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A new approach to studying localized chemical events in condensed phases is developed. The
approach provides a simple and convenient method for reducing the total number of solvent
particles explicitly included in simulations of localized processes while decreasing spurious edge
effects. Both energy flow across the boundary and density fluctuations in the simulation region
are included; this makes it possible to treat nonequilibrium processes, such as thermal gradients
and endothermic or exothermic chemical reactions. The essential element of the approach is the
introduction of a soft boundary force and a stochastic buffer region. For simple liquids, the
boundary force is determined from the solvent equilibrium structure (radial distribution function)
and is readily incorporated into conventional molecular dynamics algorithms. The methodology
is illustrated by application to liquid argon in spherical and cubical simulation regions;
comparison with standard molecular dynamics results show excellent agreement for structural,

dynamic, and thermodynamic properties.

I. INTRODUCTION

Molecular dynamics and Monte Carlo simulations
have contributed in recent years to revolutionizing our un-
derstanding of condensed phases.' A wealth of structural,
thermodynamic, and dynamic information has become
available and in combination with developments in the sta-
tistical mechanical theory of liquids® and in experimental
techniques (e.g., neutron scattering and picosecond spectros-
copy) has brought this once difficult and esoteric area to the
center of present day physical chemistry. Based on a know-
ledge about pure fluids and fluid mixtures at equilibrium,
attempts are now being made to extend simulation tech-
niques to nonequilibrium phenomena, including chemical
reactions in solutions,*> and to amorphous systems like the
interior of proteins.® Such extensions introduce a number of
problems that require methodological developments.

Any dynamical simulation requires that the true mac-
roscopic system composed of on the order of 10> particles be
replaced by a microscopic sample of only 10” to 10* particles.
The “method of choice” for such a reduction is the introduc-
tion of periodic boundary conditions with the central cell,
whose dynamics is being considered explicitly, surrounded
by image cells.” In this way a small sample can be treated
while minimizing edge effects; that edge effects are not eli-
minated completely has been pointed out and approaches to
correcting them have been suggested.® When one focuses on
inhomogeneous systems and nonequilibrium phenomena, a
number of difficulties arise with the straightforward applica-
tion of periodic boundary conditions. An example of a non-
equilibrium system is one where a thermal gradient is pres-
ent and destroys the possibility of a periodic boundary
treatment. For simulations involving chemical reactions
that can act as sources or sinks of energy and introduce den-
sity gradients, corresponding problems arise. Chemical reac-
tions raise the additional difficulty that they are often slow
on a simulation time scale (e.g., due to the presence of energy
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barriers) and that a straightforward molecular dynamics
simulation would not be feasible.

Systems that are inhomogenous even though at equilib-
rium include amorphous solids, clusters, proteins, and inter-
faces. For none of these is there a simple periodic set of cells
that can be used to provide an adequate representation. In
the case of interfaces, simulations with periodic boundary
condition have, in fact, been done though the model systems
are somewhat artificial.” Alternatively, it is sometimes possi-
ble to take a system that is sufficiently large that the bound-
ary plays a relatively minor role. A case in point is provided
by recent protein simulations,® where isolated molecules
have been studied with the assumption that the atoms in the
interior will be shielded by the surrounding protein atoms
from effects due to the absence of a solvent environment. Of
course, for certain problems (e.g., water clusters), the phys-
ical system consists of a small number of interacting mole-
cules isolated in vacuum,’® so that the edge effects in the
calculation would be present in reality.

To circumvent the difficulties with standard periodic
boundary simulations, a number of approaches have been
proposed, the nature of the method depending somewhat on
the problem being examined. One type uses molecular dy-
namics but confines the system to a finite volume and there-
by avoids the need for periodicity. The treatment of the sys-
tem boundary then plays an important role and several
approaches have been tried; they include the use of rigid
walls for a gas-phase recombination reaction® or a protein
side chain isomerization reaction,'! thermalized walls for
treating heat conduction in a thermal gradient'? and walls
that move with the central atom of the system being simulat-
ed.'® To extend the effective time range of simulations,
whether in a periodic or finite volume system, activated dy-
namics methods have been adapted from gas-phase molecu-
lar collision studies'*!* to solution conditions.'® Finally, ex-
plicit treatment of the solvent has been avoided for cases
where only a single molecule or a small number are of pri-
mary interest by the introduction of stochastic dynamics'’
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based on the simple or generalized Langevin equation.'®

Although applications of the approaches described
above have led to considerable progress in our knowledge of
chemical events in condensed phases, further development
of the methodology is required. Of particular importance is
the availability of a general method that makes it possible to
treat explicitly by molecular or activated dynamics tech-
niques relatively small numbers of particles in a nonperiodic
system, yet avoids effects introduced by imposing a rigid or
simple stochastic boundary. Specifically, it is necessary to
eliminate effects of the boundary on the primary region un-
der consideration; that is, the solution of the dynamical
equations should yield a correct description of the particle
motions, energy flow across the boundary should be possible
and density variations within the reaction volume should be
able to occur. The essential problem in developing such an
approach for a finite system is to take account of the effects
of the particles outside the region of interest without specifi-
cally accounting for their dynamics. The present paper,
which is an extension of earlier studies already men-
tioned,>'*!? introduces a method for so doing without vio-
lating the requirements for a satisfactory boundary. The sys-
tem to be studied is divided into three regions; an inner
(reaction) region in which the particles are treated explicitly
by molecular dynamics, a surrounding buffer region, in
which the particles are treated explicitly by stochastic dy-
namics, and a deformable boundary, whose forces on the
particles in the reaction and buffer region arise from the
average structure of the system beyond the boundary. The
approach is directly applicable to dilute solution reaction
dynamics, as well as to the solvent boundary at the active site
of a protein; alternative techniques for treating boundaries in
the protein interior are being developed. It is possible also to
use the method for cases that are finite and nonhomogeneous
in one dimension, but for which periodic boundary condi-
tions would be appropriate in the other dimensions; an ex-
ample is the simulation of a system in a thermal gradient.

