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ABSTRACT The impedence of sheep Purkinje strands, measured to 3-5 kHz, is interpreted with circuit models based on
morphology. The strand is described as a one-dimensional electrical cable. Clefts between myocytes of the strand allow
radial current to flow in parallel with current across the outer membrane. A lumped model of the clefts, in which all the
cleft membrane is in series with 100 Q-cm2, fits only below 20 Hz. Two distributed models, pie and disk, fit at all
frequencies with somewhat different (31%) luminal resistivities, but with similar membrane parameters. Series
resistance representing the endothelial sheath is small. Simulations of voltage clamp experiments include measured
linear parameters and nonlinear membrane channels, as well as radial variation of cleft concentration, membrane flux,
voltage, and current. Cleft potential is drastically nonuniform when sodium current flows. Cleft potential is reasonably
uniform when calcium and potassium currents flow, but the calcium and potassium concentrations change markedly,
enough to turn off the calcium current, even if the calcium channel did not inactivate. We conclude that physiological
current flows produce significant nonuniformities in electrochemical potentials in the clefts of this cardiac
preparation.

INTRODUCTION

The action potential of sheep Purkinje strands has been
extensively studied. The linear electrical properties impor-
tant in determining the conduction velocity have been
measured from the shape of the action potential and the
transient response to applied current (Fozzard, 1966;
Hellam and Studt, 1974a, b; Schoenberg et al., 1975). The
ionic currents underlying the action potential have been
studied (reviewed in Noble, 1975; Cranefield, 1975; Foz-
zard, 1977; and Reuter, 1979) using the voltage clamp
method, which, in its traditional form, interprets all the
currents as if they arise in a smooth unfolded surface
membrane, across which the electrochemical potential is
constant and controlled. In this paper we present measure-
ments and simulations that suggest that the electrochemi-
cal potential for physiologically important ions cannot be
controlled and is not constant during the flow of physiolog-
ical currents, either during the action potential or during
typical voltage clamp experiments.
The structure of Purkinje strands, like the structure of

most cardiac tissue, is rather complex (Sommer and John-
son, 1968, 1979; B Eisenberg and Cohen, 1983). A strand
consists ofmany cells electrically coupled one to another by
gap junctions, and the cells making up the strand are
closely packed, with long narrow extracellular clefts sepa-
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rating their membranes. The structural complexities of
sheep Purkinje strands are likely to modify ionic current
flow during the action potential or voltage clamp: mem-
brane current gains access to the bathing solution only
through the clefts, thus making control of concentration
and potential unlikely across most membranes (Johnson
and Lieberman, 1971; Attwell and Cohen, 1977).

For these reasons, we made inpedance measurements of
the electrical properties of clefts and membranes in sheep
Purkinje strands. Impedance measurements, interpreted
with structurally based theory (Eisenberg and Mathias,
1980), have been used to study the electrical structure of
several preparations (e.g., spherical aggregates of cardiac
muscle, Mathias et al., 1981a; skeletal muscle fibers,
Eisenberg, 1983; epithelia, Clausen et al., 1979; lens of the
eye, Mathias et al., 1981b; Rae et al., 1982). Such
structural analysis is needed in general to synthesize the
properties of an intact preparation, even if the properties
and distribution of ionic channels are known from patch
clamp measurements (Reuter et al., 1982) or biochemical
separation and reconstitution of channels (Coronado and
Latorre, 1982).

Impedance results are interpreted in this paper with two
topological models of the sheep Purkinje strand, corre-
sponding to different radial distributions of inner mem-
brane along the cleft. The "pie model," introduced by
Hellam and Studt (1974a, b) and Schoenberg et al.
(1975), was studied further by Schoenberg and Fozzard
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(1979). Levin and Fozzard (1981) provide a more rigorous
derivation of simple and complex versions of the model.
The pie model represents the cross section of a cylindrical
Purkinje strand as a sliced pie, each piece of pie being a
single cell electrically coupled to its neighbors by gap
junctions. The cuts between pieces represent the extracel-
lular space that pervades the tissue. In the pie model, the
total volume of the cleft, in a thin annulus of strand of
width br, is independent of radial location; the total
cross-sectional area of cleft (available for radial current
flow) is also independent of radial location. Thus, the cleft
resistance' is independent of radial location as well. The pie
model implies a radial variation in the morphology of the
preparation; the amount of membrane per unit volume
depends reciprocally on the distance from the center of the
strand.
Our electrical data are also interpreted with a "disk

model" of the strand, used previously to describe cardiac
muscle by Haas and Brommundt (1980) and skeletal
muscle by Falk and Fatt (1964), Adrian et al. (1969),
Schneider (1970), Valdiosera et al. (1974), and Mathias et
al. (1977). The disk model implies a radially uniform
morphology, but the total volume of cleft, in a thin annulus
of strand of width br, varies with radial location. The
cross-sectional area of cleft (available for radial current
flow) also varies with radial location. Thus, the cleft
resistance in the disk model varies radially as well.

Analysis and simulations show that the pie and disk
models are difficult, if not impossible, to distinguish experi-
mentally from measurements of voltage such as ours, made
in the sarcoplasm, essentially across the surface mem-
brane. Measurements of the average variation of the
amount of membrane with radial location would probably
distinguish between the pie and disk models of the average
strand. Measurements of the radial variation of voltage
across the cleft membrane would also probably distinguish
between the models.
Our impedance measurements showed that the two

membrane systems of the strands, the surface and the cleft
membranes, contributed quite differently to the overall
properties of the preparation. The surface membranes
typically comprised only 10% of the membranes of a
strand, and they were in series with a small resistance of -5
f-cm2. The other membranes, some 90%, lined the clefts
and were in series with the substantial resistance from the
small volume of the solution filling the clefts. The resis-
tance in series with any particular channel in the cleft
membrane depended on the radial location of the channel,
because the distance current had to flow in the clefts

'This cleft resistance is given by 6(r)4/I[(r(Vc/VF)Sr(r)], in ohms. Eq.
A2 and Table Al of the Appendix shows that Sr(r) is radially indepen-
dent in the pie model, but radially dependent in the disk model, see
Appendix.

depended on how far the channel was from the edge of the
strand: the cleft membrane is distributed along the resis-
tance of the cleft. The resistivity of the solution in the clefts
was found to be close to that of the extracellular bathing
solution, between 41 fl-cm and 59 f-cm, depending on the
model used to represent the strand. When small, slow
currents flow across the cleft membrane, one might wish to
represent the cleft crudely as a single lumped resistance,
some 100 Q-cm2, referred to the area of unfolded outer
membrane for a strand of -100 gm diam.

Simulations of voltage clamp, using measured parame-
ters of sheep Purkinje strands, confirm earlier calculations
(Schoenberg and Fozzard, 1979; Haas and Brommundt,
1980): the distributed series resistance presents severe
problems for voltage clamp measurements of sodium cur-
rents, whether the sodium current is attenuated by experi-
mental interventions or not. In fact, the potential within the
clefts is essentially uncontrolled in both situations. Simula-
tions of the secondary inward current suggested that
substantial control of transmembrane potential is possible
when current flows through this predominantly calcium
channel.

