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Ahstract. A novel very efficient achnique for charge current calculations in wo-
dimensional Monte Carlo particle sinuilaiion is proposed. The technique tblains
accurate resulls by using a significantly smalisr number of particies lhan the
commanty accepted echnique. The proposed lechnigue permils the two-
fimensional Monte Garlo particle simulation o run on pareonal computers instaad
of on suparcompiters. The rasulls of field-effect transisier simutation are

prosented.

1. introduclion

The two-dimensional Monte Carle particle simulation
combines a two-dimensional spatial representation of the
potential distribution with a three-dimensional Monte
Carlo simulation of the electron motion in momenium
spage. This technique was first used for field-effect
transistor simulation {1]. Tn principic the Monte Carlo
particle techmique obtains the numerical solution
of the coupled time-dependent Boltzmann sguation
and Poisson equation. This technique is applied to the
detailed study of electron transport in submicrometre
MmEsFRTs [2-5] and in mosreTs [6-§] with submicro-
metre pate length. The two-dimensional Monte Carlo
particle method was used for high-mobility field-effect
transistor simulation including 2D elsciron gas ¢ffects
[9-11] and Tor permeablc base transistor simulation
[12, 13]. The velocity-modulation transistors {147 and
real space transfer tramsistor {15] are studied by the
two-dimensional Moote Carlo particle technigue.

The iwo-tlimensional Monte Carlo pagicle simula-
tion consumes much computer Hime. The computation
fime for -orc point of the steady-state current-voliage
chacavieristics obtained by modelling 30000 to G000
particles is 10 1o 40 minutes on a CRAY X-MP/28 [16].
A particularly larpe compastation time is secessary for the
simulation of a transient response of two-dimensional
transistor structures. Even 300000 particies [17] were
simulated for the calculations of transient 7esponse of a
ficld-effect transistor,

In this paper an efficicnt method is proposed for the
current evaluation in Monte Carlo pasticle technique.
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2. Dne-dimensional simuilation

The reason for the low efficiency of the conventional 1wo-
dimensional Monte Cado padicie iechnique can be
easily understood by comparing this techniyue with the
one-dimensional Monte Carlo particle technique.

In the one-dimensional case the diode-current density
jcan be directly evaluated by counting the number of
particles entering and leaving the diode through the
cathode and anode por time sicp At However, there is an
essentially more efficient way of caloudaiing the current
[18,29] In genersl the toial curremt density can be
gapressed as
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where vis the €lectron velocity, (v,x.1) is the distribution
function pormalized to the electron conceniration and £
is the electric field strength. In the one-dimensional case
the tolal current density including the displacement
current is pesition independent, Therefore, intograting
both sides of (1) over the diode length L we obtain
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where {7is the voltage applicd 1o.adiode. Thelast term of
ihe right-hand side of (2) represents the displacement
current caused by a time dependenes -on the applied
voltage. For simplicaly lct us assume that the appled



sltage is time independent. Then {2) can be rewritten as
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Physically F(v, £} represents the electron velocity distri-
bution averaged over the sample. From (2) we obtain the
¢xpression for the current density evaluation by the ong-
dimensional Monte Carle particle techmigue
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where o is the surface charge density of the particle, v, is
ghe instunt velocity of the ith particle and N is the
murnber of particles under simulation inside the sample.

Let us estimate the accuracy of the current density
calculated from (5). For this fet us assume that the
tlectric field in the diode is evaluated precisely so that
particles in the diode move in a seif-consistent clectric
fiedd. Then, according to (5), the statistical fluctvations of
the calculated current density are cavsed by the fluctaa-
tions of particle velocities. Tt is cvident from {3) that the
distribution function #f{o, 1) ropresents the probability
density for an electron having the velocity v at any point
in the diode at the time 1. The statistical fluctuations of
the calculated current dewasity can be estimated by em-
ploying F{s, ). This may bc done in the same manner as
in [20], where the statistical fluctnations of the results
obtained by the ensemble Monte Cardo technique in a
yniform electric field are evaluated. By using egualion
{15) of {267 we obtain
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where (Aj?) is the mean square deviation of currcnt
density at the time t evaluated according to(5), N is the
aumber of simulated particles and j, is the exact value of
the current density. A convenieni cxpression for the
direst:cstimation of ¢A/2) during the calculations can be
obtained from {6). The result is
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The curtent density estimated -according to {5) is
considerably higher in accuracy than the results obtained
by counting the number of particies catering and leaving
the contacts of the diode. This is because {5) takes into
account all the simulated particles, while only a2 small
number of them is considered when the current density is
gvaluated from the particles crossing the contacts. In the
last case the current density is estimated from the parti-
cles thai are placed near conlacts.

1n the two-dimensional Monte Carlo particle tech-
nigue the current through terminals is caleulated from
the number of particles crossing the contacts per time
step. Therefore, only a small nuraber of the total simu-
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lated particles contribute to the currenl. Consequently,
the accuracy of the current evaluationis low cven though
the cloctric field and the cartier velocity distribution
function inside the device would be defined precisely. In
this paper we present a novel efficicnt method Jor purrent
calculation. This method takes into account the contri-
bution to the current by cssentially all the simuiated
particles.

3. A method for two-dimensional simulatlan

First we consider the gencral well known selations. From
the continuity equation

35_;¢d5+i{ pdV =0 (8}
and from the Gaussian theorem
j pdV =z, § EdN %
¥ 5
we phiain
SE jdS=10 {1

where the {otal current §, including the displacement
currcnt, is given by

§=Je g0 5 (1)
In equations (8)-{11) j. is the conauction currentand p is
the space charge density. The integration 18 performed
over the velume V and surface §.

For the sake of completencss we consider the geo-
metry of the ficld-eflect transistor presented in figure 1.
The standard boundary conditions are uswally applied
for the device, Le. Ditichlet boundary conditions to all
metal-semiconductor interfaces and Neumann boundary
conditions {the zero normal derivative of the potential)
ta other surfaces. The total carrent densily normal 1o
these surfaces equals zero. The nommal condoction cur-
rent equals zero because the carriers cannol pass through
surfaces, and the normal dizplacement current equals

Figure 1. The field-effect ransistor geometry.
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zero due to Dirichlel boundary condilions. With regard
1o this, integrating {108) over contour C, (figure 1) yickls

=4, +1, {12)

where f,, 1, and 1, are the source, gate and drsin currents
respectively. By integrating {1 over contour €, we
ohtain

; ]
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where §, is the component of the total current Jdensity
along x axes. The integration-of both sides of {13} pver x

XX, X0  (13)
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In a similgr- manner inteprating {18) over contour €5 and
over x yiglds

1.11(1} —',

f Jdx, p)dxdy. {15)
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By :subst:ituﬁng (1] into {14) and (15) we #nally obtain
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where ¢ s 2 potential. The gate current is defined

aveording te {12). In a siewlar way for the device geo-
snetry presented in fipure 2 we obtain
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Figure 2. The slmulated fiaid-effect ransistor geomstry.

where U, is the drain voltage, which can bc time-
dependent. From (16) and {17) we obtain the expressions
for the two-dimensional Moente Carlo particle simulation
of the device presented in figure 1. The result is
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where (s the finear charge density of a pamr;ie and

the mesh number along the y axes. In {20) the summat:@n
over i s performed over afl the particles that occur at the
time 1 between the source and the gate, Correspondingly,
in {21) the summation over i is performed over the
particies occurring between the gate and the drain. The
regions of the simulation are indicated by shaded arcasin
Bigure 1. Analogous expressions can be-deduced for (1%8)
and {19) that correspond to the devioe geometry pre-
sented in figure 2. The summation in this case is per-
formed by the particles fonnd in the hatched areas of
figure 2.

Under steady state the potontia] distribution is time
independent and the fpal texms of {16}-{21) containing
the potential gan be omitted Moreover under the steady
state and under typical transistor bias voltages the gate
current I, equals zero, and thas 1, =1, In this case
{16)-{21) can be simplified. For the device geometry
presented in figure { we oliain

L=ly= -

L J- fex, yydx dy.  (22)
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From {22) we can derive an expression for the current
calealation in the Monte Carlo particle technique. The
result s

T o g . :
I =1, = €23
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The summation in {23) 35 performed over all the particies
found between the source and drain contacts. In a similar
way for the device geomelry shown in figure 2 we obtain
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“The summation in {25} is performed over all the siman-
lated particles independently of their position.



Evidently the proposed method penmits a calculation
of the current in two-dimensional siructures with an
essentially higher accuracy than the method of counting
1he numbser of particles entering and leaving the contacts.
The method can be applied to other transistor struciures:
HEMTs, permeable-base transistors ete,

The accuracy of the proposed method tan be esti-
mated in a similar manner to that abowe for the ong-
dimensional Moate Carlo technique. We assume that the
potential is precisely defined and hence the statistical
fluctuations of the estimated current arc caused by the
particle velocity fluctaations. We introduce the spatially
averaged distribution function, In the steady state we
have

Flo) = f o, x, 5 dx dy. 6)

The integration in{26) is performed over the hatched
areas in figures | and 2. The distribution function F(x)
carresponds 10 the probability dessity for an electron
with velocity ». Following equation (15) of [20] we can
write.
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where 1, is the exact value .of the curteni, {AI*) is the
mean-sgqunare deviation and N is the sumber of particles
inside the corresponding shaded region. Actording {o
{26} and (27) the mean-square deviaion (Al*> can be
estimated directly during the simulation, From {26 and

27 we find
g OO

<A-' >
The summation in (28) is performed over the particles
found in the corresponding region.

4. Mumerical results

The gallium arsenide field-effect transister model cm-
ployed is the same as in [17] and is shown in figure 2.
Such a model is choesen o compare the results of the
present work with those pbtained in [17], because the
calcolations in [17] were performed with an extremely
high number of simulated particles N = 3600600

The device length paramsters are as folows: x
0.5 pum, x5 =1 um, x4 = lS,um =01 pm, Thx: um-
{orm doping density 107 cm 3 and the lattice lempera-
ture To = 300 K are assumﬂd The simplified two-valley
gallium arsenide model s adopied in accordance with
[i73.

The two-dimensional Poisson -equation was solved
using the marching algorithm [217. The Dirichlet bound-
ary conditions were applied to the contacts, and the
MNeumann boundary conditions were applied to other
surfaces of the device. The uniform mesh spacing was
117 A x 63 A, The time step Af = 5 &5 accepted. The
clectron density-distribution is assigned to the meshes by

2D Monte Carta particle modelling
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Figure 3. The transient response of source and drain
currents, Tha full curves represent our results; the broken
curves represent the vesults of {171, The drain voltags

Va = 1¥_The time variation of the gate voltage is stiown in
‘the inset. :

the cloud in the cell method [22]. The mumber of
particles employed iz about 10060

The polar optical, acoustic, intervaliey and ionized
impurity scattering processes gre taken into acoount. The
source and drain are considered ns ohmic contacts {ab-
sorbing boundaries). Other surfaces including the gate
region are treated as reflecting boundaries. The thermal
electron injestion frem the source and drain contacts is
simulated by an igjechion of a corresponding number of
particles for cach timc step from bhoth contacts. The
number of particles necessary to be injected is defined by
the electron concentration at 1he contacts, and is taken to
be 10?® cm™? Considering the thermal equilibsinm at
the source and drain contacts the valocity distdbution of
the injected particles is

F{x) = v, exp{—mv* /2 T,). 29)

The calculated transient response of the source and
drain curven! is preseated in fipure 3. The time variation
of the gate voltage is shown in the insct of fignre 3. The
comparison of the present results with those obtained io
{171 shows approximately the same accuracy despite the
fact that the number of simulated particles in {17)
excceds the particle number used in the present paper by
30 times.

5. Conclasions

An cfficient technigas for the current evaluation in two-
dimensional Momte Carlo particle simulation is pro-
posed. The eflidiency of the technique is examined by the
simulation of the ficld-cffect transistor. The proposed
technigue can be casily geacralized to other two-dimen-
sional structures: permeable-base transistors, high clae-
tron mobility transistors eic. This techaique apprars to
be particularly promising for the transient response and
imtrinsic agsc calculations.
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