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We present a generalized Ramo–Shockley theorem to evaluate particle currents and energy currents
at device contacts, in classical drift-diffusion or hydrodynamic simulation techniques as well as for
semiclassical Monte Carlo and quantum mechanical transport simulation. In contrast to the Ramo–
Shockley theorem, our technique~1! is derived for conditions of extreme time dependence in the
charge carriers and forces~including particle-induced radiation!, ~2! explicitly accounts for particle
generation and recombination processes such as photoexcitation, forward and inverse Auger
processes, or Shockley–Read–Hall recombination, and~3! distinguishes clearly between the
contributions of electrons, holes, and the displacement current. The resulting simple new formalism
reduces to the standard Ramo–Shockley theorem as a special case. ©1996 American Institute of
Physics.@S0021-8979~96!03603-X#
I. INTRODUCTION

Using the method of Green functions, Shockley1 and
Ramo2 independently derived a highly useful domain inte
gration formula for terminal currents induced by charge m
tion in an arbitrary multidimensional structure with multiple
contacts:

I ~k!5(
j
qjEj

~k!
•vj , ~1!

where the summationj runs over all particles within the
volume,qj andvj represent particle charge and velocity, re
spectively, and the indexk indicates the contact number for
which the current is to be evaluated. The variableEj

~k! is the
electric field evaluated at the position of particlej which
would result if all charges were removed from the volum
and all contacts except for contactk were grounded, and
contactk were set to 1 V. Its application has been wide
spread, ranging from hot carrier noise in bul
semiconductors3 and submicron semiconductor structures4,5

to generators and detectors of electromagnetic radiat
~typically microwave!,6,7 to terminal currents in Monte Carlo
device transport simulation.8 Recent work on the Ramo–
Shockley~RS! theorem has led to its reconfirmation using a
energy balance approach,9 and its generalization to inhomo-
geneous media and quasielectrostatic applications.10,11

That the RS theorem, in spite of its apparent simplicit
holds in both the classical and quantum limits, and und
physical conditions not considered in the theory, hints at
more general, unifying feature of charge transport. In th
article, we argue that this general feature is the familiar cu
rent continuity equation, and use this equation in conjuncti
with Maxwell’s equations as the starting point for the der
vation of a set of generalized RS formulas. Our techniqu
related to the mathematical concept of weak solutions, a
quite similar to that of Mock12 and Gajewski,13 results in
domain integration formulas for all three components of th
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contact current. From these general time-dependent equa-
tions with generation/recombination sources, valid also in
inhomogeneous media, one may extract the original RS
equations as a limiting case.

II. GENERALIZED TERMINAL CURRENT
CALCULATION

We begin with the two inhomogeneous Maxwell equa-
tions which, with the usual definitions of electric field and
magnetic flux density in terms of the scalar electric potential
f and magnetic vector potentialA, yield the following well-
known equations:

“•e“f1
]

]t
“•eA52r, ~2!

“

2A2me
]2A

]t2
2me

]

]t
“f2“~“•A!2m“

1

m
3“3A

52mJ. ~3!

Here the symbolse, m, r, andJ ~5jn1j p! represent electrical
permittivity, magnetic susceptibility, total charge density, and
total conduction current, respectively. Without loss of gener-
ality, we may choose to work in the radiation gauge for in-
homogeneous media, in which“•eA50, and Eq.~2! reduces
to

“•e“f52r, ~4!

where nowf may be interpreted as the usual electrostatic
potential due to the instantaneous charge configuration. Us-
ing the relationship

“•“3H5“•J1“•e
]E

]t

5“•J1“•e
]~2“f!

]t
1“•eS 2

]2A

]t2 D50,

~5!

in the chosen gauge yields
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“•e“
]f

]t
5“•J. ~6!

Similarly, the time derivative of the homogeneous Maxw
equation for the electric flux density yields

“•eĖ52“•e“ḟ2“•e
]2A

]t2
52“•e“ḟ5 ṙ. ~7!

Alternatively, Eqs. ~6! and ~7! may, using the definition
jd5eĖ for the displacement current, be rewritten in the fo
lowing form:

2“• jd5“•e“ḟ5“•~ jn1 j p!52 ṙ52e~ ṗ2ṅ!, ~8!

where the quantitiesp andn are the free carrier densities o
holes and electrons, respectively.

