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Criticality in Intracellular Calcium Signaling in Cardiac Myocytes
Michael Nivala,†6 Christopher Y. Ko,†6 Melissa Nivala,† James N. Weiss,†‡ and Zhilin Qu†*
†Cardiology Division, Department of Medicine and ‡Department of Physiology, David Geffen School of Medicine, University of California,
Los Angeles, California
ABSTRACT Calcium (Ca) is a ubiquitous second messenger that regulates many biological functions. The elementary events
of local Ca signaling are Ca sparks, which occur randomly in time and space, and integrate to produce global signaling events
such as intra- and intercellular Ca waves and whole-cell Ca oscillations. Despite extensive experimental characterization
in many systems, the transition from local random to global synchronous events is still poorly understood. Here we show that
criticality, a ubiquitous dynamical phenomenon in nature, is responsible for the transition from local to global Ca signaling.
We demonstrate this first in a computational model of Ca signaling in a cardiac myocyte and then experimentally in mouse
ventricular myocytes, complemented by a theoretical agent-based model to delineate the underlying dynamics. We show
that the interaction between the Ca release units via Ca-induced Ca release causes self-organization of Ca spark clusters.
When the coupling between Ca release units is weak, the cluster-size distribution is exponential. As the interactions become
strong, the cluster-size distribution changes to a power-law distribution, which is characteristic of criticality in thermodynamic
and complex nonlinear systems, and facilitates the formation and propagation of Ca waves and whole-cell Ca oscillations.
Our findings illustrate how criticality is harnessed by a biological cell to regulate Ca signaling via self-organization of random
subcellular events into cellular-scale oscillations, and provide a general theoretical framework for the transition from local Ca
signaling to global Ca signaling in biological cells.
INTRODUCTION
Calcium (Ca) signaling regulates many biological functions
(1–4), including fertilization, gene transcription, cell divi-
sion, cell death, hormone release, muscle contraction, and
heart rhythm and contraction. Although the details of the
Ca signaling pathways vary among cell types, the general
principles of regulation are universal. Ca is stored in intracel-
lular organelles such as the endoplasmic reticulum (ER) or
sarcoplasmic reticulum (SR), from which it is released into
the cytoplasmic space through opening of Ca-sensitive
inositol 1,4,5-trisphosphate receptors (IP3Rs) or ryanodine
receptors (RyRs). The open probability of both IP3R and
RyR increases as cytoplasmic Ca increases, a process called
Ca-induced Ca release (CICR), which is a key positive
feedback loop underlying the rich Ca dynamics observed
in biological cells (5–13). Ca release from the ER or SR is
triggered by Ca entry from the voltage-gated or ligand-gated
Ca channels in the cell membrane, or in response to signal
transduction, such as G-protein-related signaling pathways.
Spontaneous Ca release can also occur under certain condi-
tions, such as Ca overload. A basic unit of Ca signaling is
called a Ca release unit (CRU) or couplon. A cell contains
hundreds to thousands of CRUs (14), which form a coupled
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network via Ca diffusion in the cytoplasmic space (and in the
SR in cardiac myocytes (15)).

A Ca release event from a single or a few RyRs or IP3Rs
in a CRU is called a quark (16), and a discrete Ca release
event resulting from the collective openings of many
RyRs and IP3Rs due to the positive feedback mediated by
CICR is called a spark (17). Ca sparks are considered to
be elementary events of Ca signaling, and tend to occur
randomly in space and time. A hierarchy of Ca signaling
that includes quarks, sparks, spark clusters, and abortive
and persistent Ca waves has been observed. It has also
been observed in many studies (9–12,18) that the origins
of Ca waves vary randomly in time and space. The link
between Ca sparks and Ca waves has been documented in
many experiments (8–12), but it is not clear why some
sparks can initiate waves while the vast majority of sparks
do not. It is well known that in an excitable medium, due
to the source-sink effect, a group of cells (such as the sino-
atrial node in the heart) must be excited synchronously to
initiate a wave. By the same reasoning, one would expect
that to initiate a Ca wave, a spark cluster of a certain size
is needed. However, if a spark cluster forms simply by
chance, estimation based on experimental data gives rise
to a wave frequency much lower than that observed in
experiments (11,12) (see estimation in Supporting Mate-
rial). Therefore, purely random clustering cannot explain
the transition from Ca sparks to Ca waves, and one must
establish a mechanistic link between the two to fully under-
stand the mechanisms of Ca signaling in biological cells.

