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A test problem for molecular dynamics integrators
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We derive a test problem for evaluating the ability of time-stepping methods to preserve the statistical
properties of systems in molecular dynamics. We consider a family of deterministic systems consisting
of a finite number of particles interacting on a compact interval. The particles are given random initial
conditions and interact through instantaneous energy- and momentum-conserving collisions. As the
number of particles, the particle density, and the mean particle speed go to infinity, the trajectory of a
tracer particle is shown to converge to a stationary Gaussian stochastic process. We approximate this
system by one described by a system of ordinary differential equations and provide numerical evidence
that it converges to the same stochastic process. We simulate the latter system with a variety of numerical
integrators, including the symplectic Euler method, a fourth-order Runge–Kutta method, and an energy-
conserving step-and-project method. We assess the methods’ ability to recapture the system’s limiting
statistics and observe that symplectic Euler performs significantly better than the others for comparable
computational expense.

Keywords: equations and systems with randomness; Hamiltonian systems; statistical mechanics;
symplectic numerical methods.

1. Introduction

In the field of molecular dynamics, researchers use numerical integrators to approximate the motion of
systems of particles. They integrate over long periods of time and extract statistical information from
the computed trajectories. This, in turn, can be used to determine the macroscopic properties of the
system. For optimal efficiency, the researchers integrate using as long a step-length as possible while
still maintaining the stability of the computed solution. In this regime, trajectories are not computed
accurately. Nevertheless, it is observed that statistical features of solutions are maintained in some
circumstances. (See Allen & Tildesley, 1989; Deuflhard et al., 1999.)

One possible explanation for this phenomenon is the existence of an underlying stochastic process
(Sigurgeirsson & Stuart, 2001). Suppose that the trajectories of the deterministic process approximate
some stochastic process in the sense of distribution. If we use a numerical method whose trajectories
also approximate the same stochastic process, then the numerical solution will have similar statistical
features to the original system, even though there is no path-wise agreement.

The goal of this paper is to construct a test case for this situation. We seek a deterministic system
having a component of its trajectory that approximates a well-understood stochastic process. Once given
such a system, we can use it to test numerical integrators. We integrate the system with a numerical
integrator using step-lengths that do not resolve the trajectories correctly. Then we can investigate
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how accurately these computed solutions reproduce the statistical features of the underlying stochastic
process.

Our construction is inspired by a 1968 paper by Spitzer (1968/1969) that provides an example of
a sequence of deterministic systems whose trajectories converge to a stochastic process. Building on
the previous work of Harris (1965), he shows that Brownian motion can be obtained as the limit of a
sequence of deterministic processes on the real line with random initial conditions. His construction
consists of placing point particles on the real line according to a Poisson distribution. Each particle
is assigned a random velocity independently of the other particles. The particles are allowed to move,
so that they interact through energy- and momentum-conserving collisions: i.e. whenever two particles
meet, there is an instantaneous collision in which they exchange velocities. A single particle is placed at
the origin and its subsequent trajectory observed. Spitzer proves that with an appropriate scaling of the
variables, the path of this tracer particle converges weakly to standard Brownian motion.

There are two difficulties with using this system for our investigations. The first is that since it is
infinite in extent, it is impossible to simulate it completely on a computer. As a way of avoiding this
difficulty, in Section 2 we introduce a finite counterpart to Spitzer’s set-up. We describe a sequence of
systems each consisting of a finite number of particles interacting on a compact segment of the real line.
In Sections 3 and 4, we prove that as the number of particles goes to infinity, the trajectory of a tracer
particle will converge to a stationary Gaussian process with a known correlation function.

The second difficulty is that neither Spitzer’s system nor the system we present in Section 2
are described purely in terms of ordinary differential equations, since the inter-particle collisions are
instantaneous. Thus, we cannot use these systems as test problems for numerical integrators without
dealing with the issues of collision detection. However, we show, in Section 5, how we can approximate
the non-differentiable flow of these systems with the flow of a differential equation by replacing the
hard, instantaneous collisions of the particles with collisions mediated by a soft potential. This system
approximates the non-differentiable system in the limit as the stiffness of the inter-particle forces goes
to infinity. If we allow both the number of particles and the inter-particle stiffness to go to infinity with
a particular scaling, we conjecture that the tracer particle’s trajectory converges to the same Gaussian
process. We show the results of numerical experiments that support this statement.

In Section 6, we use the family of systems introduced in Section 5 as a test problem for a variety
of time-stepping methods. We apply five different numerical methods to the system: symplectic Euler,
backward Euler, forward Euler, a fourth-order Runge–Kutta method, and an energy-conserving step-and-
project method. We observe that, of these methods, only the symplectic Euler and the step-and-project
method are able to even approximatley reproduce statistics in the limiting case with reasonable step
sizes. The latter energy-conserving method is more costly and it is not able to take longer steps than
symplectic Euler without damaging its ability to recover the stochastic limit. We conclude that, for this
test problem, the symplectic Euler method is clearly the superior method out of those considered here.
This coincides with computational practice in molecular dynamics, where use of the Verlet integrator (a
version of symplectic Euler) is ubiquitous (Allen & Tildesley, 1989).

Though our interest in simulation has led us to consider finite systems, other researchers have
continued with Spitzer’s (1968/1969) ideas in different directions. One possibility is to allow the mass of
the tracer to differ from the mass of the other particles. Holley (1971) proves that with such a scaling the
trajectory of the tracer particle weakly converges to the Ornstein–Uhlenbeck process. Mürmann (1973)
takes this result further by proving a similar result when the collisions between the particles do not occur
instantly but are mediated by a soft potential.

Other work has had the same motivation as this one—to create suitable test problems for molecular
dynamics simulations—but has considered a different class of problems. The papers by Stuart & Warren
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(1999), Hald & Kupferman (2002) and Kupferman et al. (2002) have rigorously shown stochastic
limiting behaviour for the Ford–Kac heat-bath model (Ford & Kac, 1987). Like the model in the present
paper, a sequence of Hamiltonian systems with random initial conditions and increasing numbers of
particles is considered. In the infinite particle limit, the trajectory of the tracer particle is shown to
converge to the solution of a stochastic differential equation. This construction has been used to analyse
numerical integrators in Cano et al. (2001) and more sophisticated algorithms in Huisinga et al. (2003).

2. Particle systems on a compact interval

In this section, we describe a sequence of particle systems on the interval [−1, 1]. For each odd positive
integer n, the system will consist of n interacting particles (contrary to the convention in the interacting
particle literature). We let the tracer particle be the ‘median’ particle in the interval, i.e. the one with an
equal number of particles on either side of it. When we scale the interval by a factor of n1/2, we will see
that the trajectory of this tracer particle will converge to a Gaussian random process.