Simulations and analysis of the electrodiffusion of cal-
cium and potassium ions in the clefts and sarcoplasm of the
strand were also performed. The analysis yielded a simple
approximation to the initial rate of change of cleft concen-
tration. The simulations allowed a radial distribution of
cleft concentration, cleft potential, current flow, and mem-
brane fluxes. As expected from the approximate expression
and lumped simulations of concentration changes (e.g.,
Adrian and Freygang, 1962a; Attwell et al., 1979; Almers
et al., 1981), significant changes in potassium and calcium
concentration occurred during physiological activity,
whether clamped or natural. Calcium concentration
showed dramatic depletion in the cleft with an initial rate
of 33 mM/s; accumulation sometimes also occurred in the
sarcoplasm, depending on the intracellular buffering of
calcium concentration. The changes in concentration were
large compared with initial concentrations and had sub-
stantial effects on the interpretation of currents recorded in
the voltage clamp. For example, the depletion of calcium
was enough to explain the turn-off of calcium current
without invoking the inactivation process that Reuter et al.
(1982) reported in single channels. Similar changes in
concentration must occur during the action potential in the
sheep Purkinje strand and significantly affect its proper-
ties. Levis (1981) includes more details of the impendance
measurements and the models used to interpret them.

THEORY

The Longitudinal Spread of Potential
We define x = 0 at the location of the microelectrode that injects current
I. The ends of the strand are at x = 1, and x = -12. The length of the
strand was 1, + 12. The potential V(x) at any longitudinal location x
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within the sarcoplasm was approximated by the differential equation
(Jack et al., 1975) for one-dimensional current flow in a transmission
line

d2V
2V= l x f-ip-rIbx) (1)

where r; is the longitudinal resistance of a unit length of strand (El/cm),
produced by a combination of the resistance of the cytoplasm and the
resistance of the gap junctions joining Purkinje cells. These equations
treat the longitudinal impedance as purely resistive (Levis, 1981, pp.
47-66).2 6(x) is the Dirac delta function and 'y(jw) is the longitudinal
propagation constant, which is the frequency domain generalization of the
dc length constant X = 1/'y(O). The shunt admittance ys (S/cm) in a
unit length of strand describes all the pathways by which current can flow
from the cytoplasm to the extracellular bathing solution (see Fig. 1, which
includes the surface membrane for completeness). (, is the folding factor
of the surface membrane; ,2 appears in Eq. 1 because the folding factor is
assumed to be the same in the longitudinal and circumferential directions.
The shunt admittance y describes the total current flowing out of the
strand. The current flows through the surface or cleft membranes and
then through the series resistance r, (fl-cm) external to, and in series with,
the myocytes of the strand:

Y+ rn(Y. + Yc)

The accuracy of this simplified treatment of radial and longitudinal
current flow (introduced by Falk and Fatt, 1964) has been evaluated by
Eisenberg and Johnson (1970), Eisenberg et al. (1979), and Peskoff
(1979). The admittance (S/cm) of the surface membrane in a unit length
of strand is y.t2 where ym = gm + jwcm, and gm (S/cm) and cm (F/cm)
are the corresponding conductance and capacitance. The angular fre-
quency in (radians per second) w = 2rf, wheref is the frequency in Hz;
j = ITT. The admittance yCt2 is the ratio of the total current flowing out
of the clefts (in a unit length of strand) to the voltage V(x) in the
cytoplasm. This term represents the entire contribution of the clefts and
inner membranes to the electrical properties of the strand. The precise
description of the admittance of the clefts depends on the model adopted
for their structure, as we discuss below. Each model will produce a
different functional form, indicated by different subscripts, for y,. Each
function must be substituted into Eq. 2 and 4 to allow comparisons of the
model with experimental data.
The specification of the longitudinal spread of potential is completed by

the boundary conditions

dV dV
=0=- (3)

dx Ix- dx x--_23

These boundary conditions, which state that no longitudinal current flows
at the end of the strand, have been widely used to describe the end of a
skeletal muscle fiber (Adrian and Freygang, 1962a) particularly when
using the three microelectrode voltage clamp (Adrian and Freygang,
1962b; Adrian et al., 1970; Changler et al., 1976). Milton et al. (1982)
have recently called attention to this assumption by showing that a large
amount of longitudinal current flows at the end of a frog sartorius fiber,

2Freygang and Trautwein (1970) concluded that the longitudinal imped-
ance included a significant reactance. Levis showed this conclusion to be
unwarranted: (a) the measurements with microelectrodes assumed the
electrodes had zero longitudinal separation; (b) the measurements with
the oil gap, even if taken at face value, imply a longitudinal phase shift
with a maximum value of only a few degrees at 2-5 kHz, too small to be
resolved by our techniques and of dubious physiological significance.

Yc

Surface Cleft
Membrane Membrane

FIGURE 1 A circuit diagram of the admittance of a 1 /t, length of strand.
The current I is injected by a microelectrode. The voltage recorded by the
microelectrode is V(x). Current leaving the cytoplasm can flow out of the
strand in two ways. It can flow through the cleft membrane, and then
through the resistance of the cleft, together represented by the admittance
yc. Or it can flow across the surface membrane, represented by the
admittance ym. Current through both pathways reaches the bath elec-
trode after flowing through the resistance r, of the bathing solution.

because of the large amount of membrane involved in the myotendon
junction (Milton and Eisenberg, personal communication). We assume
that longitudinal currents at the end of our Purkinje strand are small,
since we hope our strands are well healed, with gap junctions, desmosomes
and so on not permitting substantial current flow.
The solution of these equations is

V(x, j.)Z(XI J)) a__Ij
(r\ cosh (yx) - tanh (,yl,) sinh (-yx)

ly tanh (yl,) - tanh (y/2)

Lumped Model
The first cleft model considered is the lumped model (Falk and Fatt,
1964; Fozzard, 1966; Freygang and Trautwein, 1970; Valdiosera et al.,
1974). This model is justified more by its mathematical simplicity than its
anatomical plausibility. There is no morphological basis for a lumped
resistance at the perimeter of the strand, dominating access to the clefts.
Rather, the lumped model is important because it is the limiting form of
more plausible models, useful when the radial potential gradient along the
clefts is small (see discussion and references in Mathias et al., 1977). The
admittance of the lumped model is

YCL = +

reL + 2YW
(5)

where Yw, = (SC! VF)(GW +jwCw).