Using computer simulations of an IP3R cluster array
model, Falcke (19) first showed that nucleation from
doi: 10.1016/j.bpj.2012.05.001
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Ca sparks to Ca waves is responsible for intracellular
Ca oscillations. Later studies by Skupin et al. (7,20) and
Thurley et al. (21) showed that the whole-cell Ca oscilla-
tions are intrinsically stochastic, which is not an oscillatory
behavior of a IP3R cluster but rather an emergent behavior
of the IP3R cluster network of the whole cell. Investigators
have also carried out computer simulations in cardiac myo-
cyte models (22–26) to study the self-organization of
random RyR openings or sparks into Ca waves and triggered
activity in cardiac myocytes. However, despite many
modeling and experimental studies on the transitions from
Ca sparks to Ca waves and whole-cell oscillations, a general
theoretical framework for the transition from Ca sparks to
Ca waves is still lacking. In this study, we combined
computer simulation and experiments to address the ques-
tion of how local random Ca signaling events self-organize
into global Ca signaling events, such as Ca waves and
whole-cell oscillations, in cardiac myocytes. Computer
simulations of a mathematical model of Ca signaling in
cardiac myocytes were performed in combination with theo-
retical analyses of an agent-based model of excitable
elements, and experimentally validated in Ca imaging
experiments in permeabilized mouse ventricular myocytes.
We show that the interaction between CRUs via CICR
causes self-organization of Ca spark clusters. When the
coupling between CRUs is weak, the cluster-size distribu-
tion is exponential. As the interactions become strong, the
cluster-size distribution changes to a power-law, which
facilitates the formation of large spark clusters and prefer-
able spatial conditions for Ca wave initiation and propaga-
tion. A power-law distribution is an indicator that
a system is in a critical state, such as the critical phenomena
seen in second-order phase transitions in thermodynamics
and statistical physics (27,28), and self-organized criticality
(SOC) observed in many complex nonlinear systems in
nature (29–31). Here we show that criticality is harnessed
by a biological cell to regulate the self-organization of
random subcellular events into cellular-scale oscillations.
MATERIALS AND METHODS

Ca cycling model of ventricular myocytes

We developed a ventricular myocyte Ca cycling model that was improved

from a previous model (32) and is similar to other published models for Ca

sparks and waves in cardiac myocytes (22,33–35). The model is a three-

dimensional (3D) CRU network (Fig. 1 A) with the CRUs coupled via Ca

diffusion in the myoplasmic (Myo) space and SR. Ca concentrations in

the Myo and SR space are described by differential equations. Each CRU

contains four compartments (Fig. 1 B): network SR (NSR), junctional SR

(jSR), Myo, and dyadic space (DS). The arrows in Fig. 1 B illustrate the

L-type Ca channel (LCC) flux (JLCC), RyR release flux (JRyR), SERCA

uptake (Jup), and diffusive flux (Jdiffu). The NSR and Myo compartments

in each CRU were discretized into 5 � 5 � 5 voxels, with each voxel

volume being 0.2 � 0.2 � 0.2 mm3 (the voxel volume of SR is rescaled

by the volume ratio of SR and Myo). We placed 100 RyRs into each

CRU and simulated each RyR via randomMarkov transitions using a model

(Fig. 1 C) developed by Stern et al. (36). Each CRU contains 10 LCCs,
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which were simulated randomly with a Markov model developed for rabbit

ventricular myocytes (37). All simulations were carried out by clamping the

membrane voltage at �80 mV. The whole-cell model contains 100 � 20 �
10 CRUs (some simulations in this study used 100� 20� 5 CRUs for very

long simulations, which gives rise to the same results obtained by using

a larger number of CRUs).