Let qi , i = 1, . . . , n be independent and identically distributed (i.i.d.) random variables, each
uniformly distributed on [−1, 1]. These are the initial positions of the n particles. We give the particles
i.i.d. velocities pi according to a distribution with a probability density f . We make the following
assumptions on f .

ASSUMPTIONS 2.1 The probability density f satisfies

(i) f is symmetric: f (−p) = f (p).
(ii) f is L1 and non-trivial: 0 < E|pi | < ∞.

(iii) f is compactly supported: P{|pi | > Vmax} = 0 for some Vmax.

Note that the third condition implies that f is L1. However, we leave the assumptions in this form
since some results will be proven without using condition (iii).

Given these initial conditions, we allow the particles to move according to the following rules.
Particles move at constant velocity until they encounter either another particle or one of the barriers
at −1 or 1. If two particles collide, they merely exchange velocities. If a particle hits a wall, it reverses
its velocity. These rules are a natural consequence of assuming that the total energy of the system is
conserved and that when two particles collide, their total momentum is conserved. With these rules for
motion, we designate the position at time t of the particle starting at qi by xi (t). Note that the order of
the particles is unchanged in time. By this we mean that if qi < q j , then xi (t) � x j (t) for all t � 0.
Choose imed so that qimed is the median of the {qi }. It follows that ximed(t) is the median of the {xi (t)} for
all t . We choose this particle to be our tracer particle and define xmed(t) := ximed(t) for t � 0.

If we multiply the positions of all of the particles over time by n1/2, we obtain a system of n particles
interacting over the interval [−n1/2, n1/2], with an average particle speed of n1/2

E|pi |. We will denote
the position of the tracer particle with this scaling by Un , so that Un(t) = n1/2xmed(t) for t � 0.

In order to get a more convenient representation of the motion of the tracer particle, we now describe
a different, but related, set of rules of motion. The rules of motion are the same as before except that
the particles do not interact with each other but only with the walls. Thus, when the trajectories of two
particles intersect, the particles merely pass through each other. Under this set of rules, we designate the
position of the particle starting at qi by yi (t), for t � 0. There is a simple expression for yi (t). If there
were no walls, the particle’s position at time t would be qi + tpi . The effect of the walls is to ‘fold’ the
particle’s trajectory back into the interval [−1, 1]. This is accomplished by a function G such that

yi (t) = G(qi + tpi ). (2.1)
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FIG. 1. The function H .

G is the periodic function with period 4 such that

G(x) =
{

x, −1 � x � 1

2 − x, 1 � x � 3.
(2.2)

There is a relationship between the two sets of trajectories, {xi (t)} and {yi (t)}. At any point in time,
the set of positions the particles take is the same under the two different rules of motion. Since the
position of the tracer particle at any time is given by the median of all the xi (t), its position is also given
by the median of all the yi (t). So the trajectory of the tracer particle is given by

Un(t) := n1/2xmed(t) = n1/2 med
i=1,... ,n

(yi (t)) = n1/2 med
i=1,... ,n

(G(qi + tpi )). (2.3)

This is a convenient representation, since {qi }n
i=1 and {pi }n

i=1 are independent random variables with
known distributions.

It is straightforward to check that, for each i , yi is a stationary stochastic process. As a consequence,
both xmed and Un are stationary processes as well. The distribution of yi (t) is uniform on [−1, 1] for
all t .

We briefly review the concept of weak convergence in a topological space. Let X be a topological
space with random elements U , Un, n � 1. We say that Un weakly converges to U and write Un ⇒ U ,
if for all bounded continuous functions g : X → R, Eg(Un) → Eg(U ) as n → ∞. We will consider
two examples of X in this paper. The first is C[0, T ], the space of real-valued continuous functions on
[0, T ] with the topology induced by the supremum norm. The second is R

d with the standard topology.
See Billingsley (1999) for a thorough exposition of weak convergence.

We now present our main result. It states that as the number of particles n goes to infinity, the scaled
trajectory of the tracer particle will converge weakly to a Gaussian process in C[0, T ]. This result is the
basis for the numerical experiments performed later in the paper. For the statement of the main theorem,
we define H to be a periodic function with period 4 such that

H(z) =
{

1 − z, 0 � z � 2,

z − 3, 2 � z � 4
(2.4)

as shown in Fig. 1.

THEOREM 2.2 Let {qi }i�1, {pi }i�1, be mutually i.i.d. sequences of random variables, where each qi is
distributed uniformly on [−1, 1] and each pi is distributed with density f satisfying Assumptions 2.1.
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FIG. 2. Covariance functions for two choices of the velocity distribution.

For each odd positive integer n, let

Un(t) := n1/2 med
i=1,... ,n

(G(qi + tpi )).

Then, as n → ∞,
Un(t) ⇒ U (t),

where U (t) is the stationary continuous mean-zero Gaussian process with covariance

C(t) := E[U (0)U (t)] =
∫ ∞

−∞
H(pt) f (p) dp. (2.5)

The convergence is in the weak sense in C[0, T ] for any T > 0.

We note that we will have completely determined the limiting process since a mean-zero continuous
Gaussian process is completely specified by its covariance function. Since our process is stationary, we
have

EU (s)U (t) = EU (0)U (t − s) = C(t − s).

Equation (2.5) gives the covariance C as it depends on the velocity density function f . In Fig. 2, we show
plots of C versus t for two choices of f . The first shows the case when velocities are chosen uniformly in
[−1, 1]; the second shows the case when they are chosen according to the standard Gaussian distribution.
Alternatively, when we choose velocities to be either −1 or 1, each with probability 1/2, then C = H
defined by (2.4) and shown in Fig. 1.

In each case, the covariance function gives information about the behaviour of the limiting stochastic
process. The value C(0) gives the variance of the process, which is constant in time. Values C(t) for
t > 0 indicate the covariance between the position of the tracer particle at a given time and its position
at t time units later. For both the uniform f and Gaussian f , the position at time t decorrelates with
position at time 0 as t goes to infinity. In the former case, there are alternating periods of positive and
negative correlation, whereas, in the latter, there is positive correlation for all times t . In the case of
the ±1 velocity distribution, there is no decay of correlation. This occurs because all the particles are
moving at speed 1. Since the box has length 2, all particles return to where they were initially after every
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4 time units. Thus, both the trajectory of the tracer particle and the covariance function itself are periodic
functions of period 4.