SC/ VF (cm2/cm3) is the total surface of clefts in the strand divided by the
total volume of the strand; G. (S/cm2) and C. (F/cm2) are the specific
conductance and capacitance of the membrane of the cleft; Y, (S/cm') is
the admittance in a unit volume of strand; reL (fl-cm) is the resistance in
series with just the cleft membranes, in a unit length of strand. a (cm) is
the radius of the strand.
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where, with the assumption of isotropic wiggling,

The admittance of the disk model is given by

Yd= 2-ira rd
Il(Fda) 6red IO(Fda) (6)

where 10 and I, are modified Bessel functions of orders zero and one
(Abramowitz and Stegun, 1964); the radial propagation constant for the
disk model rd is the frequency domain generalization of the radial length
constant; and r,d is an effective radial resistivity:

Re

Td( VC/ VF)

R. (Q-cm) is the actual resistivity of the solution in the clefts; (V,/ VF) is
the total volume of clefts in a strand divided by the total volume of
strand.
The effective radial resistivity depends on the resistivity of the solution

within the clefts, the volume fraction of the clefts, and the tortuosity
factor Td, as described in Eq. 7. Mathias (1983) determines the tortuosity
of a number of biologically interesting geometries, including the geometry
of anisotropic clefts branching between elongated cells (Mathias, 1983,
Eq. 14). The tortuosity factor in that case depends on the size of the unit
cell in the radial and circumferential directions (Ax and Az, respectively
for the rectangular coordinate system illustrated in Mathias, 1983) and
the amount of wiggling of the clefts in the radial and circumferential
directions t, and {,, respectively. The wiggle factor, called the folding
factor in Hellam and Studt (1974a, b) and Mobley and Page (1972) is the
ratio of the actual path length for current flow in a given direction in the
unit cell to the dimension of the unit cell in that direction. The appropriate
expression for the tortuosity factor for the disk model of a Purkinje strand
is then

Td = 202 for {r = {z = t- (8)

The right-hand expression is appropriate if, but only if, the branching and
wiggling of the clefts are isotropic, that is, if they are the same in the
circumferential and radial directions. Purkinje strands and isotropic
within the accuracy of available morphological measurements (Hellam
and Studt, 1974a), mostly from unstretched strands.

The Pie Model
We write the admittance of the pie model in terms of morphometric
parameters Scl VF and Vc/ VF to facilitate comparison of the pie and disk
models for one particular Purkinje strand.

For the pie model, the surface-to-volume ratio and volume fraction of
clefts in the entire strand is

Sc 2nttz. Vc nt,tzw (9)

VF 7ra VF ira

where n is the average number of clefts (not necessarily an integer) and w
is the average width of a cleft. Levis (1981, pp. 67-72) shows that this
formulation of the pie model is identical to that of Levin and Fozzard
(1981). These equations define the morphometric parameters for the
clefts in an entire strand, assuming that the membrane wiggling in the
clefts has a "wavelength" much longer than the width of the cleft (see Fig.
C 14 of Levis, 1981). Thus, stereological procedures used to estimate these
parameters must uniformly sample the entire strand.
The admittance of the pie model is called y,p here and is given by

Ycp = 27ra 2 tanh (rpa) (10)2r,,p

rp= (rp / Re

TP(VC1 VF)
1rI

(rp~j (11)

Mathias (1983, Eq. 15) derives the expression for the tortuosity factor in
unbranched clefts in a slab structure. The Appendix to this paper extends
that derivation to the closely related pie model, in which unbranched
clefts are packed into a circular cylinder, and all clefts allow radial
current flow. In the disk model the clefts are branched, with half of the
clefts not allowing radial current flow. Thus, the tortuosity factor of the
disk model is expected to be exactly half that for the pie model, as is
shown in Eqs. 8 and 11. In the more complex models of Schoenberg and
Fozzard (1979) and Levin and Fozzard (1981), some clefts carry no
radial current; thus, the tortuosity factor for these models is expected to
be between that of the pie and disk model.

METHODS

Preparation
Sheep hearts were obtained from a local slaughterhouse with the help of
Dr. H. Fozzard and his associates, whose assistance we acknowledge with
pleasure. The heart was frequently still beating when removed immedi-
ately (usually within 2 min) after the sheep was slaughtered. While still at
the slaughter house, the atria were removed and the ventricles partially
cut open and rinsed with cold Tyrode solution consisting of either 137 mM
NaCI, 5.4 mM KCI, 2 mM CaC12, 1 mM MgCI2, 13.4 mM NaHCO3,
and -2 mM NaH2PO4 or 150mM NaCl, 5.4mM KCI, 2.7 mM CaC12, 1
mM MgCl2, 11 mM glucose, 3 mM NaOH, and -5 mM HEPES (pH
7.4). Upon return to the laboratory (after -1 h), Purkinje strands were
dissected free from the ventricular mass with as little stretching as
possible. Whenever available, slender (100-200 Am diam) unbranched
strands, longer than 1 cm, were chosen for impedance measurements. We
expected that thicker or branched strands could not be described by the
topological models considered here (Sommer and Johnson, 1968; Valdio-
sera and Mendiola, 1981).

Strands were mounted unstretched underneath a network of nylon
threads running perpendicularly to the long axis of the strand and spaced
1.5-2 mm apart. The threads were sufficiently taut to prevent the
Purkinje strands from moving; usually they were not taut enough to
damage the tissue. 95% 02, 5% CO2 was bubbled through the Tyrode
solution containing phosphate buffer; pure 02 was bubbled through the
solution containing HEPES buffer. The flow of gas was interrupted when
impedance measurements were made to avoid ripples and resulting
electrical artifact. Temperature was maintained between 330 and 370C.

Current was applied, and voltage recorded, with micropipettes filled
with 3 M KCI that had resistances of 10-20 Mfl. The voltage-measuring
amplifier was a feedback follower, as described in Mathias et al. (1979,
1981) and Levis (1981). In almost all experiments, the voltage electrode
was shielded with silver paint to within 50-200 um of the tip, and the
paint in turn was insulated with varnish to prevent electrical contact
between the grounded paint and the bath. The natural frequency of the
voltage-recording circuit was between 10 and 30 kHz, depending on the
amount of unshielded electrode and the resistance of the microelectrode.
The usable bandwidth of the voltage-recording amplifier can be substan-
tially extended by the calibration procedure of Mathias et al., 1979.
The feedback follower circuit functioned by driving the bath to the

negative of the potential at the tip of the electrode, thus keeping the
electrode tip at virtual ground. The appropriate output signal was then the
bath potential, measured close to the site of impalement by the voltage
microelectrode. This signal was measured by a "differential electrode," a
microelectrode of 30-50 Mm tip diam filled with the bathing solution and
connected to a voltage-follower (unity gain) circuit. The bandwidth of the
differential electrode plus recording circuit was extended by shielding the
electrode with silver paint connected to the output of the follower. In some
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TABLE I
CIRCUIT PARAMETERS OF THE DISK MODEL

Strand Resting Radius Gw = Gm Cm Cw R. r4potential

mV gm PS/cm2 ME/cm2 MF/cm2 l-cm2 fl-cm fl-cm
1 -78 73 59 (0.87)* 0.87 2t 65 56
2 -83 55 37 1.2 0.60 -- 59 49
3 -69 45 43 1.0 0.94 6 80 67
4 -77 68 63 (1.7) 1.7 3 46 38
5 -77 53 63 1.4 0.66 -- 34 28
6 -76 52 100 (0.59) 0.59 15 108 87
7 -74 50 59 (0.82) 0.82 2 83 69
8 -78 55 67 (1.47) 1.5 4 96 82
9 -75 48 29 0.98 0.54 -- 232 192
10 -84 60 53 (0.88) 0.88 6 77 64
11 -80 63 48 (0.81) 0.81 3 63 51
12 -73 54 110 (0.70) 0.70 5 43 36
13 -81 61 77 (1.2) 1.2 6 34 28
14 -85 56 91 1.5 0.72 -- 37 28
15 -66 64 37 (0.70) 0.70 10 28 23
16 -64 73 36 (1.48) 1.5 9 63 51
17 -77 54 100 (0.91) 0.91 8 51 41

Mean -76 58 63 1.1 0.89 6 71 59
SEM 1 2 6 0.1 0.08 1 12 10

*Parentheses indicate that the value of Cm was set equal to the value of Cw, as described in the text.
tDashes (--) indicate that R, was set equal to zero, as described in the text. These values were excluded from the mean.

