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ABSTRACT

Since the discovery of gating current, electrophysiologists have studied the movement of

charged groups within channel proteins by changing potential and measuring the

resulting capacitive current. The relation of atomic-scale movements of charged groups to

the gating current measured in an external circuit, however, is not obvious. We report

here that a general solution to this problem exists in the form of the Ramo-Shockley

theorem. For systems with different amounts of atomic detail, we use the theorem to

calculate the gating charge produced by movements of protein charges. Even without

calculation or simulation, the Ramo-Shockley theorem eliminates a class of

interpretations of experimental results. The theorem may also be used at each time step of

simulations to compute external current.

!
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INTRODUCTION

Since Schneider and Chandler (1973), the internal movements of channel proteins

have been estimated by measuring gating current (reviewed by Armstrong, 1975, 1981;

Almers, 1978; Sigworth, 1994; Bezanilla, 2000; Hille, 2001). Gating current is the

capacitive current (recorded as electron flow between macroscopic electrodes) produced

by the movement of charged atoms in a channel protein, when the voltage between the

electrodes is changed. It is distinct from the conduction current produced by the flow of

ions through the open channel and can be separated from total measured current in a

variety of ways, which give quite consistent results. Experiments using site-directed

mutagenesis have since identified charged amino acid residues of channels that contribute

to voltage-dependent gating (Stühmer et al., 1989) and gating current (Aggarwal and

MacKinnon, 1996; Seoh et al., 1996).

To interpret these measurements quantitatively, one must know the relationship

between the atomic-scale charge movements and the externally recorded current. Such a

relation has recently been derived using a particular equilibrium model of statistical

mechanics (linearized Poisson-Boltzmann theory) to describe the charges in the bathing

solutions (Roux, 1997). Here, we present a general solution, one that has been known for

some time in computational electronics. An extension of Kirchoff’s current law, the

Ramo-Shockley theorem, links current flowing in the external circuit to charge

movement inside the system (Shockley, 1938; Ramo, 1939). Recent generalizations of

the original theorem directly relate microscopic charge movements and macroscopic

current in complex systems. We apply the Ramo-Shockley theorem to gating current

experiments and show how it can be used to calculate measured charged movements
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from atomic models. We use the theorem to rule out certain interpretations of

experimental results and to compute external currents in simulated systems with high

efficiency. The generalized theorem provides a concise formula and model-independent

results that are applicable to many biophysical problems.

THE RAMO-SHOCKLEY THEOREM

In voltage clamp experiments used to study currents through a biological mem-

brane, two electrodes impose a controlled voltage across a domain that contains different

dielectrics and charged particles (ions in the baths and channels, and charged groups in

the protein) (Hodgkin et al., 1952). The charged particles move because of thermal

agitation (heat) and the local electric field. The current measured by the external circuit

has two components: the particle current carried by ions entering or leaving the

electrodes and the displacement current. The displacement current is the movement of

charge (electrons) in the electrodes induced by changes in the electric field caused by the

movement of all the charged particles that do not reach the electrode (Jackson, 1999;

Purcell, 1985, p. 371; Feynman et al., 1964, for example, Ch. 23, p. 2). The Ramo-

Shockley theorem equates the total current (particle plus displacement) measured in the

external circuit with the microscopic motion of the charged particles in the domain

between the electrodes.

Voltage-clamp experiments measure the total current I flowing into an electrode

held at voltage Em with respect to a grounded electrode. The Ramo-Shockley theorem

(references given below) states that this current is

   
I = 1

1volt q
j

j
∑ W r

j( ) ⋅ v
j

. (1)
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We use the nomenclature of Yoder et al. (1997) where 
  
v

j  and 
  
r

j  are the instantaneous

velocity and position vectors, respectively, of the particle  j  with charge 
 
q

j  when the

clamped voltage  Em
 is applied. W is the electric field that would be generated by

removing all particle charges (mobile and fixed) from the domain and setting the

clamped voltage to 1 volt. The only charges contributing to W are the charges needed to

impose ground potential and 1 volt at the electrodes and charges induced by the electrode

charges on and in the dielectrics of the domain. W is not the field that is present when the

clamped voltage  Em
 is applied and the current is observed. The field resulting from the

clamped voltage  Em
 enters the equation indirectly, through the positions 

  
r

j  and

velocities 
  
v

j  that it imparts to mobile charged particles. The sum in Eq. 1 is over all

mobile particle charges 
 
q

j  in the domain; that is, it is the sum of all charges 
 
q

j  moving

with velocity
  
v

j  at the time the sum is taken, including both those that belong to the

channel protein and all ions in the bath solutions and the pore of the channel.