The standard method for proving weak convergence of random processes in C[0, T ] is first to show
that the finite-dimensional distributions converge and then that the family of approximating processes is
tight. In particular, we have the following standard result, adapted from Billingsley (1999, Theorem 7.5).
We define the function wδ,[0,T ] on C[0, T ] by

wδ,[0,T ](U ) = sup
t1,t2∈[0,T ],|t2−t1|<δ

|U (t2) − U (t1)|. (2.6)

THEOREM 2.3 Let Un, n � 1, U be processes in C[0, T ] such that

(i) Finite-dimensional distributions converge: For all t1, . . . , td ∈ [0, T ], we have that

{Un(t j )} j=1,... ,d ⇒ {U (t j ))} j=1,... ,d

as n → ∞ (i.e. weak convergence in R
d ).

(ii) The processes satisfy a tightness criterion: For all ε > 0 and all η > 0, there is a δ > 0 such that

P{wδ,[0,T ](Un) � ε} � η,

for all n. Then Un ⇒ U in C[0, T ].
In Section 3, we establish the convergence of the finite-dimensional distributions and, in Section 4,

we establish the tightness criterion. We are able to prove the former result without the assumption of the
velocity distribution being compactly supported. We conjecture that the main theorem holds without this
assumption but could not obtain the tightness result without it.

Spitzer also divides his proof into proving the convergence of finite-dimensional distributions and
then establishing tightness. In his case, Spitzer accomplishes the former task with the use of characteristic
functions (Fourier transforms of density functions). In our case, the fact that there is a finite number
of particles allows us to avoid this and appeal directly to a version of the Central Limit Theorem
(CLT) for medians. Proving tightness for our family of trajectories cannot be done with Spitzer’s
techniques, since his arguments rely heavily on the processes having independent increments. Instead
we observe that, if velocities are bounded, over short intervals of time the tracer particle undergoes
motion that approximates in distribution that of the tracer in Spitzer’s system. We are able to control this
approximation sufficiently well to show that the trajectories in our system inherit the tightness of the
trajectories in Spitzer’s system.

3. Convergence of finite-dimensional distributions

In this section, we establish the convergence of the finite-dimensional distributions of the tracer particles’
trajectories to those of the limiting Gaussian process. For any set of times t1, . . . , td � 0, the random
vector {Un(t j )} j=1,... ,d is the scaled median of the n i.i.d. random vectors {yi (t j )} j=1,... ,d . We wish
to show that this random vector converges weakly to the Gaussian random vector {U (t j )} j=1,... ,d as
n → ∞. This can be accomplished by a CLT for vector medians of the type discussed in the book by
Reiss (1989). The general theorems proved in this reference do not cover our case but the following
proof borrows heavily from it.
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In the proof, we use the following characterization of weak convergence in R
d . For a random vector

Y in R
d , we define its distribution function FY : R

d → R by

FY (x1, . . . , xd) := P{Y (1) � x1, . . . , Y (d) � xd},
where Y ( j) is the j th component of Y . We say that x ∈ R

d is a continuity point of the random vector Y
if FY is continuous at x . Random vectors Yn, n � 1, converge weakly to Y if and only if for all continuity
points x of Y ,

P{Yn( j) � x j , j = 1, . . . , d} → P{Y ( j) � x j , j = 1, . . . , d}, (3.7)

as n → ∞ (Billingsley, 1999).

LEMMA 3.1 Let the velocity density f satisfy conditions (i) and (ii) of Assumptions 2.1. Then the
finite-dimensional distributions of Un converge weakly to those of U . That is, for any t1, . . . , td ∈
[0, ∞),

{Un(t j )} j=1,... ,d ⇒ {U (t j )} j=1,... ,d ,

as n → ∞.

Proof. Let x ∈ R
d be a continuity point of {U (t j )} j=1,... ,d with components x j , j = 1, . . . , d. We use

the characterization of weak convergence in R
d given in (3.7). Consider the event of interest:

{Un(t j ) � x j , j = 1, . . . , d} = {n1/2xmed(t j ) � x j , j = 1, . . . , d}
= {xmed(t j ) � n−1/2x j , j = 1, . . . , d}.

Recall that xmed(t) is the median of yi (t), i = 1, . . . , n. Using a standard identity for medians, we have,
for each j ,

{xmed(t j ) � n−1/2x j } =
{

n∑
i=1

1yi (t j )�n−1/2x j
� n/2

}
,

where 1A is the indicator function of the event A. So

{Un(t j ) � x j } =
{

−
n∑

i=1

1yi (t j )�n−1/2x j
� −n/2

}
.

Let us manipulate the event on the right-hand side of the equation. We subtract the expectation of the
left-hand side of the inequality from both sides. Since

E

(
−1yi (t j )�n−1/2x j

)
= −

(
1 + n−1/2x j

2

)
,

we obtain

{Un(t j ) � x j } =
{

n∑
i=1

[
1 + n−1/2x j

2
− 1yi (t j )�n−1/2x j

]
�

n∑
i=1

n−1/2x j

2

}

=
{

n−1/2
n∑

i=1

[1 + n−1/2x j − 21yi (t j )�n−1/2x j
] � x j

}
.
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Let us define

νn,i, j := 1 + n−1/2x j − 21yi (t j )�n−1/2x j
(3.8)

and

Nn, j := n−1/2
n∑

i=1

νn,i, j . (3.9)

Then

{Un(t j ) � x j , j = 1, . . . , d} = {Nn, j � x j , j = 1, . . . , d}

=
{

n−1/2
n∑

i=1

νn,i, j � x j , j = 1, . . . , d

}
.

The event on the right-hand side is now in a form amenable to a multivariate CLT. In the appendix,
we show that {Nn, j } j=1,... ,d weakly converges to a Gaussian random vector with covariance matrix
Σi j = C(ti − t j ). Therefore,

P{Nn, j � x j , j = 1, . . . , d} → P{U (t j ) � x j , j = 1, . . . , d}
since x is a continuity point of {U (t j )} j=1,... ,d . This establishes the desired result. �

4. Tightness criterion

Now that we have proven that the finite-dimensional distributions of Un converge to those of U , it
remains to show that the sequence of processes Un satisfies the tightness criterion of Theorem 2.3. We
will do this by describing another construction of the processes Un . First, we will provide a construction
of the process in Spitzer’s (1968/1969) paper, Vn ∈ C[0, ∞), n � 1. Then we will apply a random
transformation to Vn to obtain another sequence of processes Ûn , defined on the same probability space,
that also satisfies the tightness criterion. This sequence of processes will have the advantage that they
are identical to Un on a certain time interval with a high probability. This will allow us to establish the
tightness criterion for Un . Our approach here is similar to that used to prove tightness in another context
in Dürr et al. (1980/81).