The governing differential equations for the Ca concentrations in

different spaces are as follows:

bmðcmÞ
vcm
vt

¼ DmV
2cm þ Jm (1)

vcs 2
bsðcsÞ vt
¼ DsV cs þ Js (2)

� � ðiÞ

bd c

ðiÞ
d

dcd
dt

¼ J
ðiÞ
d (3)

� � dc
ðiÞ
bj c
ðiÞ
j

j

dt
¼ J

ðiÞ
j ; (4)

where cm(x,y,z,t) and cs(x,y,z,t) are the local Ca concentrations in the Myo

and the SR spaces, respectively, and c
ðiÞ
d and c

ðiÞ
j are the Ca concentrations in

the ith DS and jSR spaces, respectively. bm, bs, bd, and bj are Ca buffering

functions, which are instantaneous functions of the Ca concentration in

each space, following Wagner and Keizer (38). Jm, Js, J
ðiÞ
d , and J

ðiÞ
j are

the net Ca flux for each space. Dm and Ds are the Ca diffusion constants

in the Myo space and the SR space, respectively, and we set them as

Dm ¼ Ds ¼ 0.3 mm2/ms. The detailed mathematical formulations of the

buffering constants and the Ca fluxes are based on the model by Rovetti

et al. (32) and are described in more detail for the model presented here

in our recent publication (39).

Computer simulations were performed on a single NVIDIATesla C2050

high-performance Fermi-based graphics processing unit (GPU; http://www.

nvidia.com). We wrote the programs in Cþþ using the CUDA API, and

used the GNU Cþþ compiler version 4.4.3 and NVIDIA CUDA version

4.0. Details regarding the numerical algorithms and implementation of

GPU computing can be found in our recent publication (39).

http://www.nvidia.com
http://www.nvidia.com
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Theoretical model

The CRUs were modeled by a three-state cycle (excitable / excited /
refractory / excitable; see Fig. 6 A) modified from a previous model

(40). We used 100 � 20 � 10 CRUs. The CRUs were coupled to their

six nearest neighbors. The transition from the excitable state to the excited

state of a CRU in the network was simulated stochastically with the transi-

tion rate to be l ¼ a þ gs2, where s is the number of its six nearest neigh-

boring CRUs in the excited state, a is the rate constant for spontaneous

firing, and g is the coupling strength. The spark duration (or the duration

of the excited state) is fixed at 60 ms and the refractory period (the time

in the refractory state) is fixed at 300 ms. For the results shown in Fig. 6 E,

the variable s in the transition rate equation is the number of its 10

(including the nearest diagonal elements) nearest neighboring CRUs in

the excited state.
Myocyte preparation

Methods developed by Mitra and Morad (41) to enzymatically isolate

cardiac ventricular myocytes were modified for mice. Briefly, C57Bl/6

mice (6–8 weeks old) were injected intraperitoneally with 800 ml heparin

(5000 U/ml) 20–30 min before they were anesthetized and then killed

with isoflurane (Phoenix Pharmaceuticals). Hearts were quickly excised

by thoracotomy and retrogradely perfused on a Langendorff apparatus

maintained at 37�C. The enzyme digestion step consisted of perfusing

Tyrode’s solution containing 1 mg/ml collagenase (Type II, 300 U/mg;

Worthington) and 2.8 mg/ml protease (Type XIV, R3.5 U/mg; Sigma)

