end impedance of the quarter-wave line, and _8
represents the electrical length of the line. In_ this
figure the solid line is obtained from (11). It_ will be
observed that the experimental points are in close
agreement with the theoretical curve, the grgatest
departure being of the order of 5 per cent. Itis inter-
esling to note that there is no indication of the opti-

mum predicted by the previous theoretical results, -
shown by the dashed line.

We must conclude, therefore, that the shortine
calculations based on previous theoretical formuylag
are in error, and that the theory presented in thj,
paper is adequate for the design of transmission-lipe
circuits.
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Currents Induced by Electron Motion |
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Summary-—A method is given for compuling the insianiancons
current induced in neighboring condtictors by @ given spgc:ﬁed meolian
of electrons, The method is based on the rcpeatc'd ust of o simple
equation piving the current due io o single electron's movement anc 18
believed fo be simpler than metheds previously described.

INTRODUCTION

N designing vacuum tubes in which electron
I transit-time is relatively long, it becomes neces-
sary to discard the low-frequency concept ithat
the instantaneous current taken by any electrode is
proportional to the number of electrons received by

O

O
Yt O
O

! O
O

A B c 0]
Fig. 1 Fig. 2

it per second. Negative grids, it is known, may carry
current even though they collect no electrons and
current may be noted in the circuit of a collector
during the time the electron is still approaching the
collector. A proper concept of current to an electrode
must consider the instantaneous change of electro-

~ static flux lines which end on the electrode and the '

methods given in the literature for computing in-
duced current due to electron flow are based on this
concept.

A method of computing the induced current for a
specified electron motion is here explained which is
believed to be more direct and simpler than methods
previously described. In the more difficult cases, in
which flux plots or other tedious field-determination

. methods must be used, only one field plot is needed
by the present method while the usual methods re-
quire & large number.,

* Decimal classification: R138. Original manuscript received
by the Institute, September 16, 1938,

+ General Engineering Laboratory, General Electrie Com-
‘pany, Schenectady, N. ¥.
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MgeTHOD OoF COMPUTATION

The method is based on the following equation,
whose derivation is given later:

i= E.evr

{1)
where 1 is the instantaneous current received by the
given electrode due to a single electfon’s motion, ¢
is the charge on the electron, v is its instantaneoys
velocity, and E, is the component in the direction ¢
of that electric field which would exist at the elec.
tron’s instantaneous position under the following
circumstances: electron removed, given electrode
raised to unit potential, all other conductors

~grounded. The equation involves the usual assump.

tions that induced currents due to magnetic effects
are negligible and that the electrostatic field propa-
gates instantaneously.

SiMPLE EXAMPLE

A simple example is offered in the computation of
the instantaneous current due to an electron's motion
between two infinite plates (Fig. 1). (The result js
a starting point for the analysis of a diode, for
example, when the transit-time is long.) '

From (1) we obtain immediately

gy
i= ek, = -

d

In the literature! it is stated that this same result
is deduced from image theory. This involves the
setting up of an infinite series of image charges on
each side of the plates for a given position of the
electron and a consideration of the total flux crossing
‘one of the planes due to the series of charges, a
method which is lengthy and requires no little
familiarity with methods of handling infinite series.

Tue GENERAL CASE
Consider a number of electrodes, 4, B, €, B/in
the presence of a moving electron (Fig. 2} whost
path and instantaneous velocity are known. A tedi-
ous way to find the current induced in, say, electrode
1 D. 0. North, “Analysis of the effects of space charge on grid

impedance,” Proc. LR.E.,, vol. 24, pp. 108-153; February,
(1936).
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A4 is to make a flux plot of the lines of force emanating
from the electron, when it is at some point of its path,
and note the portion of the total lineg which end on
A. By making a number of such plots it is possible
to observe the change in the number of lines ending
on 4 as the electron moves, and consequently to
compute the induced current. The accuracy is de-
pendent upon the number of plots made.

It is much simpler to use (1). One plot is made for
the case of 4 at unit potential, B, C, D grounded,
and the electron removed, E, is then known and °

i= F,ev.

To minimize the induced current in a negative
grid, an important consideration in the design of
high-frequency amplifiers and oscillators, it may be
that (1) will prove helpful to the designer. The equa-
tion states that the electrode configuration should be
such as to yield minimum E,. If the electron’s path,.
for example, is made to coincide with an equipo-
tential of the grid (not an equipotential in the field
in which the electrén is traveling, of course, but an
equipotential in that artificial field due to unit po-
tential on the grid, the electron removed, and all else
grounded) the induced current will be zero. It will not

- be passible to realize this for the complete electronic

path, since the electron must start at some equipo-
tential surface, but it may be possible to find prac-
tical configurations that will approach this condition
Over a good share of the path,

DERIVATIOH or EquatrioN (1)

Consider the electron, of charge e, in the presence
of any number of grounded conductors, for one of
which, say 4, the induced current is desired. Sur-
round the electron with a tiny equipotential sphere.

hen if V is the potential of the electrostatic field,
in the region between conductors

VI =0

Where Vv is the Laplééian dper'ator.' Call ¥V, the

Potential of the tiny sphere and note that V=0 on

the conductors and ‘
av

~ | ——ds = 4re

an
sphere's surface

Where 9V /an indicates differentiation with respect to
the outward normal to the surface and the integral
" taken over the surface of the sphere.

OW consider the same set of conductors with the
tlectron removed, conductor 4 raised to unit po-
tntial, and the other conductors grounded. Call the
Potentiat of the field in this case 77, so that V2 )/ =0

- the space between conductors, including the point

(Gauss’ law)
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where the electron was situated
potential of this point V..
Now Green's theorem? states that

before. Call the new

f [V — voryrlay

volume
between
boundaries ;
f [V.v av v aV':’d (2
- _— = 145, .
dn dn )
boundary
surfaces

Choose the volume to he that bounded by the!
conductors and the tiny sphere. Then the left-hand
side is zero and the right-hand side may be divided
into three integrals: : ' :

(1) Over the surfaces of all conductors except 4.
This integral is zero since V= |’ =0 on these
sutfaces, _

(2) Over the surface of A. This
—J(oV)/(am)ds,

surfacae 4
for V=1 and V=0 for conductor 4.

(3) Over the surface of the sphere. This becomes

av av’
~vi iy Vo [ S,
an an

sphere’s surface  sphere's surface

reduces to

The second of these integrals is zero by Gauss' |
law since f(3V")/(dn)ds is the negative of the charge
enclosed (which was zero for the second case fin
which the electron was removed).

Finally, we obtain from (2)

v v

0= — -—-ds-—V,"f—mds
on an

surface 4 sphere's surface

= 4204 + dweV .

ot
Q.‘I =| — eV‘af
d0x av, [av,f dx]
B4 = = — g = e g | ———
4t dt dx dt
where x is the direction of motion,
Now
dx av.’
=19 and ~—- = —~ E_
di dx
80’
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page 160, Cam.

i= ek,

¥ J. H. Jeans, “Electricity and Magnetism,”
bridge, London, England, (1927),



