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for Monte Carlo Device Simulation
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Abstract—We present a generalized Ramo–Shockley theorem
(GRST) for the calculation of time-dependent terminal currents
in multidimensional charge transport calculations and simula-
tions. While analytically equivalent to existing boundary inte-
gration methods, this new domain integration technique is less
sensitive to numerical error introduced by calculations of finite
precision. Most significantly, we derive entirely new optimized
formulas for the ensemble Monte Carlo estimation of steady-state
terminal currents from the time-independent form of our GRST,
which are in general not equivalent to the time-average of the true
time-dependent terminal currents. We then demonstrate, both
analytically and by means of example, how our new variance-
minimizing terminal current estimators may be exploited to
improve estimator accuracy in comparison to existing methods.

I. INTRODUCTION

T HE simplest method which may be used to calculate
terminal currents within Monte Carlo charge transport

simulations is particle counting. That is, every particle which
enters or leaves a contact is tallied as flux through that
contact. This type of estimator tends to converge very slowly
because of the relative rarity of boundary crossing events,
a problem which is exacerbated by modern highly doped
contacts in which the mean carrier velocity is only a small
fraction of the thermal velocity. An analogous problem arises
in moment-based simulation methods from the errors asso-
ciated with numerical differentiation in highly doped contact
regions [1], [2]. Simply displacing the boundary surface along
which contact current is calculated outwards from the high
doping regions can provide a partial solution for moment-
based simulation in some circumstances [3], but does not fully
address the fundamental problem for particle-based Monte
Carlo simulations. Considerably better convergence may be
obtained by calculating the exact instantaneous current densi-
ties and and integrating this result along the contact
boundary. This method, although very straightforward, has
the disadvantage of relying heavily on the accuracy of the
numerical solution on only a few grid nodes. Furthermore, as
we will see, if steady-state terminal currents are our goal, there
are better Monte Carlo estimators than the time-average of the
true terminal currents. We offer a brief historical digression to
motivate these thoughts.

The original domain integration method for terminal cur-
rents comes from the work of Shockley [4] and Ramo [5]
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based on a Green’s function technique. The Ramo–Shockley
theorem has since been restated for multiple charge carriers [6]
based on the linearity of Maxwell’s equations and separately
using energy balance arguments. For the total current through
contact , the final result is [4]–[6]

(1)

where the summation is over all chargeswithin the domain
and and are the velocity vector, position vector,
and the charge of theth particle, respectively. is
the electric field generated by removing all charges from the
domain and grounding all contacts except for contactwhich
is set to 1 V. Although this result was derived under the as-
sumption of constant contact potentials, an additional term may
be added to (1) to account for their time dependence [7]. By
integrating particle velocity over the entire device domain, the
Ramo–Shockley theorem overcomes the previously mentioned
numerical weakness of boundary integration schemes. In the
general case of transients and/or generation/recombination
processes, however, the Ramo–Shockley theorem offers no
straightforward way to distinguish between the electron, hole,
and displacement contributions to the total terminal current. It
will easily be seen that the Ramo–Shockley domain integral
formulation of terminal currents is a special case of a more
general technique introduced by Mock [8] and Gajewski
[9] based on the concept of “weak solutions,” which may
be used to overcome this disadvantage. In the following
analysis, we make use of this test function method to derive
general expressions for the time-dependent electron, hole,
displacement, and total current at arbitrary contacts.

We show that thetime-independentform of these general-
ized Ramo–Shockley theorem (GRST) expressions leads to a
new class of estimators for steady-state terminal current, not
generally equivalent to the time-average of the true terminal
currents. We then derive the defining equations for a set
of optimized test functions which, in conjunction with the
new terminal current estimator formulas, lead to minimum-
variance estimators for steady-state terminal currents in en-
semble particle-based simulation. Finally, we provide an appli-
cation of our method demonstrating its improved convergence
properties.

