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Ergodicity and the Numerical Simulation of Hamiltonian Systems∗

P. F. Tupper†

Abstract. We discuss the long-time numerical simulation of Hamiltonian systems of ordinary differential equa-
tions. Our goal is to explain the ability of symplectic integration schemes such as the Störmer–
Verlet method to compute accurate long-time averages for these systems in the context of molecular
dynamics. This paper introduces a weakened version of ergodicity that allows us to study this prob-
lem. First, we demonstrate the utility of the weakened ergodicity definition by showing that it is
a property of Hamiltonian systems robust to perturbations. Second, we study what the weakened
ergodicity of a Hamiltonian system implies about numerical simulations of the system. In the case
where a numerical method is volume-conserving and approximately energy-conserving, we show that
long-time averages are approximated well for sufficiently small step lengths.
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1. Introduction. In the field of molecular dynamics researchers simulate physical systems
over long time intervals using numerical integration. Given the length of the time intervals
and the size of time steps used, trajectories of the systems are not accurately computed [1].
Despite this, it is believed in many circumstances that the simulations provide reliable infor-
mation about long-time averages of quantities as well as qualitative behavior [17]. Standard
arguments from the numerical analysis of ordinary differential equations do not explain this
performance [7].

In many cases of interest, the physical systems being simulated are believed to be ergodic.
To introduce this term, we define two sorts of averages. For any segment of a trajectory, we
can consider the average of a function of the state variables along that segment. The limit
of this average as the length of the segment goes to infinity is called an ergodic or long-time
average. Alternatively, we can take the average of the function over the entire state-space
of the system, which is known as the ensemble or state-space average. In general, long-time
averages will depend on the initial condition chosen to generate the trajectory and will not
necessarily equal the state-space average. However, we say that a system is ergodic if, for
almost all initial conditions, the long-time average is equal to the state-space average [18].

Here we will focus on Hamiltonian systems of ordinary differential equations. Given a
Hamiltonian function, we select an initial condition and numerically approximate the solution
to the resulting differential equations with a one-step method. Since energy is conserved, we
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take the state-space of our system to be all states with a particular energy. This set has a
natural invariant measure induced by the Liouville measure [9].

If the Hamiltonian system is ergodic on the energy level-set, then we can make the follow-
ing nonrigorous argument to explain the accurate computation of long-time averages. Under
the postulate of ergodicity, long-time averages for the original system are equal to the cor-
responding state-space averages. The numerical method applied to the system is another
dynamical system with (approximately) the same state-space. If the numerical method is also
ergodic (with a nearby invariant measure), then we expect its long-time averages to be equal
to the corresponding state-space average as well. By this argument, the long-time averages of
the original system and of its numerical approximation should be (approximately) the same
for almost all initial conditions.

We could proceed by trying to make the steps of the above argument rigorous for at least
some set of ergodic Hamiltonian systems and some numerical methods. Unfortunately, there
is a serious problem with this approach. The difficulty stems from the large mismatch be-
tween the concept of ergodicity as it is used in the physics community and as it is used in the
mathematics community [16]. For the physicist, ergodicity is a property that is postulated of
a system in order to make many analytical and computational tasks tractable. The postu-
late is seldom justified from first principles. Instead, calculations for a system are performed
assuming ergodicity. Then if theoretical predictions agree with experiments (actual or numer-
ical), this is taken as evidence that the assumption is valid. Over the years, physicists have
accumulated extensive experience about which systems at which energies are well modeled by
the assumption of ergodicity [19, 9].

For the mathematician, the justification of this assumption has posed a difficult task.
Starting with the work of Sinai [15], there has been a long tradition of rigorously establishing
ergodicity for specific Hamiltonian systems [18]. However, the majority of the systems for
which ergodicity has been proved are billiard systems, which form a small subset of the
systems of interest to physicists. To the best of our knowledge, the only examples of physically
realizable Hamiltonian systems of ordinary differential equations that are ergodic on some
energy level-set are given in [5] and [8] and are both quite specific in their construction.
Ergodicity has not been proved for any system that has been seriously investigated with
molecular dynamics simulations.

More troubling than the paucity of examples in this area is the number of negative results.
The papers [4, 20] show that some of the ergodic billiard systems mentioned above are not
ergodic for a range of energies when the billiard collisions are replaced by a soft collision of
arbitrary stiffness. In [11], it is shown that generic Hamiltonian systems are not ergodic for
any dense set of energies. Liverani [10] uses KAM theory to argue that interacting particle
systems are not ergodic for sufficiently high energies. Although these results are not conclusive,
it seems possible that the vast majority of Hamiltonian systems of physical interest are not
ergodic in the strict mathematical sense of the word.

If we wish to perform a mathematically rigorous analysis of molecular dynamics based on
the concept of ergodicity, we face a difficulty. The physical concept of ergodicity does not
yet have a rigorous formulation. However, a theory based on the mathematical definition of
ergodicity faces two problems. The first is that it is in danger of being irrelevant, since likely
none of the systems one would want to apply the theory to are, in fact, ergodic. The second is
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that even if we restricted ourselves to mathematically ergodic Hamiltonian systems, we prob-
ably could not carry the program through; it is very unlikely that the perturbations induced
in these systems by numerical approximation would result in ergodic systems according to the
mathematical definition.

The first goal of this paper is to break this impasse by reviving a weakened definition
of ergodicity which appears implicitly in Khinchin [9]. We believe that this mathematically
precise definition is weak enough to hold true for many systems of physical interest while still
being strong enough to be of practical use. In particular, we will show that this definition
is stable under perturbations of the dynamics. The second goal of this paper is to justify
long-term simulation in molecular dynamics by using this definition to prove theorems on the
ability of certain numerical methods to accurately approximate the long-time averages of the
original system.

First we formally state the traditional mathematical definition of ergodicity. Let Σ be a
measure space with probability measure μ, and let S(t) be a measure-preserving flow on it.
We denote the integral of a function f over Σ with respect to measure μ by

Ef(u) = f̄ =

∫
u∈Σ

f(u) dμ(u).

We say that S(t) is ergodic if for all integrable functions f : Σ → R

lim
T→∞

1

T

∫ T

0
f(S(t)u) dt = f̄(1.1)

for μ-almost all u ∈ Σ. There is an analogous definition for maps rather than flows: Let S
be a measure-preserving map from Σ to itself. We say that S is ergodic if, for all integrable
f : Σ → R,

lim
n→∞

1

n

n−1∑
i=0

f(Siu) = f̄ .(1.2)

See, for example, [23].
A consequence of the above definitions of ergodicity is that for all bounded measurable f

E

∣∣∣∣ lim
T→∞

1

T

∫ T

0
f(S(t)u) dt− f̄

∣∣∣∣ = 0(1.3)

in the case of ergodic flows and

E

∣∣∣∣∣ lim
n→∞

1

n

n−1∑
i=0

f(Siu) − f̄

∣∣∣∣∣ = 0(1.4)

in the case of ergodic maps.
Building on (1.3) and (1.4), we can weaken the definition of ergodicity. The new definition

depends on a parameter δ and a particular function f : Σ → R. For flows, we say that a
μ-preserving flow S(t) on Σ is δ-ergodic with respect to f if

E

∣∣∣∣ lim
T→∞

1

T

∫ T

0
f(S(t)u) dt− f̄

∣∣∣∣ ≤ δ.(1.5)
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For maps, we say that a μ-preserving map S on Σ is δ-ergodic with respect to f if

E

∣∣∣∣∣ lim
n→∞

1

n

n−1∑
i=0

f(Siu) − f̄

∣∣∣∣∣ ≤ δ.(1.6)

We can now state the main result of our paper.
Main Theorem (Theorem 3.2). If a measure-preserving flow on a state-space is δ-ergodic

with respect to a function f , then given any ε > 0, any sufficiently small perturbation of the
flow with the same invariant measure and state-space will be (δ + ε)-ergodic with respect to f .