The measured current I of Eq. 1 is converted to charge by integrating over arbi-

trary trajectories that connect known starting locations 
  

′r
j  of the particles to known

ending locations 
  

′′r
j . This integration yields the externally measured gating charge:

   
Q = − 1

1volt q
j

j
∑ U ′′r

j( ) − U ′r
j( )



 (2)

where 
  
U r( )  is the potential at location r that would be generated by removing all

particle charges (mobile and fixed) from the domain and setting the clamped voltage to 1
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volt. Again, the potential field present while the clamped voltage is held at  Em
 enters the

equation only indirectly; it determines the locations of the charged particles.

The theorem was derived independently by Shockley (1938) and Ramo (1939)

and is commonly used in computational electronics as a generalization of Kirchoff’s

current law that includes displacement current. The original derivations assumed

negligible magnetic and radiation effects (that is, they assumed quasi-electrostatics) to

describe electron transport in vacuum tubes. The theorem has subsequently been

generalized to systems containing inhomogeneous linear dielectrics (Pellegrini, 1986;

Kim et al., 1991). An extended version for the full electrodynamic regime has been

derived (Yoder et al., 1996, 1997). We use the generalized quasi-electrostatic version of

the theorem.

To illustrate the theorem, we give a simple derivation for a capacitive linear

circuit that applies to a voltage-clamped system. Imagine that a vanishingly small

conductive sphere j is placed at location 
  
r

j , where it forms capacitors 
 
C

jR  and 
 
C

jG  (Fig.

1). The surfaces of capacitor 
 
C

jR  are the conductive sphere and the recording electrode R

(the electrode where Em is applied in a voltage clamp experiment). The surfaces of

capacitor 
 
C

jG  are the conductive sphere and the second (grounded) voltage clamp

electrode G and any other grounded surfaces.

We consider two experiments. In the first experiment, labeled (1), a single,

mobile, charged particle with charge 
 
q

j  is placed in the small conductive sphere located

at 
  
r

j  and the electrode R is set to zero potential. The charge induced on R (the charge that

the voltage clamp applies to maintain R at zero potential) will be
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q
R
(1) = −q

j

C
jR

C
jR

+ C
j G

. (3)

The charge induced on the electrode can be computed by Eq. 3 for any 
 
q

j  if the

calibration factor 
 
C

jR
C

jR
+ C

jG( )  is known. We determine this factor in a separate,

second experiment, labeled (2).

In the second experiment, the charge of all charged particles is removed (that is,

  
q

j

2( ) = 0 ), and a voltage of 1 volt is imposed on R. The capacitors 
 
C

jR  and 
 
C

jG  now form

a voltage divider, and the resulting voltage at 
  
r

j  is

   
U (2) r

j( ) =
C

jR

C
jR

+ C
jG

× 1 volt( ) (4)

Combining the results of the two experiments, we have

   
q

R
(1) = − 1

1 volt q
j
U (2) r

j( ). (5)

This treatment can be extended to a system of many small spheres j that contain

charges 
 
q

j ; by superposition, we then have

   
q

R
(1) = − 1

1 volt q
j
U (2)

j
∑ r

j( ) (6)

If we move the charges j from locations 
  

′r
j  to locations 

  
′′r
j , the electrode charge will

change by

   
Q = − 1

1 volt q
j

U (2) ′′r
j( ) − U (2) ′r

j( )





j
∑ (7)

which is the Ramo-Shockley theorem in the form of Eq. 2.
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APPLICATIONS TO ION CHANNELS

Defining electrical coordinate and electrical travel

For a given dielectric geometry of the baths, membrane, and channel, Eq. 2 relates

induced electrode charge with microscopic charge and the function U(r). The geometric

coordinate r is thereby mapped onto the electrical coordinate    U (r) (1 volt) and the

geometric travel 
  

′′r
j

− ′r
j  onto the electrical travel,Tel , of the charge j:

   
T

el
≡

1

1 volt
U ′′r

j( ) − U ′r
j( )



. (8)

The potential U is found by solving the Poisson equation for the channel

geometry with 1 volt of potential on the electrode R and all the linear dielectrics in place,

but no charged particles of any kind (neither fixed or mobile structural charges, nor bath

ions). The only charges present are the electrode charges that maintain boundary

conditions like the potential of 1 volt and polarization charges induced by the electrodes

on and in the dielectrics. The dielectrics that we include are linear and isotropic; their

polarization settles much faster than the experimentally observable charge movements.