Continuity equations are one of the most fundamen
properties of all types of transport, and are easily derived
taking moments of the appropriate transport equations.
classical or semiclassical systems, one most often takes
ments of the Boltzmann transport equation,14 and for quan-
tum systems it is typically either the Wigner–Boltzma
equation15 or the quantum Liouville equation.16 We are at
first only interested in the 0th moment equations, express
the spatial variation of particle current flux density in term
of particle density time variation and particle generatio
recombination rates. For electrons and holes, these equa
have the general form;

2“• jn5eGn~r !2eṅ, ~9!

2“• j p52eGp~r !1eṗ. ~10!

From Eq.~8!, we have the additional relation

2“• j t52“•~ jn1 j p1 jd!50. ~11!

We now have an equation of the form

2“• j k5Rk , k5n,p,d,t ~12!

for electron, hole, displacement, and total current. We w
on a Lipschitzian domainV with an appropriate set of tes
functionshkl satisfying

hkluG l51, hkluG j
50, jÞ l , hPH1, k5n,p,d,t,

~13!

whereH1~V! andH0
1~V! are the usual Sobolev spaces,17 and

assuming all variablesPH1. HereG denotes the boundary
which consists of both Dirichlet~GD! and Neumann~GN!
parts, withGD5ø iG i . Multiplying each of the four equa
tions of type~12! with the corresponding test functionhkl ,
and then integrating by parts over the entire domainV, re-
sults in

~2“• j k ,hkl!5~Rk ,hkl!,

2E
V
hkl“• j k dV52E

G
hklj k•dS1E

V
“hkl• j k dV.

~14!

Equation~13! ensures that the surface integral in Eq.~14! is
exactly equal to the particle current at contactl , sincehkuG l
5 0, 1, and (j k • n̂)uGN50. The surface integral in Eq.~14!
also gives the displacement current at contactl plus a con-
1952 J. Appl. Phys., Vol. 79, No. 4, 15 February 1996
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tribution from the radiation term alongGN, which must be
subtracted at high frequencies. The final results for the gen-
eralized Ramo–Shockley theorem terminal currents at an ar-
bitrary contactl follow from Eqs. ~8!, ~9!, ~10!, ~11!, and
~14!:

I nl5E “hnl~r !• jn dV1eE ṅhnl~r !dV

2eE Gn~r !hnl~r !dV, ~15!

I pl5E “hpl~r !• j p dV2eE ṗhpl~r !dV

1eE Gp~r !hpl~r !dV, ~16!

I dl5E “hdl~r !• jd dV2E hdl~r !“•~ jn1 j p!dV

1E
GN

ehdl~r !Ä•dS5E “hdl~r !• jd dV

1eE ~ ṗ2ṅ!hdl~r !dV1E
GN

ehdl~r !Ä•dS, ~17!

I tl5E “htl~r !•~ jn1 j p1 jd!dV1E
GN

ehtl~r !Ä•dS.

~18!

Analogously, this technique may also be applied to
higher moments of the transport equations, for example to
the energy continuity equations, of which one of the many
possible realizations is the following:

2“•Sn5
]n^wn&

]t
2 jn•E2

]n^wn&
]t U

coll

, ~19!

2“•Sp5
]p^wp&

]t
2 j p•E2

]p^wp&
]t U

coll

, ~20!

2“•Sf5
]uf
]t

1~ jn1 j p!•E, ~21!

2“•Sc5
]uc
]t

1
]

]t
@n^wn&1p^wp&#U

coll

, ~22!

2“•St50. ~23!

In this case, one additional equation appears, since charge
carriers may also exchange energy with the medium. The
symbol Sk , kP$n,p, f ,c,t%, stands for the electron, hole,
electromagnetic, lattice, and total (5n1p1 f1c) energy
flux densities. For the electromagnetic case, this is simply the
familiar Poynting vector. The position-dependent energy
densities stored in the electromagnetic field and the crystal
are designated byuf and uc , respectively. The symbol
]/]t(n^wn&)ucoll stands for the~usually negative! rate at
which energy is gained by the electrons from the crystal
lattice, and is often approximated by
Yoder, Gärtner, and Fichtner
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~n^wn&!U

coll

'^wn&GSRH~r !1
]

]t
~n^wn&!U

phonons

.

~24!

The corresponding definition of this quantity for holes i
fully analogous. Using the technique developed in the pr
ceeding paragraphs, the energy currents at an arbitrary c
tact l may be written as

I nl
E 5E ¹hnl~r !•Sn dV2E hnl~r !

