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Abstract

Implicit solvent models for biomolecular simulations are reviewed and their underlying statistical mechanical basis
is discussed. The fundamental quantity that implicit models seek to approximate is the solute potential of mean
force, which determines the statistical weight of solute conformations, and which is obtained by averaging over the
solvent degrees of freedom. It is possible to express the total free energy as the reversible work performed in two
successive steps. First, the solute is inserted in the solvent with zero atomic partial charges; second, the atomic partial
charges of the solute are switched from zero to their full values. Consequently, the total solvation free energy
corresponds to a sum of non-polar and electrostatic contributions. These two contributions are often approximated
by simple geometrical models (such as solvent exposed area models) and by macroscopic continuum electrostatics,
respectively. One powerful route is to approximate the average solvent density distribution around the solute, i.e. the
solute—solvent density correlation functions, as in statistical mechanical integral equations. Recent progress with
semi-analytical approximations makes continuum electrostatics treatments very efficient. Still more efficient are fully
empirical, knowledge-based models, whose relation to explicit solvent treatments is not fully resolved, however.
Continuum models that treat both solute and solvent as dielectric continua are also discussed, and the relation
between the solute fluctuations and its macroscopic dielectric constant(s) clarified. © 1999 Elsevier Science B.V. All
rights reserved.

1. Introduction

Computer simulations in which a large number
of solvent molecules are treated explicitly repre-
sent one of the most detailed approaches to study
the influence of solvation on complex bio-
molecules [1]. However, a significant computatio-
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nal cost is associated with the large number of
solvent molecules required to model a bulk solu-
tion. In practical situations, a large fraction of the
time is spent calculating a detailed trajectory of
the solvent molecules, even though it is primarily
the solute behavior that is of interest. Further-
more, despite their cost, computer simulations
with explicit solvent molecules are not exempt
from approximations. For example, difficulties
arise in thermodynamic perturbation free energy
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calculations involving charged species when long
range electrostatic interactions are truncated or
summed over an infinite periodic array using
Ewald techniques [2].

Partly due to these difficulties, it is desirable to
develop different approaches in which the influ-
ence of the solvent is incorporated implicitly.
Approximate schemes treating the solvent implic-
itly can provide useful quantitative estimates and
remain computationally inexpensive. Such ap-
proaches avoid the statistical errors associated
with averages extracted from simulations with a
large number of solvent molecules. In addition,
implicit solvent models can play an important role
as conceptual tools for analyzing the results of
simulations generated with explicit solvent
molecules. A statistical mechanical formulation of
implicit solvent is helpful to better understand
the nature of solvation phenomena in general.

The goal of this article is to provide an overview
of implicit solvent models commonly used in bio-
molecular simulations. A number of questions
concerning the formulation and the development
of implicit solvent models are addressed. The
article begins with a rigorous formulation of im-
plicit solvent from statistical mechanics. The po-
tential of mean force (PMF) is introduced. A
decomposition in terms of non-polar and elec-
trostatic contributions is described. Approxima-
tions such as integral equations, scaled particle
theory, and classical continuum electrostatics are
discussed. Solvent boundary potentials for im-
plicit /explicit mixed schemes are briefly re-
viewed. Continuum models of both solute and
solvent are also described. Lastly, miscellaneous
approximations of implicit solvation are dis-
cussed. The paper ends with a short summary.

2. Rigorous formulation of implicit solvent models

First and foremost, it is important to clarify the
significance of implicit solvent models from first
principles. To this effect, we consider a molecular
solute immersed in a solvent in contact with a
heat bath at temperature 7. It is expected that
the system is fluctuating over a large number of
configurations. The statistical properties of the

system are best characterized in terms of a
probability function P(X,Y) [3],

e~ UX.Y)/kgT
PX,Y) = €y
Jdx dy Va0 kt

where the complete configuration of the solute ‘uw’
and the solvent ‘v’ atoms are specified by the
coordinates X = {x,, X,,...} and Y={y,, y,,...},
respectively. For the sake of simplicity, we will
assume that the total potential energy can be
decomposed as

Uux,y) =U,xX)+U,(Y) + U,(X,Y) 2)

where U/(X) is the intramolecular solute poten-
tial, U, (Y) is the solvent—solvent potential, and
U, (X)Y) is the solute—solvent potential.

All the properties of a molecular system are
fundamentally related to averages weighted by
the probability function P(X,Y). For example, for
any quantity Q(X) depending on the solute con-
figuration

(Q)= [ dXdY O(X) P(X,Y). (3)

An important question is whether one can rig-
orously express such an average without referring
explicitly to the solvent degrees of freedom Y. In
other words: is it possible to ‘get rid’ of the
solvent in the mathematical description of the
molecular system and still obtain correct proper-
ties? The answer to the question is yes. A reduced
probability distribution P(X) that depends only
on the solute configuration can be defined as

P(X) = / dy P(X,Y). (4)

The reduced probability distribution does not de-
pend explicitly on the solvent degrees of freedom,
although the average influence of the solvent is
taken into account. This operation is commonly
described by saying that the solvent coordinates
have been ‘integrated out’. In a system character-
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ized by the canonical ensemble at temperature 7,
the reduced probability has the form

f dY e (V) + U+ Uy (X,V)]/ kT
P(X) =

f dX dY e [UuX)+ Un(M)+ Uy XD/ kT

e~ WX)/kgT

= . (5
f dX e~ W &)/ kgT

The function W(X) is called the ‘potential of
mean force’ (PMF). The concept of the PMF was
first introduced by Kirkwood to describe the aver-
age structure of liquids [4]. Tt is easy to show that
for cartesian coordinates, the gradient of W(X) is
simply related to the average force

ax;  \dx;

IWX) < aU>
X)

= - <Fxl.>(X) (6)

where x; is the position of the ith solute atom
and the symbol (- ), represents an average
over all coordinates of the solvent, for a solute in
the fixed configuration specified by X. The PMF is
the reversible work done by the average force. In
particular, it should be emphasized that the PMF
is not equal to an average potential energy, that
is,

W(X) # (U ). (7

All solvent effects are included in W(X) and,
consequently, in the reduced distribution function
P(X). For example, if a quantity Q(X) depends
only on the solute configuration, it is possible to
express its average rigorously,

(0) =f dX Q(X) P(X)
= f dX dY 0(X) P(X,Y) (®

recovering the exact expression of Eq. (3) for the
average of Q. Therefore, there exists an effective
potential W(X), making no explicit reference to

the solvent degrees of freedom, such that no
information about the influence of solvent on
equilibrium properties is lost.

3. The potential of mean force W(X)
3.1. Relative and absolute values: reversible work

As long as the normalization condition given by
Eq. (5) is satisfied, an arbitrary offset constant
may be added to W(X) without affecting averages
in Eq. (8). The absolute value of the PMF is thus
unimportant. For convenience, it is possible to
choose the value of the free energy W(X) relative
to a reference system in which the solute—solvent
interactions are absent. The free energy W(X)
may be expressed as

/ dY e (V) + Uy W)+ Uy (X,Y)]/ kT
e WX/ ksT —

de e~ Unw(¥)/kgT

9

It is customary to write W(X) = U,(X) + AW(X),
where U/(X) is the intramolecular solute potential
and AW(X) is the solvent-induced influence.