The effects of these linear dielectrics are expressed in Eqs. 1 and 2 by the field W or the

potential U. A voltage-gated channel will add what might be described as a nonlinear,

time-dependent, and probably location-dependent anisotropic polarizability to the

membrane; charge movements underlying such complex behavior reflect the interesting

gating movements of the channel protein. They are included as explicit charge

movements in the sums of Eqs. 1 and 2.

Figs. 2 and 3A,B show calculations of electrical coordinate maps, found by

solving the Poisson equation numerically on a domain in which bath solutions, lipid, and
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protein are represented as linear, isotropic dielectrics. The dielectric geometries shown

are low-resolution representations of an open conduction pore (Fig. 2) and of a “gating

pore” that allows an S4 segment to slide back and forth through the membrane (Fig. 3).

Note that all protein charges and ions are removed from the system, as is necessary for

the determination of electrical coordinates. The domain is cylindrical about the vertical

axis and is represented in an axial cross-section. The points r of each contour line are

each at the same potential U; they are plotted at increments of ∆U = 0.05 volt (solid

lines), and some at ∆U = 0.025 volt (dashed lines). Each electrical coordinate

   U (r) (1 volt) is a surface and not a unique location r; all points of the surface represented

by a contour line are at the same electrical coordinate from the external voltage clamp

electrode.

A map of electrical coordinates can help predict the gating charge measured in a

thought experiment, for example, if a charge q were moved between two locations.

According to Eq. 2, the gating charge would be   Q = −  qT
el

, where Tel can be read from

the map. Note that manipulating one or many charges this way does not affect the map;

the map changes only when the geometry of the linear dielectrics changes. If many

charges are moved simultaneously, their contributions to the gating charge sum

algebraically. This additivity itself may appear surprising because it holds in a domain of

condensed matter. The invariance of the map and the additivity of individual readings

make the “electrical travel” defined via the Ramo-Shockley theorem a useful concept.

Figs. 2 and 3A are computed in a small domain that is typical for a simulation. In

actual experiments, electrodes are much farther away from the membrane, making the

electrical travel across each bath much larger than the electrical travel across the mem-
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brane. This leads to an apparent paradox: in the experimental situation, movement of

structural charge in the membrane itself contributes very little to the measured charge Q

in Eq. 2, since the structural charge is scaled by a small electrical travel. The paradox is

due to the fact that the electrical coordinate is computed with all source charges removed

from the interior of the system (including the ions in the bathing solutions), whereas the

external charge movement Q  is computed from the movements of all mobile charges of

the system (including the ions in the bathing solutions). In a system with deep baths, Q is

dominated by the contributions of the bath ions that move in response to the movement of

charges in the membrane (and thus conduct the gating current towards the electrodes).

In principle, Eqs. 1 and 2 can be applied to any domain in a circuit that is bounded

by surfaces where controlled potentials are applied, provided that the movements of all

charges in the domain (for example, all ions in the bathing solutions) are included in the

summation. If the domain is geometrically expanded the electrical travel of all charges is

reduced, but charges newly included in the domain are appended to the summation. For a

chosen domain (large or small), the Ramo-Shockley theorem exactly computes the

current that would be measured in an experiment performed in that geometry.

Realistic simulations of an actual biological experiment are frustrating because

most of the computational effort concerns ions in the baths, not charges in the pore or

channel protein of biological interest. It is more efficient to use a multi-scale approach.

At one level of multi-scale approach, one could treat the bathing solutions as ideal

conductors. Such idealized baths extend the electrodes to the boundaries of the membrane

and protein and reduce the summations in Eqs. 1 and 2 to the movements of only the

charges within the channel/membrane. The summations then give an upper bound to the
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measured gating charge because each geometrical movement results in the maximal

possible electrical travel. Such a map is shown in Fig. 3C; later we show how an upper

limit of the gating charge helps explain experimental results.

Comparison with a linear equilibrium analysis

An expression for the external charge similar to Eq. 2 has been derived by Roux

(1997) and used by Islas and Sigworth (2001). Roux sought to include the effects of the

bath ions into the electrical potential that defines the electrical coordinate (the potential

   U (r)  in our nomenclature), much like the polarization charge of linear dielectrics has

been included in the potential used in the generalized Ramo-Shockley theorem (Eq. 2).

Including the bath ions this way requires that the polarization of the bath electrolyte

solutions be linear in the applied voltage. Roux linearizes bath polarization by describing

the bath electrolytes in the linearized Poisson-Boltzmann (PB) theory, which assumes

that the interaction between charges is significantly smaller than 1 kT. This linearization

renders the electrical capacitance of the double layers at the membrane-bath boundaries

independent of the applied voltage, and thus yields a well-defined electric coordinate for

the protein charges. Application of this linearized theory to scenarios where the protein

bears charges (such as a cluster of gating charges that can be exposed to the baths)

requires that the screening of these charges by bath ions be adequately described by

linearized PB theory. Systems containing charges of high density (like concentrated

electrolyte solutions), however, cannot be described by linearized PB theory if the charge

interaction is more than a fraction of kT, as it is likely to be. Although one expects that

only a small fraction of the applied voltage drops over the boundary layers of the baths

(because of the small dielectric constant of the membrane), the actual error of Roux’s
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approximation needs to be assessed for the specific charge distribution on the protein,

which likely requires an explicit simulation of the bath solutions (Boda et al., 2004).

Upper and lower bounds for the screening effect of bath ions, however, could be

estimated, at less computational cost, from computations without bath ions: one where

the electrode surface is set directly at the membrane, and another where the electrode

surface is set back several Debye lengths (Fig. 3).

In deriving an electric coordinate using an equilibrium theory of screening, Roux

assumed that the baths are in thermodynamic equilibrium. Given that ions in solutions

can form screening configurations very fast (~1 ns), this approximation appears well

justified in studies in which the charge movements of interest are relatively slow (such as

gating currents). On the other hand, Roux’s ansatz cannot be used wherever bath ions can

flow from one side of the membrane to the other, such as through an open ion channel

(Roux, 1997). By contrast, the Ramo-Shockley theorem applies to all situations,

equilibrium or non-equilibrium, up to the time scale where magnetic and radiation effects

become significant (Pellegrini,1986).

Interpreting gating charges

When applied to gating charge experiments, the Ramo-Shockley theorem

expresses gating charge as the product of the physical charge and the well-defined

electrical travel of the physical charge, summed over all mobile charges present in the

domain. To apply Ramo-Shockley to a specific example, we consider an experiment by

Seoh et al. (1996) that produced an unforeseen result. Seoh et al. created mutants in

which a charged residue of a membrane-spanning segment in a K channel monomer was

replaced by a neutral residue. They found that deleting a positive charge of the S4
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segment eliminated up to 7e0 of measured gating charge. (e0 is the proton charge.)

Because of the tetrameric structure of the protein, one might expect that at most 4e0 of

gating charge would be eliminated in such mutants. In the Seoh et al. experiment, upper

bounds for the magnitude of the physical charges in the wild type and mutants are known.

The movements of the charges in the protein are not known. It is not clear a priori if the

movement of these atomic charges (in the native protein) could contribute a

disproportionately large amount to the gating charge recorded by the external electrodes.

Eq. 2 allows one to narrow the interpretation of these results. For instance, one

might think that even if the charges move between the same starting and ending points,

the measured charge would depend on the local electric field in which the physical

charges travel. If this were true, charges traveling across a region of high local field

strength might contribute disproportionately to the measured gating charge, or their

deletion might reduce gating charge disproportionately. Eq. 2 states, however, that

neither structural charges nor their polarization charges can exert such an amplifying

effect on the relation between atomic and measured charge movements; if the mobile

charges move between the same points 
  

′r
j  and 

  
′′r
j , the electrical travel

   
U ′′r

j( ) − U ′r
j( )



 1 volt   does not change because neither the particle charges nor

polarization charges induced by the particle charges contribute to 
  
U r( ) .

The gating process is, of course, not independent of the local electric field present

where and when the charges move. In particular, changes in the local electric field can

change the electrical travel that the mobile charges actually undergo when perturbed by

an applied voltage, although they do not change the map defining electrical coordinates.
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For example, deletion of some of the mobile structural charges of an S4 helix that moves

as a solid body likely reduces the total electric force acting on the helix. Consequently,

the geometric travel of the mutated helix, and of the undeleted S4 charges on it, might be

reduced. The positions 
  

′r
j  and/or 

  
′′r
j  would change, reducing the measured gating charge.

Within the constraints set by the Ramo-Shockley theorem, the experiment of Seoh

et al. can be interpreted in two ways: (1) that deletion of charges  qk
 restricts in some way

the electrical travel of the other mobile charges 
 
q

j  (changing 
  

′r
j and/or 

  
′′r
j ) or (2) that the

mutant channels have a different dielectric geometry from the native channel, changing

  
U r( ) . Of course, the experiment might both restrict electric travel and change the

dielectric geometry.

Ramo-Shockley and energy

Electrophysiologists have long used effective parameters to assign energy contri-

butions to physical processes inferred from experiments. For example, Hodgkin and

Huxley (1952) hypothesized that charged particles moving in the membrane electric field

do the work   W = ze
0
E

m
 on the membrane component that creates the voltage dependence

of the Na+ and K+ conductances. Here,  Em
 is the membrane potential,  z  the effective

valency of the particle, and   e0
 the proton charge. Similarly, Woodhull (1973) described

the voltage-dependent block of Na+ current by protons assuming that the “potential

energy” of the blocking proton included a contribution   W = e
0

δ E
m

, where δ  is the

“fraction of membrane potential acting at the site.” Whereas the relationship between the

moving microscopic charges and the externally recorded charge is given by the Maxwell

Equations (which lead to the Ramo-Shockley theorem), the definition of effective charges
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is based on energetics.

Energetics, however, are difficult to assess in an open system (such as an ion

channel), which exchanges heat, charge, matter, and energy with the environment. Heat

flows between the channel and baths because (1) the motion of ions in the pore and the

motions of gating particles of the protein involve atomic collisions, and (2) the ions

typically flow down a concentration gradient. Charge flows between the channel protein

and baths because ions flow through the pore and capacitive charge flows between gating

machinery and baths. Matter flows between the channel and baths because ions enter and

leave the channel. Some of the ions may cross the channel, but most do not. Ions may

also enter and leave other places in the channel protein besides the conduction pore.

Obviously, the energy supplied by an external circuit and the heat exchanged with the

baths must equal the energy of all these processes, only one part of which is the energy of

particular interest, namely the energy that modulates the ion flow. This energy and its

associated effective charge are difficult to define. Specific physical models of the gating

or blocking process are needed to evaluate these energy terms.

Calculating current in simulations of ion channels

Eq. 1 allows calculation of currents in a simulation when charged particles move

between positions, for instance in simulations of gating current, or of ionic current

flowing through the pore of an ion channel. Eq. 1 estimates current much more efficiently

than counting ions crossing a surface (Chung et al., 1998), because it provides a sample

of the instantaneous current at each time step of the simulation, whereas counting of

crossings produces relatively few current pulses and does not capture displacement

current nor its essential contribution to the noise. Similarly, Eq. 2 allows one to track
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charge efficiently.

The sampling of current is an important application of the Ramo-Shockley

theorem in electronic device simulations at the particle level (Gruzinskis et al., 1991;

Babiker et al., 1998). This method is just now finding its way into simulations of ion

channels (U. Ravaioli (University of Illinois, Urbana-Champaign), personal

communication; M. Saraniti (Illinois Institute of Technology), personal communication).

CONCLUSION

The Ramo-Shockley theorem allows one to relate, in a general way, microscopic

movements of physical charges in ion channels to macroscopic currents recorded in a

voltage clamp.
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Figure Captions

Figure 1. Equivalent circuits for the two thought experiments used to derive the Ramo-

Shockley theorem (see text).

Figure 2. Mapping geometric coordinates to electrical coordinates. A conductive pore

provides an aqueous bridge through the membrane (qualitatively similar to the open pore

of a K channel (Jiang et al., 2003)). The domain (panel A, drawn to scale) is a generalized

cylinder (maximal radius 5 nm, length 13 nm) and is shown in an axial cross-section; the

highlighted part in A is shown at larger scale in panel B. Electrodes bound the two

hemispherical baths. The top (external) electrode is grounded, whereas the bottom

(internal) electrode is maintained at 1 volt. Isopotential lines are shown at 50 mV

intervals (solid lines); some intermediate isopotentials corresponding to 25 mV intervals

are also included (dashed lines). The isopotential lines also mark surfaces of constant

“electrical coordinate” (with respect to the grounded electrode), corresponding to

intervals of 0.05 (or 0.025). The dielectrics are described by dielectric coefficients of 80

(bath solutions and pore, unshaded) and 2 (lipid and channel, shaded in gray). At the

lateral boundary of the membrane (dark gray lines), a linearly varying potential is

imposed

Figure 3. Mapping geometric coordinates to electrical coordinates. An S4 helix segment

spans the membrane through a “gating pore” (as envisioned by Bezanilla (2002)). Two
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different electrode arrangements are used. One arrangement includes bath solutions

between the membrane and electrodes (panel A, c.f. Fig. 2); panel B shows an

enlargement of the region bounded by the dashed line in A. In the other arrangement, the

electrodes cover membrane and protein like a thin metal foil (panel C).  Isopotential lines

are shown at 50 mV intervals (solid lines); some intermediate isopotentials corresponding

to 25 mV intervals are also included (dashed lines). The dielectrics are described by

dielectric coefficients of 80 (bath solutions, unshaded) and 2 (lipid and channel, shaded

in gray).
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