See section 3 for a formal statement and proof. We will extend this theorem to the case
of Hamiltonian flows with perturbed state-spaces and invariant measures later in section 3,
and to perturbations due to numerical discretization in section 4.

The motivation for the above definitions of δ-ergodicity is a discussion of ergodicity by
Khinchin in [9, p. 62]. After considering the difficulty of justifying the assumption of ergodicity
for Hamiltonian systems, he discusses the possibility of requiring ergodicity to hold for only
some special functions of interest. As an example of this, he goes on to prove that if a
function f is nearly constant on the state-space Σ, then all measure-preserving flows are
δ-ergodic with respect to f in the sense above for some small δ. For completeness, we will
provide a proof of this statement in subsection 3.1.

An example of the situation of a nearly constant f can be obtained by considering a gas
of many particles in a rectangular container. Here we let Σ be the set of all states with a
particular energy and μ be the invariant measure on Σ induced by the Liouville measure (see
below). Let f be the fraction of the total number of particles that are in the left half of the
container. This quantity will be nearly equal to 1/2 for almost all accessible states in Σ, and
so Khinchin’s theorem shows that (1.5) holds with this f for some small δ. Indeed, in any
system of many components with short-range interactions, we expect that functions that are
expressible as an average over all components in the system will have this property; see, for
example, [13, 9].

However, these considerations are not sufficiently general to explain the utility of the
ergodic hypothesis in all cases of interest. Continuing with the above example of the gas,
consider the function of state that is 1 when a distinguished particle is on the left half of
the box and 0 otherwise. For approximately half of all states of the system, the function has
value 1 and for the other half 0. The average of this function over the state-space is 1/2.
Since the function is not nearly constant, the above discussion does not apply. However, we
still expect that for any trajectory we examine, the particle will spend about half its time on
the left-hand side of the box. We expect this because a gas in a box is one of many physical
systems for which experience has shown the physical hypothesis of ergodicity to be justified.
(As we have discussed, it is probably not ergodic in the formal, mathematical sense.) In the
next section we will bolster these claims with some numerical experiments on a simple model
of such a gas.

We now formally describe the Hamiltonian framework for our study. Let H : R
2n → R be

a smooth function. Allow it to define the flow of a differential equation in R
2n via

du

dt
= −J∇H(u),
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where

J :=

[
0 I
−I 0

]
.(1.7)

We use S(t) to define the flow map induced by these equations. A property of Hamiltonian
systems is that H(S(t)u) = H(u) for all t ∈ R. So we let our state-space be Σ = {u ∈ R

2n |
H(u) = E} for some energy E.

If S(t) is viewed as a flow on all of R
2n, then by Liouville’s theorem the standard Lebesgue

measure (Euclidean volume) is invariant under it. However, (for sufficiently smooth H) the
flow restricted to Σ has an invariant measure given by

dμ(u) := C
dS(u)

‖∇H(u)‖ ,(1.8)

where C is some constant and dS is surface area on Σ [9]. Here we will always consider
compact Σ and choose C so that μ(Σ) = 1. The measure μ has the important feature that for
any function f : R

2n → R the expectation of f on Σ with respect to the measure μ is given
by [9]

Ef(u) = lim
δE↓0

∫
H(v)∈[E,E+δE] f(v) dv∫

H(v)∈[E,E+δE] dv
.(1.9)

In addition to energy, Hamiltonian systems often have other trivial conserved quantities
such as momentum. Σ may be further restricted to factor these out. So when we talk about
a Hamiltonian system being ergodic, we usually mean on a particular energy surface, with
particular choices of conserved quantities.

We begin in section 2 with some numerical experiments on a simple two-dimensional model
of a gas. We will demonstrate some of the phenomena we hope to explain, examining numeri-
cally computed ergodic averages for a variety of functions, with different initial conditions and
simulation step lengths. In particular, we will consider two functions that are nearly constant
in Khinchin’s sense and two that are not.

The remainder of the paper is devoted to analytical results about dynamical systems and
algorithms. In section 3 we will consider situations where δ-ergodicity can be shown to hold
with respect to some function f . In subsection 3.1 we provide a proof of Khinchin’s result
of [9] for the case of a nearly constant function f . In subsections 3.2 and 3.3 we prove that
if we make a small perturbation of an ergodic system, we will obtain a δ-ergodic system with
a small δ. This provides us with a wide variety of provably δ-ergodic systems, which can be
obtained by perturbing ergodic systems such as billiard systems.

In section 4 we will consider the simulation of δ-ergodic systems with numerical integrators.
First we will consider the (unrealistic) situation of an integrator that conserves both phase-
space volume and energy. We will show that the weakened ergodicity property is conserved in
this situation. Then we consider the more realistic case of an integrator that conserves phase-
space volume exactly, and energy approximately, over long periods of time. A shortcoming
of the results is that the step size required in the proof of the theorem must be small enough
that trajectories are accurately estimated over long, though finite, periods of time.
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In a recent work, Reich [14] also considers the long-term simulation of Hamiltonian sys-
tems. There, results are obtained under the strong assumption of uniformly hyperbolic dy-
namics [22] but with a more moderate restriction on step size. The present work relaxes the
assumptions to just those of δ-ergodicity, though at the cost of much smaller step sizes.

2. Ergodic averages for a Lennard-Jones system: Numerical experiments. In order to
introduce some of the phenomena we will explore in this paper, we present the results of some
simple, yet fairly typical, molecular dynamics calculations. We will perform several long-term
simulations of a Hamiltonian system, with different initial conditions, and demonstrate the
apparent convergence of ergodic averages to ensemble averages for four different functions f .
Two of these functions will be what we refer to as nearly constant.

The system we will consider is a model of N = 400 monatomic atoms interacting on a two-
dimensional periodic domain. Each atom has position qi ∈ [0, R]2 and momentum pi ∈ R

2.
The Hamiltonian is given by

H(q, p) =
N∑
i=1

V (‖qi − qj‖) +

N∑
i=1

‖pi‖2

2m
,

V (r) =
(σ
r

)12
−

(σ
r

)6
.

We fix m = 1, σ = 0.2, and R = 6. The dynamics are Hamiltonian with periodic boundary
conditions in the configuration space. The interparticle forces are truncated so that particles
do not interact if their centers are more than distance 5σ away from each other, as is standard
practice [1].

The equations are integrated using the Störmer–Verlet scheme, which for separable Hamil-
tonians is [6]

pi+1/2 = pi − Δt
∂H

∂q
(qi),

qi+1 = qi + Δt
∂H

∂p
(pi+1/2),

pi+1 = pi+1/2 − Δt
∂H

∂q
(qi+1).

