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1 Introduction

The movement of ions through open ion channels is one of the many interesting physical

chemistry problems presented by living cells. In this paper we describe a system to model

such transport, using it as an example of a theory that may be applied to other problems of

ion flux.

Cells and cell organelles are enveloped by lipid membranes that are nearly impermeable

to physiological ions (mostly Na+, K+, Ca2+, and Cl−). One mechanism for ions to move

across these membranes is through open ion channels, proteins embedded in the membrane

that form ion-selective pores. This type of charge movement conducts electrical signals down

nerves and initiates muscle contraction, to list just two of the many physiological functions

of ion channels [1].

Ion channels are proteins with functional groups, often charged amino acids.

Enough data on functional groups and even crystallographic channel structures are now

available to apply specific theories of permeation and selectivity. With such information

and theories it is possible to reverse engineer the devices that biologists observe, not only

1



with the goal of understanding their natural function, but also of controlling their function

beyond biology. XXXXX In this paper we describe an engineering approach to selective

ion conduction through ion channels. Specifically, we develop a one-dimensional model of

the movement of spherical ions between two baths of fixed ionic concentrations and

applied electrostatic potentials. The baths are connected by a single open ion channel whose

functional groups are represented as charged spheres confined to the channel. In this one

dimensional model (unlike some others we have studied PNP references here),

ions are charged, hard spheres immersed in a hard-sphere solvent and uniform, continuum

dielectric. Particle transport is described as friction-limited drift-diffusion with all excess

chemical potentials described by the Density Functional Theory (DFT) of Rosenfeld and

colleagues [2], [3], [4], [5], [6]. As an example, we present flux calculations for a simple model

of a biological calcium channel. Although our specific goal is to model ion channels, the

system is generally applicable to one-dimensional modeling of ion transport.

2 Geometry

The geometry of two baths connected by a single ion channel embedded in a membrane is

shown in Fig. 1. This is the geometry of experiments [7], [8]. comment: what a great

sentence (the next one; last one is good too)! One inherent difficulty in modeling ion

channels is the different length scales, with the nanometer-scale channel connected to the

millimeter-scale baths where boundary conditions essential for the transport are maintained.

Because the flux is controlled in the channel, the resolution must be high there. However,

the boundary conditions of the problem must be applied far away from the channel to model

the problem correctly. This problem is three dimensional, but a reasonable one-dimensional

approximation can be developed that includes the effects of the finite volume of ions

and functional groups of the protein and is fine grained in the flux-limiting region (the

channel) and coarse grained in the baths. This approximation allows the problem to be
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solved on a desktop computer.

Starting in the baths, consider spherical shells that terminate at the lipid and are per-

pendicular to the lipid as well as the x-axis (Fig. 1). The flux of particles is perpendicular to

these surfaces and therefore flux densities scale inversely with the area A (x) of these shells.

(The shells are indexed by their intersection with the x-axis.) This spherical geometry is

exact for the baths: ions traveling to and from the channel must converge to a hemisphere

given by the capture radius of the channel. As we move from the baths into the channel, we

continue to assume that particles travel perpendicular to these spherical shells. Below we will

argue that this is an appropriate approximation inside the channel. In the transition regions

this approximation is also valid. For example, in the calculation of the electric field in these

transition regions, use of the spherical shells is equivalent to approximating a flat-bottomed

cone by a spherical cone [9].

In the channel itself, it is important to consider the nature of the boundary between

the pore (permeation pathway) and the channel protein that surrounds it. If there were a

hard wall at the pore/protein interface that maintained a fixed volume for the pore,

large radial packing effects would result in the pore [10]. However, real proteins are not

rigid and therefore we take the opposite view of a hard-wall interface: In our model, the

interface separates regions of different pressure. The atoms of the channel protein

are another liquid, forming a statistical interface with the contents of the pore and providing

a confining normal pressure on the pore contents. Such a boundary is not described by

a geometric surface at a specific locatoin, but rather by an average cross-section area

or pore volume that may be constant or variable depending on the compressability of the

protein [11]. Here we consider the simple case that the protein maintains a constant average

pore volume. comment: the reader will be confused by the last sentence. If we

are maintaining constant volume, isn’t this equivalent to the Hansen treatment.