We now describe one possible construction of Spitzer’s processes. For each odd n � 1, we place
particles on the real line according to a uniform Poisson process with constant density n/2. We add a
tracer particle at the origin. We denote the particle positions with . . . z−2 � z−1 � z0 = 0 � z1 � z2 . . . .
We give the particles i.i.d. velocities w j from the density f . The motion of the particles is the same as
for our system but without walls: instantaneous momentum- and energy-conserving collisions with free
motion otherwise. At times t � 0, we multiply the position of the tracer particles by n1/2 to get Vn(t).
A more formal definition of Vn is

Vn := n1/2 lim
p→∞ med

i=−p,... ,p
(zi + twi ),

which is shown in Harris (1965) to agree with the previous physical definition. Spitzer’s paper proves that
Vn weakly converges to Brownian motion (with some non-random constant scaling in time). The result of
interest is that Vn is a tight sequence of processes in C[0, T ] for all T > 0 and that the second condition
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of Theorem 2.3 is satisfied by them (Billingsley, 1999). Moreover, the set of velocity distributions for
which Spitzer obtains his result contains the set of distributions that satisfy Assumptions 2.1.

We now make some comments about the initial inter-particle spacing in this system. Recall that
for a uniform Poisson process on the real line, the inter-particle spacings are i.i.d. exponential random
variables. Indeed, the addition of the tracer particle at 0 does not change this fact (Spitzer, 1968/1969).
If we define ξi = zi − zi−1 for all i , the ξi are i.i.d. exponential random variables with mean 2/n.

Each process Vn is defined on a probability space of bi-infinite sequences ({zi }, {wi }). For each odd
n we shall define a new process Ûn(t) on the same space. Let m = (n − 1)/2. We define the random
variables

ρn = zm+1 − z−m−1

2
, µn = zm+1 + z−m−1

2
.

Note that

ρn = 1

2

m+1∑
i=−m

ξi , Eρn = n + 1

n
. (4.10)

We let

ẑi = (zi − µn)/ρn (4.11)

for all i . We have performed an affine transformation to the positions of the particles so that ẑm+1 = 1
and ẑ−m−1 = −1. Now, with probability one, there are exactly n particles in the open interval (−1, 1).
We define Ûn as we did Vn before but with the initial particle positions {ẑi }. So

Ûn(t) := n1/2 lim
p→∞ med

i=−p,... ,p
(ẑi + twi ). (4.12)

Using (4.11) and (4.12) we can obtain an explicit relationship between the two sequences of processes.
For each n,

Ûn(t) = n1/2 lim
p→∞ med

i=−p,... ,p
((zi − µn)/ρn + twi )

= ρ−1
n n1/2

[
lim

p→∞ med
i=−p,... ,p

(zi + (ρnt)wi ) − µn

]
= [Vn(ρnt) − n1/2µn]/ρn .

Using this relation we now establish that the family of processes satisfies the tightness criterion.

LEMMA 4.1 The sequence of processes Ûn(t), n � 1, n odd, satisfies the second condition of
Theorem 2.3 in C[0, T ] for any T > 0.

Proof. Let us fix an interval [0, T ]. Recall the definition of wδ,[0,T ] from (2.6). First note that

wδ,[0,T ](Ûn) = sup
t1,t2∈[0,T ],|t1−t2|<δ

|Ûn(t2) − Ûn(t1)|
= sup

t1,t2∈[0,T ],|t1−t2|<δ

|Vn(ρnt2) − Vn(ρnt1)|/ρn

= sup
t̂1,t̂2∈[0,ρn T ],|t̂1−t̂2|<ρnδ

|Vn(t̂2) − Vn(t̂1)|/ρn

= ρ−1
n wρnδ,[0,ρn T ](Vn),
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where we have used the substitution t̂ = ρnt . Now let us fix an ε > 0 and an ν > 0. We have that

P{wδ,[0,T ](Ûn) � ε} = P{ρ−1
n wρnδ,[0,ρn T ](Vn) � ε}

� P{ρn �∈ [1/2, 2]} + P{w2δ,[0,2T ](Vn) � ε/2}.
By (4.10) and the law of large numbers, ρn converges almost surely to 1. So we can choose n1 such that
n � n1 implies that the first probability is less than ν/2. By the tightness of Vn , we can find an n2 and a δ

such that the second term is less than ν/2 for all n � n2. Choosing N = max(n1, n2) gives the required
result. �

Our reason for introducing Ûn is that the positions ẑ−m, . . . , ẑm are now distributed identically to
the order statistics of the positions q1, . . . , qn of our original system described in Section 2. To see this,
note that we can write the ẑi as

ẑ−m−1+ j = (z−m−1+ j − µn)/ρn

=
(

z−m−1 +
(−m−1+ j∑

i=−m

ξi

)
− (z−m−1 + zm+1)/2

) /
ρn

= −1 + 2

(−m−1+ j∑
i=−m

ξi

) / (
m+1∑

i=−m

ξi

)
.

Since the ξi are i.i.d. exponential random variables, the ratio of the sums of the ξi in the previous
expression for j = 1, . . . , n are distributed as the order statistics of n i.i.d. uniform random variables
on [0, 1] (Durrett, 1996, p. 148). So ẑ−m−1− j for j = 1, . . . , n are distributed as the order statistics of
n i.i.d. uniform random variables on [−1, 1].

This gives us a way of defining our original process Un on the same space as Vn and Ûn . Before
we defined Un(t) = medi=1,... ,n G(qi + pi ) where qi were i.i.d. uniform random variables on [−1, 1].
However, since the pi are distributed independently of the qi , this is identical in distribution to defining
Un as medi=1,... ,n G(q[i] + pi ) where q[ j] is the j th order statistic of the qi . Therefore, we can define
Un by

Un(t) = med
i=−m,... ,m

G(ẑi + wi t).

Physically, this has the following interpretation. To generate the random trajectory Un , we set up the
particles as we did for Ûn . But now we remove all but the n particles with positions ẑ−m, . . . , ẑm (which
are all in [−1, 1]) and add walls at −1 and 1. We then let the particles move and interact with each other
and with the walls as before. The trajectory of the tracer particle multiplied by n1/2 gives us Un . The
trajectory of the particles will be different for Un and Ûn . However, since particle speed is bounded by
Vmax according to Assumption 2.1(iii), there will be a period of time during which, with high probability,
the trajectory of the tracer will not be affected. This is the content of the following theorem.

LEMMA 4.2 The probability that Ûn and Un are identical on the time interval [0, 1/4Vmax] goes to one
as n → ∞.