This is a symplectic and time-reversible method [7]. As a consequence of the former property,
it conserves state-space volume; the method has the same invariant measure on [0, 6]2 ×R

2 as
the original flow. However, unlike the flow, it does not conserve the energy function H.

We will consider four different functions of state:

F1(q, p) :=
‖p1‖2

2m
,

F2(q, p) :=
1

N

N∑
i=1

‖pi‖2

2m
,

F3(q, p) := 1A(q1),
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F4(q, p) :=
1

N

N∑
i=1

1A(qi).

Here we use 1A to denote the indicator function of A on [0, R]2, where A denotes the left half of
the periodic domain. The function F1 gives the kinetic energy of particle 1. Function F2 gives
the average kinetic energy of all the particles, which corresponds to temperature. Function F3

is one if particle 1 is located in the set A and is zero otherwise. Function F4 is the fraction
of all the particles that are in A at a particular time. For this many (N = 400) particles,
functions F2 and F4 can be considered nearly constant functions in Khinchin’s terms, as we
shall see.

We perform simulations with four different initial conditions, denoted by ICi, i = 1, . . . , 4.
With IC1 and IC2 the particles are initially placed on a square periodic lattice with lattice
spacing 0.3 units, which means that the particles are uniformly spaced over the entire domain.
With IC3 and IC4 the particles are placed on a square periodic lattice with spacing 21/6σ
units. (At this distance apart, two particles at rest are in equilibrium.) With regards to
initial momenta, for IC1 and IC3 both x and y velocities are selected from a standard normal
distribution. For IC2 and IC4 the 200 particles with the largest y values are given velocities
[1, 0]T , and the remainder [−1, 0]T . In each case the velocities are first translated together so
that the total momentum is zero (if necessary), and then velocities are scaled together so that
the total energy H is 100. We summarize these initial conditions in Table 1.

Table 1
Summary of the four different sets of initial conditions.

Initial q Initial pi
IC1 uniformly spaced lattice Gaussian
IC2 uniformly spaced lattice ±1
IC3 tight packed lattice Gaussian
IC4 tight packed lattice ±1

We denote the flow of the Hamiltonian system by S(t) and the map given by the numerical
method by ŜΔt. We estimate the ergodic averages of the original system,

1

T

∫ T

0
Fi(S(t)(ICj)) dt,

with the ergodic averages of the numerical method,

1

n

n−1∑
k=0

Fi(Ŝ
k
Δt(ICj)).

Figure 1 shows the computed ergodic averages of the four functions versus T = nΔt with
the four different initial conditions, using a step length of Δt = 0.001. For an ergodic system,
we would expect that the ergodic average of Fi should converge to the ensemble average
of Fi with increasing T for each initial condition. For functions F1, F2, F4 we observe the
expected convergence. For F3 it looks as though convergence will occur, though the plot is
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Figure 1. Ergodic averages of the functions versus T for four different initial conditions. Δt = 0.001.

not conclusive. For all initial conditions the slowest convergence is for F3 and the fastest is
for F4.

Figure 2 shows the same data, over the same time interval, but with a step length Δt =
0.0005. The plots are not qualitatively different from the previous ones. Thus, increasing the
accuracy of the trajectories does not appear to change the ergodic behavior of the simulation.

These results are consistent with the following picture of the situation: the flow of the
underlying Hamiltonian system is δ-ergodic with respect to the four functions Fi for a small
value of δ. The numerical method, despite not having the same invariant state-space as the
flow, yields approximately the same ergodic averages over long periods of simulation. The
subsequent sections of this paper will help establish the plausibility of these claims.

The four initial conditions we have considered are highly unrepresentative of the state-
space of the system, which is why the initial values of F2 and F4 are not at all close to their
ensemble average of 1/2. To show that these functions are indeed nearly constant, we need
to look at the distribution of each function applied to points randomly drawn from the state-
space according to the invariant measure. It is difficult to randomly generate such points,
so instead we will assume that numerical trajectories run long enough yield points with the
correct statistics. Accordingly, we begin by running the simulation with Δt = 0.001 for 5×105

steps starting from IC1. After this, we run for an additional 5× 105 steps with the same step
length but store the function values of the state of the system after each step. In Figure 3
we show histograms of the function values for each of the four functions. Assuming that
after the initial run the computed trajectory samples the state-space with the correct density
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Figure 2. Same as previous figure, but with Δt = 0.001.

reasonably accurately, these plots show how the functions are distributed. The functions F1

and F3 show great variations, but the distributions of F2 and F4 have standard deviations less
than 0.03 of their means and thus could be considered nearly constant with δ ∼ 0.03. If N
were increased with density and average energy were kept constant, these standard deviations
would converge to 0 like N−1/2 [9].

Later in this paper we will consider the time T it takes for an ergodic average to converge
to its limit within a tolerance of some δ > 0 for most initial conditions. This is not what one
observes in Figures 1 and 2, as the initial conditions are quite atypical of the entire state-
space. To get more representative trajectories, we run a simulation from IC1 for time 100 with
Δt = 0.0005 and then take that as our initial condition for the computation of ergodic averages.
Figure 4 shows the ergodic averages for the four functions with these initial conditions for
increasing times.

We observe that for the two nearly constant functions, F2 and F4, the ergodic average is
never far from the ensemble average and would not be even with T = Δt. For the other two
functions it still takes a considerable duration of time for the ergodic averages to converge,
even with these initial conditions. This sharp difference in rate of convergence will have a
large effect on the strength of our theoretical results in section 4.

The number of papers featuring molecular dynamics simulations of Lennard-Jones systems
is immense. However, the seminal references are [12] and [21], both of which are contained
in [3]. An interesting numerical investigation of a Lennard-Jones system with ergodicity
as its primary focus is [16]. Both [16] and [1] contain the results of molecular dynamics
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Figure 3. Histograms of the four functions sampled over the state-space.
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simulations showing the rapid divergence of trajectories and thus establishing the unreliability
of individually computed trajectories in these situations.

3. δ-ergodic systems. There are two approaches to using the weakened ergodicity defini-
tion (1.5) of the introduction. We may simply postulate that the system we are working with
is δ-ergodic with respect to some f of interest. Working from this assumption, we may infer
what we can about the system and numerical approximations of it. Alternatively, we may try
to prove that the system is indeed δ-ergodic for some δ and f .

In this section we consider a few situations where the latter is possible. In subsection 3.1
we consider the situation where the function f of interest is nearly constant over most of
the state-space. In subsection 3.2 we will consider the case in which the state-space and
invariant measure of the original system and the perturbed system are identical. In these
two cases our results are stated for very general flows, not necessarily arising from differential
equations. In subsection 3.3 we will consider the situation when the state-space, as well as
the flow, is perturbed. Here we will state results only for the situations when the flow is
induced by a Hamiltonian function and the perturbed flow arises from a perturbation of the
Hamiltonian.