It is ESSENTIAL to explain the difference explicitly. By the way the previous

3



paragraph is very very good and goes much further to explain this subtle idea

than in any of our other papers. Note I moved the next paragraph.

It is important to note that this representation of the pore/protein interface is appro-

priate even necessary (in our opinion) even in three dimensions. Hard walls are

unnatural when describing protein channels and are likely to introduce behav-

ior not found in systems with flexible walls. It is not introduced to make the

problem one dimensional.

Using this description of the interface, we can describe the output variables (the

concentrations and the electrostatic potential) as well as the input variables (especially the

dielectric coefficient) in the slab geometry inside the channel (that is, they are constant

throughout each cross-sectional disk and on to infinity in the radial direction): Comment:

the logical connection between the parts of this sentence are not clear. Why does

the constant pressure description make this description, e.g., slab, possible??

This is a presentation not scientific issue, of course.

1. From the hard-sphere perspective, the protein makes the pore effectively wider than

its physical radius; that is, seen as only a hard-sphere liquid, the combination of the

pore and protein is approximately one continuous liquid and because it is relatively

large, it may be approximated in the slab geometry. Comment: please explain. I

do not understand and perhaps the reader will have the same problem.

2. By describing the electrostatics in the slab geometry, each cross-sectional disk is an

equipotential surface and therefore there is no electric flux out of the pore; this is

equivalent to the situation that the exterior of the pore has a dielectric coefficient of

zero. The electric polarizability of the pore contents and the protein are not known,

in particular on the time scale of ion conduction. However, because the lipid has

a dielectric coefficient of approximately 2, as we move from the pore through the

protein to the lipid, the zero dielectric coefficient approximation becomes better
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and better. In general, by using the slab geometry we imply that as far as we can

describe the polarization around permeating ions by an effective dielectric coefficient,

we can approximate the polarization originating from regions away from the pore as

negligible. Furthermore we imply that we can neglect the electric field reaching out

into the lipid as negligible or even zero.

3. In many cases (such as the example calcium channel we will consider later), there

are such a large concentrations of ions inside the channel that the Debye length less

than half the physical radius of the pore. Brownian dynamics studies have shown that

under these conditions slab geometry can be used in mean-field theories like the

one we consider here [12].

3 Modeling ion flux

We describe steady-state flux by the constituitive law (Ohm’s or Fick’s law for elec-

trolytes)

−Ji = 1

kT
Di (x)A (x) ci (x)

dµi
dx
(x) (1)

and the continuity equation
dJi
dx

= 0; (2)

that is, for particle species i, the (constant) flux Ji is proportional to the particle density ρi

and the gradient of the electrochemical potential µi (x). A (x) is the area of the spherical

shells described in the previous section.

The electrochemical potential consists of the ideal component µidi (x), the excess compo-

nent µexi (x), and the concentration-independent component µ
0
i (x):

µi (x) = µ0i (x) + µidi (x) + µexi (x) (3)

with

µidi (x) = zieφ (x) + kT ln [ci (x)] (4)
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where φ (x) is the local electrostatic potential and zi is the valence of species i. µ0i (x) is,

for example, a hard-wall potential. With these definitions, Eq. (1) can be rewritten as a

Poisson-drift-diffusion (Poisson-Nernst-Planck, PNP) system:

−Ji = Di (x)A (x)

µ
dci
dx
(x) +

zie

kT
ci (x)

dφ

dx
(x) +

1

kT
ci (x)

dµ0i
dx

(x) +
1

kT
ci (x)

dµexi
dx

(x)

¶
(5)

dJi
dx

= 0 (6)

− 1

A (x)

d

dx

µ
� (x)A (x)

dφ

dx
(x)

¶
= e

X
i

zici (x) (7)

where � (x) is the local dielectric coefficient. In this paper we consider the special case

� (x) = constant (8)

so the Poisson equation we use is

− �

A (x)

d

dx

µ
A (x)

dφ

dx
(x)

¶
= e

X
i

zici (x) . (9)

Position-dependent dielectric coefficients will be considered in future work.