TABLE II
CIRCUIT PARAMETERS OF THE PIE MODEL

Strand Electrode R Gw = Gm Cm Cw R. re R.separation R

JAM Q-cm pAS/cm2 ME/cm2 ME/cm2 U_cm2 Q-cm Q-cm
1 280 (120)* 67 (0.86)t 0.86 2§ 23 38
2 180 105 36 1.8 0.57 -- 20 33
3 210 (120) 43 1.2 0.89 -- 28 46
4 340 (120) 63 (1.6) 1.6 2 16 26
5 230 92 63 1.6 0.61 -- 12 21
6 210 (120) 83 (0.60) 0.60 9 36 59
7 100 (120) 56 1.3 0.68 -- 30 49
8 320 92 67 (1.4) 1.4 1 28 46
9 200 63 28 1.2 0.53 -- 95 156
10 220 (120) 50 1.2 0.78 -- 31 51
11 150 114 48 (0.80) 0.80 4 20 33
12 300 (120) 110 (0.68) 0.68 2 15 26
13 250 (120) 77 (1.1) 1.1 5 12 21
14 230 77 91 1.8 0.72 -- 16 26
15 250 (120) 37 (0.73) 0.73 7 11 18
16 200 208 34 (1.44) 1.4 5 22 36
17 180 (120) 91 (0.88) 0.88 4 19 31

Mean 226 110 61 1.2 0.88 4 26 41
SEM 15 7 6 0.1 0.08 1 5 8

*Parentheses indicate that the value of R; was set equal to 120 fl-cm, see text.
tParentheses indicate that the value of Cm was set equal to the value of Cw, as described in the text.
§Dashes (--) indicate that R, was set equal to zero, as described in the text. These values were excluded from the mean.
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experiments (strands 2, 5, 7, 14 in Tables I and II), measurements were
made both with the voltage microelectrode inside the myocytes of the
Purkinje strand and with the microelectrode between the outermost
myocytes and the connective tissue sheath that forms the outer annulus of
the strand. To completely remove the series resistance of the sheath and
bath, the impedance measured in the latter situation was subtracted from
the intracellular impedance, after correction for the change in the
resistance of the voltage electrode, which often accompanies removal
from the cell. With these precautions the measurements seem reliable
(i.e., have negligible phase error) to 3-5 kHz. Parameter estimates from
curve fits to these data did not differ from mean values.

Following the procedures to avoid capacitive shunting to applied
current (Falk and Fatt, 1964; Valdiosera et al., 1974), we measured
impedance at high frequencies by comparing the voltage at the top of the
current microelectrode with the voltage recorded from the cell interior.
This procedure gives a scaled version of the impedance; thus, it gives the
correct phase angle, but a multiple of the magnitude of the impedance.
The multiplier is determined by measuring impedance directly at low
frequencies, using direct measurements of applied current (Mathias et al.,
1979) and voltage. The multiplier is simply the resistance of the current
electrode, which has been shown to be frequency independent by Valdio-
sera et al. ( 1974).

Impedance was measured and fit with theory as described by Mathias
et al. ( 1979, and 1981). Smoothing of the data was not necessary because
of the relatively low variance of the raw data; wild-point editing at
multiples of 60 Hz was usually required, however.

Estimates were needed of (a) strand length (b) strand diameter, (c)
electrode separation, and (d) electrode postion with respect to the ends of
the strand. These measurements were always somewhat uncertain.
The physical length of the strand was easy to measure, but this does not

necessarily correspond to the electrical length, and so is not reported. As
much as 1 mm at each end of the strand might be dead, or electrically
uncoupled from the cells in the center of the strand. In most experiments,
an effort was made to measure the electrical length by repeated inpale-
ment. This was never less than 6 mm and in all but two cases was >1 cm.
However, such experiments were not always conclusive, because of the
difficulty in penetrating the sheath surrounding the muscle cells. In some
cases, it seemed as if the nylon threads used to hold the strand were
sufficiently taut to damage individual myocytes and thus disrupt elec-
trical continuity along the strand.
The diameter of the strand was estimated using transmitted light and a

dissecting microscope, which allowed the inner muscle mass to be clearly
distinguished from the surrounding connective tissue in reasonably slen-
der strands. Such measurements are less than ideal because the projected
image of the muscle mass must be assumed to be essentially circular in
cross section. The strand may also be nonuniform or branch along its
length, leading to either over- or underestimates in membrane area if two
bundles cohabited in one connective tissue sheath, depending on the
details of their electrical connection. For this reason, strands where the
estimate of the specific capacitance of the cleft membranes was too small
(C,. < 0.4 jF/cm2) or too large (C,,> 3.0 IAF/cm2) were rejected.
The typical electrode separation of 150-200 jim was chosen to mini-

mize three-dimensional effects (Eisenberg and Johnson, 1970) without
producing too much longitudinal decrement. The distance between the
locations where the electrodes penetrated the connective tissue sheath
could be measured with negligible error. But the true separation was only
estimated, because the tips of the electrodes could not be clearly
visualized through the sheath.

Because of the various errors involved in estimating electrode location,
strand length, diameter, and electrode separation, we were not surprised
that some of our data sets could not be fit with the measured values and
reasonable circuit parameters. Almost all of the data sets could be fit with
reasonable circuit parameters if we used arbitrary but reasonable values
of the strand length, diameter, and/or electrode separations in the curve
fitting procedure. Data sets fit with arbitrary parameters are not
presented in this paper.

Simulations
Numerical computations including voltage-dependent ionic conductances
were performed on a Nova 3 minicomputer (Data General Corp.,
Southboro, MA) with hardware floating-point unit. The potential across
the cleft membrane Uwas computed by dividing the clefts radially into 50
shells of equal thickness br, with the transmembrane potential computed
at a node in the center of each shell. In a standard strand of 60-jim radius,
the radial locations of the nodes were 0.6, 1.8, 3.0,.. ., 58.2, and 59.4 Mm.
This shell construction corresponds to an equivalent radial cable with the
amount of cleft membrane and radial resistance in each shell computed
from the disk or pie models at the location of the node' The radial
resistance between nodes is the sum of the half resistances corresponding
to each nodal location. For example, the luminal resistance between shells
(i.e., nodes) k and k + 1 in the disk model is

27r(k - 1/2)br 27r(k + 1/2)br) 2
(12)

At the center of the strand, the boundary condition is (OU/Or),.0 = 0. At
the surface of the strand the boundary condition for the radial cable is
given by Eq. A3 with U,(a, x; t) = 0, V(x; t) = a constant, independent of
time and longitudinal location. In other words, the surface membrane was
assumed to be clamped to a known and time-independent voltage. The
currents across the surface membrane were assumed to arise from a

membrane with area of 1.8 cm2 for each 1 cm2 of unfolded membrane.
The shell construction leads to a system of 50 simultaneous equations

(see Carnahan et al., 1969; Joyner et al., 1978, and references cited
there). We approximate the second derivative (with respect to r) by a

second-order central difference and the first derivative (with respect to

time) by a first-order forward difference. Then, the potentials in each
shell at time t + b1, namely U(kbr; t + bt), are determined by the
potentials in the neighboring shells at the previous time U([k - I]br; t),
U(k6r; t), U([k + lJbr, t), and the various nonlinear conductances and
other circuit parameters associated with these voltages at time t. (The
ionic conductances are described precisely later in this paper.) Iteration
starts with the initial conditions that give the voltage at all radial locations
at time zero. For computations of the sodium conductance 6t = 10 ,us; for
computations of the secondary inward, i.e., calcium conductance, bt = 40
Ms.