II. GENERALIZED RAMO–SHOCKLEY THEOREM

From the Poisson and Boltzmann transport equations, we
have on the Lipschitzian domain

(2)
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(3)

(4)

Current relations are in general .
The symbol denotes ensemble average, and the variables

, and are the electron and hole densities and the
electrostatic potential. The symbols refer to the
dielectric permittivity, time, space coordinate vector, funda-
mental electronic charge, and net ionized impurity number
density, respectively.

Differentiation of (4) with respect to time yields another
equation which involves displacement current

(5)

For each of the currents and , we have an equation
of the form

(6)

where denotes the total current. Let denote
the usual Hilbert spaces and let and be a
set of suitable test functions

(7)

The boundary may consist of both Neumann and Dirichlet
parts, , with and having positive
surface measure. Multiplication of each equation of type (6)
by the test function yields by integration by parts [8], [9]

(8)

The choice of ensures that the surface integral at the right-
hand side is the surface integral over the contact current (due
to ). A similar test function
technique has already found application in the calculation of
capacitances in complex wiring structures [10].

From (2), (3), (5), and (8), the following simple equations
result for the terminal currents at an arbitrary contact:

(9)

(10)

(11)

(12)

for which we wish to emphasize that the choice of test
functions for each of the four above equations may be made

independently. This set of equations provides a powerful
tool for examining the various contributions to each of the
time-dependent terminal currents for multidimensional device
topologies.

That the identity holds in general for
(9)–(12) is a result of the properties of solutions to the defining
transport equation, rather than a direct consequence of (9)–(12)
themselves. Importance sampling schemes for particle-based
simulation, which often “microscopically” disturb conserva-
tion laws implicit in transport equations, may also disturb
the identity if particle redistribution is
performed between evaluations of any of the terminal current
formulas.

III. REDUCTION OF NUMERICAL ERROR

IN MOMENT-BASED SIMULATION

Gajewski’s implementation of test functions took the fol-
lowing form:

(13)

and is defined as

with defined as the unit step function, and defined
as a third-degree polynomial. Note the similarity between
De Visschere’s in (1) and above. Gajewski’s
actual test functions , however, are more generally useful
for purposes of numerical simulation due to their vanishing
gradient near contact regions for , and their smoothness
arising from the properties of . While one can most often
choose a for which this technique eliminates contributions
to the terminal currents from undesired regions, it may also
simultaneously neglect useful regions. Working in the context
of total current, Mock [8] proposed another defining equation

(14)

where is the electrical conductivity plus . This form
involves no adjustable parameter and its solution exhibits
qualitatively good properties for application in moment-based
simulation.

IV. STEADY-STATE TERMINAL CURRENT ESTIMATORS

General expressions for steady-state terminal currents may
be derived from (9)–(12) by taking their expectation values
with respect to time, setting all time derivatives equal to zero

(15)

(16)
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Fig. 1. Simulated free electron density for a 40-nm LDD NMOS transistor.

Fig. 2. Scalar electron current density variance tensor in units of2:56 � 10
�4A2/cm4.

(17)

(18)

In particle-based simulation, one may employ the following
unbiased estimatorsfor the steady-state terminal currents:

(19)

(20)

(21)

where and are the estimators for steady-
state electron and hole current densities, and generation rates,
respectively. It is important to keep in mind that although the
choice of test functions in (9)–(12) and (15)–(18) influence
the results only to the extent of the numerical precision of the
calculation, the same is not true for (19)–(21), in which the
choice of test functions plays a critical role. This is because
the transport quantities in the integrands of the former groups
of equations represent exact solutions of the time-dependent

and time-independent defining transport equation, whereas the
corresponding quantities in the integrands of the latter group of
equations are merely time-averaged estimates from ensemble
simulation.

