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We present a generalized Ramo—Shockley theorem to evaluate particle currents and energy currents
at device contacts, in classical drift-diffusion or hydrodynamic simulation techniques as well as for
semiclassical Monte Carlo and quantum mechanical transport simulation. In contrast to the Ramo—
Shockley theorem, our techniqu#) is derived for conditions of extreme time dependence in the
charge carriers and forcéimcluding particle-induced radiation(2) explicitly accounts for particle
generation and recombination processes such as photoexcitation, forward and inverse Auger
processes, or Shockley—Read—Hall recombination, @ddistinguishes clearly between the
contributions of electrons, holes, and the displacement current. The resulting simple new formalism
reduces to the standard Ramo—Shockley theorem as a special cag96GAmerican Institute of
Physics[S0021-897@6)03603-X]

I. INTRODUCTION contact current. From these general time-dependent equa-
tions with generation/recombination sources, valid also in

Using the method Of_ Green _functions, ShOC&'@“P‘ inhomogeneous media, one may extract the original RS
Ramd independently derived a highly useful domain inte- equations as a limiting case.

gration formula for terminal currents induced by charge mo-
tion in an arbitrary multidimensional structure with multiple I GENERALIZED TERMINAL CURRENT

contacts: CALCULATION

|(k):2 qu](k).Vj’ (1 . We pegin yvith the two inhqmqgeneous quwgll equa-

i tions which, with the usual definitions of electric field and
magnetic flux density in terms of the scalar electric potential
¢ and magnetic vector potentiél, yield the following well-
known equations:

where the summatiof runs over all particles within the
volume, q; andv; represent particle charge and velocity, re-
spectively, and the indek indicates the contact number for
which the current is to be evaluated. The variab# is the P
electric field evaluated at the position of partiglewhich ~ V-€Vd+ — V-eA=—p, 2
would result if all charges were removed from the volume

and all contacts except for contaktwere grounded, and _, A d 1

contactk were set to 1 V. Its application has been wide- Vv M€ G M€ 5 VO—V(V-A)=uV ;XVXA
spread, ranging from hot carrier noise in bulk

semiconductorsand submicron semiconductor structdres =~ nd ©)

to generators and detectors of electromagnetic radiatiopiere the symbols, u, p, andJ (=j,,+j o) represent electrical
(typically microwave,®” to terminal currents in Monte Carlo permittivity, magnetic susceptibility, total charge density, and
device transport simulatidhRecent work on the Ramo- total conduction current, respectively. Without loss of gener-
Shockley(RS) theorem has led to its reconfirmation using anality, we may choose to work in the radiation gauge for in-
energy balance approatland its generalization to inhomo- homogeneous media, in whidh eA=0, and Eq/(2) reduces
geneous media and quasielectrostatic applicatidhs. to
That the RS theorem, in spite of its apparent simplicity,

holds in both the classical and quantum limits, and under V-eVe=—p, )
physical conditions not considered in the theory, hints at avhere now¢ may be interpreted as the usual electrostatic
more general, unifying feature of charge transport. In thispotential due to the instantaneous charge configuration. Us-
article, we argue that this general feature is the familiar curing the relationship
rent continuity equation, and use this equation in conjunction

: , ) ; ’ . JE
with Maxwell's equations as the starting point for the deri- V. YxH=V.J+V.e —

vation of a set of generalized RS formulas. Our technique, at
related to the mathematical concept of weak solutions, and W=V ) 2A
quite similar to that of Mock and Gajewski? results in =V J+V.e ———+V (— W) =0,
domain integration formulas for all three components of the

5
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tribution from the radiation term alonby, which must be
subtracted at high frequencies. The final results for the gen-
eralized Ramo—-Shockley theorem terminal currents at an ar-
Similarly, the time derivative of the homogeneous Maxwellpjtrary contactl follow from Egs. (8), (9), (10), (11), and

dd
V-V E

=V.J. (6)

equation for the electric flux density yields

(14):

. . A o
V-GEZ—V'6V¢—V’€W=-V~€V¢)=p. (7)
Alternatively, Eqgs.(6) and (7) may, using the definition
jq=¢€E for the displacement current, be rewritten in the fol-
lowing form:

—V.jq=V-eV$p=V-(jo+ip)=—p=—e(p—n), (8

where the quantitiep andn are the free carrier densities of
holes and electrons, respectively.