Introducing the thermodynamic solute—solvent
coupling parameter A, we write the potential en-
ergy as,

UX,Y; ) = U(X) + U, (Y) + U, (X,Y;0)  (10)

constructed such that A =0 corresponds to a
non-interacting reference system with U, (X,Y;0)
=0, and A =1 corresponds to the fully interact-
ing system. As long as the end-points are re-
spected, any form of thermodynamic coupling is
correct. We have

1 aU,

a0 = [far () (11
—/0 ZN S

where the symbol { -+ )x ), represents an average

over all coordinates of the solvent, for a solute in

the fixed configuration specified by X with ther-

modynamic coupling A. It is also possible to ex-
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press relative values of the PMF between differ-
ent solute configurations X, and X, using Eq. (6)
and the reversible work theorem [4]

AW(X,) = AW(X,) + /dexfmﬁL;X)
X,

X, U,
= W(X1)+le Zi:dx,-~<—&xi >(X’A).
(12)

It may be noted that (dU,/dA)x, in Eq. (11)
plays the role of a generalized thermodynamic
force similar to that of (JU/dx;)x in Eq. (12).

3.2. Thermodynamics and state dependence

The PMF plays the role of an effective free
energy potential. It is state-dependent, i.e. it de-
pends on the temperature 7 and the pressure p.
Thus, one should formally write W(X;T,p). For a
fixed solute configuration X, the PMF can be
decomposed thermodynamically as

AW(X) =AEX) - TAS(X) (13)

where AS(X) = —dAW(X)/dT is the solvent en-
tropy for the solute in the fixed configuration X.
All quantities are excesses with respect to the
reference system in which the solute—solvent in-
teractions are absent. The excess chemical poten-
tial Ap of the solute (i.e. the solvation free
energy) is

de e UL+ AWX)]/ kyT
—Ap/kpgT —

(&
de e~ UuX)/kgT

= (e AW/ keT >(Uu)- (14)

The last expression has been written in the well-
known free energy perturbation form [5]. The
integration is over all degrees of freedom of the
solute, and the subscript U, indicates that an
average is performed corresponding to the Boltz-
mann weight exp[—U/(X)/kgT], U, being the
intramolecular potential of the isolated solute. To
obtain a closed-form expression for the chemical
potential, it is sometimes useful to evaluate the

configurational integrals in Eq. (14) with a quasi-
harmonic approximation [6].

A thermodynamic decomposition of the solute
excess chemical potential is possible using tem-
perature derivatives, i.e. Apu = Ae — TAs, with As
= —dAu/dT, giving

As =

—Apu + Wy — Upw, _ <(9AW>
T T aT [

(15)

The first term can be thought of as the excess
configurational entropy of the solute. The last
term corresponds to the solvent entropy averaged
over all solute configurations X, weighted by the
Boltzmann factor exp[—W(X)/kyzT] For exam-
ple, only the first term would contribute to As if
the effect of solvent was only to reduce the con-
figurational space accessible to the solute. Such a
separation into a solute configurational entropy
and a solvent entropy is not straightforward in the
case of simulations with explicit solvent.

Similarly, the specific molar volume of the so-
lute can also be obtained if the implicit solvent
model takes the influence of pressure into ac-
count,

LAY
Aol = 55~
IAW

- (22 16

< ap ><W> (16)

The factor JAW/Jdp can be thought of as a
configuration-dependent molar volume of the so-
lute. The specific molar volume A, is an aver-
age over all the accessible configurations X of the
solute.

3.3. Ligand—protein association constant

A formulation of implicit solvent is useful to
describe ligand—protein association. Let X, be
the degrees of freedom of the ligand, and X, be
the degrees of freedom of the protein. The PMF
for the ligand—protein complex is W p(X.Xp);
the PMFs for the isolated ligand and protein are
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W, (X;) and Wp(X;), respectively. The associa-
tion constant is [7]

f dX, dX, e WXL Xp)/ksT
K= bound

JaXp 8(xgn)e MiX/ET [dX, e Vet kaT

(17)

The integral in the numerator is taken over all
configurations of the ligand and the protein such
that the complex is in the bound state. The final
constant K has dimensions of volume, which
yields a dimensionless factor in the probability of
occupancy, K[C]/(1+ K[C]), where [C] is the
concentration of ligands. The delta function in
the denominator insures that global translation of
the ligand center of mass is removed in the un-
bound reference state. For the sake of simplicity,
it is often advantageous to remove also the global
translation and rotation of the complex and of the
isolated protein (in the numerator and the de-
nominator, respectively) since they do not con-
tribute to the binding constant.

3.4. Time-dependent properties

It is attractive to use the PMF obtained from
an implicit solvent model to describe the dynami-
cal, time-dependent properties of the solute. For
dense liquid systems, the classical Langevin equa-
tion for the atom i.

JW(X)
m;X;, = —
p X,

- ZYijxj(t) +f,~(t) (18)
J

can provide a reasonable approximation of the
solute dynamics [3]. In the Langevin equation, the
force f(t) is a random Gaussian variable, and
integration of Eq. (18) leads to stochastic trajec-
tories. The influence of the random and dissipa-
tive forces determine the time-scale of the dy-
namics, while the equilibrium time-independent
properties are controlled by the PMF. If one is
exclusively interested in the latter, the value of
the friction coefficients vy;; is only a matter of

convenience, i.e. the Boltzmann distribution P(X)
o expl—W(X)/kgT] of Eq. (4) follows directly,
regardless of the magnitude of the friction coef-
ficient v,;, as long as the random force satisfies
the second fluctuation—dissipation theorem:
<fi(t)fj(0)> = 2kBTyij8(t) [3]. Performing a
Langevin dynamics with the gas phase potential
U,(X) does not incorporate any solvation effects
into the equilibrium properties. Because they are
computationally inexpensive, Langevin dynamics
can be advantageous to investigate the time-de-
pendent properties of some systems. This ap-
proach has been used to examine the conforma-
tional fluctuations of small polypeptides in water
(8].

The classical Langevin Eq. (18) with constant
friction coefficients is a somewhat crude approxi-
mation that ignores the time-dependent response
of the solute surroundings (the random force is
completely uncorrelated at all times). More so-
phisticated stochastic models, which reproduce
the detailed dynamical behavior of a true micros-
copic system more realistically, can be con-
structed by using a generalized Langevin equation
with memory [9,10],

IW(X)
m.x.= —
1% o')Xi

— [lde" ¥y, =%,
0
+ (1) (19)

In particular, one may be interested in incor-
porating the frequency dependence of the dielec-
tric response of the solvent into a reaction field
description [12]. In this case, the time-indepen-
dent properties will be in accord with the Boltz-
mann distribution if, and only if, the random
force and the time-dependent friction satisfy the
generalized second fluctuation—dissipation theo-
rem [11],

CFOF(D) = kg Ty, (t—1") (20)

Thus, in constructing a generalized Langevin
equation with memory it is essential that the
random force be consistent with the time-depen-
dent friction. Using a time-dependent memory
function with uncorrelated random forces [12]
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leads to a non-equilibrium stationary state which
differs from the correct thermal ensemble.

