) 1.6 Å andr ) 2.5 Å. This, again, gives
further evidence of the existence of a fluxional complex. This
particular feature is also present in the classical O*H radial
distribution function; however, it is somewhat less pronounced.

The analysis presented in the context of this ab initio path
integral study underscores the complex behavior of the hydrated
proton, indicating that both the Eigen and Zundel pictures are
important but that the defect complex is actually of a fluxional
character and cannot be understood entirely within either of these
views. Typically, we tend to think of solution complexes in
terms of well-defined solvation structures. The case of the
hydrated proton serves to show that this concept can be
misleading and suggests the possibility that many of the
difficulties in the interpretation of experimental data might have
arisen from this imposition of such a prejudice.

9. Conclusion

Recent developments in molecular dynamics methodology
have been presented together with representative applications.
The basis of MD in terms of Newtonian or Hamiltonian
equations of motion has been reviewed. In addition, a theoretical
statistical mechanical treatment has been developed which
extends the Hamiltonian case to non-Hamiltonian dynamical
systems. The latter can be used to generate statistical ensembles
other than the microcanonical within the framework of a
continuous dynamics. Thus, all the techniques for analyzing
dynamical systems (e.g. conservation laws, stability analysis)
can be applied. Dynamical systems capable of generating the
canonical (NVT) and isothermal-isobaric (NPT) ensembles have
been presented. Next, it was shown how the classical propagator
expressed in terms of the Liouville operator can be used to
derive stable, reversible numerical integration procedures for
both Hamiltonian and non-Hamiltonian dynamical equations,
including decompositions for systems with multiple time scale
motion. In particular, it has been shown how multiple time step
factorization schemes lead to more efficient procedures for
dynamical systems characterized by a separation of two or more
time scales.

The question of how interparticle interactions are computed
in molecular dynamics has been addressed. The problem of the
choice of boundary conditions has been discussed, and the
existence of new methodology to treat zero-, one-, two- and
three-dimensional periodicity within the same framework for
systems with long range interactions was presented. The basic
ideas behind modern force fields were given, and an application
of force field model to a problem of biological interest, the
mutant T4 lysozyme M61, has been presented, in order to
demonstrate the use of force fields with the multiple time scale
integration techniques discussed in section 6 and non-Hamil-
tonian evolution. Since the model force field approach breaks
down in reacting chemical systems, the ab initio MD technique
was reviewed. It was demonstrated how an efficient scheme
for combining “on the fly” electronic structure with finite
temperature dynamics could be achieved within the gradient-
corrected Kohn-Sham local density functional theory and how
the Car-Parrinello adiabatic dynamics approach leads to a stable
scheme for carrying out ab initio MD calculations. The results
of a recent application of ab initio MD to liquid ammonia were
presented. It was seen that gradient-corrected DFT applied to
liquid ammonia gives structural properties that are in good
agreement with experiment.

Figure 11. The free energy profiles along the proton transfer coordinate
δ for the classical (dashed line) and quantum (solid line) simulations
of an excess proton in water. The short dashed line corresponds to 300
K.

Figure 12. The O*-O (a) and O*-H (b) quantum radial distribution
functions for an excess proton in water. Here, O* indicates the defect
oxygen site.
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Finally, it has been shown how quantum nuclear effects at
finite temperature can be studied via Feynman’s path integral
formulation of quantum statistical mechanics. It was shown how
the discrete Feynman path integral for the canonical partition
function for anN-particle system could be mapped onto that of
a classicalNP-particle system consisting of interacting cyclic
ring polymer chains, the latter being amenable to molecular
dynamics methods. The classic problems surrounding MD
evaluation of path integrals have been discussed and effective
solutions to these problems presented. The combination of path
integrals with ab initio MD was briefly discussed, and an
application of the combined ab initio path integral scheme to
the classic problem of the hydrated proton was presented. A
number of critical conclusions were drawn from the analysis
that could potentially resolve the 200 year-old questions of how
does an excess proton in water solvate and what is the nature
of the Grotthuss mechanism?

Molecular dynamics, based either on empirical force fields
or “on the fly” ab initio-derived forces, is a powerful tool, both
as a means of conformational sampling and for obtaining
dynamical properties of systems. The flexibility of the method
permits a good deal of creativity in the development of novel
MD algorithms for different purposes. The authors are currently
exploiting this flexibility to further extend multiple time scale
integration methodology along the lines first introduced in ref
133 and to develop efficient MD-based conformational sampling
techniques for biological macromolecules based on variable
transformation techniques. Promising avenues for future devel-
opment include the combining of multiple time scale methodol-
ogy with the recently introduced transition path sampling
method134,135 for the calculation of rate constants and the
development of multiple time scale hybrid Monte Carlo136

algorithms for efficient conformational sampling. It is expected
that, as the power of readily obtainable computational resources
increases and new algorithms are devised, MD will start to play
a greater role in the areas of drug design and screening and in
investigations of the properties of novel materials. It is also
expected that ab initio MD modules will soon appear as a feature
in molecular modeling packages and, hence, will eventually
become a standard tool in many experimental labs.
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