Continuity equations are one of the most fundamental
properties of all types of transport, and are easily derived by
taking moments of the appropriate transport equations. For
classical or semiclassical systems, one most often takes mo-

I”':J Vhy(r)-jn dV+ef nhy(r)dv

—ef G,(r)h,(rdV, (15
|p|:f Vhp|(r)'jp dV_8f php|(r)dV
+ej Gp(rhp(r)dV, (16)

IdI:f Vhg(r)-jq dV_f ha(NV-(jntjpdV

ments of the Boltzmann transport equatf8and for quan-
tum systems it is typically either the Wigner—Boltzmann
equatiod® or the quantum Liouville equatioff. We are at
first only interested in the Oth moment equations, expressin
the spatial variation of particle current flux density in terms
of particle density time variation and particle generation/
recombination rates. For electrons and holes, these equatio
have the general form;

—V-j,=eGy(r)—en, 9

—V.jp=—eGy(r)+ep. (10)
From Eq.(8), we have the additional relation

=V:ji==V-(jatiptia)=0. (12)
We now have an equation of the form

=V ik=R¢, k=n,p,dt (12

+f ehd,(r)A-dszf Vhy(r)-jgdV
'y

g . . .
+ef (p—n)hd|(r)dV+ jr Ghd|(r)A'dS, (17)

ns .
|t|=f Vhy(r)-(jatip+iadV+ L ehy(NA-ds.
N
(18

Analogously, this technique may also be applied to
higher moments of the transport equations, for example to
the energy continuity equations, of which one of the many
possible realizations is the following:

for electron, hole, displacement, and total current. We work

on a Lipschitzian domaif) with an appropriate set of test
functionsh,, satisfying

hk||F|:11 hk||rj:O, J:#I, hEHl, k=n,p,d,t,

(13
whereH(Q) andH}(Q) are the usual Sobolev spacésind
assuming all variables H!. HereI" denotes the boundary,
which consists of both Dirichletl';) and NeumannI'y)
parts, with['p=U;T"; . Multiplying each of the four equa-
tions of type(12) with the corresponding test functidn,,
and then integrating by parts over the entire dom@jrre-
sults in

(= V-ji.he) =(Rg,hyy),

_f thV'jk dV:_f hk|jk~dS+f thl'jk dV
Q r Q
(14

Equation(13) ensures that the surface integral in Etd) is
exactly equal to the particle current at conttav,ci;incehk|rI
= 0,1, and [ - n)|r =0. The surface integral in EG14)
also gives the displacement current at contaplus a con-
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_19n<Wn> (W)

VST I E T (19)
_‘9p<Wp> . &p(Wp>

_V.Sp_ ot —Jp. — ot COH, (20)
d

_v.sf=%+(jn+jp)£, (21)
du, 9

_v. Scza_ut +E [n{wp)+p{wp)]| (22

coll
~V.S=0. (23

In this case, one additional equation appears, since charge
carriers may also exchange energy with the medium. The
symbol S, ke{n,p,f,c,t}, stands for the electron, hole,
electromagnetic, lattice, and totaFf+p+f+c) energy
flux densities. For the electromagnetic case, this is simply the
familiar Poynting vector. The position-dependent energy
densities stored in the electromagnetic field and the crystal
are designated byi; and u., respectively. The symbol
alat(n{w,))|con Stands for the(usually negative rate at
which energy is gained by the electrons from the crystal
lattice, and is often approximated by
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Jd
~(Wp)Ggrer) +ﬁ (n{wp))

coll

J
ﬁ (n<Wn>)

phonons

The corresponding definition of this quantity for holes is
fully analogous. Using the technique developed in the pre- I

ceeding paragraphs, the energy currents at an arbitrary Cofsgadless of any gross inaccuracies in the calculation of the
tactl may be written as

IE|=J Vhn(r)-S, dV—J hni(r)

(W) IN(Wp)|

x( i E-— w”)dv, (25)
|§|=f Vhp(r)-S, dV—J hpi(r)
ap{wp) Ip(wp)

x( Tl B y dv, (26)

Jug

IFl=thf.<r>~sf dV—fhf.<r>(W+un+Jp>-E)dv

.1
+f hy(r)AX—=VXA-dS, (27
Iy M
|E|:f Vhe(r)- S dV—f he(r)
g 9
X W—FE[p(WpM—n(Wn)] » dv, (28)
I5=f Vhy(r)-(Sh+Sy+Si+S)dV
-
+f hy(r)AX—V X A.-dS. (29
T'y M

perhaps important disadvantage of using the RS theory in-
stead of Eq.(18) is that the RS theory always results in
global current conservation,

> 1y=0 (30)

current densitieg, ; as long as¥ h(r)#c—whose equality

is a sufficient condition for unconditional global current con-
servation in the absence of radiation—E#8) only yields
this physical result if the current densitigsare also physi-
cally meaningful. (Note: functionsh,, which satisfy the
Poisson-like equatiofV- y(r)V+g8(r)-V]h,,=0 with the pre-
viously specified boundary conditions automatically satisfy
2 hy(r)=c. However, application of a simple continuous
nonlinear transformation witli(0)=0 and f(1)=1 destroys
this property)

It is immediately noticed that the total curreint has a
form different from that of the sum of its components,
lh+1p+1y, for arbitrary choices ofhy,. The general
equivalence of these two expressions is in fact a property of
the solutions to the defining transport equations. This is, of
course, also the case for terminal currents of higher-order
moment quantities.