3.5. Average solvent density and integral equations

The calculation of the reversible work in Eq.
(11) involves configurational averages which can
in principle be obtained from computer simula-
tions. For example, such averages can be ex-
pressed as

1 Nt GUX,Y,;0)

du
e = 21
<0")L >(X,/\) Nconf n=1 2 ( )

Alternatively, assuming that the solute—solvent
interaction can be written as a pairwise sum of
contributions over individual solvent molecules m
in the configuration y (including positional, orien-
tational and internal degrees of freedom), the
average can be written as an integral,

dU J
U _|9 v x
<,9,\ >(X,A) <(9/\ %”uv( A )>

= [ dy <§,8(y—ym)> o\

(X,\)

du, (X,y; 1)
= f dy <P(Y)>(x,,\) Ty,

(X,A)

I, (X,y; 1)

(22)

where { p(y))x,, is the average solvent density
for finding a molecule in configuration y (includ-
ing position, orientation and internal degrees of
freedom) around the solute in the fixed configu-
ration X. Egs. (21) and (22) are equivalent if the
exact solvent density is used. Finding suitable
approximations for the average solvent density, as
in liquid state integral equation theories [3,13,14],
is a powerful route for developing implicit solvent
models. For this reason, a formulation of the
PMF based on Eq. (22) is particularly useful.
Liquid state integral equations are sophisti-
cated statistical mechanical theories [3,13,14]
which can provide a rigorous framework for cal-
culating the average solvent density around a
complex solute of arbitrary shape. Average sol-

vent structures caused by the granularity, packing,
hydrogen bonding and other associative forces, as
well as long-range dielectric shielding and ionic
screening, are all examples of important effects
that can be incorporated using integral equations
[13,14]. A complete review of integral equations
would be beyond the scope of this article, there-
fore we will only provide a brief overview of this
vast and important field.

One of the simplest theories to describe the
average solvent density ¢ p(r)) in the neighbor-
hood of a spherical monoatomic solute immersed
in a simple liquid is the hypernetted chain (HNC)
equation [13].

<p(r)> =ﬁe—u(r)/kBT+c*Ap(r)’ (23)

where p is the bulk density, u(r) is the perturbing
potential acting on the solvent due to the solute,
c(r) is the direct correlation function of the un-
perturbed uniform bulk fluid, the symbol * repre-
sents a three-dimensional spatial convolution, and
Ap(r) = p(r) —p is the deviation from the bulk
density at a distance r from the solute. More
sophisticated integral equation theories with a
similar basic structure have also been proposed.
In particular, the reference HNC equation (R-
HNC) [15], is an advanced integral equation the-
ory able to provide detailed information about
the positional and orientational pair distribution
functions of the solvent around a solute. Theories
based on site-site radial distribution functions
such as the reference interaction site model
(RISM) equation are computationally simpler
[14,16]. Such theories are based upon the Chan-
dler-Andersen (or site—site Ornstein—Zernike)
equation [16].

h(r) = w +c* w(r) + o xc* ph(r) (24)

where h(r) is the site—site pair correlation func-
tion, ¢(r) is the site—site direct correlation func-
tion, and  is the intra-molecular correlation
matrix. The RISM theory has been used in com-
bination with a site—site HNC closure to describe
polar systems [17]

h’ij(r) = e_“ij(”)/kBT+ i)+ hi(r)—c;(r) _ 1 (25)
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where ¢,;(r) = —q,q;/(kgTr) is the long range
site—site Coulomb interaction, and u,,(r) is the
remaining short range part of the potential. The
RISM theory has been used to study the hydra-
tion of mono-atomic solutes [18,19], small pep-
tides [20-22], and many other organic solutes
[23,24]. A related approach has been used to
examine hydrophobic solvation [25]. However, the
theory is not appropriate for large molecular so-
lutes, since completely buried atoms of the solute
are only partially shielded from the solvent in
RISM (i.e. the solvent density around an atom
located in the center of a structure is not zero).
Furthermore, the dielectric constant of the pure
liquid is not described satisfactorily. There have
been several efforts to correct the deficiencies of
the theory. For example, a reformulated dielectri-
cally consistent RISM equation was developed to
model finite-concentration salt solutions [26].
Since RISM theories are based on a reduction
to site—site solute—solvent radially symmetric dis-
tribution functions, there is a loss of information
about the three-dimensional spatial organization
of the solvent density around a non-spherical
molecular solute. Recently, it has been possible to
formulate and solve integral equations able to
take into account the full distribution of the sol-
vent around solutes of irregular shape in three
dimensions [27-31]. The 3d-HNC integral equa-
tion describing the density of a simple
Lennard—Jones solvent around non-polar solutes
of arbitrary shape were solved numerically on a
three-dimensional grid. The spatial convolutions
were calculated using fast Fourier transforms in
three-dimensions. Extensions of RISM-like theo-
ries for three-dimensional space (3d-RISM) have
been proposed and solved numerically [30,31].
Other approximations are also currently being
explored. An extension to the mean-spherical-ap-
proximation integral equation in three dimen-
sions (3d-MSA), describing the distribution func-
tion of a liquid of spherical molecules with an
embedded dipole around a polar solute was for-
mulated and solved numerically [29]. Using this
theory, it was possible to demonstrate that the
Poisson equation with a spatially-dependent di-
electric constant E(r), such as used in macros-
copic continuum solvation models (see Eq. (43)

below), is obtained if the correlations in the liquid
are short-ranged [29]. An integral equation de-
scribing the structure of water molecules in terms
of sticky interaction points has been developed
[32,33]. A theory based on an expansion in terms
of two- and three-body correlation functions has
been proposed to describe the hydration structure
around nucleic acids [34] and proteins [35]. In
summary, integral equations and theories based
on distribution functions represent a powerful
framework for developing new approaches to de-
scribe the solvation of biomolecules.

4. Free energy decomposition

Intermolecular forces are dominated by short-
range harsh repulsive interactions, arising from
Pauli’s exclusion principle, and long-range elec-
trostatic interactions, arising from the non-uni-
form charge distribution. It is convenient to ex-
press the potential energy U, (X,Y) as a sum of
non-polar and electrostatic contributions,

U,,(X,Y) = UMP(X,Y) + UEO(X,Y). (26)

Such a representation of the microscopic non-
bonded interactions is commonly used in most
force fields for computer simulations of bio-
molecules (e.g. AMBER [36], CHARMM [37],
OPLS [38).

The separation of the non-bonded interactions
is useful for decomposing the reversible work that
defines the function W(X). We express the total
free energy as the reversible work corresponding
to two successive steps. In a first step, the non-
polar solute—solvent interactions are switched on
in the absence of any solute—solvent electrostatic
interactions; in a second step, the solute—solvent
electrostatic interactions are switched on in the
presence of the solute—solvent non-polar interac-
tions. The solute is kept in a fixed configuration X
throughout both processes, and the intramolecu-
lar potential energy does not vary during this
process. By construction, the total PMF is

W(X) = U, (X) + AW"P(X) + AW CeO(X)  (27)



8 B. Roux, T. Simonson / Biophysical Chemistry 78 (1999) 1-20

where the non-polar solvation contribution is

/ dY e [UnM+UGPXY))/ kT
efAW(“P)(X)/kBT _

f dY e~ Uw®)/ kT

(28)
and the electrostatic solvation contribution is
e~ AW EX)/ kT
f dY e [UnM+USPEY)+ UL XY/ kT
f dY e UM+ USPX Y/ kT
(29)

Combining Egs. (27)-(29) yields Eq. (9) directly.
Because the non-polar contribution is associated
with the harsh repulsive potential. AW @ (X) is
usually referred to as the ‘free energy of cavity
formation’: the quantity AW ' (X) is called the
‘charging free energy’.