Integration of the field equations for electrodiffusion follows the same
plan using central differences to approximate the radial second derivative
of the calcium or potassium concentration.

Simulations of Electrodiffusion
Simulations of the electrodiffusion of calcium and potassium ions were
performed. The flux of sodium was not expected to last long enough to
have substantial effects. The maximum depletion of sodium would be
some 3-5 mM (out of 140 mM resting concentration) in a typical cardiac
action potential, if significant sodium flux occurred only during the fast
inward current.
We describe electrodiffusion with a distributed model, of both cleft

potential and cleft concentration (Lammel, 1981), analogous to the
distributed models that describe strictly electrical properties of syncytial
tissues. The model describes solute movement in the extracellular and
intracellular space by a combination of conservation laws and the
Nernst-Planck equations. It also involves a model of the Hodgkin-Huxley
type to describe the potassium or calcium channel and the resulting solute
flux across the membrane.
The concentration of ions in the clefts is described by the Nernst-

Planck equation (see Sten-Knudsen, 1978), written here for calcium:

Jca(r) = -ddc +Or -Ca, a,)
cl RT clr

(13)
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where R is the gas constant; T is the absolute temperature; and F is
Faraday's constant. U. is the potential in the extracellular space; Jc,(r) is
the flux of calcium in the extracellular space (in moles times square
centimeters per second); Ca, is the concentration of calcium in the
extracellular space (in moles per liter); dc. is the effective diffusion
coefficient for calcium in the clefts determined from measurements of the
effective resistance of the clefts.
We estimate the effective diffusion coefficient dc. from the effective

diffusion constant for NaCl, which is in turn estimated from the measured
effective resistance r, of the clefts in either the disk or the pie models:

dc, = DC dNaC = 0-53dNac d =-2 10 1 (14)DNaCI (14)r'

In these equations, C, is the osmolarity of the solution of the extracellular
space, close to the osmolarity of the extracellular NaCI in our case; Dc.
and DN,CI are the diffusion coefficients for calcium and NaCl at the
concentration found in our Ringer's solution tabulated in Parsons (1959,
pp. 79-80), and the factor of 103 reconciles chemical units of moles per
liter and our spatial units of centimeters. The conservation equation in the
extracellular space is

Vc 0Ca, 10vc+I 3scg -E
VF at 2F VF "

+ convection terms. (15)

In these equations, V is the divergence operator; the morphometric
parameters have their usual significance; Uis the potential across the cleft
membrane, U = V - U,, see Eq. A3; gi and Ej - (RT/2F) In (Ca./Ca;)
are, respectively, the conductance and the equilibrium potential of the
slow inward current. Convection is neglected because the changes in
osmolarity are small for calcium currents. For potassium currents,
convection effects may not be negligible and a more precise analysis
would explicitly include water flow, net ionic flux, and charge balance.
Eq. 13 and 15 can be combined to give a single field equation describing
calcium concentration in the clefts of syncytia. The field equation is made
complete by a description of calcium concentration in the cytoplasmic
medium and the distribution ofelectrical potential (see Eq. Al and A2) in
both cytoplasm and clefts.
A simplified version of Eq. 15 is useful and, in fact, provided much of

our motivation for the analysis of electrodiffusion. The initial rate of
concentration change in the clefts can be calculated by neglecting
extracellular diffusion, because the extracellular concentration gradient is
small at short times. Then, we have

(16)dt |- 0 V VF2F

Typical values might be g,j 10-4.S/cm2; w n 3 x 10-6 cm; and U -
E,j = 100 mV, giving an initial rate of depletion of calcium of -33
mM/s.

Equivalent field equations have been derived to describe the calcium
concentration in the intracellular space, but they can be substantially
simplified here because radial diffusion is insignificant inside the myo-
cytes, as shown by a perturbation expansion of the field equations for
electrodiffusion (Mathias, unpublished information) equivalent to that
used to solve syncytial electrical problems. The resulting equation
describing concentration changes in the intracellular medium is

( V a i 103S-
VFI at 2F VF

(17)

The factor 1- (Vc/ VF) is not significantly different from unity in sheep
Purkinje strands, although it may well be in other preparations. In
applications to those preparations, the reader should be aware that we

have not systematically included such factors in our definition of sarco-
plasmic parameters, e.g., intracellular resistivity.
The computations of electrodiffusion presented here are with the disk

model; we expect that computations with the pie model would give similar
results.

RESULTS

Fig. 2 shows the phase angle and magnitude of the
impedance recorded from a typical strand. The lumped
model produced a poor fit to this and all other data sets.
The lumped model could approximate the phase data only
at the low and intermediate frequencies (say 0-20 Hz)
where the disk, pie, and lumped models are indistinguish-
able. It is not surprising that the lumped model provides an
inadequate description of a sheep Purkinje strand: there is
no structure in the clefts likely to produce a dominating
access resistance.

In contrast to the phase data, the magnitude data were
reasonably described by the lumped model over the entire
frequency range, as one might expect given the known
insensitivity of magnitude plots to the details of models
containing only resistors and capacitors (e.g., Eisenberg,
1983, Figs. 1 and 2).

Fits with Distributed Models of the Clefts
Pie and Disk Models. Typical fits of the pie and

disk model are shown in Fig. 3. The difference in fit of the
models depends on details of the curve fitting procedure
and so is not considered significant. Tables I and II present

FIGURE 2 The phase angle and magnitude of the admittance of a typical
strand, showing the fit of the lumped model. Note the serious misfit of the
data.
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FIGURE 3 The phase angle and magnitude of the admittance of a typical
strand, showing the fit of the disk ( ) and pie (----) models. Note that
both fits are quite satisfactory and essentially indistinguishable except in
the values of the parameters producing the best fit (see Tables I and II).
The microelectrodes were 2.5 mm from the end of a 1-cm long strand.

the data from 17 strands, showing the specific electrical
parameters and effective radial resistivity measured in
each case. The morphometric data used in these curve fits
were taken from the literature and are presented and
discussed later in this paper.

Impedance data from sheep Purkinje strands at a resting
potential between -70 and -90 mV determine four
independent parameters, Gm = gm/(2ira), Cm = cm/(2ira),
Re, and Cw, with Ri determined separately from measure-
ment of the DC length constant whenever possible. (When
sufficient data were not available to measure the DC
length constant, R, was set to 120 Q-cm [Schoenberg et al.,
1975.]) Impedance data in themselves are not sensitive
enough to determine the membrane conductance of the
cleft and surface membranes independently, nor do they
determine the lumped series resistance R, = r, 2-ra outside
the preparation3 independently of the surface membrane
capacitance. Thus, physiological considerations are needed
to determine these parameters.