4 Density functional theory

To calculate the excess chemical potentials µexi we use the density functional theory of Rosen-

feld [3], [4]. We start by separating the grand potential into ideal (id), hard-sphere (HS),

and electrostatic components (ES):

Ω ({ck (x)}) = Ωid ({ck (x)}) + ΩHS ({ck (x)}) + ΩES ({ck (x)}) (10)

with

Ωid ({ck (x)}) = kT
X
i

Z
ci (x)

½
ln
£
λ3i ci (x)

¤− 1 + 1

kT

£
µ0i (x)− µi (x)

¤¾
dx (11)
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where λi is the deBroglie wavelength. The deBroglie wavelength is [physical phrase

or clause] and is given by [insert equation].

The excess chemical potential µexi [Eq. (3)] is then the sum of the HS and ES components

µexi = µHSi + µESi (12)

where

µHSi (x) =
δΩHS ({ck (x0)})

δci (x)
(13)

and

µESi (x) =
δΩES ({ck (x0)})

δci (x)
. (14)

We note that DFT was designed for equilibrium systems and thus our use of it in a

steady-state transport system requires the assumption of local equilibrium, an assumption

validated by Eisenberg, Klosek and Schuss, REF who studied systems that might

not be in local equilibrium, and by Frink, Thompson, and Salinger [14] who studied the

steady-state diffusion of colored hard spheres.

4.1 Hard-sphere component

For the hard-sphere component, we use the “antisymmetrized” excess free energy density [5,

Eq. (27)] Comment: The reader will want to know why you chose this.

ΦHS ({nα (x)}) = −n0 ln (1− n3) +
n1n2 − nV 1nV 2

1− n3
+

n32
24π (1− n3)

2

µ
1− nV 2nV 2

n22

¶3
(15)

with

ΩHS ({ck (x)}) =
Z

ΦHS ({nα (x0)}) dx0 (16)

where

nα (x) =
X
i

Z
ci (x

0)ω(α)i (x0 − x) dx0 (α = 0, 1, 2, 3, V 1, V 2) (17)

ω
(2)
i (r) = δ (|r|−Ri) (18)
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ω
(3)
i (r) = θ (|r|−Ri) (19)

ω
(V 2)
i (r) =

r

|r|δ (|r|−Ri) (20)

4πR2iω
(0)
i (r) = 4πRiω

(1)
i (r) = ω

(2)
i (r) (21)

4πRiω
(V 1)
i (r) = ω

(V 2)
i (r) (22)

and Ri is the radius of species i. δ is the Dirac delta function and θ is the unit step function,

θ (x > 0) = 0 and θ (x ≤ 0) = 1. Then the hard-sphere component µHSi of µexi is given by [3],

[4]

µHSi (x) = kT
X
α

Z
∂ΦHS
∂nα

(x0)ω(α)i (x− x0) dx0. (23)

The integrals in Eqs. (17) and (23) simplify in the slab geometry. By analytically

integrating over two components of the three-dimensional vector x and assuming that the

functions ci (x) and ∂ΦHS/∂nα (x) are constant over these two components, these integrals

become [4]

nα (x) =
X
i

Z x+Ri

x−Ri

ci (x
0)W (α)

i (x0 − x) dx0 (24)

µHSi (x) = kT
X
α

Z x+Ri

x−Ri

∂ΦHS
∂nα

(x0)W (α)
i (x− x0) dx0 (25)

where

W
(2)
i (r) = 2πRi (26)

W
(3)
i (r) = π

¡
R2i − r2

¢
(27)

W
(V 2)
i (r) = 2πr (0, 0, 1) (28)