Equivalently, we can express the free energy in
terms of two thermodynamic integration coupling
parameters, A, and A, [39]. The potential energy
is written

UX,Y:),,0,) = U(X) + U, (Y) + USP(X,Y:A,)

+ UL (X,Y:N,). (30)

where A, =\, =0 corresponds to the non-inter-
acting reference system, A, =1=A,=1 corre-
sponds to the fully interacting system, and A, =1
with A, =0 corresponds to an intermediate sys-
tem with no solute—solvent electrostatic interac-
tions. Each contribution can be expressed as the
reversible work from a thermodynamic integra-
tion,

1 au ™
(np) = -~
AW P)(X) jo d)\1< oy >(X,A1,A2=O) (31)

and

1 aU(elec)
(elec) —
AW (X) fo d/\2<—(9)\2 ><x,A1—1,A2>' (32)

The free energy decomposition in Eq. (27) is, of
course, path-dependent [40,41]. The non-polar and
electrostatic contributions to the free energy de-
pend on the order in which these successive steps
are performed. For example, it is necessary to
first insert the non-polar cavity into the solvent
before performing the electrostatic charging of
the solute; the opposite yields diverging results.
Nevertheless, the decomposition can be useful for
understanding the different microscopic factors
playing an important role in solvation. In particu-
lar, the non-polar and electrostatic free energy
contributions can be related to various approxi-
mate continuum descriptions (see below).

4.1. Non-polar contribution

It is instructive to first examine the contribu-
tion of non-polar interactions to the PMF. For
the sake of simplicity, let us consider a spherical
particle in water. According to Eq. (31), the non-
polar free energy contribution can be expressed
as a radial integral,

. 1 o au"P(r;A,)
AW p)=f0d)\14wf0 rzdr<p(r)>ul)&—/\ll

(33)

where {p(r))(,,, is the average density of the
water oxygen around the spherical particle, and
the water hydrogens are assumed to have no van
der Waals interactions with the solute. By defini-
tion, A, =0 in this step, i.e. the solute has no
partial charges. It is convenient to choose the
thermodynamic coupling parameter A, as a scal-
ing factor applied to the radius of the solute
particle. The derivative of the function u(®(r: \,)
with respect to A, decreases very abruptly as a
function of distance from the center of the solute.
In contrast, the density {p(r)),,) vanishes inside
the core of the solute. The product of the two
functions is a sharply peaked function that is
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non-vanishing mainly at the contact distance. This
observation is exploited to obtain approximate
forms of the non-polar contribution to the free
energy solvation in ‘scaled-particle theory’ (SPT)
[42-44] and ‘solvent-exposed surface area’ models
[46]. Those approaches are described in the fol-
lowing. Nonetheless, it should be emphasized that
neither SPT nor solvent-exposed surface models
provide an ultimate representation of the non-
polar contribution to the solvation free energy.
Even today, elucidating the fundamental nature
of hydrophobic solvation at short and long range
remains a central problem in theoretical bio-
physics. In that regard, new approaches based on
cavity-size distributions [47,48] and on free energy
density functionals (Chandler and Weeks, unpub-
lished) presently being developed appear promis-
ing.

4.1.1. Scaled particle theory

A simple approach was proposed by Reiss et al.
[42], Stillinger [43], and Pierotti [44] to describe
the free energy of inserting a non-polar repulsive
sphere into a solvent. The approach is called
‘scaled particle theory’ (SPT) because it is based
on arguments involving the scaling of the repul-
sive sphere radius. The reversible work W(R) to
produce a spherical cavity of radius R can be
calculated exactly for a hard-sphere liquid of bulk
density p as long as 2R <a, the hard sphere
diameter:

W(R) = —kyT ln(l - daR 5). (34)

For a non-polar solute in liquid water, a is
assigned a value of 2.75 A corresponding to the
distance of closest contact in the oxygen—oxygen
radial distribution function of liquid water [43].
For a soft-sphere solute interacting with the sol-
vent through u(r)=2AAr"", R is an equivalent
hard-sphere radius which can be written R =
(3B /2m)"3, where B is the second virial coeffi-
cient, B=Qm/3XAA/kgT)*"T'((n —3)/3), and
I' is the Gamma function. Generalizations to van
der Waals and associated liquids have been made
by introducing experimental densities and virial
coefficients. In the limit of a large cavity or solute

particle, thermodynamic considerations [45] lead
to

W(R) = + pr+4wR2yV(1—@)+... (35)

where p is the isotropic pressure chosen accord-
ing to experimental conditions, 7, the surface
tension of the solvent, and & is a molecular
length scale. The remaining terms are assumed to
be negligible. In effect, this expression implies
that the microscopic surface tension coefficient
depends on the radius of curvature, i.e. y(R) =
¥, (1-48/R). For water, Stillinger estimated that
5 is approximately equal to 0.5 A [43]. In the
intermediate R range, 2R >a, W(R) can be ex-
panded in powers of R; the first three expansion
coefficients are obtained by matching the func-
tion and its first two derivatives, given at R = a by
Eq. (34). The third derivative is discontinuous at
R =a and cannot be obtained in this way. How-
ever, from Eq. (35), the R’ term is likely to be
negligible, and in any case, volume and surface
area will often be correlated in practice, so that
the R® term can be included in the surface term.
Thus, the expansion effectively has the same form
as Eq. (35) to third order, and can be considered
an extension of the surface tension concept to
molecular dimensions. In practice, the pl-like
term is expected to be negligible (atmospheric
pressure corresponds to an energy of 1.5 X 1073
kcal /mol per A’) and the free energy is domi-
nated by the surface term. SPT has been com-
pared with results from molecular dynamics simu-
lations and free energy perturbation calculations
for non-polar rare gases [49,50].

4.1.2. Solvent-exposed area

SPT provides an important conceptual basis for
relating the non-polar free energy contribution to
the solvent-exposed surface area. The length scale
o is such that the curvature dependency does not
become significant until the radius R is very small
(of molecular dimensions). Following this idea, an
attractive approximation to Eq. (28) is to ignore
curvature effects and write:

AW (X)) = 1, Ao (X) (36)
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Such a description of the non-polar contribu-
tion to the free energy has been extensively used
in biophysical applications [51-53].

As first pointed out by Tanford [46], Eq. (36)
suggests that there is a close relationship between
the macroscopic air—water surface tension, inter-
facial free energies, and the hydrophobic effect.
In practical applications, the surface tension v, is
usually obtained from experimental data. The
limitations of the surface area model are illus-
trated by vapor-to-water transfer free energies of
saturated alkanes in Fig. 1 [53]. Proportionality of
the solvation free energy to solute area is good
for linear alkanes, but poor for saturated cyclic
alkanes. The proportionality coefficient, or
‘surface tension’, for linear alkanes is approxi-
mately 6 cal /mol per A? for vapor-to-water trans-
fer (Fig. 1) and 25 cal /mol per A? for cyclohex-
ane-to-water transfer. The latter value is approxi-
mately one-third of the macroscopic water—al-
kane surface tension (70 cal/mol per A?); this
observation led Honig et al. to suggest that solva-
tion free energies derived from experimental par-
tition coefficients needed to be corrected to in-
clude non-ideal mixing effects, calculated for ex-
ample by use of Flory—Huggins theory [51,52]. In
fact, most experimental data (e.g. Fig. 1) are
obtained in ideal-dilute conditions where non-
ideal mixing effects are irrelevant [54,55]. The
difference between the optimal parameter v, for
alkanes and the true macroscopic surface tension
is simply an effect of the microscopic length scale
and the crudeness of the model. For detailed
discussions see Holzer [56] and Ben-Naim and
Mazo [57].

