Sieve: A Geometrical Computational Framework

Many scientific numerical codes frequently comprise of two uneasily coexisting pieces: the mesh, describing the topology and the geometry of the computational domain of interest, and the functional data attached to the mesh and representing the discretized physical fields and equations. The mesh data structure typically reflects the representation used by the mesh generator and carries the embedded geometric information. While this arrangement is natural from the point of view of mesh generation and exists in the best of such packages (e.g., [1]), it is frequently foreign to the process of solving equations on the generated mesh. At the same time, the functional data closely reflect the linear algebraic structure of the computational kernels ultimately used to solve the equations; here the natural geometric structure of the equations, which reflects the mesh connectivity in the coupling between the degrees of freedom, is sacrificed to the rigid constraints of the solver. In particular, the most natural geometric operation of a restriction of a field to a local neighborhood entails tedious and error-prone index manipulation.

In response to this state of affairs a number of efforts arose addressing the fundamental issues of interaction between the topology, the functional data and algorithms. We note the MOAB and TSTT/ITAPS projects [2-6], the libMesh project [7], the GrAL project [8], to name just a few. Although each of these projects addresses some of the issues outlined above, we feel that there is room for another approach.

Our framework, named Sieve, is a collection of interfaces and algorithms for manipulating geometric data. It shares many features with the mentioned approaches, of which GrAL is the closest to Sieve in spirit. The design may be summarized by considering three constructions. First, data in Sieve are indexed by the underlying geometric elements, such as mesh cells, rather than by some artificial global order. Further, the local traversal of the data is based on the connectivity of the geometric elements. For example, Sieve provides operations that, given a mesh cell, traverse all the data on its interior, its boundary, or its closure. Typical operations on a Sieve are shown in Table.

In Sieve, topological mesh elements, such as vertices, edges, and so on, are refered to as abstract points

(our points correspond to geometric entities in some other approaches like MOAB or ITAPS), and the adjacency relation between two points, such as an edge and its vertex, is refered to as covering: an edge is coverted by its end vertices. The emphasis on the covering idea is a direct descendant of the cell complex construction in algebraic topology, having undergone an abstraction along the lines of category theory, with its emphasis of the arrows (i.e., morphisms).

Second, the global topology is divided into a chain of local topologies with an overlap structure relating them to each other. The overlap is encoded using the Sieve data structure again, this time containing arrows relating points in different local topologies. The data values over each local piece are manipulated using the local connectivity, and each local piece may associate different data to the same global element. The crucial ingredient here is the operation of assembling the chain of local data collections into a consistent whole over the global topology.

Third, the covering arrows can carry additional information controlling the way in which the data from the covering points are assembled onto the covered points. For example, orientation information can be encoded in the arrows to dictate an order for the data returned over an element closure. More sophisticated operations are also possible, such as linear combinations which enable coordinate transformations, or the projection and interpolation necessary for multigrid algorithms. This is the central motivation behind the arrow-centric storage structure, as opposed to keeping adjacency lists for every element. In the latter implementation arrows are actually duplicated with the two copies not symmetrically accessible within the computational loops.

We consider Sieve's approach unique and novel, since it emphasizes the natural mathematical structure of the computational topology and its relation to the attached numerical data.

Sieve consistently reuses its fundamental topological data structures at all levels of the computational hierarchy. It uses the same covering notions to encode the relations between topological elements within individual meshes, as well as between the different meshes and the data at different levels of resolutions (multigrid), in different parts of the computational domain (hybrid meshes), and even on different computational nodes in a distributed environment. Furthermore, the geometric data access facilities dictated by the covering relations are used to extract the mesh data based on locality within a single mesh or across different meshes, including distributed data access in a parallel computation.

References

[1] Jonothan R. Shewchuk, Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator, in Applied Computational Geometry: Towards Geometric Engineering, Ming C. Lin and Dinesh Manocha eds., Lecture Notes in Computer Science, vol. 1148, Springer-Verlag, pp. 203—222, 1996.

[2] Timothy J. Tautges, Ray Meyers, Karl Merkley, Clint Stimpson, Corey Ernst, MOAB: A Mesh-Oriented Database, Sandia National Laboratories, SAND2004-1592, Albuquerque, NM, April 2004.

[3] Timothy J. Tautges, MOAB-SD: Integrated Structured and Unstructured Mesh Representation, Engineering With Computers, 20:286-293 (2004).

[4] R. Meyers et. al, "SNL Implementation of the TSTT Mesh Interface", 8th International conference on numerical grid generation in computational field simulations, Honolulu, HA, June 2-6, 2002.

[5] Seol, E.S. and Shephard, M.S., A Flexible Distributed Mesh Data Structure to Support Parallel Adaptive Analysis, Proc. 8th US Nat. Congress on Comp. Mech., 2005.

[6] Beall, M.W., Walsh, J. and Shephard, M.S, A comparison of techniques for geometry access related to mesh generation, Engineering with Computers, 20(3), pp. 210-221, 2004.

[7] Carey GF, Anderson M, Carnes B, and Kirk B, Some aspects of adaptive grid technology related to boundary and interior layers. J. Comput. Appl. Math. 166(1):55--86, ISSN 0377-0427, 2004.

[8] Guntram Berti, Generic Software Components for Scientific Computing, PhD Thesis, TU Cottbus, 2000, http://www.math.tu-cottbus.de/~berti/diss