Proof. Because the maximum particle speed is less than Vmax and the maximum relative particle speed
is less than 2Vmax, the tracer particle cannot be affected on the time interval [0, 1/4Vmax] by anything
that is further than distance 1/2 away from it. In particular, if the particle is further than distance 1/2
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from the walls at time 0 it will not be able to distinguish the difference between the set-ups for Ûn and
Un for that interval of time, and the two processes will be identical. Now,

P{ẑ0 > 1/2} = P

{
med

i=1,... ,n
qi > 1/2

}

= P

{ ∑
i=1,... ,n

1qi >1/2 > n/2

}

= P

{
n−1

∑
i=1,... ,n

1qi >1/2 > 1/2

}
.

Since the E{1qi >1/2} = P{qi > 1/2} = 1/4, the probability in question converges to 0 as n → ∞ by
the law of large numbers. �

With these two lemmas, we can establish the tightness result.

THEOREM 4.3 The family of processes Un(t), n � 1 satisfies the second criterion of Theorem 2.3 in
C[0, T ] for any T > 0.

Proof. Fix a T > 0. Let ε, ν > 0 be given. Let M be an integer such that M/4Vmax � T . For any δ > 0,

wδ,[0,T ](Un) � wδ,[0,M/4Vmax](Un)

� 2 max
i=1,... ,M

wδ,[(i−1)/4Vmax,i/4Vmax](Un).

Since Un is a stationary process, wδ,[(i−1)/4Vmax,iVmax/2](Un) has the same distribution regardless of i . So

P{wδ,[0,T ](Un) � ε} �
∑

i=1,... ,M

P{wδ,[(i−1)/4Vmax,iVmax/2](Un) � ε/2M}

= MP{wδ,[0,1/4Vmax](Un) � ε/2M}.
This last probability is less than or equal to

P{Un �≡ Ûn on [0, 1/4Vmax]} + P{wδ,[0,1/4Vmax](Ûn) � ε/2M}.
The first term can be made less than ν/2 by choosing n � n1 for some n1, by the previous lemma. Since
Ûn is tight, we can choose a δ > 0 and an n2 such that the second term is less than ν/2 for n � n2.
Using this δ and N = max(n1, n2) gives us the result we need for Un . �

5. Approximation with soft collisions

We have now shown that a particular sequence of deterministic processes with random initial conditions
has a component Un , defined by (2.3), that converges to a mean-zero Gaussian process U specified by
(2.5). As mentioned earlier, since these deterministic processes are not described purely by ordinary
differential equations (ODEs) we cannot test ODE solvers on them in a straightforward fashion. So
we shall now describe an approximation of these systems by systems of ODEs. We will then provide
numerical evidence that the trajectories of the tracer particles of these ODE systems also converge to the
stochastic process U in a particular limit.
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As before, for each odd positive integer n, we place n particles independently on the interval
[−n1/2, n1/2] according to a uniform distribution. Each particle is independently given a velocity n1/2 p
where p is selected from the distribution with density f , as before. The two choices of f we will consider
are (i) standard normal distribution and (ii) uniform on [−1, 1]. Though our main convergence theorem
does not apply in case (i), the convergence of the finite-dimensional distributions does and that is what
we shall consider in our experiments. We denote the position and velocity of particle i at time t by qi (t)
and pi (t) respectively, with qi+1(0) > qi (0). In contrast to the previous case, we describe the motion
of the particles through a set of ODEs. The differential equations describing the positions qi and the
momenta pi are

q̇i (t) = pi (t), i = 1, . . . , n,

and

ṗ1(t) = −k2(q1(t) − q2(t))+ + k2(−n1/2 − q1(t))+,

ṗi (t) = −k2(qi (t) − qi+1(t))+ + k2(qi−1(t) − qi (t))+, i = 2, . . . , n − 1,

ṗn(t) = −k2(qn(t) − n1/2)+ + k2(qn−1(t) − qn(t))+,

where (x)+ = max(0, x) for x ∈ R. This system can be viewed as a Hamiltonian system with
Hamiltonian

H(q, p) = V (q) + 1

2

n∑
i=1

p2
i , (5.13)

where

V (q) = 1

2
k2(−n1/2 − q1)

2+ + 1

2

n−1∑
i=2

k2(qi−1 − qi )
2+ + 1

2
k2(qn − n1/2)2+. (5.14)

The tracer is chosen as the particle with the median position at time zero.
The flow of this system of ODEs is very similar to that of the original process. However, when two

particles meet each other, rather than instantaneously exchanging velocities, they are allowed to overlap.
While overlapping, they apply a repelling force to each other that is proportional to the amount that they
have overlapped. Thus, while the particles are in contact, they go through simple harmonic motion. After
half a period of this motion, they cease to overlap and have velocities pointing away from each other.
Since momentum and energy are conserved, the net effect is that their velocities are exchanged, as in the
hard collision case. However, their positions are displaced relative to where they would be after a hard
collision. This only describes a two-particle collision: collisions with three or more particles occur with
non-zero probability and are more complicated.

In the previous ODEs, k is a constant denoting the stiffness of the repulsion between the particles
and between the particles and the walls. For k = 0, the particles do not interact at all; as k → ∞, we
expect the trajectories of the system to converge to those of the original system with the same initial
data. (See, for example, Paoli & Schatzman, 1993 or Turaev & Rom-Kedar, 1998.)

In order to have a sequence of systems of ODEs that converge to the same stochastic process as
the system we considered previously, we allow k to go to infinity as n does. Here, we make the choice
k = γ n2, for some positive γ . In this case, the duration of a collision between two particles is on the
order of n−2. The average length of time between collisions for a single particle is on the order of n−1.
So, as we increase n, the collision durations become shorter with respect to the length of time between
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collisions and, in the limit of n → ∞, we expect the system to be a close approximation to the system
with instantaneous collisions. We conjecture that the ODE system, with this choice of k, has the same
limiting properties as those we proved for the instantaneous collision system: the trajectory of the tracer
particles weakly converges to U . We believe this holds true for all positive γ , though in the following
we fix γ = 1. We now provide some numerical evidence to support this conjecture in this case.