4.2. Electrostatic contribution

To calculate the electrostatic contribution,
AW €9 one can conveniently choose to scale the
atomic partial charges of the solute linearly with
the coupling parameter A,, i.e.

U(elec)(X Y; A, )= Z (Azqu z)qV i | (37)

i,j

solvation free energy (kcal/mol)

150 200 250 300 350
area (A"2)

Fig. 1. Vapor-to-water transfer data for saturated hydrocar-
bons as a function of accessible surface area [133]. Standard
states are 1 M ideal gas and solution phases. Linear alkanes
(small dots) are labeled by the number of carbons. Cyclic
compounds (large dots) are: a = cyclooctane, b = cycloheptane,
¢ = cyclopentane, d = cyclohexane, e = methylcyclopentane, f
= methylcyclohexane, g = cis-1,2-dimethylcyclohexane.
Branched compounds (circles) are: h = isobutane, i=
neopentane, j = isopentane, k = neohexane, 1= isohexane, m
= 3-methylpentane, n = 2,4-dimethylpentane, o = isooctane,
p = 2,2,5-tri-methylhexane. Adapted with permission from
Simonson and Briinger [53]. Copyright 1994, American
Chemical Society.

where x; and r; are the position of the ith and
jth atom of the solute and the solvent, respec-
tively. Since the solute atom positions x; are fixed
and only the solvent degrees of freedom Y are
allowed to vary, the electrostatic contribution is,
according to Eq. (32),

/’rl

Aw(clcc)(x) /’ da <Z qu quJ >
(X,A,)

= /:d/\zfdr%: |Xj]u_,ir|

< qu’ja(r - rj)>(X,/\2)
i

1 1
_/()d/\zzi:qu’l—/dr|x -
(Petec (0D 0,)

= leAZun,i<¢rf(xi)>(xv)‘2) (38)
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where { pee(t)x.a,y and (¢ (X)), are, re-
spectively, the average solvent charge density and
the average solvent reaction field electrostatic
potential, for a solute with scaled charges A,q,;
in the fixed configuration X (the subscript A, =1
has been omitted for clarity). This equation is
exact and provides a formal link to continuum
electrostatic approximations (see below).

4.2.1. The Born model

The Born model [58] for the solvation of spher-
ical ions is useful to illustrate the various factors
involved in the electrostatic contribution to the
free energy. In particular, its microscopic basis
has been examined in detail [59-61]. In the Born
model, the excess chemical potential is a function
of the charge of the ion Q, ,, its radius R, ,, and

i > ion? ion?
the dielectric constant of the solvent €,

2
2. (1
(elec) — _=ion [ = _
AW Th ( 1) : (39)

jon \ €y

This expression, corresponding to the reversible
electrostatic work to charge up an ion in a contin-
uum dielectric solvent, is easily derived using Eq.
(38). Typically, the solvent charge density
{ Perec(r)) is sharply peaked at r=R,,,, the so-
lute—solvent boundary. This is illustrated in Fig. 2
in the case of two simple ions, K* and CI.
Neglecting the width of the charge density, the
solvent reaction field can thus be approximated as

o 1
<ll/rf>(/\z) = 477/ r2dr7<pelec(r)>()\z)
0

1 o0
=g 4w fo r2dr poec(r)dny) (40)

where the integral on the right-hand side repre-
sents the total average solvent charge around the
ion. According to Gauss’s theorem [63], for a
charge A,0;,, in a medium of dielectric constant
€,, the total solvent charge density obeys the sum
rule [61],

4WLwr2dr <pelec(r)>()\z) = AZQion(El - 1) (41)

015 ' ! T T T T T
Potassiumion ——
Chloride ion -
0.10 ]
0.05 -

0.00

Charge density

-0.05

-0.10

-0.15 . . . . . L .
0 1 2 3 4 5 6 7 8

-

Fig. 2. The solvent charge distribution (in unit charge per A®)
around K" (solid line) and Cl~ (dash line) calculated from
molecular dynamics simulations with explicit water molecules
is shown. The Lennard—Jones parameters of the ions were
adjusted to yield the same solvation free energy as in bulk
water, i.e. —80 kcal /mol. For the K* (solid line), a first large
peak arising from the electronegative water oxygen (at 2.7 A)
is followed by a second smaller peak arising from the electro-
positive water hydrogens (at 3.5 A). For the Cl™ (dash line),
the structure is different because of the negative charge of the
ion. The first peak arising from the water hydrogens (at 2.1 A)
is followed by a second peak arising from the water oxygen (at
3.1 A and a small and broad peak caused by water hydrogens
at 3.9 A). In the bulk liquid, the integral of the radial charge
density surrounding an ion of charge Q is equal to Q (1/e — 1).
Adapted with permission from Roux [62].

and the reaction field is (in the continuum limit)
1 1
(il = R, MQin| & 1) (42)

Since the solvent reaction field is proportional to
the coupling parameter (linear response), the
thermodynamic integration over A, yields a factor
of one-half in Eq. (39).

As shown by Eq. (40), the magnitude of the
free energy is very sensitive to the position of the
solute—solvent boundary (i.e. the size of R, , in
the case of the Born model). In the continuum
limit, it is assumed that the charge density is
completely concentrated at the solute—solvent
boundary, R,,,. In contrast, the solvent charge
density in an atomic model is distributed over a
microscopic region of finite dimensions as illus-
trated in Fig. 2. The size of this microscopic
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region has important consequences for the reac-
tion field at the center of a spherical cavity, and
thus, for the solvation free energy. For this rea-
son, the Born radius must be considered as a
state-dependent, empirical parameter that must
be adjusted to yield accurate results [61]. In par-
ticular, the Born radius is a property of an ion in
a given solvent. The Born model of solvation
provides the basis for continuum electrostatics
approaches for describing the solvation of polar
molecular or irregular shapes. These approaches
are discussed below.

4.2.2. Classical continuum electrostatics

Continuum electrostatics approximations in
which the solvent is represented as a featureless
dielectric medium are an increasingly popular
approach to describe solvation of polar molecules.
Such approximations go back to Born [58], Kirk-
wood [64] and Onsager [65]. Applications in bio-
physics have been reviewed recently by several
authors [66—68]. The approach is remarkably suc-
cessful in reproducing the electrostatic contribu-
tion to the solvation free energy of small solutes
[53,69,70] or amino acids [71], as shown by com-
parisons to free energy simulations with explicit
solvent. Continuum electrostatic approximations
are based upon the Poisson equation for macros-
copic media [63]

V- [e®Vi(r)] = —4mp,(r) (43)

where (r) is the electrostatic potential at a point
r, p,(r) represents the fixed charge density of the
solute, and e(r) is the position-dependent dielec-
tric constant.

The Poisson Eq. (43) can be solved numerically
by mapping the system onto a discrete grid and
using a finite-difference relaxation algorithm
[72,73]. Alternatively, a surface boundary element
method can be used [74-76]. The numerical prob-
lem is made easier by making the approximation
that the surrounding solvent has an infinite di-
electric constant corresponding to that of a con-
ductor [77,78]. A different approach to incor-
porate the influence of a polar solvent has been
proposed and developed by Warshel and co-
workers [79], in which the solvent is modeled by a

discrete lattice of dipoles that re-orient under the
influence of applied electric fields.