In Sec. IT, we briefly review previous approaches to sim-
ulating boundary effects. This motivates our development of
the deformable boundary force and the deformable stochas-
tic boundary method described in Sec. I1I. The method pro-
posed accounts for localized energy and density fluctu-
ations. We use the well-studied case of Lennard-Jones argon
particles to illustrate the method. The results are presented
in Sec. IV. We first determine the form of the forces arising
from the deformable boundary and compare it with the rigid
boundary results of Stace and Murrell.> We then present
several molecular dynamics simulations that use the defor-
mable stochastic boundary approach and compare these test
cases with conventional molecular dynamic results.! Section
Vincludes a summary discussion of the method and its pos-
sible applications and extensions. In the Appendix, we give
simulation results for the Lennard-Jones—Devonshire mod-
el*'® for comparison with the present treatment.

Il. PRIOR TREATMENTS OF FINITE SYSTEMS

Several methods have been proposed for the simulation
of finite representatives of infinite systems in the absence of
periodic boundary conditions. We briefly review these ap-

proaches here, since some of the ideas on which they are
based provide motivations for the present treatment.

Stace and Murrell® studied the recombination of radical
atoms in a gas by treating a system composed of only eight
atoms confined to a spherical box. The force exerted by the
wall of the box on the simulation particles was derived from
an idea developed by Lennard-Jones and Devonshire in their
cell theory for liquids.'” A uniform spherical shell of thick-
ness o consisting of Lennard-Jones particles with their cen-
ter located at the boundary surface of the simulation box was
introduced. As a result of the spherical symmetry, the force
acting on each particle due to this wall is radially directed.
No energy exchange with the surroundings is included. Rea-
sonable qualitative results for the recombination dynamics
were obtained with the model, although no analysis was
made of the effects of this simple “wall force” on local prop-
erties; a simulation study employing this model is included
in the Appendix.

Ciccotti, Tenenbaum, and Gallico'? have recently de-
veloped a method for studying the dynamics of particles in
thermal gradients in the presence of a hard stochastic (ther-
mal) wall that yields a canonical ensemble.?® In this ap-
proach, a particle which crosses a simulation boundary
reenters the system by reflection off a wall with a random
thermal velocity, v, chosen such that e, v > 0, where e, is an
inward pointing normal to the boundary. No interactions
with particles outside the wall are included. In the actual
simulation, such a hard stochastic wall was used in only one
spatial direction, periodic boundary conditions being em-
ployed in the other two. The method allows one to study
equilibrium processes as well as dynamics in steady-state
thermal gradients. It suffers from the possibility of spurious
edge effects due to the absence of more realistic boundary
forces; it was argued that edge effects were unimportant in
the simulations reported.!?

Closest in spirit to the present approach is a method
recently proposed by Berkowitz and McCammon.'® These
authors decomposed the many-body system into two major
spherical regions, a static reservoir region and a reaction
zone and further divided the reaction zone into a reaction
region and a buffer region. The static reservior region sur-
rounds the reaction zone and serves to diminish spurious
edge effects. The configuration of the particles within the
reservior region is fixed so as to limit the dynamics to the
reaction zone; a particular configuration of particles is cho-
sen from a prior molecular dynamics or Monte Carlo simu-
lation of a much larger system. The buffer region between
the reservior and reaction regions is composed of particles
whose dynamics are determined by a simple Langevin equa-
tion; this provides a thermal sink/source for the particles in
the reaction region which obey a molecular dynamics algo-
rithm. All particles in the reaction and buffer region interact
with each other and with the particles in the reservior region,
subject to an appropriate cut off radius. The entire system
(reservior, buffer, and reaction regions) moves with the cen-
tral particle under consideration through a much larger sim-
ulation box. In an application to liquid argon with the three
regions consisting of 86, 26, and 179 particles, respectively,
the authors obtained a radial distribution function relative to
the central particle and a velocity autocorrelation function
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for the central particle in reasonable agreement with the re-
sults of a standard dynamical simulation.

Although the approach of Berkowitz and McCam-
mon'? provides many of the essentials for simulating local-
ized chemical events, the treatment of the effects of the sur-
rounding atoms requires additional consideration. Since a
particular particle configuration is used for representing the
reservoir region, the dynamics within the reaction region
may be biased. Further, the reservoir region is rather exten-
sive and all force centers composing it must be included for
the dynamics of the particles within the reaction zone; e.g.,
in the case considered, there were only 112 particles in the
reaction zone and 179 static particles in the reservoir region.
Finally, since the entire system moves with the central parti-
cle, a large volume of particle positions, in addition to those
in the reservoir region, must be available.

til. METHOD

In this section, we develop the present approach. We
first introduce the nature of the deformable boundary and its
consequences and then describe the buffer zone that pro-
vides for energy flow in and out of the system.

A. Deformable boundaries: The mean field force
approximation

The present approach to simulating the effects of the
boundary region surrounding a simulation zone is based on
the ideas developed by Stace and Murrell® and by Berkowitz
and McCammon."* The entire system of interest is parti-
tioned into a boundary region and a simulation zone. The
simulation zone is treated in a manner similar to that em-
ployed by Berkowitz and McCammon; that is, it is divided
into a reaction region, the particles of which are treated by
molecular dynamics, and a stochastic buffer region. An es-
sential new element of the present approach is in the treat-
ment of the boundary region. Rather than introducing a par-
ticular configuration of particles in a reservior region, we
assume that forces on particles within the simulation zone
due to particles beyond the boundary arise from the average
structure. For simple liquids, therefore, only a knowledge of
the pair (radial) distribution function is required. The dyna-
mical simulation of the simulation zone is then carried out
by conventional techniques with the addition of a “deforma-
ble boundary force” arising from mean field interactions
with particles beyond the boundary. In the simplest cases,
this additional mean field force depends only on the distance
of the simulation particles from the boundary. Furthermore,
as in the treatment of Ciccotti et al.,'? such a boundary force
can be used in conjunction with periodic boundaries at sur-
faces where they are appropriate. The equations for the
mean field force approximation (MFFA ) boundaries are now
developed for several specific examples to illustrate the ap-
proach.