In contrast to the low-frequency situation where the par-
ticle force is simplygE=—qV ¢, particle motion at high
frequencies is governed by the new forcegV ¢ — qdA/dt
and gvxX VXA, which include the effect of radiation fields
generated from other particles. Therefore, the effect of the
radiation is already implicitly accounted for in the particle
velocities, energies, and number densities used in the GRST.
The only complication which arises for purposes of analyti-
cal calculation or numerical simulation is the necessary bur-
den of solving the additional E¢3), in order to obtain the
proper electric and magnetic fields which determine the
forces acting on the particles. Similarly, use of the GR&T

These simple but general equations, with the flexibility€Ven R3 equations at high carrier densities must in principle
afforded by the choice oh,,, should provide a useful be preceed_ed py calculanon; of carrier Qensny and velocity
method for calculating time-dependent or steady-state paRrofiles which incorporate highly complicated many-body
ticle and energy currents at the contacts of complex multidi€fects such as the exchange and correlation forces.
mensional domains. An application of this technique involv-
ing the optimization of the test functiond,(r) for V. CONCLUSIONS

statistically best estimators of contact currents in particle-  \we have demonstrated the validity of a new GRST for
based charge transport simulation may be found in Ref. 18¢|agsical, semiclassical, and quantum systems, from 0 Hz up
to arbitrary frequencies, based upon Maxwell's equations
and continuity equations arising from moments of transport
equations. The resulting formulas retain nearly the same
_ 4 level of simplicity as the original RS equations, and their
tact current has previously been derived by Mdcnd accuracy is limited only by that of the preceeding calculation

. .13 . . . .
Gajewski-" As we have shown, it is in fact valid at all fre- ¢ charge density and velocity information, and higher-order
quencies, provided the scalar and vector potentials are evaljloments of the carrier distribution functions as needed.
ated properly. If all time dependence is eliminated, and ad-

dLuonaIIy hy is tgef solutr|]ondto P(_)lssr?ns equgug:jn W.'thla" W, Shockley, J. Appl. Phys, 635(1938.

charges removed from the domain, then B is i entica 25, Ramo, Proceedings of IRE, 584 (1939.

to the original RS formulation. Note, however, that in situa- 3L. Reggiani, T. Kuhn, and L. Varani, Appl. Phys.54, 411 (1992.
tions with time-dependence or generation/recombination pro-:; L. Varani, T. Kuhn, and L. Reggiani, Solid State Electr86, 251(1992.
cesses, the electrgor hole contribution to the total termi- gﬁfgngz:;"ez' D. Pardo, L. Varani, and L. Reggiani, Appl. Phys. 168t.
nal current is not simply equal to sum of the electi@n !

k V. Gruzhinskis, E. Starikov, P. Shiktorov, L. Reggiani, L. Varani, and T.
hole) terms in the RSor Mock) total current formula. One  Kuhn, Microelectron. Engl9, 417 (1992.

Ill. DISCUSSION

The quasi-electrostatic limit of Eq18) for the total con-
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8P. D. Yoder and Karl Hess, iNegative Differential Resistance and Insta-  Semiconductor Device®rentice Hall, Englewood Cliffs, NJ, 1988
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York, 1993, pp. 99-108. 18H, L. Grubin, T. R. Govindan, J. P. Kreskovsky, and M. A. Stroscio, Solid
9P. De Visschere, Solid State Electr@®8, 455(1990. State Electron36, 1697(1993.
104, Kim, H. S. Min, T. W. Tang, and Y. J. Park, Solid State Electrd4.  ’he H* means ¥h,Vh)+ (h,h)<c, having the physical interpretation of
1251(1997). restriction to functions with finite energih.e H} meansh e H! and satis-
1B, pellegrini, Phys. Rev. B4, 5921(1986. fying homogeneous Dirichlet conditions. See for example any introduc-
2M. S. Mock, Analysis of Mathematical Models of Semiconductor Devices tory text on linear functional analysis such as: R. AdaBaholev Spaces
(Boole, Dublin, 1983 (Academic, New York, 1976
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