for 13–15 min. Myocytes were dissociated from digested ventricles by

gentle mechanical dissociation and used within 4–6 h. The modified

Tyrode’s solution contained (in mM) 136 NaCl, 5.4 KCl, 0.33 NaH2PO4,

1.0 MgCl2, 10 HEPES, and 10 glucose, pH 7.4 (KOH). All chemicals

were obtained from Sigma unless indicated otherwise. All procedures

complied with the policies of the Animal Research Committee of the

University of California, Los Angeles.
Myocyte permeabilization

Myocyte membranes were permeabilized for 30–60 s with saponin (0.005%

w/v) in a mock internal solution composed of (in mM) 100 potassium

aspartate, 20 KCl, 10 HEPES, 0.25–1 EGTA, and 0.75 MgCl2, pH 7.2

(KOH). Permeabilized myocytes were resuspended in a saponin-free

mock internal solution composed of (in mM) 100 potassium aspartate,

20 KCl, 5 KH2PO4, 5 MgATP, 10 phosphocreatine, 5 U/ml creatine phos-

phokinase, 10 HEPES, 0.25–1 EGTA, 5 � 10�5–5 � 10�4 CaCl2 (free),

1 MgCl2 (free), 0.03 Fluo-4 (Invitrogen), and 8% w/v dextran (molecular

weight ~40,000; prevents osmotic swelling (13)), pH 7.2 (KOH). Free

Ca concentration and Mg concentration were calculated with the use of

WebMaxC Extended (maxchelator.stanford.edu). All experiments were

performed at room temperature. Procedures were slightly modified from

a previous study (42).
Ca imaging

We imaged spontaneous Ca activity in permeabilized myocytes using a

Zeiss PASCAL 5 laser scanning confocal system (Carl Zeiss) on

a Zeiss Axiovert 100 LSM inverted microscope fitted with a 63X objective

(Zeiss C-Apochromat 63/1.2 W Corr). The Ca indicator dye Fluo-4 was

excited at 488 nm wavelength with an argon/krypton laser with intensity

attenuated to 1–3%. Emission wavelengths > 510 nm were detected

by the photomultiplier. Fluorescence intensity space-time recordings

were acquired in the line scan mode (1.92 ms/line, 2604 lines/recording)

along the longitudinal axis of the myocyte and digitized into 1024 �
2604-pixel images (12-bit) line scan with nominal pixel dimensions of

0.08–0.13 mm.
Spark detection and analysis

The SparkMaster (43) plugin for ImageJ software (44) was used to detect

and analyze Ca sparks. The analysis parameters were as follows (see Picht

et al. (43) for definitions): scanning speed, 520.8 lines/s; pixel size,

0.08–0.13 mm; spark threshold criteria, 3.8 (3.2 for high EGTA); back-

ground, 550–1330; and analysis intervals, 5. Due to Sparkmaster’s limita-

tions in detecting sparks within high-noise backgrounds, we implemented

a custom absolute-threshold algorithm in recordings with Ca waves, as

suggested previously (45). We measured Ca spark cluster sizes (spatial

widths in line scan) using a custom algorithm that defines a Ca spark cluster

as Ca sparks separated by less than the single spark average full width in

space and the single spark average full duration in time. Cluster detection

in computer simulations was similar. The onset of a spark was defined as

the time at which the dyadic space Ca increased to 400% of baseline,

and the termination of a spark was defined as the time at which the dyadic

space Ca fell back to within 25% of baseline. A spark cluster was defined as

any sparks that are nearest neighbors in space and separated in time by an

interval less than or equal to the average single spark duration.
RESULTS

We first performed computer simulations using the spatially
distributed Ca cycling model at different Ca loads. Fig. 2 A
shows snapshots of free cytoplasmic Ca concentration at
four different Ca loads achieved by increasing the extracel-
lular free Ca concentration in the myocyte model (see
Movie S1, Movie S2, Movie S3, and Movie S4 for spatio-
temporal dynamics). At low Ca loads, the cell predomi-
nantly exhibits single Ca sparks. As the Ca load increases,
more and more sparks occur in clusters. At high Ca loads,
the self-organized large clusters propagate as abortive or
persistent waves. The average cytoplasmic Ca of the whole
cell (Fig. 2 B) transitions from almost no fluctuations to
small fluctuations, then to random bursts, and finally to
more periodic oscillations. To characterize the spatiotem-
poral evolution of this sequence, we calculated the spark
cluster-size distribution in each case (Fig. 2 C). When
Ca load is low, the distribution is exponential. As Ca load
increases, the cluster-size distribution changes from expo-
nential to power-law, which is maintained as Ca increases
further. A power-law distribution indicates that a thermody-
namic system is in a critical state, undergoing a second-
order phase transition (27,28), and has been used as an
indicator of SOC in complex nonlinear systems (29–31).

To evaluate whether a similar transition is observed
experimentally, we recorded cytoplasmic Ca signaling
events in permeabilized mouse ventricular myocytes super-
fused with the fluorescent Ca indicator Fluo-4 and imaged
with confocal microscopy (see Materials and Methods).
Fig. 3 A shows line scans (space-time plots) of the
cytoplasmic free Ca as the free Ca in the bathing solution
was increased, demonstrating the same hierarchical
Ca dynamics transitioning from sparks to waves observed
in the simulations. Fig. 3 B shows spatially averaged
Ca fluorescence versus time for the corresponding Ca loads,
showing the transition from small fluctuations to large fluc-
tuations and more periodic oscillations. The cluster-size
Biophysical Journal 102(11) 2433–2442
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distribution obtained using the line scan data changes from
exponential to power-law (Fig. 3 C), agreeing with the
computer simulation results shown in Fig. 2. For a more
direct comparison, we plotted line scans (Fig. 4 A) from
the simulations shown in Fig. 2 and used them to recalculate
the cluster-size distributions (Fig. 4 B), which produced
closer agreement with the experimental data. Note that the
cluster-size distributions of the line scans exhibit a stronger
exponential component compared with the 3D data
(compare Fig. 4 B with Fig. 2 C), suggesting that the cluster
distributions in the experimental data would exhibit an even
stronger power-law component if one could obtain accurate
3D recordings in a real cell.