It is generally assumed that the dielectric con-
stant is uniform everywhere except in the vicinity
of the solute—solvent boundary. If the dielectric
constant inside the solute is assumed to be one,
the position-dependent dielectric constant e(r)
can be written e(r) =1+ 6(r) (¢, — 1), where 6(r)
is an excluded volume function varying sharply
from zero inside the solute to one outside (see
Beglov and Roux [29] for a demonstration based
on integral equations). A dielectric constant of
one inside the solute is appropriate as long as the
solute degrees of freedom are treated explicitly
(for a discussion of implicit solute representations,
see Section 5.2). To further examine the physical
significance of the continuum dielectric approxi-
mation, we consider the solvent charge density
around the solute [63]

(Petec(1)) = =V-P(r), (44)
where P(r) is the polarization density of the sol-
vent. At any point r the polarization P(r) and the
total electrostatic field E*'(r) are linearly related,

P - (<5

this relation is usually taken as the definition of
the dielectric constant [63,80]. Since there are no
permanent charges in the solvent, the divergence
of the polarization density in the solvent is zero
except near the dielectric boundary [63], and the
solvent charge density is a sharply peaked func-
tion localized at the solute—solvent interface. In-
tegrating the solvent charge density along an axis
perpendicular to the surface over an infinitesimal
range (but broader than the range over which 6
varies) and making the width of the boundary go
to zero, one recovers the usual expression for the
surface charge density o (r'), which is the basis of
the boundary element formulation [74-76]. The
continuum electrostatic contribution to the PMF
can thus be expressed as a surface integral,

)Ewt(r); 45)

o)

x,—r

AW Clee)(X) = f ds'Y (46)

l
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As mentioned, results obtained using the cont-
inuum electrostatic approximation depend criti-
cally on the location of the dielectric boundary
between the solute and the solvent. Hence, there
is a need to develop a set of empirical parameters
in order to obtain quantitative accuracy in contin-
uum electrostatic calculations. Such parameters
are state-dependent. For instance, it is necessary
to account for the temperature and pressure de-
pendence of the atomic radii used in Egs. (15)
and (16) to determine the dielectric boundary
[61,81] if one wishes to calculate the excess en-
tropy and the partial volume of a solute. It is
inconsistent to account only of the state-depen-
dence of the solvent dielectric constant, as is
often done (see for example Rashin and Nam-
boodiri [82]). Honig and co-workers have op-
timized a set of radii based on the experimental
free energy of a series of small molecules [70].
We noted above the importance of the average
solvent charge distribution function for relating
the continuum model to a microscopic descrip-
tion; this relation was exploited recently to derive
a different set of optimized atomic radii for pep-
tides and proteins [71].

4.2.3. Treatment of ionic strength

In the presence of mobile ions, the charge
density is no longer localized at the solute—solvent
interface. Mobile ions are distributed throughout
the solvent with number density

p;(1;X) = p; e it X)/ ks )

where i refers to a specific ion type (e.g. counte-
rion or co-ion), p; is the number density far from
the solute, and w,(r;X) is the PMF for counter-
ions of type i at position r for a given solute
configuration X (see also Eq. (23)). The density
p,(r;X) contains an excluded volume term, i.e.
ion—solute van der Waals interactions prevent
ions from penetrating the solute. The ion density
can be made to appear explicitly in the Poisson
equation, giving the exact form of the
Poisson—-Boltzmann (PB) equation,

V- [e(Vy(r)] = —4mp,(r)
— 47,.2% p; e WirX)/ kel - (48)

where the sum is over the different ion types, and
p,(r) indicates the fixed charge density of the
solute. The traditional Debye—Hiickel treatment
[54,83] first approximates the PMF w,(r) by the
electrostatic energy of an ion at r, times the
excluded volume function 6(r):

e Wi/ kT = g(p)e =/ knT (49)

Here, 6(r) is usually assumed to be the same as
the function used above to define the dielectric
constant e(r). Eq. (49) is thought to be exact in
the limit of very low ion concentrations and far
from the solute. Inserting Eq. (49) into Eq. (48)
gives what is usually termed the non-linear PB
equation. If the exponential in Eq. (48) is lin-
earized one obtains the linearized PB equation
[54,67]. This approximation is appropriate at low
ion concentrations (where ions are far from the
solute and each other on average).

Linearization is a necessary condition for the
electrostatic potential to satisfy the fundamental
reciprocity relation, q,, = q,¢,, where g, and g,
are permanent charges and ¢, (resp. #,) is the
potential produced by at g, (resp. ,) with g,
(resp. gq,,) as the sole source. Without reciprocity,
the ‘free energy’ given by Eq. (49) for a pair of
charges becomes dependent on the manner in
which the pair is formed (e.g. which one is brought
from infinity into the field of the other). More
generally, the result of Eq. (49) becomes depen-
dent on the pathway taken to form the system;
e.g. different results are obtained by turning on
the solute charges while simultaneously allowing
the ionic atmosphere to form, and by introducing
the ionic atmosphere after the solute charges are
turned on. Although this problem has been recog-
nized for many years, its practical importance is
still not fully explored. A variational argument
has been used to construct a thermodynamic po-
tential applicable with the non-linear PB equa-
tion [84].

5. Miscellaneous approximations of implicit
solvation

5.1. Solvent boundary potentials and implicit /
explicit mixed schemes

A description in which all atomic and structural
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details of the solvent molecules are ignored may
not always be desirable. In some cases, it may be
advantageous to use a mixed scheme which com-
bines an implicit solvent model with a limited
number of explicit solvent molecules. For exam-
ple, one intermediate approach consists in includ-
ing a small number of explicit solvent molecules
in the vicinity of the solute, and representing the
remaining bulk with an effective solvent boundary
potential [86—92]. The first to design such a simu-
lation method appropriate for liquids were
Berkowitz and McCammon [85]. In their method,
the many-body system was divided into three main
spherical regions: a central reaction region, a
buffer region and a surrounding static reservoir
region. The forces arising from the reservoir re-
gion were calculated from fixed atomic centers.
Instead of using explicit fixed atomic centers in
the bath region, Brooks and Karplus introduced a
mean force field approximation (MFFA) to calcu-
late a soft boundary potential representing the
average influence of the reservoir region on the
reaction region [86]. In the MFFA treatment, the
boundary potential was calculated by integrating
all contributions to the average force arising from
the reservoir region. The MFFA approach was
extended by Brunger et al. for the simulation of
bulk water [87]. A similar potential for water
droplets of TIP4P was developed by Essex and
Jorgensen [88]. The average electrostatic reaction
field was taken into account in the surface con-
strained all-atom solvent (SCAAS) treatment of
King and Warshel [90], and in the reaction field
with exclusion (RFE) of Rullmann and van Duij-
nen [91].

Beglov and Roux reformulated the problem of
a flexible solvent boundary on the basis of a
formal separation of the multidimensional so-
lute—solvent configurational integral in terms of
‘inner’ solvent molecules nearest to an arbitrary
solute, and the remaining ‘outer’ bulk solvent
molecules [92]. In this formulation, it was recog-
nized that the solvent boundary potential corre-
sponds to the solvation free energy of an effective
cluster comprising the solute and inner explicit
solvent molecules embedded in a large hard
sphere. The hard sphere corresponds to a con-
figurational restriction on the outer bulk solvent

molecules; its radius is variable, such that it in-
cludes the most distant inner solvent molecule.
An approximate spherical solvent boundary po-
tential (SSBP) based on this formulation was
shown to yield accurate results in computer simu-
lations [92].