1. 2D circular boundary

It is instructive to consider first the two-dimensional
problem of N identical disks enclosed by a circular boundary
of radius R. The disks are in a thermodynamic state de-
scribed by a temperature 7, mean surface density

C. L. Brooks Ill and M. Karpius: Deformable boundaries in molecular dynamics

FIG. 1. Conceptual picture and geometric details for the 2D deformable
boundary force calculation. The particle of interest (particle zero) is located
at r, within the simulation box of radius 12.0 A. The “test particle,” which is
located at r; outside the circle of radius R but inside the cutoff circle of
radius R_,,, exerts an effective force on particle zero. This force [Eq. (3)] is
given by the LJ force arising from the interaction at separation r,; multi-
plied by the probability of the test particle being there, which is related to
glryr)- The integration limits, including /., and 6,,,,, are dictated by the
geometrical considerations illustrated here.

p=N/mR 2 where R is the radius of the simulation circle;
and a pair distribution g(r), where r = |r, — r;|. It is assumed
that the particles interact via a pairwise additive potential
u(r) and that the potential is cut off at some characteristic
range, R_,,. A truncated potential is not necessary but it will
be used here for simplicity; switching functions can be em-
ployed.

The system is illustrated in Fig. 1. We wish to determine
the total force on the particle labeled zero at ry = (x,,p,) due
to all of the particles (real and virtual) within the circle of
radius R, . The contribution from particles within the simu-
lation zone at a distance less than R_,, is just the usual sum
over pair interactions employed in molecular dynamics. The
contribution due to the virtual particles within the distance
R_,, but outside of the simulation zone may be obtained by
placing a test particle at r; calculating the force on particle
zero due to the test particle, weighted by the probability of a
particle being a distance r,; from particle zero, pg(r,r); and
summing the forces resulting from all possible positions of
the test particle. We note that configurational many-body
effects due to the other N — 1 particles within the simulation
zone are tacitly ignored in assuming that the probability of
finding a particle at a distance 7, from particle zero is given
by pg(ror). With this procedure, the boundary force from the
virtual particles acting on particle zero is given by (see Fig.
1):

gmax Icu((gT]
Fylre) = 2f 46, j dry vy Fleorogirer) (1)
0 R
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with 8_,, determined from r, = |r,|, R, and R, as
R*4r5—R2
Gmax — cos—l[ (__+O—._t ]
2Rr,

and the distance /_,, given by

Ly (67) =rocos Or +/(rocos 67 + RZ, — 15
The quantity F (ry;) is the component of the force along the
direction £, where £, = ry/r, arising from the potential
u(ror); that is,

0, — a
F(rOT) = ( r?— 8 r I‘O) Ziror) .
or

Yor
Only this component is required since, due to the symmetry
with respect tory(6, = 0) the boundary force, F, {r;), is radi-
al and directed along f,; we write the radial component as
F,(r,). Thus, the boundary force can be decomposed into its
x and y components in the dynamics reference frame (Fig. 1)
by

Fp(ry) = £o Fyplro). (2)

2. 3D spherical boundary

The extension of the boundary force calculation from a
2D circular boundary to a 3D spherical boundary follows
from the fact that there is azimuthal symmetry in the 3D
problem. One can write immediately that the 3D radial
boundary force is

1 lcm(xrj
Fulrg=dn[ dx f dry P2 Fleorloglror) (3
with x, = cos 8, and Fy(ry) = £, Fy (7).

3. Combination boundaries: Deformable and periodic

In some cases it is convenient to use a simulation box
which is a cube or parallelopiped and has periodic boundar-
ies along some directions and a deformable boundary force
along others. Examples include the thermal gradient studied
by Ciccotti e al.,'? and solvent dynamics around an exposed
active site of a protein or at a liquid-solid interface (see Sec.
V). A system with periodic boundaries in the x and z direc-
tions and a deformable boundary force directed along the y
axis is illustrated in Fig. 2. For the 2D case, the boundary
force acting on a particle with y coordinate, y,, is in the y
direction and has the form,

O max Imax(07)
Fy(yo) = zf daTJ: dry reF(ror)
o

minl€7)

Xpgror); Fplyo) = [ FWO(yO)]' (da)

In the 3D case, we have the corresponding expression

1 {max(X 1)
Fubo =4[ dur[ " dr AF
Xmax Ininlx7)
0
Xpgiror); Falvo) = | Fwo [. (4b)
0
Here

G = tan= [ (R = L2 =" ]
max L/2
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FIG. 2. Conceptual picture and geometrical details for the deformable
boundary force for the case of particles within a semi-infinite (in two dimen-
sions) cubic simulation box. In this figure only the X and Y directions are
displayed; the Z directionistreated thesame asthe X direction (with period-
ic boundaries). The information contained in the illustration is similar to
that of Fig. 1; This specific simulation set-up could be used to include sol-
vent along the surface of a protein or at a liquid/solid interface by replacing
the deformable boundary on the — Y axis with the material of interest.

and
Lin (X 7) = (L /2)/x7;

lmax(xT) = (y(}xT) + \/(V(YxT)z + R cz:ut _y(Z) .

The examples given here demonstrate that the deforma-
ble mean field boundary force is straight forward to calculate
for realistic simulation systems. It provides a simple method
for including average many-body effects in simulations of
restricted volumes around a simulation zone. For the cases
considered here, the boundary force has several additional
computationally convenient and theoretically desirable
properties. The boundary force is a function only of the se-
paration of the particle from the boundary. Thus, it can be
tabulated in a one-dimensional array and is easily incorpo-
rated into conventional molecular dynamics algorithms. For
simulation zones of sufficient size the boundary force de-
creases to zero as r, approaches zero so that particles near
the center of the simulation region do not feel its effects.
Because the boundary force depends on the mean configura-
tion of the surrounding virtual particles, the net average
force on a particle within the simulation box vanishes as it
should; this condition is not necessarily met by the method
proposed by Berkowitz and McCammon."? Finally, the na-
ture of the boundary force is such that density fluctuations
can occur.