3S ]n^wn&
]t

2 jn•E2
]n^wn&

]t U
coll

D dV, ~25!

I pl
E 5E ¹hpl~r !•Sp dV2E hpl~r !

3S ]p^wp&
]t

2 j p•E2
]p^wp&

]t U
coll

D dV, ~26!

I fl
E5E ¹hfl~r !•Sf dV2E hfl~r !S ]uf

]t
1~ jn1 j p!•EDdV

1E
GN

hfl~r !Ȧ3
1

m
¹3A•dS, ~27!

I cl
E5E ¹hcl~r !•Sc dV2E hcl~r !

3S ]uc
]t

1
]

]t
@p^wp&1n^wn&#U

coll
D dV, ~28!

I tl
E5E ¹htl~r !•~Sn1Sp1Sf1Sc!dV

1E
GN

htl~r !Ȧ3
1

m
¹3A•dS. ~29!

These simple but general equations, with the flexibilit
afforded by the choice ofhkl , should provide a useful
method for calculating time-dependent or steady-state p
ticle and energy currents at the contacts of complex multid
mensional domains. An application of this technique involv
ing the optimization of the test functionshkl~r ! for
statistically best estimators of contact currents in particl
based charge transport simulation may be found in Ref. 1

III. DISCUSSION

The quasi-electrostatic limit of Eq.~18! for the total con-
tact current has previously been derived by Mock12 and
Gajewski.13 As we have shown, it is in fact valid at all fre-
quencies, provided the scalar and vector potentials are eva
ated properly. If all time dependence is eliminated, and a
ditionally htl is the solution to Poisson’s equation with al
charges removed from the domain, then Eq.~18! is identical
to the original RS formulation. Note, however, that in situa
tions with time-dependence or generation/recombination p
cesses, the electron~or hole! contribution to the total termi-
nal current is not simply equal to sum of the electron~or
hole! terms in the RS~or Mock! total current formula. One
J. Appl. Phys., Vol. 79, No. 4, 15 February 1996
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perhaps important disadvantage of using the RS theory in
stead of Eq.~18! is that the RS theory always results in
global current conservation,

(
l
I t l50 ~30!

regardless of any gross inaccuracies in the calculation of the
current densitiesj k ; as long as( lhkl~r !Þc—whose equality
is a sufficient condition for unconditional global current con-
servation in the absence of radiation—Eq.~18! only yields
this physical result if the current densitiesj k are also physi-
cally meaningful. ~Note: functionshkl which satisfy the
Poisson-like equation@¹•g~r !¹1b~r !•¹#hkl50 with the pre-
viously specified boundary conditions automatically satisfy
( lhkl~r !5c. However, application of a simple continuous
nonlinear transformation withf ~0!50 and f ~1!51 destroys
this property.!

It is immediately noticed that the total currentI tl has a
form different from that of the sum of its components,
I nl1I pl1I tl , for arbitrary choices ofhkl . The general
equivalence of these two expressions is in fact a property o
the solutions to the defining transport equations. This is, of
course, also the case for terminal currents of higher-orde
moment quantities.

In contrast to the low-frequency situation where the par-
ticle force is simplyqE52q¹f, particle motion at high
frequencies is governed by the new forces2q¹f2qdA/dt
and qv3¹3A, which include the effect of radiation fields
generated from other particles. Therefore, the effect of the
radiation is already implicitly accounted for in the particle
velocities, energies, and number densities used in the GRST
The only complication which arises for purposes of analyti-
cal calculation or numerical simulation is the necessary bur-
den of solving the additional Eq.~3!, in order to obtain the
proper electric and magnetic fields which determine the
forces acting on the particles. Similarly, use of the GRST~or
even RS! equations at high carrier densities must in principle
be preceeded by calculations of carrier density and velocity
profiles which incorporate highly complicated many-body
effects such as the exchange and correlation forces.

IV. CONCLUSIONS

We have demonstrated the validity of a new GRST for
classical, semiclassical, and quantum systems, from 0 Hz u
to arbitrary frequencies, based upon Maxwell’s equations
and continuity equations arising from moments of transport
equations. The resulting formulas retain nearly the same
level of simplicity as the original RS equations, and their
accuracy is limited only by that of the preceeding calculation
of charge density and velocity information, and higher-order
moments of the carrier distribution functions as needed.
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