4πR2iW
(0)
i (r) = 4πRiW

(1)
i (r) =W

(2)
i (r) (29)

4πRiW
(V 1)
i (r) =W

(V 2)
i (r) . (30)
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4.2 Electrostatic component

For the electrostatic component µESi of µexi we use a generalization of Rosenfeld’s method [4]

of expanding ΩES in a functional Taylor series in powers of

∆ci (x) = ci (x)− crefi (x) (31)

where crefi (x) is a given, nonconstant reference concentration profile. (For simplicity, we

choose this reference fluid to be charge-neutral everywhere.) Then, up to second order,

ΩES ({ck (x)}) ≈ΩES
¡©
crefk (x)

ª¢
+ kT

X
i

Z
µESi

¡©
crefk (x)

ª¢
∆ci (x) dx (32)

− kT

2

X
i,j

Z Z
c
(2),ES
ij (x,x0)∆ci (x)∆cj (x

0) dxdx0

where c(2),ESij is the electrostatic component of the second-order direct correlation function of

the reference fluid [4]. Eq. (14) gives [4], [5]

µESi (x) = µESi
¡©
crefk (x)

ª¢− zieφ (x)− kT
X
j

Z
c
(2),ES
ij (x,x0)∆cj (x

0) dx0. (33)

4.2.1 Non-reference fluid component

To approximate the last term of Eq. (33) we use the method of Biben, Hansen, and Rosenfeld

[5] which applies the Mean Spherical Approximation (MSA) in the strong coupling limit.

Specifically, when two ions are far apart in this limit, they interact only through the

electric mean field and other correlations become insignificant.The MSA approximates all

correlations outside of the contact radius

Rij = Ri +Rj (34)

by this asymptotic limit [Waisman&Lebowitz]. In our case this gives

kT
X
j

Z
|x−x0|>Rij

c
(2),ES
ij (x,x0) cj (x0) dx0 ≈ −zieφ (x) (35)
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or [5]

µESi (x) = µESi
¡©
crefk (x)

ª¢− kT
X
j

Z
|x−x0|≤Rij

c
(2),ES
ij (x,x0)∆cj (x

0) dx0. (36)

Lastly, the short-range electrostatic correlations reduce to the interaction energy of the

corresponding point charges zie and zje minus the interaction energy of particles of radius

Ri and Rj with surface charge zie/4πR2i and zje/4πR
2
j , respectively [4], [5]:

kTc
(2),ES
ij (x,x0)

=
zizje

2

4π� (x) �0

1

|x− x0| −
zizje

2

8π� (x) �0

1

|x− x0|

Ã
|x− x0| Ri +Rj

RiRj
− |x− x

0|2
2RiRj

− (Ri −Rj)
2

2RiRj

!
(37)

=
zizje

2

16π� (x) �0

1

RiRj

1

|x− x0| [|x− x
0|− (Ri +Rj)]

2 (38)

where we have used the simplifying assumption that the dielectric coefficient is approximately

constant with a value of � (x). This is exact in the case of a constant dielectric coefficient �.

Comment: the previous sentence needs to be explained. Why is it exact then?

In the slab geometry, Eq. (36) becomes

µESi (x) =µESi
¡©
crefk (x)

ª¢−X
j

zizje
2

8� (x) �0

1

RiRj
(39)

×
Z x+Rij

x−Rij

ci (x
0)
µ
1

3
σ3ij + σij (x

0 − x)
2 − 1

3
|x0 − x|3 − σ2ij |x0 − x|

¶
dx0.

4.2.2 Reference fluid component

The only remaining component of the excess chemical potential is the electrostatic excess

chemical potential of the reference fluid, µESi
¡©
crefk (x)

ª¢
in Eq. (39). In Rosenfeld’s imple-

mentation [4] the reference fluid was the bulk (homogeneous) fluid that was in equilibrium

with the inhomogeneous fluid. In the study of ion channels this will not suffice, however, as

the geometry is very different. Channels are embedded in a membrane that separates two

bulk fluids whose concentrations are different, experimentally controlled, and can range from
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1 nM to 2 M. Furthermore, inside the channel there is a high concentration of charges from

the amino acid residues of the channel protein. These attract equally high concentrations of

counter charge with the total concentration of tens of molar. Thus, the channel geometry

has three different “intrinsic” reference fluid compositions. This is the reason for choosing a

non-constant reference fluid.