The constraint of a spherical shape in most
boundary potentials is a limitation. To account
for large fluctuations in shape, as in folding—un-
folding events, a flexible potential for non-spheri-
cal boundaries was developed [93]. This problem
is discussed further by Rebecca Wade elsewhere
in this volume.

5.2. Implicit solute models

Most of the discussion so far assumed that the
solute was in a fixed configuration X and that only
the degrees of freedom of the solvent were inte-
grated out. In this description, the solute remains
fully explicit with all atomic details. Another im-
portant class of applications uses implicit solvent
models in combination with implicit models of
some or all of the solute degrees of freedom,; i.e.
some or all of the protein degrees of freedom are
‘integrated out’. The most important examples
are PB treatments of proteins in solution [66,94].
To review these is beyond the scope of this arti-
cle. Rather, we discuss briefly the relationship
between the protein dielectric constant(s) used in
PB models and the fluctuations of the protein
degrees of freedom that have been integrated
out. The simplest process one can consider in a
PB treatment of a protein is the insertion of one
or a few charges on existing atoms, as in the
oxidation of a co-factor. At low ionic strength, in
the case of a single perturbing charge ¢, the
charging free energy is [63]

AG(0 > q) = qiy + 394, (50)

where i, is the potential at the charge site in the
absence of ¢ and ¢, is the reaction potential
induced by g. From the linearity of the PB equa-
tion at low ionic strengths, the second term can
be calculated with g as the sole source charge, i.e.
the second term is equal to the self-energy of g.
It is also quadratic with respect to g (since ¥, is
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proportional to ¢), and from linear response the-
ory it is identical to the relaxation (or ‘reorganiza-
tion’) free energy of the system in response to ¢
[95]. The first term has been referred to as the
‘static’ free energy [95,96].

If the structure of both the reactant (without
q) and product (with g) structures are known, the
charge insertion can be performed in several
equivalent ways, e.g. by inserting fractional
charges Ag and (A —1)g from either endpoint.
Denoting AG™*, AG™*, AGP™! AGP™® the
static and relaxation free energies to insert a
charge g =1 at either endpoint, the overall free
energy takes the form [96]

AG(0 - q) = A\gAG™* + (1 — A)gAGP™

—(1- D gAG™.
(51)

+ /\ZqZAGrreac

Requiring that the result be independent of A
gives the important relations

AG = AGP™ = % (AGP® = AGI™).  (52)

These equations follow from the linear re-
sponse assumption, and are in fact more general
than the continuum model. They are known in
theories of charge transfer [97]. They connect the
change in electrostatic potential going from reac-
tant to product structures (associated with struc-
tural relaxation) with the relaxation free energy
calculated at either endpoint.

The dielectric constant used to calculate the
relaxation free energy is in principle comparable
to the Frohlich—Kirkwood dielectric constant ob-
tained from molecular dynamics simulations [98].
Indeed, the latter is a linear response coefficient
describing the polarizability of the solute [80].
Simulations of six proteins were consistent with a
low dielectric constant of 2-4 throughout the
protein bulk, and a much higher one at the sur-
face where charged groups are located [99-101].
The optimal dielectric constant for relaxation free
energy calculations can also be obtained by a test
charge approach [95]. The relaxation free energy
in response to a small test charge can be esti-

mated from a molecular dynamics simulation of
the reactant system using a linear response ap-
proximation; many test charge locations can be
treated with a single simulation. These free ener-
gies can be compared to a Poisson model and the
solute dielectric constant adjusted to yield a good
fit. Once the relaxation free energies have been
calculated, the static free energy can be calcu-
lated at both endpoints, and the difference
AGPI-AG™* compared to AG™* and AGP™
through Eq. (52) [96]. Unlike AG™* and AGP™,
the static free energy depends (strongly) on the
charge set used in the continuum model. There-
fore, the optimal dielectric constant for the calcu-
lation of the static free energy will depend on the
charge set. When a charge set optimized for
molecular dynamics in solution is used, it is likely
that a dielectric constant of one will be required
(for the static term) in order to achieve agree-
ment between the static and relaxation terms [in
the sense of Eq. (52)], as observed recently [96].
This leads to a continuum model with two solute
dielectric constants: one for the relaxation term
and another for the static term, consistent with
recent proposals by Krishtalik et al. [100,102]. In
more complex processes such as ion or substrate
binding, the optimal dielectric constant is not
always related in a simple way to the underlying
fluctuations of the protein; various operational
definitions are then possible [96,103].

5.3. Semi-analytical treatments of continuum
electrostatics

In some contexts, even the relatively simple
continuum electrostatics approximation based on
the exact solution to Eq. (46) may be too expen-
sive computationally. For this reason, approxima-
tions to continuum electrostatics based on analyt-
ical functions have been developed. The general
idea is the following. Since the equations of cont-
inuum electrostatics are linear, the free energy
AW ©e9(X) can be rigorously expressed as

o(r' :xj)

q] |Xi _ rr|

AWEE(X) = 3 [ ds' Y, (53)
S ij
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where o (r':x;) is the surface charge induced at r’
by a unit solute charge located at x;. Performing
the surface integral, this can also be written as

1
AW EX) = 5 3 q,q;F (x;,x,). (54)
i,j

where F(x;,x;) is a geometry-dependent coupling
function involving all the charges inside the so-
lute. The sum is often separated into two terms,

1 1
AW(elec)()()7 ZC[,-ZF(XpXi) + 7 Zqiqu(Xi’Xj)
; i+

(55)

where the first term corresponds to a self-interac-
tion, and the second to the charge—charge cou-
pling [analogous to Eq. (50)]. It is noteworthy that
the free energy is a superposition of pair-wise
additive terms (which depend on the geometry of
the solute—solvent dielectric interface). This sug-
gests that it is possible to treat pairs of charges
individually. Semi-analytical approaches seek a
suitable closed-form approximation for the cou-
pling function F(x;x,). Different approximations
to F(x;x;) have been proposed for complex so-
lutes of irregular shape: the field integrated elec-
trostatic approach (FIESTA) [104], the inducible
multipole solvation model (IMS) [105], the analyt-
ical continuum electrostatics approach (ACE)
[106], and the generalized Born (GB) approach
[107].

The strategy is to design an analytical function
F(x;,x;) that yields correct solutions in the limits
of large and small charge separation. As an illus-
tration, let us consider the GB approximation for
two ions of radius R, and R, at a distance x,, in
a continuum solvent [107],

AW(elechB)(Xl,xz) = %(El — ]) ( Z q:9; )

i fGB(xij)
1 -
(&~ 1)(7 LR,
q:9;
_— 56
+,~</~ fGB(xij)) (56)

where fop(x;) = (x}, + R,R; expl—x//
(4R;R)D'* is the GB function. For superim-
posed charges g, and g,, the GB function leads
to the correct Born solvation free energy for the
total charge ¢, + ¢q,, which is obtained as the sum
of the GB cross-term and the individual Born
solvation free energies of g, and ¢g,. When the
pair of charges is slightly separated, i.e. by x;; <
0.1(R;R))'/?, the Onsager reaction field is also
obtained correctly, within 10%. The Born energy
plus a shielded Coulomb charge—charge interac-
tion is obtained when x;; > 2.5(R,R,)"/?. Because
of its simplicity, GB is an effective approach to
incorporate solvent effects into semi-empirical ab
initio calculations on small molecules [108]. For
larger solutes such as a protein, one difficulty is
to adjust the radii R; in order to account for
charge burial. Different algorithms have been
proposed to solve this problem [106,109].