3.1. Nearly constant function f . Frequently in statistical mechanical applications we are
not interested in functions of state that depend upon only one particle but functions which are
averages taken over all the particles in the system. A classic example of this is temperature,
which is related to the average kinetic energy of all particles. We showed two examples of
such functions in section 2: F2 and F4. Typically, these functions are nearly constant for most
accessible states [13, 9]. We will show that under these circumstances any measure-preserving
flow is weakly ergodic.

Let Σ be a compact manifold in R
m with the Borel σ-algebra M. We let μ be a probability

measure on (Σ,M). We let E denote the expectation of a function on Σ with respect to μ.
One way to formalize the hypothesis of a nearly constant function f is to assume E|f(u)− f̄ |
is small, where f̄ := Ef . This covers the possibility of f being close to its average on most of
the state-space, as well as it being far from its average on a small portion of the state-space.

Theorem 3.1. Suppose the following:

1. f : Σ → R is bounded and measurable with E|f(u) − f̄ | ≤ δ.
2. S(t) is a μ-preserving flow on Σ.

Then

E

∣∣∣∣ lim
T→∞

1

T

∫ T

0
f(S(t)u) dt− f̄

∣∣∣∣ ≤ δ.(3.1)

That is, S(t) is δ-ergodic with respect to f .

Proof. By Birkhoff’s ergodic theorem [23, 9] the limit

lim
T→∞

1

T

∫ T

0
f(S(t)u) dt

is defined for almost all u. So the quantity on the left of (3.1) is defined. Accordingly,
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E

∣∣∣∣ lim
T→∞

1

T

∫ T

0
f(S(t)u) dt− f̄

∣∣∣∣ ≤ E lim
T→∞

1

T

∫ T

0
|f(S(t)u) − f̄ | dt

= lim
T→∞

1

T

∫ T

0
E|f(S(t)u) − f̄ | dt,

where we have used the bounded convergence theorem. Since S(t) is μ invariant, we can
remove the S(t) from the last expression. So the quantity of interest is less than or equal to

lim
T→∞

1

T

∫ T

0
E|f(u) − f̄ | dt = E|f(u) − f̄ | ≤ δ

as required.
An application of the Markov inequality gives

μ

{
u :

∣∣∣∣ lim
T→∞

1

T

∫ T

0
f(S(t)u) dt− f̄

∣∣∣∣ ≥ α

}
≤ δ

α
,

which is precisely Khinchin’s result in [9] but with a better constant.

3.2. Perturbations of ergodic flows: Same state-space. As before, Σ is a compact
manifold in R

m, with induced Borel σ-algebra M. We let μ be an arbitrary probability
measure on (Σ,M). We will use E to denote expectation with respect to the measure μ on Σ.
We let Σ have the metric it inherits from the norm on R

m, which is denoted by | · |.
Suppose we have an ergodic measure-preserving flow S(t) on Σ that leaves μ invariant.

Suppose Sγ(t), γ > 0, are perturbations of the flow that also act on Σ and have the same
invariant measure. Without assuming that the Sγ(t) are ergodic, what can we say about long-
time averages of the perturbed flow? In the following, we will show that if S(t) is a δ-ergodic
flow with respect to a function f and ε > 0, then Sγ(t) is (δ + ε)-ergodic with respect to f for
sufficiently small γ.

Theorem 3.2. Let Σ be a compact manifold in R
n. Suppose the following:

1. f : Σ → R is Lipschitz-continuous.
2. S(t) is a μ-preserving flow on Σ that is δ-ergodic with respect to f .
3. For each γ > 0, Sγ(t) is a μ-preserving flow on Σ such that for all T ∈ [0,∞)

lim
γ→0

sup
t∈[0,T ]

E|Sγ(t)u− S(t)u| = 0.

Then for all ε > 0 there is a γ0 > 0 such that if γ ≤ γ0, then

E

∣∣∣∣ lim
T→∞

1

T

∫ T

0
f(Sγ(t)u) dt− f̄

∣∣∣∣ ≤ δ + ε,(3.2)

where f̄ = Ef(u). That is, for any ε > 0, Sγ(t) is (δ + ε)-ergodic with respect to f for
sufficiently small γ.

Remark. The third hypothesis above is implied by the assumption that for all T ∈ [0,∞)

lim
γ→0

(
sup
u∈Σ

sup
t∈[0,T ]

|Sγ(t)u− S(t)u|
)

= 0.(3.3)
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(Recall that Σ is compact.) Though stronger than the stated hypothesis, (3.3) is perhaps
simpler.

Proof. For each γ > 0, Birkhoff’s ergodic theorem implies that

lim
T→∞

1

T

∫ T

0
f(Sγ(t)u) dt

exists for μ-almost all u. Accordingly the quantity on the left of (3.2) is defined. Moreover,
since f is bounded on Σ we have

E

∣∣∣∣ lim
T→∞

1

T

∫ T

0
f(Sγ(t)u) dt− f̄

∣∣∣∣ = lim
T→∞

E

∣∣∣∣ 1

T

∫ T

0
f(Sγ(t)u) dt− f̄

∣∣∣∣
so that the latter limit also exists. Thus if we can show that

E

∣∣∣∣ 1

T

∫ T

0
f(Sγ(t)u) dt− f̄

∣∣∣∣ ≤ δ + ε

for a sequence of times T that go to infinity, we will be done.

Since S(t) is δ-ergodic with respect to f ,

lim
T→∞

E

∣∣∣∣ 1

T

∫ T

0
f(S(t)u) dt− f̄

∣∣∣∣ ≤ δ.

Choose a T such that

E

∣∣∣∣ 1

T

∫ T

0
f(S(t)u) dt− f̄

∣∣∣∣ < δ + ε/2.

Now given this T , for any γ

E

∣∣∣∣ 1

T

∫ T

0
f(Sγ(t)u) dt− 1

T

∫ T

0
f(S(t)u) dt

∣∣∣∣ ≤ 1

T

∫ T

0
E|f(Sγ(t)u) − f(S(t)u)| dt

≤ F sup
t∈[0,T ]

E|Sγ(t)u− S(t)u|,

where F is the Lipschitz constant of f on Σ. Thus by hypothesis, we can choose a γ0 such
that for γ ≤ γ0

E

∣∣∣∣ 1

T

∫ T

0
f(Sγ(t)u) dt− 1

T

∫ T

0
f(S(t)u) dt

∣∣∣∣ ≤ ε/2.

So for γ ≤ γ0

E

∣∣∣∣ 1

T

∫ T

0
f(Sγ(t)u) dt− f̄

∣∣∣∣ ≤ δ + ε.
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This gives us a result for a particular time interval [0, T ]. For integer multiples mT of the
time T , we obtain

E

∣∣∣∣ 1

mT

∫ mT

0
f(Sγ(t)u) dt− f̄

∣∣∣∣ = E

∣∣∣∣∣ 1

m

m∑
i=1

1

T

∫ T

0
f(Sγ((i− 1)T + t)u) dt− f̄

∣∣∣∣∣
≤ 1

m

m∑
i=1

E

∣∣∣∣ 1

T

∫ T

0
f(Sγ((i− 1)T + t)u) dt− f̄

∣∣∣∣ .
Since the measure μ is invariant under the flow of Sγ(t), we can replace Sγ((i− 1)T + t) with
Sγ(t) in the last expression. So

E

∣∣∣∣ 1

mT

∫ mT

0
f(Sγ(t)u) dt− f̄

∣∣∣∣ ≤ 1

m

m∑
i=1

E

∣∣∣∣ 1

T

∫ T

0
f(Sγ(t)u) dt− f̄

∣∣∣∣
= E

∣∣∣∣ 1

T

∫ T

0
f(Sγ(t)u) dt− f̄

∣∣∣∣
≤ δ + ε.