Comment: The previous paragraph is a brilliant piece of science. Congratu-

lations!!!!!!!!!

The reference fluid we choose is divided into three geometrically distinct regions: the

left bath, channel, and right bath. The left and right bath concentrations of all ions are

experimentally controlled and thus we choose these as our reference fluids in their respective

geometrical regions. Choosing the reference fluid in the channel region is more difficult be-

cause the ion concentrations inside the channel are not known until after the analysis

which depends on a reference state that itself depends on the ion concentra-

tions. Ion concentrations are an output of the calculations. We do, however, have

an understanding of the approximate ion concentrations inside the channel under some ex-

perimental conditions, and these are what we choose to use as the channel reference fluid.

Having chosen the piecewise-constant compositions, the cation concentrations are Gauss-

filtered Comment: Reference is needed here to some book on Gaussian filters.

Also say why you chose this filter characteristic, presumably to change time de-

pendent functions as little as possible to produce continuous concentration profiles. A

charge-neutral reference fluid is produced by adjusting the anion concentrations.

Scientific Comment: for future work AFTER this paper ONLY. If the depen-

dence of reference state on concentration is know by formula or simple computer

program, one might be able to do the calculation selfconsistently. That is assume

the above reference state, calculate the concentrations, calculate a new reference

state, etc.
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The resulting charge-neutral reference fluid is constant in the three geometric regions and

smoothly connected by the Gauss-filtering described above. Each constant region is then a

homogeneous fluid which we describe with the MSA [11]. The connecting regions are not

homogeneous fluids and to describe them correctly would require a (unavailable) theory of

inhomogeneous fluids. However, because these regions are connected to two homogeneous

fluids, the correct electrostatic excess chemical potential is some interpolation of the excess

chemical potentials of the two bulk fluids. To approximate the electrostatic excess chemical

potential in the connecting regions, we treat each point is a bulk liquid and again use the MSA

to calculate the chemical potentials, including its component the excess electrostatic

excess chemical potential.

5 Modeling the selectivity filter

Ion channels are proteins and some of the amino acid residues can enter the permeation

pathway and interact with the permeating particles. It is these residues (many of which are

charged) that confer the selectivity properties of the channel. For example, in the L-type

calcium channel, there are four highly-conserved glutamate (E) residues (the “EEEE” locus)

that produce the large selectivity of sodium over calcium [REFs]. If these residues are mu-

tated to aspartate (D), glutamate, lysine (K), and alanine (A) (the conserved “DEKA” locus

of the voltage-gated sodium channel), then the channel becomes sodium selective [REFs].

In equilibrium studies, these “structural charges” have beenmodeled as spherical charges

(ions) that are allowed to move freely inside the selectivity filter, but are not allowed to par-

tition into the baths on each side of the channel [11], [MC refs]. We use the same approach

here. Because these ions never reach the electrodes in the bath, they do not contribute to

the measured current; each confined species j is in equilibrium:

dµj
dx

= 0. (40)
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It is not a priori known, however, what the value of the chemical potential µj is. What is

known, however, is that the number of particles of confined species j is fixed (Nj). Therefore,

in conjuction with Eq. (40), for each confined species we solve the equationZ xR

xL

cj (x) dx =
Nj

V
(41)

where the range of confinement is from xL to xR (the range of the selectivity filter) and V

is the volume of the selectivity filter. This equation states the condition that is so

different in our treatment compared to one that assumes a fixed structure and

a rigid channel wall.