V. OPTIMIZATION OF TEST FUNCTIONS FOR

STEADY-STATE MONTE CARLO TERMINAL CURRENT

The spatial convergence of Monte Carlo estimators is typi-
cally far from uniform. This is due to a myriad of different fac-
tors including: 1) spatially inhomogeneous fields; 2) thermal
gradients; 3) inhomogeneity in material composition, doping
level, or strain; or 4) importance sampling and other particle
weighting/redistribution techniques. For the case of ensemble
simulation, the spatial accuracy of the initial solution is often
quite nonuniform. Making use of this fact, we minimize the
variance of (19)–(21), , with respect
to the test functions . Under the assumption of weak
interparticle correlation, the resulting set of Euler–Lagrange
equations is

(22)
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Fig. 3. Test function for electron drain current evaluation.

Fig. 4. Magnitude of the test function gradient.

(23)

(24)

(25)

For simulations using the generation/recombination estimator
described in [11] and [12], the terms in (22) and (23)
may in most circumstances be dropped. The quantity

is the position-dependent current density variance tensor.
Although its exact form for a given problem requires numerical
calculation, one may identify the following useful analytical
approximation:

(26)

which might also be approximated for convenience by the
scalar

(27)

The symbols and are the charge density,
thermal velocity, and mean velocity, respectively, for particles
of type . and are the grid-dependent mean type-
particle number and momentum relaxation time. The optimized
terminal current estimators for steady-state simulation may
then be written as

(28)

(29)

(30)



1086 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 16, NO. 10, OCTOBER 1997

Fig. 5. Drain current convergence time comparison. The simulation was
seeded with initial conditions close to the final solution.

It should be kept in mind that solutions of (22)–(24) always
yield valid test functions for unbiased estimators in (28)–(30),
independent of the exact form of . Note also that all
solutions of the Poisson-like equation

(of which (24) and the simplified forms of (22)
and (23) are limiting cases) with the boundary conditions of
(25) automatically satisfy the condition , which is
a sufficient condition for global current conservation
, in both the time-dependent and time-independent forms of

the GRST. We further note that in the limit of homogeneous
estimator convergence, the function reduces to the
solution of the homogeneous Poisson equation, in which case
(30) is exactly equivalent to the time-average of the original
Ramo–Shockley formula (1).

VI. EXAMPLE: LDD NMOS DEVICE

We provide as a simple example, results for the the case
of a 40-nm -channel LDD MOSFET, with gate and drain
contacts set to 2 V with respect to the source and substrate
contacts. A full-band ensemble Monte Carlo charge transport
simulation was performed with the simulator Degas [11].
Fig. 1 shows the simulated electron density profile of the
LDD device. A scalar version of (24) for the optimized
test function was solved using the approximation to the
current density variance tensor given by (27), whose solution
was then employed in (28) to obtain the terminal currents.
This scalar current density variance function is shown in
Fig. 2. Figs. 3 and 4 show the test function solution of (24)
and its gradient, respectively, the latter of which may be
interpreted as a weighting function for the current density.
Generally speaking, the greatest contributions to the current
estimator come from regions of relatively low density and
high mean velocity. Although the degree of improvement
over competing techniques is of course example-dependent,
we show a comparison of drain current estimator convergence
time in Fig. 5, demonstrating the advantage of the optimized
test function domain integration technique. In this example,
both curves depict cumulative time-averaged data.

VII. CONCLUSIONS

We have presented a general domain integration method for
calculating terminal currents in semiconductor devices, which
avoids certain numerical problems associated with evaluating
currents along boundary surfaces. This generalized form of the
Ramo–Shockley theorem has the advantage of validity in the
presence of generation/recombination processes, and one may
easily distinguish between electron, hole, and displacement
current contributions to the total current. Building upon the
time-independent form of these expressions, we have pre-
sented and demonstrated a variance-minimizing estimator for
the calculation of steady-state terminal currents in ensemble
Monte Carlo simulation, offering considerable improvement
in estimator accuracy with respect to previous methods, which
merely time-average the true terminal currents.
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