As before, C is the covariance of the limiting process U which depends on f . Define Cn to be
the covariance of our original hard-particle process with n particles described in Section 2. Our main
theorem in Section 3 shows that Cn(t) converges to C(t) for all t for both choices of f given earlier.
We denote by Cn,k the covariance function for the process described by the ODEs with n particles and
a stiffness parameter k. A consequence of the softened system converging weakly to U as n → ∞
with k = n2 would be the convergence of Cn,k to C . For a given n, k, the natural way to obtain an
accurate approximation to Cn,k would be to simulate the system numerically with a time step so small
that trajectories are accurately computed over the time interval of interest. We would expect that steps
of size ∆t = o(1/k) = o(1/n2) would be required for this. Unfortunately, this is impractical for
larger values of n. Instead, let us define Cn,k,∆t to be the autocovariance function for the numerical
approximation to the system with n particles, stiffness parameter k and integration step-length ∆t . We
will compute Cn,k,∆t for diminishing values of ∆t until we observe convergence. This converged value
we will take as our estimate to Cn,k . In this section, we will exclusively use the symplectic Euler method,
given by the formulae:

qn+1 = qn + ∂ H/∂p(qn, pn),

pn+1 = pn − ∂ H/∂q(qn+1, pn+1),
(5.15)

where H is given by (5.13) and (5.14). This is explicit in our case since ∂ H/∂q does not depend on p.
We demonstrate this procedure for the Gaussian velocity distribution in Fig. 3. For n = 3, 15, 75

with k = n2, we show Cn,k,∆t − Cn for a range of ∆t . We subtract the function Cn so that it is easier
to see the differences between Cn,k,∆t for different ∆t on one graph. (Note that the scale on the y-axis
differs in each plot.) For each n, Cn,k,∆t appears to converge as ∆t → 0 within the accuracy provided
by our statistics. Moreover, convergence is attained with a step-size of ∆t > 1/2k. Similar results were
found for the uniform velocity distribution as we show in Fig. 4. Accordingly, we take results computed
with symplectic Euler with the step-size ∆t = 1/2k to be accurate estimates of Cn,k for both velocity
distributions.

To show that Cn,k converges to C with k = n2, we take these estimated values and plot the difference
C − Cn,k,∆t , ∆t = 1/2k, for varying n. Figure 5 shows that the difference appears to converge to zero
for both velocity distributions, though this is less clear in the case of the uniform velocity distribution.
Of course, convergence of the covariance function does not guarantee convergence of the process but the
evidence partly confirms our hypothesis.

These calculations suggest two conclusions for the velocity distributions considered. First, the
previous system of ODEs, with scaling k = n2, has the same limiting statistical property for its tracer
particle as the system with instantaneous collisions. Second, when the solution of the system of ODEs
is numerically approximated by the symplectic Euler method with step-size ∆t = 1/2k, this stochastic
limit is also recovered. Of course, another possible interpretation of the data would be that the system of
ODEs does not capture the same stochastic limit, though it does when approximated by the symplectic
Euler method over a range of step-sizes. We believe this latter possibility is quite unlikely.
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FIG. 3. Cn,k,∆t − Cn for three choices of n, k, for a range of ∆t with the Gaussian initial velocity distribution. On the first graph
the standard deviation of the error is approximately the thickness of the lines; on the second and third representative error bars are
shown.

6. Numerical approximation

In the previous section, we presented a sequence of particle systems described by ODEs and
parametrized by n, the number of particles, and k, the stiffness of the collisions. If we let k = n2, it
appears that the trajectory of the tracer particle weakly converges to that of the stochastic process U as
n goes to infinity. Moreover, when the system was integrated with the symplectic Euler method with a
large step-size (∆t = 1/2k), the same stochastic limit was obtained. In this section, we will examine
how other methods perform in comparison.

For any given numerical integrator, as we increase n (and thus k), it is necessary for ∆t to be reduced
in order to capture any features of the system. Since the duration of time two particles spend colliding
is of order 1/k, to have an integrator take at least some steps during each collision as n → ∞, it
is necessary that ∆t = O(1/k) or smaller. We have already seen that symplectic Euler captures the
limiting statistics with this scaling. For a method to be competitive with the symplectic Euler near the
stochastic limit, it must have ∆t = O(1/k) as well. (Indeed, we expect that if ∆t goes like 1/kd for
d > 1, then all convergent methods will capture statistics well on finite time intervals in the limit.)
Accordingly, we shall test all methods with step-length ∆t = γ /k for some γ > 0.

In Section 6.1, we will describe the five numerical methods that we will consider. In Section 6.2,
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the standard deviation of the error is approximately the thickness of the lines; on the second and third representative error bars are
shown.

we will examine how each method performs computing individual trajectories of the system for three
values of n. We conclude in Section 6.3 by examining how the symplectic Euler method and its projected
version fare at capturing the limiting statistical behaviour of the system.

6.1 Numerical methods

We consider five numerical methods all used with a constant stepsize. The first is the symplectic Euler
method as given in (5.15). The second and third are standard methods, the backward and forward Euler.
The fourth is a fourth-order Runge–Kutta method (Hairer et al., 1987), with Butcher tableau

0
1
2

1
2

1
2 0 1

2
1 0 0 1

1
6

2
6

2
6

1
6

which we denote by RK4. Finally, we consider a step-and-project method which we shall call projected
symplectic Euler. This energy-conserving method requires some explanation.
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FIG. 5. C(t)−Cn,k,∆t (t) for t ∈ [0, 2] with k = n2, ∆t = 1/2k for both velocity distributions considered. The standard deviation
of the error on the curves never exceeds 0·004.

One property of the symplectic Euler method which may be viewed as a drawback for molecular
dynamics simulations is that it does not conserve the energy of the system exactly. One way to remedy
this is to use a step-and-project method; see Hairer et al. (2002, IV.4). A step-and-project method is a
modified version of a standard time-stepping algorithm wherein the solution is forced to have the correct
energy after each step. This is done by first taking a step with a standard method—which will lead to a
value with possibly incorrect energy—and then projecting this value onto the manifold of states with the
correct energy.

Typically, step-and-project methods for Hamiltonian systems are implemented as follows. Suppose
we are numerically integrating a Hamiltonian system of ODEs on the space of points x = (q, p) ∈ R

2n

with fixed energy H(x) = H0. From a state xn = (qn, pn) with the correct energy, a standard time-
stepper is used to obtain the state x∗

n+1. The gradient of the Hamiltonian is computed at this state:
s = ∇ H(x∗

n+1). Then an α ∈ R is computed so that H(x∗
n+1+αs) = H0. Then we set xn+1 = x∗

n+1+αs.
(In our case an α was determined so that |H(xn+1) − H0| < 10−5.)

In our implementation there are two aspects of this scheme that we modify. First, the we use a
different projection direction s. The usual choice,

s = ∇ H(q, p) = [∇V (q) p]T ,

does not scale well with increasing k. Instead we use

s =
[
∇V (q) k2 p

]T
.

Second, for our system it is not always possible to find an α that solves the previous nonlinear equation
accurately enough. In these rare cases, we find an α that locally minimizes the residual of the equation
and then proceed with the projection to H(x) = H0 as usual on subsequent steps. In the following
experiments, this occurs only for the n = 3 case and in less than 0·25% of the trials.
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FIG. 6. Trajectories computed with the symplectic Euler method with ∆t = 1/k. Plots are of particle position versus time for
n = 3, 15, 75, k = n2.