Because the structural particles are ions, they contribute to the electric field and there-

fore are also included in the Poisson equation (9) that calculates the electrostatic potential

experienced by the permeating ions. However, because there is a finite number of confined

particles, if the electrostatic potential from Eq. (9) were used to calculate the electrochemi-

cal potential of the confined particles, then each confined particle would interact with a field

that was created by itself. The ion would create a force on itself, even if the domain

were infinite without boundary conditions (REF Schuss, Nadler and Eisenberg,

Appendix). This is a problem inherent to the mean-field approach, but one that is signifi-

cant only when there are a finite number of ions of one species. The reader will want to

know why this problem is only true when there a finite number. So do I! The ap-

proach we choose to alleviate this interaction is to allow the electrostatic force on each

ion to differ, even if they have the same charge. We calculate the electrochemical

potential of the confined particles with a different electrostatic potential for each confined

species that applies only to that confined particle species. Specifically, in the calculation

of µj, the electrostatic potential φj for confined species j is calculated from the modified

Poisson equation

− �

A (x)

d

dx

µ
A (x)

dφj
dx

(x)

¶
= e

X
i6=j

zici (x) + ezj
Nj − 1
Nj

cj (x) (42)

13



where the concentration of confined species j is reduced by 1/Nj to approximately eliminate

the self-interaction.

Comment: this is a brilliant solution to the problem. Now let’s see Zeev

prove it is right!!!

6 Numerical implementation

The inputs to the problem are the left and right bath concentrations of the permeating ions,

the applied electrostatic potential, and the number of structural (confined) ions, as well as

the radii and diffusion coeffients of all particles and the dielectric coefficient. The outputs are

the concentrations of all particles (permeating and structural) and the electrostatic potential,

both as functions of location. These are found by simultaneously solving Eqs. (5), (6), (9),

(25), (39), (40), (41), and (42).

6.1 Discretization

The grid we chose was nonuniform because the baths are necessarily much longer than the

channel to which the structural charges are confined and, because XXX baths are of fixed

concentration far from the channel, do not require the high density of grid points that the

channel does where the functions are changing rapidly. In the channel we choose a grid with

uniform spacing of 0.02 nm. (Numerical tests showed no difference when smaller spacings

were used.) The spacing of the nonuniform grid outside the channel was chosen to be

proportional to A (x), the area available for flux [16].

The differential equations XXX (5), (6), (9), and (42), are rewritten as follows

before they are discretized:

0 =
d

dx

·
Fi (x)

d

dx

µ
ui +

zie

kT
φ (x) +

1

kT
µ0i (x) +

1

kT
µexi (x)

¶¸
(43)

ui (x) = ln [ci (x)] (44)
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Fi (x) =
Di (x)A (x)

minx {Di (x)A (x)} exp [ui (x)] (45)

− ��0kT

NAe2d2
1

A (x)

d

dx

µ
A (x)

dφ

dx

¶
=
X
i

zi exp [ui (x)] (46)

where all concentrations have been scaled by Avogadro’s number NA and all lengths have

been scaled by the system length d. (Eq. (42) may be rewritten in a similar form as Eq.

(46)).

Both the recast Nernst-Planck equation (43) and the recast Poisson equation (46) have

the same form for the derivatives:

d

dx

µ
f (x)

dy

dx

¶
. (47)

We discretize this derivative on the interior points of the grid {x0 = 0, x1, x2, . . . , xN−2, xN−1 = 1}
by

d

dx

µ
f (x)

dy

dx

¶
≈ 2

hm + hm+1

·
fm+ 1

2

dy

dx

³
xm+1

2

´
− fm− 1

2

dy

dx

³
xm− 1

2

´¸
(48)

≈ 2

hm + hm+1

·
fm + fm+1

2

ym+1 − ym
hm+1

− fm−1 + fm
2

ym − ym−1
hm

¸
(49)

= (fm + fm+1) (ym+1 − ym) β1,m − (fm−1 + fm) (ym − ym−1)β−1,m (50)

where

fm = f (xm) (51)

ym = y (xm) (52)

βm,−1 =
1

hm (hm+1 + hm)
βm,1 =

1

hm+1 (hm+1 + hm)
(53)

hm = xm − xm−1. (54)
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This is finally rewritten as

d

dx

µ
f (x)

dy

dx

¶
≈ β−1,m (fm−1 + fm) ym−1 − [β−1,m (fm−1 + fm) + β1,m (fm + fm+1)] ym (55)

+ β1,m (fm + fm+1) ym+1.