Since mT → ∞ as m → ∞, we have established our result.
Taking the case where δ = 0 gives the following result.
Theorem 3.3. Let the assumptions 1 and 3 of Theorem 3.2 hold. Let S(t) be an ergodic

μ-preserving flow on Σ. Then for any ε > 0, Sγ(t) is ε-ergodic with respect to f for sufficiently
small γ. Alternatively, we may write

lim
T→∞

1

T

∫ T

0
f(Sγ(t)u) dt → f̄

in L1 as γ → 0.
Remarks. The hypotheses make quite minimal assumptions about the ergodic properties

of the flow S. In particular, no mixing or hyperbolicity assumptions are used. The cost of this
is that truly minuscule values of γ are needed to obtain a reasonably small ε. For example,
consider a case where S is ergodic (δ = 0) and is generated by a vector field on the manifold Σ.
Suppose the Sγ are generated by perturbations of size O(γ) in the vector field. In general,
S(t)u and Sγ(t)u will differ on the order of γ exp(Ct) for some constant C. By analogy with
the central limit theorem, we might assume that

E

∣∣∣∣ 1

T

∫ T

0
f(S(t)u) dt− f̄

∣∣∣∣ = O(T−1/2).

So in the proof of Theorem 3.2 we need a T of order ε−2. The second part of the proof requires
that we choose a γ small enough so that perturbed trajectories closely agree within ε of the
original trajectories over time T . This would require a γ on the order of ε exp(−CT ). Putting
this together, we find that γ depends on ε like

γ ∼ ε exp[−Cε−2]
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for some C. For most practical situations this would lead to a γ far too small to explain
the prevalence of apparently ergodic behavior. We discuss this point further with regard to
numerical integrators in subsection 4.2. We will attempt to address this point in future work
by making stronger assumptions on the flow of the unperturbed Hamiltonian system.

3.3. Perturbations of ergodic flows: Perturbed state-space. A very strong assumption
in Theorem 3.2 is that the perturbed flows have the same state-space Σ and invariant mea-
sure μ as the original flow. In general we do not expect this to happen. Here we will consider
the situation where the original system is the flow of an autonomous Hamiltonian system
on an energy level-set, and the perturbed system is obtained by perturbing the Hamiltonian
function. The arguments here can be applied to more general situations as well.

In particular, let our flow S(t) be generated by a Hamiltonian function H : R
2n → R

via the system of differential equations du/dt = −J∇H(u), where J is the 2n × 2n constant
matrix defined in (1.7). We take the state-space to be

Σ := {u ∈ R
2n | H(u) = E}

for some energy E. Thus, Σ is invariant under the induced flow S(t) and has an invariant
measure μ given by (1.8).

Suppose the perturbed flows Sγ(t) are generated by perturbed Hamiltonians Hγ : R
2n →

R, such that Hγ → H as γ goes to zero. For each γ, the state-space of the perturbed flow is

Σγ := {u ∈ R
2n | Hγ(u) = E}.

For each sufficiently small γ, Σγ will have a probability measure μγ invariant under Sγ(t),
corresponding to the Liouville measure.

More formally, we define our Hamiltonian function H(u) and perturbed Hamiltonian func-
tions Hγ(u) through a function H(u, γ), by letting Hγ(u) := H(u, γ) and H(u) := H(u, 0).
We make the following assumptions on H(u, γ) and a corresponding energy level E.

Assumptions 3.4. The function H(u, γ) : R
2n × [0,∞) → R and the value E ∈ R satisfy

the following:

(i) H is C2 (twice continuously differentiable) and ∇2
uH is locally Lipschitz.

(ii) Σ := {u : H(u, 0) = E} is bounded.
(iii) ∇uH(u, 0) 
= 0 on Σ.

These assumptions guarantee that Σ is a compact manifold, as is Σγ for sufficiently small γ.
Moreover, as is shown in the appendix in Lemma A.1, Σ and Σγ are isomorphic for small
enough γ.

In the following theorem the symbol E (Eγ) will denote integration over Σ (Σγ) with
measure μ (μγ). Also note that though S(t) leaves Σ invariant, and Sγ(t) leaves Σγ invariant,
we view both as flows on all of R

2n.

Theorem 3.5. Suppose the following:

1. H and E satisfy Assumptions 3.4.
2. f : R

2n → R is locally Lipschitz-continuous.
3. The flow S(t) generated by H is δ-ergodic with respect to f on (Σ, μ).
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Then for all ε > 0 there is a γ0 > 0 such that if γ ≤ γ0, then

Eγ

∣∣∣∣ lim
T→∞

1

T

∫ T

0
f(Sγ(t)u) dt− f̄γ

∣∣∣∣ ≤ δ + ε,

where f̄γ := Eγf . That is, Sγ(t) is (δ + ε)-ergodic with respect to f on Σγ for sufficiently
small γ.

Proof. First note that the vector field that generates S(t) is J∇uH(u, 0) and the vector
field that generates Sγ(t) is J∇uH(u, γ). By Assumptions 3.4 the latter vector field converges
to the former for every u ∈ R

2n as γ → 0. Thus, for each u ∈ R
2n and T > 0,

lim
γ↓0

sup
t∈[0,T ]

‖Sγ(t)u− S(t)u‖ = 0,(3.4)

and this will occur uniformly on bounded sets in R
2n.

From here, the proof is similar to that of Theorem 3.2. Choose a T such that

E

∣∣∣∣ 1

T

∫ T

0
f(S(t)u) dt− f̄

∣∣∣∣ < δ + ε/3.(3.5)

Define

g(u) :=

∣∣∣∣ 1

T

∫ T

0
f(S(t)u) dt− f̄

∣∣∣∣
and for any γ

gγ(u) :=

∣∣∣∣ 1

T

∫ T

0
f(Sγ(t)u) dt− f̄γ

∣∣∣∣
for u ∈ R

2n in a neighborhood of Σ. Expression (3.5) implies that Eg(u) < δ + ε/3. We will
show that for small enough γ, Eγgγ(u) < δ + ε. To do this observe that

|Eg(u) − Eγgγ(u)| ≤ |Eg(u) − Eγg(u)| + |Eγ [g(u) − gγ(u)]|.

By Lemma A.2 the first term on the right can be made smaller than ε/3 with a small enough γ.
To show that the second term can be made smaller than ε/3 as well, note that

|Eγ [g(u) − gγ(u)]| ≤ Eγ |g(u) − gγ(u)|

≤ sup
u∈Σγ

∣∣∣∣ 1

T

∫ T

0
f(Sγ(t)u) − f(S(t)u) dt

∣∣∣∣ + |f̄ − f̄γ |

≤ F sup
u∈N

sup
t∈[0,T ]

‖Sγ(t)u− S(t)u‖ + |Ef(u) − Eγf(u)|,

where N is a neighborhood of Σ and F is the Lipschitz constant of f on N . The first term
can be made small by (3.4) and the second term can be made small by Lemma A.2.

We have now shown that

Eγ

∣∣∣∣ 1

T

∫ T

0
f(Sγ(t)u) dt− f̄γ

∣∣∣∣ ≤ δ + ε

for small enough γ. As before, we can go from this result on [0, T ] to the result on [0,mT ],
and then to the limit as T → ∞.
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4. Numerical approximations. We now consider the numerical integration of Hamiltonian
flows that are δ-ergodic with respect to some f . The first subsection considers the situation
of integrating a system with a volume- and energy-conserving integrator. Here the results are
particularly clear and easy to prove. We then consider the more important case of integrators
that conserve phase-space volume exactly, and energy approximately, over long time intervals.
The Störmer–Verlet method, used in section 2, falls into this class when applied to many
Hamiltonian systems of interest.

4.1. Volume- and energy-conserving integrators. In this section we will consider the
situation in which a numerical integrator is applied which conserves both the Hamiltonian
function (energy) and the phase-space volume. Since no general purpose integrator for Hamil-
tonian systems is known that preserves both these quantities, the purpose of this subsection
is primarily to prepare us for the next subsection in which we consider symplectic methods.

As before, we consider a Hamiltonian system with Hamiltonian function H and let

Σ = {u ∈ R
2n | H(u) = E}(4.1)

for some energy E. We denote the flow induced by the Hamiltonian by S(t). We let ŜΔt

denote a one-step integrator with constant step length, and Ŝi
Δt the composition of this map

with itself i times. Given an initial value u ∈ R
2n, ŜΔtu is an approximation to S(Δt)u.

Moreover, Ŝi
Δtu is an approximation to S(iΔt)u for i ≥ 0.

We remark that if we assume that the approximate map ŜΔt is ergodic on Σ in addition
to the assumptions below, then immediately for μ-almost all initial conditions numerically
computed ergodic averages are equal to f̄ . However, we will not make this assumption about
the numerical method.

Theorem 4.1. Let H : R
2n → R and E ∈ R. Suppose the following:

1. ∇H is locally Lipschitz and the set Σ defined by (4.1) is a compact manifold.
2. f : R

2n → R is locally Lipschitz.
3. S(t) is δ-ergodic with respect to f on (Σ, μ) for some δ ≥ 0.
4. ŜΔt, Δt > 0, is a family of volume-preserving isomorphisms of R

2n that leave Σ
invariant and such that for any T > 0

lim
Δt→0

E sup
0≤i≤	T/Δt


‖Ŝi
Δtu− S(iΔt)u‖ = 0.

Then for all ε > 0, there is a Δt0 such that for all Δt ≤ Δt0,

E

∣∣∣∣∣ lim
n→∞

1

n

n−1∑
i=0

f(Ŝi
Δtu) − f̄

∣∣∣∣∣ ≤ δ + ε.

In other words, ŜΔt is (δ + ε)-ergodic with respect to f for sufficiently small Δt.
Remark. The fourth hypothesis merely states that ŜΔt is a convergent numerical method,

though with some uniformity in u required.
Proof. Since ŜΔt is μ-preserving, as in Theorem 3.2 it suffices to show that for sufficiently

small Δt

E

∣∣∣∣∣ 1n
n−1∑
i=0

f(Ŝi
Δtu) − f̄

∣∣∣∣∣ ≤ δ + ε
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for some n which may depend on Δt.
Choose a T0 large enough so that

E

∣∣∣∣ 1

T

∫ T

0
f(S(t)u) dt− f̄

∣∣∣∣ ≤ δ + ε/2(4.2)

for all T ≥ T0. Now choose a Δt0 ≤ T0/2 such that whenever Δt ≤ Δt0 and n is an integer
such that nΔt ≤ 2T0, then

E

∣∣∣∣∣ 1

nΔt

∫ nΔt

0
f(S(t)u) dt− 1

n

n−1∑
i=0

f(Ŝi
Δtu)

∣∣∣∣∣ ≤ ε/2.(4.3)

This is possible for the following reasons. For any such n we can write∣∣∣∣∣ 1

nΔt

∫ nΔt

0
f(S(t)u) dt− 1

n

n−1∑
i=0

f(Ŝi
Δtu)

∣∣∣∣∣
≤

∣∣∣∣∣ 1

nΔt

∫ nΔt

0
f(S(t)u) dt− 1

n

n−1∑
i=0

f(S(iΔt)u)

∣∣∣∣∣
+

∣∣∣∣∣ 1n
n−1∑
i=0

f(S(iΔt)u) − 1

n

n−1∑
i=0

f(Ŝi
Δtu)

∣∣∣∣∣.
The expectation of the first term yields

E

∣∣∣∣∣ 1

nΔt

∫ nΔt

0
f(S(t)u) dt− 1

n

n−1∑
i=0

f(S(iΔt)u)

∣∣∣∣∣
≤ 1

n

n−1∑
i=0

E

∣∣∣∣ 1

Δt

∫ Δt

0
f(S(t + iΔt)u) dt− f(S(iΔt)u)

∣∣∣∣
≤ E

∣∣∣∣ 1

Δt

∫ Δt

0
f(S(t)u) dt− f(u)

∣∣∣∣
≤ FE sup

t∈[0,Δt]
‖S(t)u− u‖ ≤ FCΔt

for some constant C, which converges to zero as Δt goes to zero. (F is the Lipschitz constant
of f on Σ.) The expectation of the second term is

E

∣∣∣∣∣ 1n
n−1∑
i=0

f(S(iΔt)u) − 1

n

n−1∑
i=0

f(Ŝi
Δtu)

∣∣∣∣∣ ≤ FE sup
0≤i≤n

‖Ŝi
Δtu− S(iΔt)u‖

≤ FE sup
0≤i≤	2T0/Δt


‖Ŝi
Δtu− S(iΔt)u‖,

which converges to zero as Δt goes to zero by the fourth hypothesis. Thus there is some Δt0
such that the bound (4.3) holds for all Δt ≤ Δt0 and for all nΔt ≤ 2T0.
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Now for any Δt ≤ Δt0 there is an integer n such that T := nΔt ∈ [T0, 2T0]. So by (4.2)
and (4.3)

E

∣∣∣∣∣ 1n
n∑

i=1

f(Ŝi
Δtu) − f̄

∣∣∣∣∣ ≤ δ + ε

as required.

4.2. Volume-conserving and approximately energy-conserving integrators. We now re-
lax the assumption of energy conservation which we used in the previous subsection. We
replace it by an assumption that on long time intervals the integrator keeps the energy of the
system within a narrow range of the initial energy.

The most important class of volume-preserving integrators is that of the symplectic inte-
grators, such as the Störmer–Verlet method described in section 2. In many cases they can
be shown, using backward error analysis, to approximately conserve energy over long time
intervals [2]. Suppose we are integrating a Hamiltonian system of differential equations with
Hamiltonian function H and we are using a symplectic integrator ŜΔt with step length Δt.
In many situations it is possible to prove that for each Δt there is a perturbed Hamiltonian
HΔt ≈ H with induced flow SΔt(t) such that

‖ŜΔtu− SΔt(Δt)u‖ ≤ CΔt exp[−D/Δt]

for constants C,D [2, 14, 6]. This in turn implies that

HΔt(Ŝ
n
Δtu) = HΔt(u) + O(e−h0/2Δt)

and

H(Ŝn
Δtu) = H(u) + O(Δtp)(4.4)

for nΔt ≤ e−h0/2Δt.
Here, we will not explicitly use any backward error analysis. Rather, we will assume that

the energy error satisfies uniform bounds over long time intervals, as in (4.4). Our reasons
for this are two-fold. First, energy conservation of this kind has been shown to exist for
symplectic integrators in situations where backward error analysis is not valid [6, Ch. XIII].
Second, our theorem applies to volume-conserving integrators that are not symplectic as long
as they show a similar energy-conservation property.

We note that there is another class of integrators for which a backward error analysis has
been developed: time-reversible integrators [6]. These integrators can also be shown to nearly
conserve energy over long periods of time, as well as perform well at computing long-time
averages. However, our present theory does not apply to them, since they are not, in general,
volume-conserving.

We face a new technical difficulty in this subsection. In the previous subsection, the exact
energy conservation of the integrator implied that it had an energy level-set as an invariant
domain. In the present case, it may be that even over short times there will be no nontrivial
invariant sets. So we must resort to an approximate invariance. We want to define sets Σ



582 P. F. TUPPER

such that Σ\Ŝn
ΔtΣ has small measure relative to Σ for large n. In general this is impossible

to do if Σ has codimension one, as it does for energy level-sets. Accordingly, our theorem will
apply to sets Σ of the following form. We let

Σ := {u ∈ R
2n | H(u) ∈ [E1, E2]}.(4.5)

We let μ be the volume measure restricted to Σ and normalized so that μΣ = 1. Thus for
functions g defined on Σ we define

Eg :=

∫
Σ
g(u)du/vol(Σ).

For other sets A of nonzero volume in R
2n we define

EAg :=

∫
A
g(u)du/vol(A).

The flow S(t) leaves Σ and μ invariant. Although S(t) cannot be ergodic on Σ due to
energy conservation, it can be δ-ergodic with respect to some f—especially if E1 and E2

are close. In particular, it is not difficult to show that if S(t) is δ-ergodic with respect to a
continuous f on the set of all states of energy E1, then for all ε > 0 it is (δ + ε)-ergodic on Σ
for small enough E2 − E1.

Theorem 4.2. Let H : R
2n → R, and E1 < E2 ∈ R. Suppose the following:

1. ∇H is locally Lipschitz and

{u ∈ R
2n | H(u) = E}

is a compact manifold for all E in an open neighborhood of [E1, E2].
2. f : R

2n → R is locally Lipschitz.
3. The flow S(t) generated by H is δ-ergodic on (Σ, μ) with respect to f .
4. ŜΔt, Δt > 0, is a family of volume-preserving maps on R

2n such that for any T > 0

lim
Δt→0

sup
0≤i≤	T/Δt


‖Ŝi
Δtu− S(iΔt)u‖ = 0

uniformly over bounded sets in R
2n.

5. There exist constant C, exponent p > 0, and times TΔt, with TΔt → ∞ as Δt → 0
such that

|H(Ŝn
Δtu) −H(u)| ≤ CΔtp

when nΔt ∈ [0, TΔt].
It follows that, for all ε > 0, there is a Δt0 and a Tmin such that if Δt ≤ Δt0 and nΔt ∈
[Tmin, TΔt], then

E

∣∣∣∣∣ 1n
n−1∑
i=0

f(Ŝi
Δtu) − f̄

∣∣∣∣∣ ≤ δ + ε.
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Proof. We begin by assuming that |f | is bounded and has supremum fmax. The conclusion
for arbitrary f follows by the compactness of the energy level-sets.

Choose a T such that

E

∣∣∣∣ 1

T

∫ T

0
f(S(t)u) dt− f̄

∣∣∣∣ < δ + ε/6.

Now choose Δt1 such that if Δt ≤ Δt1 and ñ = �T/Δt, then

E

∣∣∣∣∣ 1ñ
ñ−1∑
i=0

f(Ŝi
Δtu) − f̄

∣∣∣∣∣ < δ + ε/3.(4.6)

This is possible by an argument similar to that used in the proof of Theorem 4.1.
Fixing Δt, for any n let n = ñK + r, where K and r are nonnegative integers and r < ñ.

Then ∣∣∣∣∣ 1n
n−1∑
i=0

f(Ŝi
Δtu) − f̄

∣∣∣∣∣ =

∣∣∣∣∣ 1n
ñK−1∑
i=0

f(Ŝi
Δtu) +

1

n

ñK+r−1∑
i=ñK

f(Ŝi
Δtu) − f̄

∣∣∣∣∣
≤

∣∣∣∣∣ 1

ñK

ñK−1∑
i=0

f(Ŝi
Δtu) − f̄

∣∣∣∣∣ +

∣∣∣∣∣
(

1

ñK
− 1

n

) ñK−1∑
i=0

f(Ŝi
Δtu)

∣∣∣∣∣
+

∣∣∣∣∣ 1n
n−1∑
i=ñK

f(Ŝi
Δtu)

∣∣∣∣∣.
Some straightforward manipulation yields that

E

∣∣∣∣∣ 1n
n−1∑
i=0

f(Ŝi
Δtu) − f̄

∣∣∣∣∣ ≤ 1

K

K−1∑
J=0

E

∣∣∣∣∣ 1ñ
ñ−1∑
i=0

f(Ŝi+Jñ
Δt u) − f̄

∣∣∣∣∣ + 2fmax
ñ

n
.(4.7)

Now suppose nΔt ≥ Tmin (which we have not yet determined). Working with the second term,
we obtain

2fmax
ñ

n
≤ 2fmax

T

nΔt
≤ 2fmax

T

Tmin
.

So, if we let Tmin = 6fmaxT/ε, the second term on the right of (4.7) will be less than ε/3
whenever nΔt ≥ Tmin.

It remains to bound the first term on the right of (4.7). For each J

E

∣∣∣∣∣ 1ñ
ñ−1∑
i=0

f(Ŝi+Jñ
Δt u) − f̄

∣∣∣∣∣ = EΣJ

∣∣∣∣∣ 1ñ
ñ−1∑
i=0

f(Ŝi
Δtu) − f̄

∣∣∣∣∣ ,
where ΣJ = ŜJñ

ΔtΣ. We need to show that the expression on the right is close to that in (4.6).
Lemma 4.3 below allows us to do this. We let

g(u) :=

∣∣∣∣∣ 1ñ
ñ−1∑
i=0

f(Ŝi
Δtu) − f̄

∣∣∣∣∣,
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which is less than fmax for all u. Let Emax be the maximum value of H(Ŝn
Δtu) over all u ∈ Σ

and all nΔt ≤ TΔt, and let Emin be the minimum. Let B = {u ∈ R
2n | H(u) ∈ [Emin, Emax]}.