6.2 Single trajectories

Before we consider these methods’ ability to reproduce the stochastic limit, we will first examine the
performance of each method on a single trajectory of the model system with n = 3, 15, 75 and k = n2,
as in the previous section. In each case, we plot the position of each particle versus time on the time
interval [0, 4]. The tracer particle is indicated by the bolder line. Initial velocities were generated from
the Gaussian distribution.

In Fig. 6, we show trajectories computed with the symplectic Euler method with a step-size of ∆t =
1/k. This step-length is close to the largest that can be used without producing trajectories that quickly
blow up due to an increase in energy. This produces reasonable trajectories. In particular, we can see by
looking where two particles collide that momentum is conserved (a property of all partitioned Runge–
Kutta methods) and the energy of the two particles does not stray too far from what is expected.

Figure 7 shows trajectories computed with the backward Euler method with the same step-length
∆t = 1/k. This method has the shortcoming that particles tend to lose energy when they collide. This
can already be observed for n = 3 (by comparison with the previous figure) but worsens as n increases.
For n = 75, the particles quickly have very little energy and stick to the walls when they collide there.
This could be improved by decreasing the step-length but the backward Euler method is already much
more expensive than the symplectic Euler and could only be practical if a much longer time step were
possible. Moreover, we believe that with the scaling ∆t = γ k, trajectories will become progressively
worse with increasing n for any γ > 0.

In Fig. 8, we show trajectories computed with the forward Euler with ∆t = 0·0039/k. The forward
Euler has a strong tendency to add energy to the system at every collision. To obtain a comparable
performance with symplectic Euler for small n, it is necessary to take a vastly smaller step. Even with
this smaller step, for large n the energy of the solution computed with forward Euler grows rapidly in
time. We conjecture that if ∆t = γ /∆t , for some γ > 0, then the trajectory of the tracer particle will
diverge as a stochastic process as n → ∞.

Figure 9 shows trajectories computed with RK4. This method is, of course, more accurate than the
forward Euler for sufficiently small ∆t . However, as n increases, the method also shows increasing
instability in energy, and performs even worse than the forward Euler if run with the same step-length.
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FIG. 7. Trajectories computed with the backward Euler method with ∆t = 1/k. Plots are of particle position versus time for
n = 3, 15, 75, k = n2.
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FIG. 8. Trajectories computed with the forward Euler method with ∆t = 0·0039/k. Plots are of particle position versus time for
n = 3, 15, 75, k = n2.

With a step-length of ∆t = 0·00028/k, when n = 75, overflow occurs near t = 3·5 due to increasing
energy.

Figure 10 shows trajectories computed with the projected symplectic Euler method with ∆t = 1/k.
In this case, it is difficult to see any major difference between this computation and that with the
regular symplectic Euler method. However, since the projected symplectic Euler method is more costly,
the method would not be practical unless a longer step-length could be used than that used with the
symplectic Euler.

Accordingly, Fig. 11 shows trajectories computed with the same method with ∆t = 1·25/k.
However, this slight increase in ∆t has drastic effects. Even with n = 3, we can see that the top particle’s
trajectory is being affected by the collisions of the other two particles at the other end of the interval.
This unphysical behaviour is due to the energy projection. As n increases, this becomes worse: when
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FIG. 9. Trajectories computed with RK4 with ∆t = 0·00028/k. Plots are of particle position versus time for n = 3, 15, 75,
k = n2.
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FIG. 10. Trajectories computed with the projected symplectic Euler method with ∆t = 1/k. Plots are of particle position versus
time for n = 3, 15, 75, k = n2.

n = 75, the net results of this non-local behaviour is that only a few particles have the vast majority of
the energy in the system at any time.

6.3 Limiting statistics

Clearly, none of the forward Euler, backward Euler or the RK4 methods will capture long-term statistics
properly. Accordingly, for our experimental investigation of the preservation of statistical limits, we
only consider the symplectic Euler method and its projected version. In the following, we will use the
Gaussian distribution for the initial velocities.

Figure 12 shows C − Cn,k,∆t , with Cn,k,∆t computed by the symplectic Euler method with ∆t =
1/k, where k = n2 and n = 3, 15, 75. The covariance function appears to converge to the limiting
covariance function C with this scaling. This provides an example of the phenomenon which we hoped
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FIG. 11. Trajectories computed with the projected symplectic Euler method with ∆t = 1·25/k. Plots are of particle position
versus time for n = 3, 15, 75, k = n2.
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FIG. 12. Symplectic Euler method. C(t) − Cn,k,∆t (t) for t ∈ [0, 2], with ∆t = 1/k, and k = n2. The standard deviation of the
error on the curves never exceeds 0·002.

to explore. Since with the ∆t ∼ 1/k scaling we are not resolving fine details of the collisions, we are
not computing trajectories accurately in this limit.

We perform the same numerical experiment with the projected symplectic Euler method. Figure
13 shows C − Cn,k,∆t computed by this method. As before, ∆t = 1/k, k = n2, and n = 3, 15, 75.
Comparison with Fig. 12 shows that, for n = 3, 15, the method computes similar covariance functions
to those of the non-projected method. However, for n = 75, the covariance function appears different. It
is difficult to ascertain from this plot whether convergence will occur as n → ∞ with this step-length,
∆t = 1/k. In either case, the covariance function is not converging to C as rapidly as the regular
symplectic Euler method converges, thus we know that the projection has some effect on the statistics.

We repeat the experiment with the projected method with a slightly larger time step: ∆t = 1·25/k.
The results shown are significantly worse than for the previous step-length. The computed covariance



306 P. F. TUPPER

0 0·2 0·4 0·6 0·8 1 1·2 1·4 1·6 1·8 2
–0·1

–0·05

0

0·05

0·1

0·15

0·2

0·25

0·3

0·35

0·4

C
(t

) 
C

n,
k,

∆ 
t(t

)

t

n=3
n=15
n=75

FIG. 13. Projected symplectic Euler method. C(t) − Cn,k,∆t (t) for t ∈ [0, 2] with k = n2 and ∆t = 1/k. The standard deviation
of the error on the curves never exceeds 0·005.
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FIG. 14. Projected symplectic Euler method. C(t) − Cn,k,∆t (t) for t ∈ [0, 2] with k = n2 and ∆t = 1·25/k. The standard
deviation of the error on the curves never exceeds 0·005.

function is clearly not converging to C as n → ∞. These observations correspond with what we have
previously observed in individual trajectories.

Acknowledgements

This work was done while the author was supported by the Thomas V. Jones Stanford Graduate
Fellowship. The author would like to thank Andrew Stuart for helpful discussions. Special thanks go
to Jason Swanson for pointing out a serious error in an earlier draft of this manuscript.