Model calculations showed that estimates of surface
membrane capacitance were very sensitive to the value of
the resistance r. in series with the outer membrane. Values
of the series resistance in the range of 0.05% of the
membrane resistance have substantial effects on the phase

3This lumped resistance R, presumably arises in the connective tissue
sheath and bathing solution outside the strand and should not be confused
with the resistance or resistivity of the clefts.

plot at frequencies above 300 Hz (Levis, 1981, Fig. C18)
because the membrane admittance increases rapidly with
frequency. Indeed, if the series resistance were 0.1% of the
membrane resistance we report, it would have about a 50%
effect on the admittance and produce a 450 phase shift at a
frequency of 10 kHz! For this reason, the series resistance
rs was included in all our theoretical models (see Eq. 2),
and we tried to estimate its value by our usual curve fitting
procedures. Estimates of the series resistance of strands 2,
5, 7, and 14 were not included in the mean or analysis of
sheath resistance, because of the subtraction procedure
used, as described in Methods.

Measurements of impedance to 10-20 kHz would be
needed to determine Cm, C,, and RJ independently, but our
measurements of the impedance of Purkinje strands were
not considered reliable at frequencies above 3-5 kHz. We
therefore adopted the following procedure to determine as
many parameters as possible with the data available. The
specific capacitance of the surface membrane Cm was set
equal to the specific capacitance of the walls of the clefts
C,, and the values of Cm (now equal to CQ) and R, were
determined by curve fitting. This procedure produced
reasonable values of parameters in some two-thirds of the
strands. In the other one-third, the resulting estimate of the
series resistance was negligible or negative. In those cases
(indicated in the Tables) the value of R, was set to zero; it
was then possible to estimate Cm and C, independently.
The data in Tables I and II seem to indicate different
values for Cm and C,,, which in turn might reflect errors in
our morphometric assumptions. Unfortunately, the signifi-
cance of these estimates is substantially reduced by the
unknown cause of variation in Rs.

Consider next estimation of the specific conductance of
the cleft and surface membranes. The surface and cleft
membranes of Purkinje myocytes are distinguished mor-
phologically by the extracellular space they abut (although
they may well contain different amounts of junctional
specializations); thus, we expect the specific membrane
conductances of the two membranes to be similar, as was
assumed by Levin and Fozzard (1981). Some such
assumption is necessary as well as reasonable. Because of
the large value (compared with the radius) of the DC
length constant of the clefts 1/r(0), the surface and cleft
membranes are essentially in parallel in the sheep Purkinje
strand at DC. In that case, the specific membrane conduc-
tances of the cleft and surface membranes Gw and Gm have
essentially the same effect on the phase plots, so they
cannot be estimated independently. We have not actually
set Gw and Gm equal; rather we set G, = Gm(Cw/Cm) to take
into account variance in cleft membrane area from strand
to strand. We suspect that the substantial variance in our
estimations of C, and G, reflects the variance in cleft
membrane area more than the variance in specific elec-
trical parameters. Our data are fit with one set of
morphometric parameters, while the area of cleft mem-
brane varies from strand to strand.
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FIGURE 4 A comparison of the impedance of the pie and disk models. The right panels show the difference in phase angle (pie model - disk
model) and the ratio of the magnitude (pie model . disk model) of the impedance Z(x, jw) of the strand. The left panels show the difference
and ratio for a strand composed entirely of clefts, i.e., withym =0 . The dashed curves are computed for pie and disk models describing different
strands, one exactly described by the pie model and one exactly described by the disk model, both with the same electrical and morphometric
parameters. The dotted curves are computed for pie and disk models of the same strand (i.e., with identical morphometric and membrane
parameters) forced to give nearly the same impedance at very low and very high frequencies. The value of the magnitude ratio (.. and
----) at low frequencies reflect the different DC resistance of the models, with these parameters. The solid curves (- ) are computed for pie
and disk models of the same strand are forced to give the same impedance at very low and intermediate frequencies. The parameter values used
to compute these curves are essentially the average values shown in Tables II and III.

The values of GC and C. reported in Tables I and II are

in fair agreement with the values reported by Hellam and
Studt (1974a, b), Schoenberg and Fozzard (1979), and
earlier workers. The mean values of the parameters esti-
mated with the two models were essentially the same

except for the estimate of the resistivity of the solution
within the clefts. The resistivity estimated with the pie
model was Rep = 41 Q-cm, whereas that estimated from the
disk model was Rd = 59 Q-cm. The ratio of these estimates
is 1.4, within the range expected from the theoretical
discussion presented later. The estimate of resistivity, in
any model, is linearly related to the estimate of the
morphometric parameter (Vc/ VF) and so morphometric
estimates must be quite accurate if the values of Rep and
R, are to be used to choose the best model.

Morphometric Parameters
The estimates of the specific electrical parameters pre-

viously given depend on the availability and accuracy of
the morphometric measurements of V,/ VF, SC/ VF, 4p and
4. We use the following parameters taken or calculated
from Mobley and Page (1972) as described in Levis, 1981:
S/ VF = 3,900 cm2/cm3; 4,, the wiggle factor for the
surface membrane, is taken as 4. = 1.35; and the wiggle

factor t for the cleft membrane is taken as = 1.8. These
values are in reasonable agreement with the estimates of
Hellam and Studt, 1974a, b). The value of VC/VF can be
related to the average width of the cleft using Eq. 9:

(V,/ VF)

(S V

The volume fraction reported by Mobley and Page (1972)
VC/VF = 2.3 x 10-3 implies a cleft width of some 12 nm,
much less than the average width of 41 nm measured by
Hellman and Studt (1974a, b) and outside the range of
widths (20-30 nm) reported by Sommer and Johnson
(1968).4 We adopt the value w = 30 nm, implying VcI VF =

5.9 x 10-3, while we await more accurate measurements
from our stereological colleagues.

COMPARISONS OF MODELS

Quantitative comparison of the impedance of models of the
same strand clearly requires both models to use the same

parameter values, the same volume of the extracellular

4Eisenberg and Cohen (1983) describe the elaborate sampling procedures
needed to make reliable estimates of tiny volume fractions.
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space, the same wiggle factors, and the same specific
electrical parameters of the membranes and the cleft.
Sometimes, however, the formulation of models is suffi-
ciently complex or obscure that the specific membrane
parameters are hard to identify. In that case, it is useful to
consider the limit R, -- 0, which forces the potential in the
clefts to be radially uniform, making the admittance of any
model depend only on membrane parameters:

lim Yd = lim Y = lim YL = raYW
R,-O RC °

C

R,-°
Y

(19)

where Y,w is the admittance of the cleft membrane per unit
volume of strand, defined in Eq. 5. In skeletal muscle
fibers, or in the Purkinje strands studied here, the low
frequency limit jw , 0 yields a small value of ar(0),
thereby giving a limit very close (but not identical, see
lowest frequency points in Fig. 4) to that in Eq. 19. The
limits differ significantly in cases or preparations where the
DC length constant of the clefts 1 /T(0) is smaller than a
radius, like the lens of the eye (Eisenberg et al., 1979;
Mathias et al., 1979; Rae et al., 1982).