B. Fluctuating stochastic boundaries

Although the deformable mean field boundary makes
possible realistic simulations without periodic boundary
conditions, thermal relaxation is not included. Both Ciccotti
et al.'? and Berkowitz and McCammon'? have utilized sto-
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chastic technigues to simulate thermal relaxation in a local-
ized region of a many-body system. Here we propose a meth-
od for incorporating thermal fluctuations analogous to that
of Berkowitz and McCammon,'? in the framework of the
mean field deformable boundary approximation. In this
way, we are able to include thermal and density relaxations
simultaneously; this is expected to be of particular impor-
tance for exothermic or endothermic reaction systems.

The simulation zone introduced above is now divided
into two parts. There is an inner reaction region, in which
particles propagate according to molecular dynamics with
the addition of any boundary forces that contribute and an
outer buffer region, in which particles propagate according
to the Langevin equation, again with the addition of the
boundary forces.

For the system with a deformable boundary and a sto-
chastic buffer region, the forces on a particle atr,, in addition
to the systematic force due to explicit two-particle interac-
tions, depend on the region in which the particle is located.
There are three regions: the inner reaction region (r,<Rjy),
the stochastic buffer region (Rz < 7,<R ), and the boundary
region (7o>R ). Considering a spherical system, we can write
the additional force, Fy{ry}, in each of these regions as

FoFwlro) ro<Ry,
Fplry) = {FoFulto) —Bv +flt), Ry <r<R, (5)
foF 4 (r)) — Bv +fit), ro>R.

For the reaction region (r,<Rp), the only additional force is
that due to the boundary; the expression is identical to Eq.
(3). For the buffer region, there is a corresponding boundary
force augmented by terms that are associated with conven-
tional Langevin dynamics; i.e., a dissipative force — Bv(t),
and a random force f{t ). The friction coefficient, 5, is related
to the bulk diffusion constant via the Einstein relationship,
and the random force is the usual Gaussian white noise
source with properties <f{t)> =0and

<f(t}(0)> = 6k TBS(t).

Finally, there is included that possibility that particles will
be in the boundary region itself (7,>R ). It is such particles
which give rise to variations of the density in the reaction
zone. To treat them apprapriately, it is necessary to extend
the boundary force in such a way that it remains repulsive.
We use a simple linear fit to F,, at ro=R, called F 5, to
represent the force in this region; numerical details are given
in Sec. IV. Other than the replacement of F,,. by F L., the
boundary particles are treated in the same way by use of a
Langevin equation as are the particles in the buffer region. It
is clear from Eq. (5) that simulations employing only a defor-
mable boundary force may be carried out by setting 5 = 0;
the stochastic buffer region is included when £ is nonzero.

The forces and boundary conditions given in Eq. (35)
permit local density fluctuations in the simulation region
dueto the “soft” nature of the boundary force. Furthermore,
the algorithm maintains thermal equilibrium or permits the
system to approach equilibrium for the case of thermal relax-
ation.

C. L. Brooks lll and M. Karplus: Deformable boundaries in molecular dynamics

IV. RESULTS

In this section, the deformable mean field boundary
force is determined for a number of cases and simulation
results making use of the boundary force are presented.

A. Mean field boundary force

Results for the boundary forces calculated for test cases
representing a 3D sphere of 12 A radius and 19.4 A cube are
described. As a model system we consider Lennard-Jones
argon particles (o0 = 3.4 A, e/ky, =120Kjata temperature
T =97 K with mean number density p, = 0.020 54 A~ a
cutoff (R_. | for the interaction potential of 2.25¢ is used.”'®
A suitable criterion for choosing the size of the simulation
box is that the “reaction site” be surrounded by one shell of
solvent particles which are initially at least a distance R,
from the boundary. In the cases considered here the reaction
site is centered at the origin with a radius of o/2 since the
“reaction” is the dynamics of a single particle; this implies
that R = o + R, Thus, the 12 A sphere meets the size
criterion but the cubic box does not; the dimensions of the
cube were chosen in the present tests to obtain a volume
equal to that of the sphere.

Evaluation of the boundary force as defined in Egs. (3}
and (4bj for a sphere and cube, respectively, requires know-
ledge of the bulk radial distribution function. This could
have been obtained from the literature, but for the sake of
consistency, it was computed from a conventional molecular
dynamics simulation (see Sec. IV B). The numerical calcula-
tion of the double integrals appearing in Egs. (3) and (4b) is
accomplished by means of an extended trapezoidal rule gen-
eralized to integrals of more than one dimension.”? The con-
vergence of the resulting integral was verified by increasing
the number of grid points used and also by comparing the
integrals at selected values of r, with those obtained from an
integration scheme of higher accuracy.*?

The deformable MFFA boundary forces due to a
spherical boundary of a 12.0 A sphere and plane boundaries
at z= +9.67 A ofa 19.34 A cube are shown in Figs. 3(c)
and 3(d); in both cases the force depends only on a single
distance parameter as is indicated in the figures. The bound-
ary forces display the anticipated behavior. Particles near
the center of the simulation box feel no direct effect from the
boundary force; as the particles move toward the boundary
they first experience an attractive force and then a strong
repulsion.

To understand the detailed behavior of the MFFA
boundary forces, it is instructive to consider the spherical
case and compare the force with that arising from a single
Lennard-Jones particle fixed at R = 12.0 A and with the
boundary force arising from a uniform distribution of Len-
nard-Jones particles on the surface of a 12 A sphere (1.€.,
Lennard-Jones Devonshire cell model}*'?; these results are
shown in Figs. 3(a) and 3(b), respectively.

The forces in Figs. 3(a) and 3(b) are very similar to each
other. A particle moving toward the boundary first exper-
iences a net attractive force and then begins to feel the repul-
sive force due to interaction with the nearest particle or par-
ticles on the surface. The repulsive forces are very large near
the surface of the sphere and goto — « (see the Appendix)
due to the rigid nature of the surface. As expected, the attrac-
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tive peak due to the Lennard-Jones particle surface is slight-
ly larger than that from a single particle.

Comparing the MFFA model [Figs. 3(c) and 3(d)] with
the results in Figs. 3(a) and 3(b), we see that the force curves
show corresponding behavior. The maximum attractive
force, which occurs at 7= (R — o) is somewhat larger than it
is in the shell model [Fig. 3(b)]. This is a consequence of
“extra shells” of virtual boundary particles present in the
mean field beyond the single shell considered in the Len-
nard-Jones and Devonshire model. The larger maximum in
the spherical system relative to cubic system [Fig. 3(c) vs
3(d)] is due to the fact that the boundary is a curve in the
former and a plane in the latter; that is, for the spherical case
a particle inside the simulation region is exposed to a larger
number of virtual particles outside the boundary within the
cut-offradius, R_,,. A very important difference between the
MFFA model and the simpler models is that the repulsion
which sets in as the particle approaches the boundary is con-
siderably “softer’ in the former than in the latter. The reason
for this is the adiabatic nature of the MFFA model. A parti-
clein the reaction zone “‘sees” a density given by the average

structure around that particle for interactions with the vir-
tual particles outside the boundary. The boundary responds
adiabatically to the approach of a particle and the closest
distance between a particle and a virtual particle is equal to
the value of » where g(r) first becomes nonzero.

As a particle penetrates into the boundary region the
simple adiabatic model breaks down since the adiabatic
force must vanish as the particle leaves the simulation zone.
Physically, the solvent density should no longer adjust adia-
batically when the particle is near or outside the boundary;
instead the force seen by the particle should become similar
to the Einstein restoring force felt by it as it collides with its
first solvation shell.* A simple extension of the MFFA force
beyond the boundary is accomplished by numerically fitting
a linear region of the force just inside the boundary [see Figs.
3(c) and 3(d)] so that the linearized boundary force remains
repulsive. The slope chosen is the minimum value necessary
for the density to remain equal to the mean density p, as the
boundary is approached. This is accomplished by examining
the density variation in short simulations employing possible
sets of linear force parameters. Too soft a restoring force for
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FIG. 4. Velocity autocorrelation func-
tions. The normalized velocity autocorre-
lation function is plotted vs time (in ps) for:
(a) conventional molecular dynamics sim-
ulation; (b) simulation with deformable
boundaries at z = + 9.67 A of a cube; (c)
simulation with deformable stochastic
boundaries on a cube. (The stochastic buff-
er region begins at z = + 8.67 A); (d) sim-
ulation with deformable boundaries at the
surface of a 12.0 A sphere; (e) simulation
with deformable stochastic boundaries on
a 12.0 A sphere. (The stochastic buffer re-
gion beginsat R = 11.04))
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FIG. 5. Radial distribution functions. The
radial distribution function is plotted versus
radial separation in angstroms. The figure
descriptions correspond to (a)-(e) in Fig. 4.
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the boundary region leads to a net density decrease within
the simulation zone; too large a linear restoring force has
little effect on the density. Comparing Figs. 3(b) and 3(c) in
the repulsive region near the boundary, it is clear that the
linear force lies between the rigid wall given by the fixed
Lennard-Jones and Devonshire boundary and the adiabatic
MFFA limit.

B. Test of the deformable stochastic boundary method

We present first the procedure employed in the various
molecular dynamics simulations and then give the results.
The simulations are designed to examine the effectiveness of
the deformable MFFA boundary approach in reducing the
number of particles required to reproduce correct dynamical
behavior near the center of the simulation zone. Lennard-
Jones argon particles with the same conditions (7' = 97 K,
po=002054 A3 R, =2250) as described for the
boundary force calculations (Sec. IV A) were used.

C. L. Brooks lil and M. Karpius: Deformable boundaries in molecular dynamics

As a standard for comparison, a simulation of 149 parti-
cles in a cubic box with sides 19.34 A and periodic boundary
conditions was performed by conventional molecular dy-
namics techniques.”’ Two simulations for the same cubic
box were carried out with deformable MFFA boundaries
imposed at the box edges on the z axis. One simulation treat-
ed the entire simulation zone by molecular dynamics and the
second included a stochastic buffer region between
z= + (8.67t09.67 A). A corresponding pair of simulations
using MFFA boundary conditions with and without a sto-
chastic buffer region 1 A thick was performed for 149 parti-
cles in a spherical box of radius 12 A.To compare the results
obtained with the MFFA boundary and periodic boundary
conditions, the trajectories obtained from the five simula-
tions were analyzed and several basic quantities were com-
puted; they are the velocity autocorrelation function, the
self-diffusion coefficient, the radial distribution function,
and the local temperature and density. The results of simula-
tions employing periodic boundaries and the deformable sto-

1.5 1.5
1 I LN Ll (.) T T T (a)
— _J
.80F | —r— m Ok T _
A DUNE B || 1.0 F—‘ |
Q, A
v [
~ v
A r
q 0S5 -1 = 05 ~
v v
0.0 0.0 :
0.00 2.15 4.30 6.45 8.60 10.74 0.00 4.30 B8.45 8.60 10.74
z(A) z(A)
1.5 1.5 .
! ! v ! {b) ! ! ' (b} FIG. 6. Normalized local density
] and temperature profiles for the
[ ] ] cubic simulation cases. The pro-
1.0 | [ | - A 1.0 ] — files are plotted vs distance from
3. | — - the origin al h is for:

v gin along the z axis for: (a)
¥ N the conventional molecular dy-
a— [y namics simulation case; (b) the de-
v 05 . v 05 ] formable boundary case; (c) the de-

formable stochastic boundary
case. The normalizing factors {(p)
0.0 0.0 ] and (T') appear in Table I.
0.00 2.15 4.30 8.45 8.60 10.74 0.00 2.15 4.30 8.45 8.60 10.74
z(A) z(A)
1.5 T T T L 1.5 T T L
A - - -
a 1.0 - | ’l_\ 1.0
¥ — v
A R
QL =
vV 05 - v 05} -1
0.0 0.0
0.00 2.15 4.30 6.45 8.60 10.74 0.00 2.15 4.30 8.45 8.60 10.74
z(A) z(A)

J. Chem. Phys., Vol. 79, No. 12, 15 December 1983

Downloaded 09 Mar 2008 to 18.51.1.222. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



C. L. Brooks lif and M. Karplus: Deformable boundaries in molecular dynamics 6321

1.5 T T T ™ T 1.5 T T ™ (a
1.0 — ] 1LOF — -
& T A
v [
~ v
= A
o5t 1 ¢ 05 |- .
0.0 0.0
0.00 3.84 7.68 11.53 15.37 19.21 0.00 3.84 7.88 11.53 15.37 18.21
r3x10°2 (A3) r3x10-2(A3) FIG. 7. Normalized local density
and temperature profiles for the
spherical simulation cases. The
1.5 ! T ! ! (b) 1.5 ! ! ! (b} profiles plotted vs X 1072 A2,
are constructed from equal vol-
— — ume spherical shells. The figures
1.0 - A 1.0 - represent results from: (a) the
a ] = B conventional molecular dynam-
X % | ics simulation (where the period-
2 = icity is used to construct spheri-
vost N v 05| N cal shells external to the cubic
box); (b) the 12.0 A radius (corre-
sponding to X107%=17.28
0.0 0.0 .{;; spherical deformable bound-
0.00 384 7.68 11.53 1537 1921 000 384 7.68 153 1537 19.21 ary simulation; (c) the 12.0 A ra-
dius spherical deformable sto-
r3x10-2(A3) r3x1072(A3) chastic boundary simulation.
1.5 T T T Y 1.5 T T ™)
A 1.0 = | B A 1.0 |- -]
S v
Y ~
N A
A A |
a 0S| - ’v_ 0.5 -
v
0.0 0.0
0.00 3.84 7.88 i1.53 15.37 19.21 0.00 3.84 7.68 1153 15.37 18.21
r3 x10°2(A3) r3x1073(A3)

chastic boundary approach are displayed in Figs. 4-7 and in
Table I1.

All of the molecular dynamics trajectories consist of
10-20 ps of equilibration followed by 18-20 ps of analysis.
The integration scheme used is the Verlet algorithm with a
time step of 0.01 ps; for the Langevin dynamics, the appro-
priately modified Verlet algorithm was employed.?> The
conventional molecular dynamics simulation started with
the argon particles distributed on a simple cubic crystal lat-
tice. The thermalization period consisted of about 5-10 ps of
dynamics during which the velocities were chosen from a
Boltzmann distribution every 0.5 ps to allow the system to
evolve toward an equilibrium near the desired temperature;
the thermalization was followed by 5-10 ps of equilibrium
without velocity randomization. During the 18-20 ps of
“production” dynamics which followed, the velocities and
positions were stored on magnetic tape for subsequent analy-
sis. The simulations not employing a stochastic buffer region
used as a starting configuration the last production step from
the conventional molecular dynamics. The appropriate

boundary conditions were then imposed and the system was
rethermalized. To introduce the stochastic buffer region, the
additional terms given in Eq. (5) are added to the equations of
motion for the particles in the buffer region; a configuration
at the end of the appropriate MFFA boundary simulation
was used and the system was rethermalized before the pro-
duction dynamics.

1. Velocity autocorrelation function

The velocity autocorrelation function is a fundamental
measure of the characteristic dynamics and is therefore con-
sidered the most sensitive test of the method. Since we are
concerned primarily with representing solvent dynamics
correctly within a “reaction” region we computed the veloc-
ity autocorrelation function for a subset of particles within a
portion of the simulation box centered at the origin. For the
simulations in which the boundaries are imposed on a cubic
box only particles within the volume slab defined between
z= 4 3.0 A were considered; for the simulations with a
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TABLE 1. Configurational sampling.

Number of
Simulation configurations®
Conventional molecular 149 000
dynamics
Cube with deformable 50 000
boundaries
Cube with deformable 49 000
stochastic boundaries
Sphere with deformable 29 000
boundaries
Sphere with deformable 25400

stochastic boundaries

* Number of atomic configurations sampled for all points along the radial
distribution function and for the zero time value of the velocity autocorre-
lation function; for the latter, the number of configurations decreases ap-
proximately inversely with the time.

spherical simulation box only the particles inside a 6.0 A
sphere, centered at the origin, were included. In the analysis
of the conventional molecular dynamics simulation the en-
tire system was used.

Figure 4 shows the velocity autocorrelation functions
for the standard molecular dynamics simulation [Fig. (4a)]
and the four test cases [Fig. 4(b)—4(c)]. Figure 4(a) is in close
agreement with the earlier results of Rahman.?'™ All of the
test cases are in very good agreement with the conventional
molecular dynamics results, particularly for the first 0.5 ps;
that is, the curves cross zero at the correct time and have a
minimum that is close to the exact result, although the long-
er time behavior is variable. The best long time behavior is
obtained for the cubic box. This may be due in part to the fact
that the cubic box with periodic boundary conditions in two
directions is closer to the conventional simulation system.
Also, the sampling error is smaller because a larger number
of particle configurations are included in computing the ve-
locity autocorrelation functions than in the other cases (see
Table I). We note also that the overall behavior of the veloc-
ity autocorrelation function is slightly better for simulations
not including a stochastic buffer region. This observation
seems somewhat puzzling in light of the comment by

TABLE II. Summary of the simulation results.

C. L. Brooks |ll and M. Karplus: Deformable boundaries in molecular dynamics

Berkowitz and McCammon'? that a stochastic buffer region
was essential to ensure reasonable results. The discrepancy
may be a consequence of the differences in the two reservoir
region models; the wall force used here is softer than that
employed by Berkowitz and McCammon.

Table II lists the values of the self-diffusion coefficients
computed from the integral of the velocity autocorrelation
function. A value is included for the self-diffusion obtained
by Rahman.?'® The 3% difference in the diffusion constant
from the present standard simulation and that of Rahman is
accounted for by the temperature difference,® although the
agreement in the two values may be somewhat fortuitous
since we have calculated D from the integral of the velocity
correlation function and not the long-time slope of the mean
square displacements. The computed values of the self-diffu-
sion coefficient from the various boundary model simula-
tions are all satisfactory. Agreement with the full dynamics
improves somewhat as one goes from the spherical cases to
the cubic cases.

2. Radial distribution function

The radial distribution function is computed in a man-
ner similar to the velocity correlation function. For each
dynamical configuration, the structure around the particles
within the interior subvolumes (see the above) was deter-
mined and the equilibrium radial distribution function g(r)
representative of the average structure within the reaction
region, was then computed. In the cubic cases, periodic im-
ages were included where they are appropriate (i.e., on the
faces of the cube which are not represented by a deformable
boundary).

The radial distribution functions are displayed in Fig. 5.
All of the boundary force simulation results show generally
very good quantitative agreement with the conventional mo-
lecular dynamics simulation in terms of peak heights and
minima and their positions. There is more noise in the radial
distribution function computed from the spherical simula-
tion results due to the smaller volume included in the calcu-
lation. Also, the spherical simulation with the stochastic
buffer region seems to have a higher, somewhat distorted
second peak.

(1) ) D T
Simulation {K) A% {cm?/s) K) Prms

Conventional MD 97.0 0.020 54 2.50%x107° 5.01

Cube with deformable 94.3 0.020 50 2.58%x 1073 4.24 0.000 12
boundaries

Cube with deformable 94.1 0.020 46 2.57x1073 4.49 0.000 14
stochastic boundaries

Sphere with deformable 96.4 0.020 11 2.66 1073 4.83 0.000 24
boundaries

Sphere with deformable 96.8 0.020 02 2.93%x1073 4.63 0.000 23
stochastic boundaries

Rahman [Ref. 10(a)] 94.4 0.020 54 2.43%107° 1.56*

*The very small T, observed by Rahman is due to the large size of the system, 864 particles.
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3. Local thermodynamic properties

To further test the boundary force results, local values
of the mean temperature and density and their root-mean-
square fluctuations were computed. The local quantities
were obtained by dividing the simulation box up into regions
of equal volume and computing the average value of the de-
sired property within each region. The cubic box was divided
into 18 equal volume regions along the z axis (the axis per-
pendicular to the deformable boundary), with symmetry
equivalent volume regions on opposing sides of the midplane
being averaged. This yielded nine equal volume slabs within
the boundaries; one additional slab beyond the boundary
was included to examine the extent of fluctuations outside
the simulation box. For the spherical box, nine equal volume
spherical shells were defined within the simulation boundary
(i.e., between the origin and a radial distance of 12.0 A); one
equal-volume shell exterior to this region was included. The
thermodyanamic properties were computed within each re-
gion over the entire simulation.

The local thermodynamic properties are displayed in
Figs. 6 and 7. Figure 6 gives the local densities, {p,)/{p) and
local temperatures, {7;)/(T ) for the cubic box simulations
and Fig. 7 gives those for the spherical box simulations; the
subscript / denotes the average for region / and the unsub-
scripted quantity corresponds to the average over the entire
simulation volume. Values of (p) and (7") and their fluctu-
ations (p_,,, and 7, respectively), are listed in Table II for
the various simulations.

The results in Fig. 6 for the cubic case with periodic
boundaries show that the density and temperature are essen-
tially homogeneous and there are no edge effects, as expect-
ed. For the boundary force models, the density for the var-
ious slabs has only a slightly greater variation [Figs. 6(b) and
6(c)] than for the conventional simulation [Fig. 6(a)]. We
note that there is a small “edge effect” in the last two slabs
inside 9.67 A. The fact that there is very little density outside
the simulation box (beyond + 9.67 A) indicates that the lin-
ear boundary force parameters were chosen optimally in this
case. This is confirmed by the average density within the
box, which is very near the input value (see Table II). The
local temperatures are seen from Fig. 6 to show very little
variation from the overall average temperature. This is in
good agreement with the conventional dynamics results.
The rms fluctuations in T are very similar in the three sys-
tems (see Table II).

For the spherical volume results obtained from the peri-
odic boundary simulation, the local density and temperature
shows only small variations (see Fig. 7). In the boundary
models the local density has a significant variation between
the equal volume shells [Figs. 7(b) and 7(c)] that is greater
than that in the cubic cases [Figs. 6(b) and 6(c)]. Further, the
“edge effect” is of more importance here, although it is
somewhat overemphasized in the figure; i.e., the drop in den-
sity beginning at 7 = 1300 A corresponds to 7 = 11 A in the
12 A radius sphere. The density outside of the 12.0 A sphere
(P> 1728 A%)is larger than in the cubic cases. This may arise
from a less than optimal linear fit to the boundary force. The
localized temperatures, (7), shows excellent agreement
with the conventional molecular dynamics simulation. The

rms fluctuations in the temperature are very similar in the
three systems; the density fluctuations for the spherical
boundary are about twice those for the cubic boundary simu-
lations.

V. CONCLUDING DISCUSSION

A deformable stochastic boundary approach has been
introduced for eliminating nonparticipating solvent parti-
cles from the simulations of the dynamics of localized pro-
cesses. In this way a small volume system can be studied
without the need for periodic boundary conditions. The
structural, dynamic and thermodynamic properties calcu-
lated for spherical and cubic systems with such boundaries
are in satisfactory agreement with the results of conventional
molecular dynamics simulations.

The deformable stochastic boundary condition ap-
proach, as well as other special techniques (e.g., activated
dynamics} are of interest for many cases that cannot be treat-
ed effectively by standard methods. Often it is necessary to
reduce the size of the system so as to decrease the computa-
tional requirements; this can now be done by omitting dis-
tant solvent molecules in simulations of localized processes.
Also, systems with thermal gradients, such as are generated
by exothermic processes, can be treated by the present meth-
od which avoids unphysical heating effects that arise in con-
ventional periodic boundary methods.’

While the present paper is confined to treating bound-
ary effects in the dynamics of atomic solvent surrounding a
stationary reactive site, the concepts introduced can be and
are being applied to more general situations. Simulations of
molecular, rather than atomic, solvents are possible by use of
the mean field force approach.?’ In addition, the ideas em-
bodied in the mean field approach may be useful in Monte
Carlo studies of nonperiodic systems. Also, a generalized
Langevin approach is being developed which eliminates dis-
tant, nonparticipating, regions of large molecules. This ap-
proach, when combined with the present methodology, will
greatly reduce the computational effort associated with the
simulation of the reaction dynamics of biomolecules (e.g.,
proteins and nucleic acids) in solution.?® Furthermore, ex-
tension of the present approach to treat the dynamics of a
“diffusing” reaction region may be useful. The methodology
required for this case will include some of the ideas intro-
duced in simulations of the dynamics of a diffusing reaction
system on a host solid surface.?®

We expect to employ the methodologies described here
for the study of the dynamics of processes in macromole:
cules of biological interest. A particular concern is with en-
zymatic reactions, which involve long time scales and often
take place at an interface between the protein and surround-
ing solvent. Further, the present approach may permit one
to study important motional properties such as they decay of
fluorescence anisotropy®® and NMR relaxation®' in macro-
molecules on the nanosecond time scales of present day ex-
periment.

APPENDIX

In this section, we review the Lennard-Jones and De-
vonshire cell model'® boundary force used by Stace and
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Murrell® in the simulation of atomic recombination reac-
tions in an inert gas solvent and determine the effect of this
force on the properties of particles within the simulation
zone. The wall or boundary force can be expressed as a func-
tion of the distance of an atom from the center of the simula-
tion box (in our analysis it is assumed to be spherical) by use
of arguments paralleling those of Stace and Murrell.? (i) The
number density of atoms in the box is fixed at the value p,.
Thus, for a given radius, R, of the spherical box there are
N = po4mR */3 particles within the volume 47 R 3/3. (ii) If the
radius of the atoms is ¢/2, the number of atoms lying in the
spherical shell between R — 0/2 and R + 0/2 is

Ng =4np,R o (ifo<R), (A1)
assuming a uniform distribution of particles within the vol-
ume. This number, N, is the number of particles making up
the rigid wall at R. (iii) The interaction potential between the
wall (i.e., the N particles which are fixed rigidly and unifor-
mally on the surface at R ) and one of the N, particles in the
simulation region (N, = N — Nj) is calculated by integrat-
ing the Lennard-Jones potential over the surface at R and
multiplying by the number of particles per unit surface area,
Ng/47R ?; that is,

V(ry) — V(0) = Nso%€/2

X[[sfro(m —lro)"’ R +1r0)‘°)_ 20162 ]

+[21:r0((R.:ro)“ - (R_lr0)4)+ % ] (A2)

where V (0) is the potential at the center of the box; this is Eq.
(A1) of Stace and Murrell.® The force on a particle in the
simulation region at point r, is given by

=V, [V(re) — V(0)];

it is purely radial in nature. It is this force for the case
(R = 12.0 A; p, = 0.020 54 A~3) that is plotted in Fig. 3(b).

To investigate how the boundary force used by Stace
and Murrell is manifested in the properties of particles with-
in the reaction zone we have performed a molecular dynam-
ics simulation of 149 argon like particles. This number of
particles in the simulation zone is not consistent with the
Stace-Murrell boundary conditions for a 12.0 A simulation
box at an overall density of 0.020 54 A3. Thus, we have com-
puted the size of the simulation box from the following con-
siderations: (i) The number of particles lying on the surface of
the sphere (Ns) is given by Eq. (A1); (ii) the total number of
particles (V) is related to the density and the radius of the
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simulation box (see the above); (iii) the difference between
these two numbers must be equal to the number of interior
particles (¥;), so that

N, = 149 = 4mp,(R */3 — R ?0). (A3)
This equation was solved for the parameters p, = 0.0205 54
A~%and o= 3.4 A to yield Ny = 240 and R = 16.53 A.

The molecular dynamics simulation was carried out un-
der the conditions described above for 40 ps with 20 ps of
‘thermalization (reequilibration) and 20 ps of production.
The simulation was started using as initial coordinates the
last step from the deformable spherical boundary simula-
tion. The average density within a 12.0 A subvolume of the
16.53 A radius simulation box was found to be
{p) =0.015 13 A? with p_, = 0.000 48 A>. The tempera-
ture and rms deviation in the temperatureis (T') = 93.8 and
T = 5.92K, respectively. The results from the analysis of
this simulation are presented in Fig. 8. In Fig. 8(a) the veloc-
ity autocorrelation function for particles within a 6.0 A
spherical volume, centered at the origin, is plotted. It is ap-
parent from this figure and also from the radial distribution
function plotted in Fig. 8(b) that the dynamics and structure
within this region are vastly different from what is expected
for a fluid at p, and (T') [see, e.g., Figs. 4(a) and 5(a)]. The
question arises as to whether one can vary R so as to obtain
the desired velocity autocorrelation function and radial dis-
tribution function. Figure 8(c) shows the localized density
profile normalized to p, (i.e., {p;)/po). The local density in
the regions nearest the origin appear to be close to the de-
sired value, p,, while the form of the velocity correlation
function and the radial distribution function are clearly
dominated by the lower density regions further from the ori-
gin. Making R smaller while keeping N, constant is not like-
ly to solve this problem, since although {p) will increase the
shape of the density profile will not be improved. Although
this boundary model may be sufficient for some problems
involving dilute and possibly even dense gases, it apparently
does not provide a reliable means for simulating liquids in
finite regions.
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