Buffering cytoplasmic Ca more tightly by increasing
the EGTA concentration (while maintaining the same free
Ca concentration) is predicted to weaken the CRU inter-
action, and has been shown experimentally to suppress
Ca waves without altering spark frequency (10,13).
Increasing the Ca buffering in the computer model also
suppressed Ca waves and changed the power-law distribu-
tion to an exponential distribution (Fig. 5 A). These data
indicate that coupling between CRUs plays an important
role in criticality. This prediction was validated experimen-
tally, as shown in Fig. 5 B. At 400 nM Ca concentration and
Biophysical Journal 102(11) 2433–2442
0.5 mM EGTA, abortive and persistent Ca waves with
a power-law cluster distribution were typically observed
(Fig. 3 C). When EGTA was increased to 1 mM while the
same free Ca concentration was maintained at 400 nM,
Ca waves were suppressed and the cluster distribution
became exponential (Fig. 5 B).

To characterize this process from a more theoretical
perspective, we constructed a simplified model based on
our previous work (40) (see Supporting Material) in which
the intrinsic spark rate (a) and the coupling strength (g)
between CRUs were formulated as independently adjustable
parameters. CRUs were represented by stochastic agents
modeled as three-state cycles (Fig. 6 A) and coupled in a
3D array with nearest-neighbor coupling. When the CRUs
were uncoupled (g ¼ 0), we observed exponential distribu-
tions of cluster size for small a-values. As a increased to
a critical value (a ¼ 0.008), the cluster-size distribution
became a power-law (Fig. 6 B), which agrees with tradi-
tional percolation theory (Supporting Material) (46,47).
However, the value of a estimated from our experimental
data and simulations, as well as previous experiments (11)
(Supporting Material), is much lower than that required
for a power-law distribution in percolation theory. When
we used a¼ 0.0001 and coupled the CRUs with a nonzero g,
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however, the cluster-size distribution changed from an expo-
nential distribution to a power-law distribution at large
g-values (Fig. 6 C), indicating the importance of the
CRU-CRU interaction in promoting criticality.

For a wave to self-form in an excitable medium, a suffi-
ciently large cluster needs to form to overcome the
source-sink effect for propagation (48). This same effect
was also demonstrated in experiments for Ca wave propaga-
tion (49). If such a large cluster were to form simply by
chance, the wave frequency would be significantly lower
than was observed in the experiments (see Supporting Mate-
rial for details) (11,12). According to the results shown
in Fig. 6, B and C, the coupling of CRUs plays an important
role in forming such large clusters. Of even more impor-
tance, coupling enhances the spatial conditions required
for a large cluster to propagate as a wave, because the
clusters that form via the self-organizing process have
much more excitable space for propagation compared with
clusters that form randomly due to a high spark probability
(Fig. 6 D).

One discrepancy between the agent-based theoretical
model and the detailed model is that the power-law expo-
nent is smaller in the detailed model. We reason that in
the detailed model, free Ca diffusion in the cytoplasmic
space extends CRU coupling beyond the nearest neighbors,
whereas the theoretical model exhibits only nearest-
neighbor coupling. When we increased the coupling in the
theoretical model to include the nearest diagonal neighbors,
we observed a larger exponent (Fig. 6 E), which is more
consistent with the simulation results shown in Fig. 2 C.
DISCUSSION

A power-law distribution has been considered as a hallmark
of criticality (27–31). In physics, criticality occurs in
second-order phase transitions of thermodynamic equilib-
rium systems (27,28), such as the paramagnetic to ferromag-
netic transition at the critical (or Curie) temperature. Bak
et al. (29) put forward a concept called SOC to explain
widely observed power-law distributions in complex
nonlinear systems in nature (30,31), in which the system
self-organizes into a critical state without the requirement
of fine tuning parameters, in contrast to traditional critical
phenomena. SOC has been demonstrated in random excit-
able systems (50,51) and in a cellular automaton model
of Ca signaling (52), as well as in many other systems in
nature (e.g., avalanches, earthquakes, forest fires, evolution,
ecosystems, and neuronal activity) (30,31,53–57) through
Biophysical Journal 102(11) 2433–2442
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the observation of power-law distribution of spatial
clustering and frequency of temporal fluctuations. In the
intracellular Ca signaling systems shown in this study,
we observed a power-law distribution before and after
Ca waves, occurring over a wide parameter range. On the
basis of previous studies of excitable systems (50–52) and
our own observations in this study, we believe that SOC is
also likely to be the best descriptor of Ca signaling
dynamics at the subcellular level, as explained below. In
the intracellular Ca signaling system, the Ca load must be
raised to a high enough level, such that the individual
CRUs are sufficiently excitable and properly coupled, to
bring the system to the critical state at which a power-law
cluster distribution exists and Ca waves start to occur.
When the Ca load is beyond the critical value, Ca waves
occur more frequently. As a wave propagates through the
system, it empties the SR, and the system is brought out
of the critical regime. However, as the SR refills and the
RyRs recover, the CRUs regain their excitability and the
system self-organizes back into the critical state at which
a power-law is achieved. In this scenario, the power-law
distribution is observed over a wide range of Ca loadings
in our system, in agreement with the SOC scenario. Never-
theless, whether the criticality in intracellular Ca signaling
is achieved through parameter tuning, as in the traditional
critical phenomena or via SOC, an important general
message is that once a system is in a critical state, a tiny
perturbation can grow into a macroscopic fluctuation due
to the power-law distribution (27,28). This provides a
general theoretical framework for how single-channel fluc-
Biophysical Journal 102(11) 2433–2442
tuations may lead to macroscopic random oscillations in
biological systems.

Compared with an exponential cluster-size distribution,
a power-law distribution gives rise to a much higher proba-
bility for large spark cluster formation. Once a cluster
reaches a critical size, it becomes capable of initiating a
wave and giving rise to a whole-cell Ca signal, depending
on the status of the surrounding CRUs. As shown in our
theoretical model, a low spontaneous spark probability
with strong coupling not only causes the formation of large
clusters but also sets the permissive spatial conditions for
wave propagation. After a wave originating from one loca-
tion propagates through the cell, it resets the system, and
self-organization of spark clusters begins anew after the
CRUs recover (see Movie S3 and Movie S4). A new large
cluster may form in another location and initiate a new
wave, which agrees with experimental observations that
the origins of Ca waves vary randomly in space and time
(10–12,18). Due to the randomness in cluster formation in
time and space, the whole-cell Ca signal exhibits an irreg-
ular burst-like behavior, in agreement with experimental
observations in many cell types that Ca oscillations are
irregular (7,18,20). However, as the coupling strength
increases, the periodicity of the oscillations increases due
to more synchronous firing of the individual elements.

Ca waves in ventricular myocytes are linked to cardiac
arrhythmias by causing delayed afterdepolarizations
(58,59) and early afterdepolarizations (60), which tend to
occur irregularly (18,61). Our finding that Ca waves start
to form when the system reaches a critical state indicates



1 2 3 4 5 6 7 8
100

101

102

103

011

100

101

102

103

Cluster size

# 
of

 c
lu

st
er

s

B

Cluster size

# 
of

 c
lu

st
er

s

A

Experiment

Simulation

30 μm

0.
5 

s

20 μm

0.
5 

s

FIGURE 5 High intracellular Ca buffering changes a power-law distribu-

tion to an exponential distribution. (A) Space-time plot of Ca concentration

in a computer simulation with a fivefold higher concentration of Ca buffer,

for [Ca]o ¼ 10 mM and the corresponding cluster-size distribution obtained

from the line scan data, showing an exponential distribution (the plotted

reference line is a pure exponential function). (B) Space-time plot of

DF/F0 from a mouse ventricular myocyte using 1 mM EGTA to buffer-

free Ca at 400 nM, and the corresponding cluster-size distribution, showing

an exponential distribution. The plotted reference line is a purely exponen-

tial function.