Consider now the relation of the radial resistance in the
pie and disk models. A unique relationship exists between
the radial resistance of the pie and disk models only if we
compare two different strands of different topological
structure, one of which is exactly described by the disk
model and the other by the pie model. In the strand for
which the pie model is the exact description, all the clefts
will conduct radial current; but in the other strand, for
which the disk model is the exact description, only one-half
of the clefts will conduct radial current (see Mathias et al.,
1977, Fig. 2; Mathias, 1983). Hence, physically we expect
(as shown by Eqs. 7, 8, and I 1) the effective cleft resistivity
estimated with the disk model to be twice the effective
luminal resistivity estimated with the pie model, namely
red= 2rep, even though the actual cleft resistivities in the
two models are identical, Red = Rep
The dashed curves in Fig. 4 compare the impedance of

strands with equal membrane and morphometric parame-
ters, with the resistivities Red = Rep and thus with the
effective resistivities re = 2rep. The models differ in the
frequency band from 10-1,000 Hz, but the difference is
probably too small to be experimentally convincing.

This unique comparison of different strands does not
correspond, however, to our experimental situation. Rath-
er, we are confronted with the problem of choosing the
better of two imperfect models, both of which have the
same wiggle factors and volume fraction of extracellular
space, but with unknown specific electrical parameters. In
this situation, there can be no unique theoretical relation-
ship between the cleft resistance of one model and the
other. Neither model describes the real preparation
exactly, nor does it describe the electrical properties
exactly. The theoretical curves produced by each model
will differ from the experimental data and each other. The

optimal theoretical curves cannot be determined uniquely
because the choice of theoretical fit will depend on where,
in what frequency range, the experimenter forces the
theories to fit the data.

Forcing a fit to the data at high frequencies is nearly
equivalent to equating the limits w -o:

lim Yqp 2-ra( Yw/rd)

lim yCd- ra(Y /rep)"2 . (20)

Eqs. 19 and 20 and the dotted curves in Fig. 4 show that the
pie and disk models can agree closely in both the large ra
and small ra limits, if the membrane parameters are
identical and the effective resistivity re = 4rep; i.e., if the
resistivities in the two models are unequal, Re = 2Rep. The
maximum deviation shown by the dotted curves in Fig. 4 is
<300 of phase, hardly distinguishable. The models can be
distinguished experimentally, however, by their differing
estimates of the resistivity of the extracellular space.
We consider next the behavior of the models in an

intermediate range of frequencies, in which a lumped
circuit is also a reasonable approximation, by expanding
the admittance in a power series in the normalized radius
Ga (see Hodgkin and Nakajima, 1972; Mathias et al.,
1977, 1981):

pie model -rpy+ra2' +
Yp ;aw

rep= 3= 3ir(VC/VF) (21)

diskmodel -=rd + 2 +
Yd waYw

r rd t2Red 22
rd8wr 47r( Vc/ VF) (22)

where the circumflex indicates the lumped access resis-
tance for each model and Rw and Rep are the (possibly
different) estimates of the resistivity in the disk and pie
models. If the resistivities in the two models Red and Rep
differ by a factor of 4/3 (with the membrane parameters,
wiggle factors, and volume fractions equal), then the
lumped access resistance for the models will be equal,
namely red = rep. The impedance predicted then agrees
closely in the low and intermediate frequency range (see
solid curves in Fig. 4). Clear differences occur only at very
high frequencies, frequencies that lie beyond our measure-
ment capability and are not shown in the figure.

Radial Distribution of Potential

Fig. 5 illustrates the theoretically predicted spatial distri-
bution of potential in the clefts resulting from a step of
potential across the surface membrane from the resting
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FIGURE 5 The radial distribution of potential in the disk and pie models with linear properties. The plots show the radial variation of potential
computed for the parameters given in the text at the times indicated in each panel. In a real strand, the membrane parameters would change
drastically with depolarizations this large; the linear case illustrated here is useful for comparison with the nonlinear simulations shown in
other figures. ( ) Disk model, Rod 58 Q-cm. (---) Pie model, Rp = 42 s-cm.

(and holding)5 potential of -90 mV to the depolarized
potential of -10 mV. We artificially assume that the
strand retains its resting properties at -10 mV to allow
easy comparison with simulations of nonlinear active prop-

erties. The decrement of potential along the clefts is, as

expected, most severe at short times, when large capacitive
currents flow through the cleft membrane shunting the
radial flow of current in the clefts. The pie model predicts a

more positive potential (less decrement) than the disc
model at all times. (The parameters used in this simulation
are specified in the Simulations section of the paper.)

Conclusion

We conclude then that the pie and disk models cannot be
distinguished by their fit to our impedance data; perhaps
they can be distinguished by their estimates of luminal
resisitivity, by measurements of the radial distribution of

5We set the equilibrium potential and (constant) conductance of the
leakage pathway so the resting potential equaled -90 mV, the desired
holding potential. The leakage current in the passive case is zero; in the
active case it balances the net current through the other pathways.

potential, or by morphological measurements of the radial
distribution of membrane area.

SIMULATIONS

The electrical properties of the clefts of Purkinje strands
limit the interpretation of voltage clamp experiments
(Johnson and Lieberman, 1971; Attwell and Cohen, 1977;
Schoenberg and Fozzard, 1979; Haas and Brommundt,
1980). For that reason, we performed simulations in which
the surface membrane was voltage clamped (i.e., held at
the command potential at all times and locations) and the
cleft membrane was modeled as a nonlinear membrane
embedded in the electrical and morphological structure
measured and analyzed in the rest of this paper. Our
simulations differed from earlier work in several ways.

They included measured values of the linear parameters;
they explicitly compared the disk and pie models, each
with the appropriate linear and morphometric parameters;
and they included the effects of electrodiffusion in the
clefts, namely changes in the concentration of calcium and
potassium ions in the cleft (and sarcoplasm) resulting from
ionic current flux across the cleft membranes and radial
electrodiffusion in the clefts.
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The linear parameters used in these simulations were the
resting membrane resistance Rm = 18 kQ-cm2, Cm = 0.9
z.iF/cm2, (SC/VF) = 3,900 cm ', VC/VF = 5.9 x 10-3, 2 =
3.2, Td = 0.14,Tp = 0.28, the resistivity of the solution in the
clefts in the disk model Red = 59 ohm-cm, and the
resistivity of the solution in the clefts in the pie model Rep =
41 Q-cm. Note that these are specific parameters: mem-
brane parameters are referred to as the unit area of the
membrane in which they arise, and estimates of the
resistivity of the solution in the clefts are directly compara-
ble with measurements of bulk resistivity. The morphomet-
ric parameters imply that the cleft membranes have 11.7
cm2 of area for each 1 cm2 of smooth surface membrane in
a strand of 60 ,um radius. Because the surface membrane is
folded, by a factor of _t2 = 1.8, the cleft membranes have a
total (folded) area of -6.5 cm2 for each 1 cm2 of folded
surface membrane.