REFERENCES

ALLEN, M. P. & TILDESLEY, D. J. (1989) Computer Simulation of Liquids. Oxford: Oxford University Press.



A TEST PROBLEM FOR MOLECULAR DYNAMICS INTEGRATORS 307

BILLINGSLEY, P. (1999) Convergence of Probability Measures, 2nd edn. New York: Wiley.
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DÜRR, D., GOLDSTEIN, S. & LEBOWITZ, J. L. (1980/81) A mechanical model of Brownian motion. Comm. Math.
Phys., 78, 507–530.

DURRETT, R. (1996) Probability: Theory and Examples, 2nd edn. Belmont, CA: Duxbury Press.
DVORETZKY, A. (1977) Asymptotic normality of sums of dependent random vectors. Multivariate Analysis–IV.

(P. R. Krishnaiah, ed.). Amsterdam: North Holland, pp. 23–34.
FORD, G. W. & KAC, M. (1987) On the quantum Langevin equation. J. Stat. Phys., 46, 803–810.
HAIRER, E., LUBICH, C. & WANNER, G. (2002) Geometric Numerical Integration: Structure-Preserving Algo-

rithms for Ordinary Differential Equations. Berlin: Springer.
HAIRER, E., NØRSETT, S. P. & WANNER, G. (1987) Solving Ordinary Differential Equations I: Nonstiff Problems.

Berlin: Springer.
HALD, O. H. & KUPFERMAN, R. (2002) Asymptotic and numerical analyses for models of heat baths. J. Stat.

Phys., 106, 1121–1184.
HARRIS, T. E. (1965) Diffusion with ‘collisions’ between particles. J. Appl. Prob., 2, 323–338.
HOLLEY, R. (1971) The motion of a heavy particle in an infinite one dimensional gas of hard spheres. ZWVG, 17,

181–219.
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Appendix A.

Recall the definition of Nn from (3.9). We need to establish the following result: For any t1, t2, . . . , td ∈
[0, T ], the random vector

[Nn(t1), Nn(t2), . . . , Nn(td)]
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converges in distribution to a Gaussian random vector with covariance matrix Σi j = C(ti − t j ). Here,
C(t) is as defined in (2.5).

For our later convenience we define

Ft (x1, x2) := P{y j (0) � x1, y j (t) � x2}. (A1)

Since for each j the process y j is stationary, this implies

P{y j (t1) � x1, y j (t2) � x2} = Ft2−t1(x1, x2)

for any t1, t2 ∈ [0, T ].
We apply a Central Limit Theorem of Dvoretzky (1977, Theorem 1). The result holds for certain

dependent random vector arrays, but we will only need it for the independent case.

THEOREM A.1 (From Dvoretzky, 1977). For each n, let Xn,i , 1 � i � n be independent random
column vectors in R

d with EXn,i = 0. Let Σ be a d × d matrix. For a vector X , denote its norm by |X |
and its transpose by X T . For an event A, let

E(X; A) := E(X1A).

Suppose

1. limn→∞
∑n

i=1 EXn,i X T
n,i = Σ ,

2. for all ε > 0, limn→∞
∑n

i=1 E(|Xn,i |2; |Xn,i | > ε) = 0.

Then Sn = Xn,1 + · · · + Xn,n ⇒ N (0,Σ ) as n → ∞.

In our case, Sn and Xn,i are vectors of length d with Sn, j = Nn, j and Xn,i, j = n−1/2νn,i, j , where
Nn, j and νn,i, j are defined in (3.9) and (3.8) respectively. We proceed to check the hypotheses of the
CLT.

First note that En−1/2νn,i, j = 0 for each n, i, j . Furthermore, with some algebra and the fact that

E[1yi (t j )�n−1/2x j
] = (1 + n−1/2x j )/2,

we obtain

n∑
i=1

E[(n−1/2νn,i, j )(n
−1/2νn,i,k)]

= n−1
n∑

i=1

[−(1 + n−1/2x j )(1 + n−1/2xk) + 4P{yi (t j ) � n−1/2x j , y j (tk) � n−1/2xk}]

= 4Ftk−t j (n
−1/2x j , n−1/2xk) − (1 + n−1/2x j )(1 + n−1/2xk)

where Ft is defined in (A1). It can be shown that Ft is continuous at (0, 0) for all t ∈ [0, T ], (for
example, by showing that Ft is Lipschitz in each variable there.) Hence the above quantity converges
to 4Ftk−t j (0, 0) − 1 as n → ∞. Lemma A.2 shows that 4Ft (0, 0) − 1 = C(t) for t � 0 so this is the
appropriate covariance as stated in the theorem.
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In order to verify the final condition of the CLT theorem, observe that |νn,i, j | � 2 for all n, i, j , so

n∑
i=1

E

[
|(n−1/2νn,i, j )(n

−1/2νn,i,k)|;
d∑

l=1

|n−1/2νn,i,l | > ε

]

=
n∑

i=1

n−1
E

[
|νn,i, j ||νn,i,k |;

d∑
l=1

|νn,i,l | > n1/2ε

]
� E[4; 2d > n1/2ε] = 4P{2d > n1/2ε}

which converges to zero as required. �
LEMMA A.2 We have

4Ft (0, 0) − 1 = C(t).

Proof. We can rewrite Ft as

Ft (z1, z2) = E[1q�z11G(q+tp)�z2 ] = 1

2

∫ ∞

−∞

∫ 1

−1
1q�z11G(q+pt)�z2 dq f (p) dp.

So

4Ft (0, 0) − 1 = 2
∫ ∞

−∞

∫ 1

−1
1q�01G(q+pt)�0 dq f (p) dp − 1 = 4

∫ ∞

−∞
H̃(pt) f (p) dp − 1

where we have defined

H̃(z) := 1

2

∫ 1

−1
1q�01G(q+z)�0 dq.

In order to obtain a more explicit expression for H̃ , we first observe that it will be periodic with a period
of 4. Then some lengthy but straightforward calculations will show that

H̃(z) =




(1 − z)/2, 0 � z � 1,

0, 1 � z � 2,

(z − 2)/2, 2 � z � 3,

1/2, 3 � z � 4.

We can take advantage of the fact that f is symmetric about 0:

4Ft (0, 0) − 1 = 4
∫ ∞

−∞
H̃(pt)( f (p) + f (−p))/2 dp − 1

= 2
∫ ∞

−∞
(H̃(pt) + H̃(−pt)) f (p) dp − 1

=
∫ ∞

−∞
[2(H̃(pt) + H̃(−pt)) − 1] f (p) dp

The expression in the square brackets happens to equal H of equation (2.4). So

4Ft (0, 0) − 1 =
∫ ∞

−∞
H(pt) f (p) dp = C(t)

as required. �


