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A general equation is derived which, through an arbitrary irrotational vector field, connects the
electric charge carrier motion and the dielectric property of a system with its external currents,
voltages, and powers. It is applied to generalize Ramo’s theorem to any conducting medium and
boundary condition, to compute the components of the energy balance, and to obtain a new, gen-
eral, and straightforward relationship between carrier velocity and output noise which, to show its
potentiality, is used here to evaluate the thermal noise.

For studying an electric system one often needs to know
the current induced in a given electrode by the motion of a
single or many electric charge carriers occurring in it.

The problem is solved by Ramo’s theorem!' for vacuum
tubes and ionization chambers and by its extension, due to
Cavalleri, Gatti, Fabbri, and Svelto,? for semiconductor
detectors in which the electric charge carrier is moving in
a space-charge region and, as well in the preceding case,
all the n electrodes are maintained at constant potentials
Vi (h=1,...,n).

In this work, by computing, over a given region of
volume ) and surface S, the integral of the scalar product
J- F between the current density J and an arbitrary irrota-
tional vector F, we obtained a general equation which al-
lows us to determine the currents induced by the carrier
motion not only when ¥} (¢) depends on the time ¢ but also
when, for whatever medium, the dielectric properties
themselves are functions both of ¢ and of the space r.

By giving suitable values to the arbitrary vector
F=—V¢ or to its potential ¢ =U on the boundary surface
S, such an equation also allows one to verify the energy
balance, to prove Kirchoff’s law for the currents, and to
obtain a new general relationship suitable for computing
the current noise due to the velocity fluctuations of the sin-
gle carriers.

I. EQUATION DERIVATION

Let the conduction current density J.(r,z ) be given by

N
Jc - Z q,~v,~(r,~)5(r—r,~) .

i=]

(1.1

where g;, v;, and r;(¢) are the charge, the velocity, and the
position, respectively, of the ith charge carrier of the N (¢)
carriers contained in Q at z; v; is the group velocity if the
carrier is described by a quantum-mechanical wave pack-
et.

Moreover, let E(r,t), D(r,t), and J; =8D/8¢ be the
electric field, electric displacement, and displacement
current density, respectively, while for an isotropic medi-
um, after the varible substitution r' =r+p and ¢t'=¢ — 7, in
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the most general form we have
D-fdr’f_twdt’s'(r,r’;t,t’)E(r’,t')
-fdp_!;mdrs(r,p;t,t)E(r+p,t —17)=Y(¢E) ,
(1.2)
Ja=Y(3(eE)/at) , (1.3)

where, and afterwards, for simplicity, we use the integral
operator representation

Y-fdpj;mdr,
Yn-fndrfdpj;wdr R

Q) being the r integration region.

Since the electric polarization at r and ¢ tends to zero
when p and 7 increase, if E, with regard to &, is a slowly
varying function of p and 7 themselves, we can consider
that in the integrals ¢ =¢,4(r,t)6(p)&(z) and, in particu-
lar, if ¢ is time independent too,

(1.4)

(1.5)

&o(r) being the static, local electric permittivity;? in such
cases, in particular, from (1.2) and (1.3) we also have
D=¢,E and J; =9(g, E)/0¢ with g, =¢4 or & =¢.

For the total curent density J we have finally

J=J.+J4, V-J=0.

e(r,p;t,r) =go(r)6(p)é(z) ,

(1.6)

Now let us consider an irrotational vector point function
F(r,t) defined throughout the region Q by

F=—-V¢ (rin Q) ,
o=U(r,t) (rinS)

1.7)
(1.8)

for any arbitrary given continuous single-valued function
U (r,t) which also depends on .
The objective is computing, over (2, the integral

r=f ar®n . (1.9)

For this let us assume that E= — Vy is irrotational too (y
being its scalar potential?) and let us recall that for two
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vector point functions G and L =VA,
G'L=G'VA=V-(AG)—AV G . (1.10)

Then by making L =F and G =J from (1.6)-(1.10) and
from the divergence theorem we obtain a first expression
for I" given by

I“——deS-(UJ)=—Ys-(UJ) , (.11)

where dS is the oriented element, with the outward nor-
mal, of the boundary surface S of Q and Y =-fsd S.
Now let us consider the product

F-0(¢E)/ot =—F-0(eVy)/ot ,

where F is a function of r and ¢, E and y are functions of
r+pandt —1t,and V=V,. From (1.10) we have

F-OCE) o |3V | (py | (1.12)
ot ot
=g, |8
p=5V (eF)+yv- | oF

=§—(—§—IS‘QV~F+29‘;—YS—)-F, (1.13)

so that from (1.1), (1.3), (1.4), (1.6),
(1.11)-(1.13) we obtain the final equations

(1.9), and

N
Jods-Wn =T quie) Fa)+Hs(F) ~ Ha(F)

i=1

(1.14)

Hg=Y

Ys' [—a'('g':L)‘F]], HQ-Yn(p(F)) N (1.15)

which connect J, y, and ¢ to the carrier velocity v; though
the arbitrary vector F and its potential ¢ =U on S.

II. INFERENCES

A. Induced currents. Ramo’s
theorem and its extensions

Let us apply Eq. (1.14) to some cases by specifying the
value of F or of U (r,¢) over S.

For this let us divide S in n surfaces S, (h =1,...,n)
and, as a first case, let us define F=F,(r) through
V:-F=0in Q and U =1 over a given S, and U =0 else-
where on S. Then from (1.14) we have

N
ip= Z qivi(rl)'F,h(r,-)'-Hs(F”,)+HQ(F”,) s

i=1

.1

where iy = —Yg,-J is the current entering € across Sj
and, according to (1.13) and (1.15), we have

Hﬂ-%wﬂ(w,h-wn : 2.2)
which, therefore, becomes null for an homogeneous medi-
um.

Moreover, if the surface S =, .., ») is metallized, so
that the potential y assumes the same value V;(¢) on it,
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we have

Hs—ai 3 Yl — D) Y5 (6F1p)) .
k=1

(2.3)

Equations (2.1)-(2.3) allow one to compute the current
ip induced across S, by the moving carriers and by the
time variations of the medium permittivity, the internal
potential, and the electrode voltages in the most general
case and, hence, also in that of (1.5). However, in the
latter case it is more convenient to define F =Fj; through
V- (gFix) =0, and again U =1 over S} because, accord-
ing to (1.13)-(1.15), one also has H o (Fi;) =0 for inho-
mogeneous media and (2.1) becomes

vV
or ’

Cui =Ys," (eoF1s) being the capacitance between the sur-
faces S, and Si.

For time-independent and -dependent potentials ¥V,
(2.4) gives Ramo’s theorem' and the Schockley result,’
respectively, extended from the vacuum to any material
and electric field for which (1.5) holds true.

As a second case let us now define F=F, through the
equation

V-Y(eF,(r+p,t —17))=0,

in Q and the boundary condition U=V}, over
Sp(h=1,...,n), that is, we choose as F, the electric field
due to the electrodes with their actual potential in the ab-
sence of any volume charge distribution except the one due
to dielectric polarization if the medium is not uniform.
Then from (1.9), (1.11), and (1.13)-(1.15) we get the
equation

N n
ip= Z q,~v,~(r,~)' Fih (l',') - 2 Chk (2.4)
k=1

i=]

(2.5)

n N
Z Viyip = 2 v;(r;) F,(r;) —Hs(F,)

h=1 =1
+HoF) = [ drE, D), 2.6)

which, as well as (2.1), holds true in the most general con-
ditions.

In the case of (1.5), instead, (2.5) becomes V- (&F,)
=0, so that we have F, =Y} = V34 Fi;. Then, according to
(1.13) and (1.15), (2.6) becomes

14"

n N n n
E Viyip= Z q,-V,-(l',')'Fv(r,') - Z Z CuVy—— ,
h=1 i=1 K=1h=1 o1

2.7

which, when V}’s are constant, reduces itself to the exten-
sion of Ramo’s theorem to the semiconductor detectors,
due to Cavalleri ef al.?

B. Energy and current balance

It is worthwhile to show that (2.6) expresses the energy
balance.
For this we observe that its first member,

n =
E Vhih"'g': ,

(2.8)
K= o
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represents the work entering the system in unit time,
whereas

: 9D |- Ddr=W
fn[E J+E at]dr S, @ nar=22

is the corresponding variation of its internal energy.

If we put E=F,+E, where F, has been previously de-
fined and E, = — Vy, is the electric field due to the actual
charge distribution and to the boundary condition
vq(r,2) =0 for r in S, from (1.6) and (1.10), where we put
G=J and L =E,, we have

J B sar=—{ vy, Dar

+J vyv-ddr=0. 2.10)

Therefore, according to (2.8)-(2.10), in effect (2.6)
verifies the energy balance 9=/t =dW /9t and it allows
one to compute the various components.

Such a balance, according to (2.6) itself, seems to be in-
dependent of E,. However, this is not true because E, af-
fects the carrier velocities.

As a further application of (1.14), and as a check, let us
assume that ¢(r,t) =U(r,t) =U (¢) is independent of r in
Q and S. In this case from (1.7) we have F =0 and then
from (1.13)-(1.15) we get U(¢) X in(¢) =0, that is (1.14)
also allows one to deduce Kirchoff’s law for the currents
which, of course, according to (1.6), may be obtained in a
direct way from f J-dS=[ V-Jd Q =0.

2.9)

C. Noise

The Eq. (1.14) connects the output parameters,
currents, and potentials to the corpuscular nature and
behavior of the single charge carriers and to their motion,
and, in particular, to their velocity fluctuation. For such
characteristics (1.14) may be used as a powerful tool to
study the noise phenomena of electrical systems.

In order to show this fact it is suitable to choose a vector
F(r,t) =F (¢)& which is independent of r, @& being a unit
vector independent of both r and ¢, because in this way the
motion contribute to (1.14), unlike in Ramo’s and
Shockley’s equation (2.4), becomes dependent only on the
component v,; (r;) =v;(r;)- & along i of the carrier veloci-
ty. This result is important for any following statistical
computation of fluctuations and noise.

In virtue of such choosing of F, from (1.7), (1.8), and
(1.13)-(1.15) we have ¢=—F(t) (r-i+a), a being an
arbitrary constant, and

n N
3 J,d8 @@= quu—Hs@+Ha@ , @11

h=1 i=]

where, since Vi =0, H g and Hy are given again by (2.2)
and (2.3) after the substitution of F;; with @ so that also
in this case, in particular, we have H g =0 for a homogene-
ous medium.

In order to see the facilities of the new Eq. (2.11) for
analyzing noise phenomena, let us apply it to compute, in
the case of (1.5), the thermal noise of a conducting
cylinder in which i is chosen parallel to its x axis and the
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terminal surfaces S;=S,=S, put at x =0 and x =w,
respectively, unlike the lateral one S';, are metallized.

From (1.5), (2.2), (2.3),and (2.11), for a sample homo-
geneous along the x axis and g; =¢q, the current i; across
S| becomes

, Y av
u-"q;.z vui+C‘Zt'+L3dS'(l—x/W)Jd ; (2.12)

where V=V, —V; and C =w ™'Y, (gil) is the sample
capacitance.

Let us apply (2.12) just to compute the power spectral
density S; of i; when the terminals 1 and 2 are shortcir-
cuited, that is, when it is ¥ =0 and, accordingly,

= —jy=j, Yss'Jd"O, AN(@)=0 ,

and (v}, =O0.

Therefore, from (2.12), whose second member reduces
to its first term when, at least at no high frequencies, the
contribution Yg,- (xw™'J;) can be neglected too, the
correlation function of i, since v,;’s are uncorrelated, be-
comes

N
GOi+s =L F <v,‘2,.(,)>,exp[_l_::L]

i=1

’NkgT
-—q-—?B—exp —%— , (2.13)
w'm c

where kg is Boltzmann’s constant, T is the absolute tem-
perature, m is the carrier effective mass, and 7. is the
correlation time.®

Since y=q1./m(1+jw) and G =quN/w are the car-
rier mobility and the sample conductance,® respectively,
from the Wiener-Khintchine theorem applied to (2.13) we
obtain

S;=4kgT RelG(jw)] , (2.14)

in accordance with Nyquist’s theorem; w is the circular
frequency.

The new Eq. (2.12), after adding the inhomogeneous
contribution

w [ dr(ay/an @eo/ox)

and especially (2.11), are quite general and they may be
used as bases to study any noise type’ in any conducting
systems.

Of course in order to study the noise of a system by
means of (2.11), when (1.5) does not hold true, as well as
to compute the induced current and the components of the
internal power W/t by means of (2.1) and (2.6), respec-
tively, the system under analysis has to be specified
through &(r,p;t,7).

New results may be reached through such new general
tools, especially for the open questions on the noise.

In particular Eqgs. (1.14), (2.1), (2.4), (2.6), (2.7), and,
especially (2.11) and (2.12), by connecting the motion of
the single carriers to the external currents, voltages, and
powers of the system, can be directly and usefully applied
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in the numerical simulations of the electric, transport, and
noise phenomena, such as the Monte Carlo method, be-
cause they, indeed, compute the microscopic quantities,
such as velocity and distributions of the particles, as well
as the macroscopic collective ones, directly from the mi-
croscopic motion and behavior of the single particles.

Finally, we also observe that the Egs. (2.11) and (2.12)
also hold true when F=F (¢ )i becomes a low frequency
magnetic field H (¢ )d which, however, acts on the veloci-
ties v;.

III. CONCLUSIONS

A new general equation has been found which, through
an arbitrary irrototional vector and its potential, connects
the boundary currents, voltages, and powers of an electric
system to the carrier motion and to the dielectric-property
variation occurring inside the system itself. It holds true
when the vector potential is negligible with respect to the
scalar one, that is, according to the system sizes, even up to
microwave field.*

Through suitable definitions of the arbitrary vector such
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an equation then allows one to obtain Ramo’s theorem, its
extension to semiconductor detectors, and its present gen-
eralization to any boundary condition and conducting
medium characterized by whatever permittivity depending
on the space and on the frequency. It also leads to the en-
ergy and current balances and to the computation of the
internal power components in the most general conditions.

Finally, apart from other applications, the equation al-
lows one to obtain new simple realtionships which, by con-
necting in a straightforward way the corpuscular nature
and motion of the single carriers to the output currents
and voltages, give general and efficacious tools to study
transport and noise phenomena of electrical systems and to
solve open problems both in closed analytical form and
through direct numerical simulations such as the Monte
Carlo method.
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