Now choose a Δt2 such that when Δt < Δt2, vol(B) ≤ (1 + ε/6fmax) vol(Σ). This is possible
by the fifth hypothesis, since both Σ and ΣJ are subsets of B. The idea is that since B
converges to Σ as Δt goes to 0, ΣJ must converge to Σ. Then Lemma 4.3 shows that

|EΣJ
g(u) − EΣg(u)| ≤ ε/3.(4.8)

Putting this together with (4.6), we have that if Δt ≤ Δt0 := min(Δt1,Δt2) and nΔt ≤
TΔt,

1

K

K−1∑
J=0

E

∣∣∣∣∣ 1ñ
ñ−1∑
i=0

f(Ŝi+Jñ
Δt u) − f̄

∣∣∣∣∣ ≤ 1

K

K−1∑
J=0

[
EΣ

∣∣∣∣∣ 1ñ
ñ−1∑
i=0

f(Ŝi
Δtu) − f̄

∣∣∣∣∣ + ε/3

]

= EΣ

∣∣∣∣∣ 1ñ
ñ−1∑
i=0

f(Ŝi
Δtu) − f̄

∣∣∣∣∣ + ε/3

≤ δ + 2ε/3.

Combining this with (4.7) gives that if Δt ≤ Δt0 and nΔt ∈ [Tmin, TΔt], then

EΣ

∣∣∣∣∣ 1n
n−1∑
i=0

f(Ŝi
Δtu) − f̄

∣∣∣∣∣ ≤ δ + ε,

as required.
Lemma 4.3. Let B be a subset of R

2n with finite volume. Let g : R
2n → R satisfy

supu∈B |g(u)| ≤ G. Let A,A∗ ⊂ B, vol(A) = vol(A∗), and vol(B) ≤ (1 + γ) vol(A). Then

|EAg − EA∗g| ≤ 2Gγ.

Proof.

|EAg − EA∗g| =
1

vol(A)

∣∣∣∣
∫
A
g −

∫
A∗

g

∣∣∣∣
≤ 1

vol(A)

{∣∣∣∣
∫
A
g −

∫
B
g

∣∣∣∣ +

∣∣∣∣
∫
A∗

g −
∫
B
g

∣∣∣∣
}

≤ 1

vol(A)
2G(vol(B) − vol(A))

≤ 2Gγ,

as required.
Remarks. The remarks after Theorem 3.3 apply here as well. The proof works by choosing

a time T over which the values of f on Σ are well sampled by trajectories of the system. Then
a step size Δt is chosen such that the numerical trajectory approximates the true trajectory
over this time. Thus, accurate computation of long-time averages is only guaranteed when
the trajectories are accurately computed over long periods of time. This is not the regime in
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which most molecular dynamics calculations are performed. Typically, computed and actual
solutions to the equations diverge rapidly.

More quantitatively, for the theorem to work, we expect that T = ε−2 is required; see
the remarks after Theorem 3.3. The error of an rth order numerical integrator over a time
interval T goes like Δtr exp(CT ) for some C > 0. So the theorem requires

Δt ∼ exp[−Cε−2/r],

which results in a Δt that must decrease extremely quickly with respect to ε.
However, the situation is more optimistic in the case of a nearly constant f , as in Theo-

rem 3.1, and as illustrated by the functions F2 and F4 in section 2. Suppose that

E|f(u) − f̄ | ≤ δ.

In this case the time T in Theorem 4.2 can be taken to be arbitrarily small, and Δt1 can be
taken to be arbitrarily large. The only restriction on step size is provided by the demands
of energy conservation; that is, Δt ≤ Δt2 in the theorem. This is in line with computational
practice, where the largest step size that yields stable energy is used. More quantitatively,
suppose the system is being integrated over a long time interval T . The maximum energy
error over this period goes like Δtp for some p. This is required to be smaller than a constant
time ε. So the theorem requires

Δt ∼ ε1/p.

This is similar to the restriction on step length that would result from accuracy considerations.

Appendix. In the following H(u, γ) is a given function by which we define H(u) := H(u, 0)
and Hγ(u) = H(u, γ). Given an E ∈ R, Σ is the set of all u with H(u) = E and Σγ is the set
of all u with Hγ(u) = E.

Lemma A.1. Let H(·, ·) : R
2n × R → R and E ∈ R satisfy Assumptions 3.4. There are

a γ0 > 0 and a family of continuous bijective Pγ : R
2n → R

2n, γ ∈ [0, γ0), defined in a
neighborhood of Σ such that the following hold:

1. Hγ(Pγu) = H(u) wherever Pγ is defined.
2. Pγ converges to the identity uniformly on Σ as γ → 0.
3. det∇Pγ converges to 1 uniformly on Σ as γ → 0.

Thus Σ and Σγ, as defined above, are isomorphic for γ ∈ [0, γ0).
Proof. We will construct the maps Pγ from the solution to an ordinary differential equation.

Let

h(v, γ) = −‖∇vH(v, γ)‖−2∂H
∂γ

(v, γ)∇vH(v, γ),

which is Lipschitz-continuous for u in a neighborhood of Σ (that is, for γ sufficiently small).
Let Pγ(u) be the solution v(γ) to the initial value problem

dv

dγ
= h(v, γ), v(0) = u.
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The flow of this differential equation is defined in a neighborhood of Σ and for sufficiently
small γ > 0. Observe that

d

dγ
H(v(γ), γ) = ∇vH(v(γ), γ)T

dv

dγ
+

∂H

∂γ
(v(γ), γ),

which is zero due to our choice of h(v, γ). So

H(Pγu, γ) = H(u, 0),

wherever Pγ is defined. In particular,

Hγ(Pγu) = H(u) = E

for all u ∈ Σ. Moreover, by standard theorems Pγu depends continuously on u. This estab-
lishes items 1 and 2.

The matrix-valued function ∇Pγ satisfies the variational equation

d

dγ
∇Pγu = ∇uh(Pγu, γ), ∇P0u = I.

Some checking shows that this right-hand side is Lipschitz-continuous under the stated as-
sumptions. Thus, uniformly in u, ∇Pγu converges to I as γ → 0. This establishes item 3.

Lemma A.2. Let g be a continuous function R
2n → R. Let H,Hγ ,Σ,Σγ , Pγ be as defined

in the previous theorem. Let E (Eγ) denote taking an average with respect to the Liouville
measure for H (Hγ) on Σ (Σγ). Then

lim
γ↓0

|Eg(u) − Eγg(u)| = 0.

Proof. Let v = Pγu, dv = |det∇Pγu|du. Then

Eγg(v) = lim
δE↓0

∫
Hγ(v)∈[E,E+δE] g(v)dv∫

Hγ(v)∈[E,E+δE] dv

= lim
δE↓0

∫
H(u)∈[E,E+δE] g(Pγu)|det∇Pγu|du∫

H(u)∈[E,E+δE] |det∇Pγu|du

= lim
δE↓0

∫
H(u)∈[E,E+δE] g(Pγu)|det∇Pγu|du∫

Hγ(v)∈[E,E+δE] du

× lim
δE↓0

∫
Hγ(v)∈[E,E+δE] du∫

Hγ(v)∈[E,E+δE] |det∇Pγu|du

=
Eg(Pγu)|det∇Pγu|

E|det∇Pγu|
.

Since |det∇Pγ | converges uniformly to 1 on Σ and Pγu converges uniformly to u, this last
quantity converges to Eg(u) as γ ↓ 0, as required.
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