Spatiotemporal Dynamics of Calcium Signaling 2439
that the irregularity of delayed afterdepolarizations is ampli-
fied from microscopic random ion channel fluctuations,
which may provide a subcellular origin of the unpredict-
ability of cardiac arrhythmias and sudden cardiac death
(62). In addition, our finding that a strong coupling between
CRUs is needed to bring the system into criticality and facil-
itate wave propagation (Figs. 5 and 6) indicates that the
distribution and spacing between CRUs are important for
the genesis of Ca waves. A study by Chen-Izu et al. (63)
showed that the spacing between CRUs becomes shorter
in failing rat myocytes, which promotes Ca waves as shown
in computer simulations by Izu et al. (22). The importance
of CRU spacing in Ca wave propagation was also studied
by Wussling et al. (64) in agarose gel experiments. In sino-
atrial nodal (SAN) cells of the heart, local Ca release plays
a vital role in pacemaking (65,66). In addition to many other
differences between a ventricular myocytes and a SAN cell,
the CRU spacing is shorter in the SAN cell (66) than in the
ventricular cells (63). This may play an important role in
promoting Ca oscillations, which contribute to the pace-
maker activity of the SAN cells. Finally, we speculate that
our findings that local Ca releases generate Ca waves via
criticality may provide a subcellular mechanism that
accounts for the fractal (i.e., power-law) properties of
heart-rate variability (67,68).

In addition to Ca cycling in cardiac myocytes, our study
may also enable a theoretical understanding of Ca signaling
dynamics in many other cell types, such as how irregular
macroscopic Ca oscillations (7,18,20) self-emerge through
the interactions of random local Ca releases. The same
theoretical framework may also be applicable to the
Ca signaling dynamics in multicellular tissue, such as the
emergent phenomena (69) and the transition from irregular
Ca dynamics to synchronous Ca oscillations in smooth
muscle (70,71). As is well known in phase transitions and
critical phenomena in physics (27,28), when a system is
away from criticality, a perturbation decays exponentially,
but when it is in a critical state, a small microscopic fluctu-
ation may grow into a large macroscopic fluctuation due to
the power-law distribution, which is a key feature of criti-
cality. Generally, if criticality governs the transition from
local to global Ca signaling in biological cells, as well as
in multicellular tissue, it may underlie the bursting and
fractal behaviors observed in many biological systems.

In conclusion, our computer simulation and experimental
studies show how randomly occurring Ca sparks self-orga-
nize to form Ca waves in biological cells. We show that crit-
icality underlies the spark-to-wave transition in the Ca
signaling hierarchy to form a power-law cluster-size distri-
bution, and the theoretical model shows that the coupling
between the CRUs is an important parameter. A power-
law cluster-size distribution due to strong coupling between
CRUs gives rise to much higher probabilities of large spark
clusters at low spark rates than would be expected if it were
governed by pure chance. In the transition from random
sparks to Ca waves, the whole-cell Ca signal changes
from small random fluctuations to random bursts, and then
to more periodic oscillations. These oscillations arise from
the self-organized wave activities and do not require the
preexistence of any pacemaking sites in the cell, in agree-
ment with the recent observation that whole-cell Ca oscilla-
tions are emergent phenomena of the coupled CRU network
(21). Therefore, our study provides a general theoretical and
mechanistic framework for the transition from random Ca
sparks to Ca waves and whole-cell Ca oscillations, not
only in cardiac myocytes but also in other biological cells.
LIMITATIONS

This study has several limitations. Due to the limited system
size imposed by a real myocyte, the power-law distribution
does not extend far beyond one order of magnitude.
However, if we repeat the simulations in a larger system,
we observe a power-law distribution that persists over
a larger range of cluster sizes (see Fig. S1 for a cluster-
size distribution from a larger system of the agent-based
Biophysical Journal 102(11) 2433–2442
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model). The model is a network of coupled CRUs, which
lacks the detailed fine structure in a cardiac myocyte that
may play important roles in intracellular Ca signaling.
We used the RyR model developed by Stern et al. (36),
which exhibits cytosolic Ca-dependent inactivation but
does not include SR luminal Ca regulation. In addition,
in real cardiac myocytes, RyR cluster distribution is some-
what heterogeneous rather than uniform (72), which may
also affect the Ca signaling dynamics. Nevertheless,
Ca signaling has been shown in many cell types and condi-
tions to exhibit universal behaviors (2), indicating that the
specific details may not be important for understanding
the universal properties, which is the main goal of this study.
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