5.4. Solvent-exposed area models

Solvent-exposed area models assume that the
solvation free energy of a solute can be repre-
sented as a linear sum of atomic contributions
weighted by solvent-exposed area:

MWE=Z%AW) (57)

Here, A, is the solvent-exposed area of atom i
(which depends on the solute configuration X)
and v, is an atomic free energy per unit area.
This approach leads to free energy models that
are essentially geometric [110,111]. Solvent-ex-
posed area models are loosely based on the idea
that the solvation free energy arises from a
short-range contact between the solute atoms and
the solvent. In particular, the non-polar contribu-
tion to the free energy arises from a short-range
perturbation of the uniform solvent by the solute
(see Section 4.1). Likewise, the solvent charge
o (r) [as shown in Eq. (46)] is localized near the
solute (although the magnitude of the surface
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charge actually depends on long-range elec-
trostatic interactions).

Because it is so simple, this approach is widely
used in computations on biomolecules [112-114].
Slight variations of the solvent-exposed area mod-
els are the shell model of Scheraga [115,116], the
excluded-volume model of Colonna and Sander
[117,118], and the Gaussian model of Lazaridis
and Karplus [119,120] (see also the article by No
et al., elsewhere in this volume). Since the calcu-
lation of an accurate molecular surface and its
analytical derivative with respect to atomic posi-
tions can be expensive, Janin and Wodak have
proposed and developed an approximate expres-
sion for the molecular surface area in macro-
molecules [121]. This approximate expression has
been parameterized for molecular dynamics simu-
lations of proteins [114].

One major problem with implicit solvent-ex-
posed area models is the difficulty in taking into
account the dielectric shielding of electrostatic
interactions between charged particles. The sol-
vent-exposed area models include the free energy
cost of taking a charged residue and burying it in
the interior of the protein; this self-interaction
energy corresponds to the first term in Egs. (50)
and (55). However, as two charged particles move
from the solvent to the non-polar core of the
protein, their electrostatic interactions should vary
from q,q,/€,x,, when they are fully exposed to
the solvent, to a very different form when they
are fully buried in the protein. Such problems are
avoided in semi-analytical treatments of elec-
trostatics (see Section 5.3 above). Elsewhere in
this volume, Li et al. describe a solvation model
which combines both the GVB reaction field and
a careful parametrization of atomic surface ten-
sions.

Lastly, the treatment of protein—solvent and
protein—protein interactions must be consistent
with the empirical reference state. Experimental
free energies of transfer from aqueous solution to
weakly polar solvents (e.g. octanol) are often used
to model the transfer to the interior of protein. In
practical applications, it is difficult to completely
avoid a double counting of non-polar protein—
protein interactions, since they are present both

in the atomic model of the protein and in the
empirical free energy scale.

5.5. Knowledge-based potentials

One of the greatest problems in predicting the
three-dimensional fold of a protein is the need to
search over a large number of possible configura-
tions to find the global free energy minimum. For
extensive configurational searches, it is necessary
to use a free energy function W(X) that is as
simple and inexpensive as possible. Knowledge-
based potentials are the simplest such free energy
functions. Such potentials have been constructed
empirically from statistical analyses of known pro-
tein structures taken from structural data bases
[122]. The general idea is that the number of
residue pairs at a certain distance observed in the
data base follows the statistics of a thermal en-
semble, in other words a Boltzmann principle
[123]. Equivalently, it is assumed that the observed
probability of finding a pair of residues at a
distance R in a protein structure is related to the
Boltzmann factor of an effective distance-depen-
dent free energy. The simplest potentials distin-
guish only two types of residues: non-polar and
polar [122]. No attempts are made to establish a
specific relation to the laws of physics. Often, the
knowledge-based potentials do not resemble the
microscopic interactions that would be expected
between residues in an atomic description. For
example, one of the simplest potentials, designed
by Sippl [122], is attractive for pairs of non-polar
residues and repulsive for pairs of polar residues.
Nevertheless, the resulting structures that are ob-
tained via conformational searches, usually with
an additional restraint on the protein radius of
gyration, are reasonable: the non-polar residues
tend to form a hydrophobic core in the center of
the structure, while the polar residues tend to be
located at the protein surface. There are a growing
number of potentials constructed from similar
ideas [124—-128]. Recently, Mirny and Shakhnovich
have re-examined the methods for deriving
knowledge-based potentials for protein folding
[129]. Their potential is obtained by a global
optimization procedure that simultaneously max-
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imizes thermodynamic stability for all proteins in
the database. This field is in rapid expansion, and
it is beyond the scope of the present review to
cover all possible developments. For more infor-
mation, see the reviews [130—132] and references
therein.

6. Summary

The microscopic significance of an implicit sol-
vent potential for a solute in a fixed configuration
has been clarified. A statistical mechanical formu-
lation of the ‘potential of mean force’ or ‘solvent
free energy surface’ provides a robust theoretical
framework to express the influence of solvent
rigorously. Nonetheless, going beyond such for-
mal considerations, it is clear that any implicit
model is an approximation that must be parame-
terized carefully to yield accurate results. Not
surprisingly, there is no free lunch, and inexpensive
approaches are inevitably based on simple ideas
that are of unknown validity in untested situa-
tions. Thus, implicit solvent models are the result
of a compromise which must be constantly ana-
lyzed and judged in comparison with experimental
results and also more rigorous treatments of sol-
vation (e.g. simulation with explicit solvent
molecules).

The decomposition of the free energy in terms
of non-polar and electrostatic contributions, as
described by Eq. (27), is central to many theoreti-
cal approximations. An attractive and commonly
used treatment is to write AW = AW®P 4
AW €9 where AW @ is modeled by a solvent-
exposed area term with Eq. (36), while AW ©1¢®) jg
modeled by a continuum electrostatic reaction
field, Eq. (46). Although such a treatment is clearly
an approximation, it relies on a reasonable physi-
cal picture of solvation. A relationship with first
principles and statistical mechanics can be es-
tablished, and the approximation can be com-
pared with the results of computer simulations
with explicit solvent [49,50,69-71]. Recently,
Vorobjev and Hermans have used such an im-
plicit solvent model to successfully discriminate
models from a data base of misfolded protein
structures [6] (see also the article in this volume).

In some cases it is necessary to use treatments
that are even less expensive computationally than
the PB equation. Several semi-analytical approxi-
mate treatments of the continuum electrostatic
problem have been proposed (e.g. GB [107], FI-
ESTA [104], ACE [106] and IMS [105]). A careful
parameterization of such a model can yield re-
markably accurate results for a number of small
to medium-size molecules (see the article by Li et
al. in this volume). Even these approximations
may appear too expensive for the extensive con-
formational searches that are required to address
the protein folding problem. In that case, empiri-
cal constructs and information-based potentials
are used to mimic and reproduce the statistical
trends observed in macromolecular structures.
The microscopic basis of these last approaches is
not yet formally linked to a statistical mechanical
formulation of implicit solvent.
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