All functions are specified on the boundary nodes x0 and xN−1, either because the function

has been specified for all grid points (the diffusion coefficients, for example) or because of

boundary conditions for the problem (the electrostatic potential, for example). Thus these

derivatives are defined on the interior grid points, x1, . . . , xN−1.

The integrals in Eqs. (24), (25), and (39) XXXX have a similar structure and thus

the integration scheme we choose was the same for all three. These integrals are over the

range x− r to x+ r with different r’s for each integral. x is always a grid point, but r is a

radius and because of the nonuniform grid and different ion sizes, it not generally true that

x− r or x+ r are grid points. Thus it is necessary to be able to evaluate these integrals at

points between two grid nodes. We do this by dividing the integral into a sum of integrals,

with each new integral ranging over two consecutive grid points or the last grid point to the

endpoint of the original integral. Since in Eqs. (24), (25), and (39) one of the functions

can be written as a polynomial in the integration variable x0, each new integral in the sum

can be evaluated analytically by assuming that the other function in the integral (ci (x0) or

∂ΦHS/∂nα (x
0)) is a linear function in x0 between consecutive grid nodes.

The remaining equations to be discretized are Eqs. (40) and (41) for the confined parti-

cles. Let xML
and xMR

be the left and right grid nodes, respectively, on and between which

the structural particles are confined. Then Eq. (40) is discretized as

0 = µj (xm)− µj (xm+1) (56)

for ML ≤ m ≤ MR − 1. For the last grid node of confinement xMR
, we apply Eq. (41).

Because this integral is always evaluated only in the region where the grid spacing is uniform
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and small, we evaluate this with a simple rectangular integration scheme.

6.2 Solving the discretized system

After XXX the system of equations is discretized, the values of ui (xm) = ln [ci (xm)] for

all permeant species i and φ (xm) remain to be determined at all interior grid points (m =

1, . . . , N−2), as well as uj (xm) = ln [ci (xm)] and φj (xm) for all confined species j at all grid
points to which they are confined (m = ML, . . . ,MR). We solved the system of discretized

equations using Newton’s method [13] because of its square-convergence properties, because

it is possible to analytically evaluate the Jacobian (derivative) matrix of the discretized

equations, and, most importantly, because iterative methods only converged (over the

necessary domain of parameters) if they update all variables at every iteration.

Because of the specific functional dependence of the equations, it is possible to write the

Jacobian matrix as a band matrix. Furthermore, without the discretized version of Eq. (41)

the band becomes significantly more narrow. Because Eq. (41) is a solution condition for

Eq. (40) and is only used once for each confined species, it was more efficient to solve the

Jacobian matrix equation for each Newton iteration in two steps, first solving the narrow

band matrix without Eq. (41) using an LU decomposition for band matrices [13] and finally

solving the complete matrix equation with the Sherman-Morrison-Woodbury method [13].

The Newton iteration was stopped when the absolute value of the largest difference between

the same variable from two consecutive iterations was less than 10−8.

Comment: Please give an estimate of the time the calculation takes.

7 Example: a calcium channel

In order to give an example of the outputs of our algorithm and to explain some details of the

implementation, we give a simple model of a calcium-selective channel. In such a channel,

17



the structural particles are four fully-charge glutamate residues. We model each glutamate

residue by the carboxyl group at its end. Each of these carboxyls we model as two unbonded,

half-charged oxygen ions (diameter 0.28 nm) that are confined with a hard-wall potential to

the cylindrical selectivity filter (channel) of radius 0.35 nm and length 1 nm.
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