Sodium Current
These simulations were performed with a representation of
the sodium current taken from Adrian et al. (1970) for
frog skeletal muscle, scaled to a temperature of 10°C with

.. .'
-ao.I

.

I*

a Q1o of 2.5 to approximate the slower kinetics of mamma-
lian cardiac sodium channels:

INa gNam h( - ENa) (23)

where U is the potential across the cleft membrane defined
in Eq. A3 and

0.022(U + 42)
m 1 -exp [-(U + 42)/10J'

f.= 0.19 exp [-(U + 42)/18] (24)
ah = 0.0014 exp [-(U + 14)/20];

Oh= 0.31/[1 + exp [-(U + 41)/10] (25)

where gNa = 23 mS/cm2. This value is taken from the work
of Ebihara and Johnson (1980) and Ebihara et al. (1980)
for chick heart; it exceeds the value used by McAllister et
al. (1975) but may still be an underestimate of the true
value for sheep Purkinje strands. ENa was assumed to be 50
mV, and all potentials were measured in millivolts. These
parameters produced cardiac sodium currents that were
similar to those reported in mammalian cardiac cells at
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FIGURE 6 Sodium currents flowing in a simulated voltage clamp of the surface membrane of a Purkinje strand. The concentration of sodium
is assumed to be constant, independent of time and location in this simulation. The inset shows the total current computed (T), the linear
current that would flow if the strand parameters remained constant during a voltage step of this size (L), and the difference of the two currents
(D). The panels show the sodium current across the surface membrane (S), the sodium current that would be measured leaving the clefts (C),
and the total current that would be recorded under these circumstances (Rd or Rp). The curve labeled R0 -~0 shows the current that would be
recorded under ideal circumstances when there is no voltage gradient in the clefts. The drastic difference between the ideal currents and the
recordable currents is explained by the lack of voltage control shown in Fig. 7.
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FIGURE 7 The radial distribution of potential at short times in a voltage clamped strand with normal sodium conductance. The concentration
of sodium is assumed to be constant, independent of time and location in this simulation. The upper panels show the potential across the cleft
membrane, as a function of time at the depths indicated. Note that even 1 Aim into the strand the potential is totally out of control, resembling a
propagating action potential. The lower panels show the radial distribution of potential at different times. The slope of these curves is
proportional to the radial current flowing in the clefts. Note that the radial current changes sign, indicating the existence of circulating loops of
current.

some 220C by Colatsky (1980), Brown et al. (1981), and
Bodewei et al. (1982) but somewhat slower than the chick
cardiac currents reported by Ebihara and Johnson (1980)
and Ebihara et al. (1980) scaled by a Qlo of 2.50 to 220C.
Warmer temperatures, or larger or faster sodium currents
would increase the spatial nonuniformity reported below.

Fig. 6 shows the sodium currents predicted using mea-
sured values of linear properties after subtraction of the
linear transient as described in the inset. The concentration
of sodium was assumed to be constant, independent of time
and location in this simulation. The current response
produced by the linear properties of the system (marked
with an L in the inset to Fig. 6) was computed for a
depolarizing step from -90 mV (holding potential) to -10
mV. The total current produced by the strand (with its full
set of linear and nonlinear properties) is marked with a T.
The difference of the two currents is marked with a D. The
subtraction procedure was meant to remove the current
that flows because of the linear properties of the cleft
membranes. The subtraction procedure has inherent prob-
lems, although it is widely used experimentally: if the
distribution of potential within the clefts is different in the
two cases, for whatever reason, the subtraction will not
correctly remove the linear current.

Fig. 6 shows the response of both models, for the sake of
completeness. The dotted lines, marked with S, are the
sodium currents computed for the surface membrane,
which is presumed to be perfectly voltage clamped, with
the voltage held at the constant value of - 10 mV at all
times. The solid lines marked with an R. - 0, are the
currents computed when the extracellular resistivity is
negligibly small, when the cleft membrane behaves in the
voltage clamp as if it were an ideal surface membrane, with
perfectly controlled transmembrane potential at all places
and times. The total current in that case is a scaled version
of the surface current, since we assume the specific proper-
ties of cleft and surface membrane are the same.
The total currents computed with the measured extra-

cellular resistivities are shown as solid curves. The differ-
ence between the two curves (i.e., the difference between
Re~,0 and Red or the difference between Re -- 0 and Rep)
is an estimate of the distortion introduced by the distrib-
uted series resistance. At the peak of sodium current the
amplitude is reduced by roughly a factor of 3; that is to say,
the sodium current recorded in the intact strand is only
some 30% of the current that would be recorded if the cleft
membranes were voltage clamped with no resistance in
series. Estimates of the properties of surface or cleft
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membranes made from records like these would be of no
quantitative use at all; moreover, the distortion is so great
that they might well be qualitatively misleading. Interest-
ingly, the signs of such drastic lack of control are more
subtle than one might expect: the predicted total current is
smooth, free of obviously spurious maxima or minima
("notches"), although slower than it ought to be. We have
performed simulations for other size voltage steps that
show the expected signs of spatial nonuniformity of poten-
tial: notches appear for voltage steps into the region of
steepest dependence ofgNa on voltage, near the threshold of
the action potential.

Fig. 7 shows the voltage across the cleft membrane at
various radial locations. The concentration of sodium is
assumed to be constant, independent of time and location
in this simulation. The upper panels show the voltage as a
function of time, at different radial locations as identified
in the caption. Note the lack of control even close to the
surface, some 10 ,m into the strand. The voltage wave-
forms at greater depths resemble an action potential and
are not controlled by even a perfect voltage clamp of the
surface membrane. The lower panels illustrate the same
data in a different way, showing the effects of circulating
currents, since the current across the cleft membrane is
proportional to the spatial derivative of the potential
illustrated (see Eq. A2). At some times, the current is
inward in some places and outward in others, forming
current loops isolated from the outside world and thus
unobservable and uncontrollable in the voltage clamp.

Only after about 10 ms does the potential settle to its
steady distribution.

Note that at some times the depolarization of the
membranes in the center of the strand is larger than that
across the surface, reproducing a state observed indirectly
in skeletal muscle (Costantin, 1970; Costantin and Taylor,
1973) and analyzed by Eisenberg and Costantin (1971).

Fig. 8 illustrates computations done with reduced
sodium current. The concentration of sodium is also
assumed to be constant, independent of time and location
in this simulation. The sodium current was produced by an
ENa of 0 mV and gNa = 5 mS/cm2, as should occur in a
bathing solution with considerably reduced sodium concen-
tration. It is reasonable to expect this procedure to reduce
the distortions seen in Figs. 6 and 7; however, the simulated
currents are not significantly more accurate. The total
current that would be measured in a perfect voltage clamp
(for Re - 0) is still far greater than that computed with
the measured value of extracellular resistivity. Indeed, the
waveform of the total current is seemingly more distorted
than in a full concentration of sodium, because it now
shows a clear double minimum. We suspect the reason for
this unexpected result is the following: at normal sodium
concentrations the potential spread in the clefts is virtually
a propagating action potential, which happens to produce a
total current with a time course not too different from the
sodium current across the surface membrane. In reduced
sodium, the potential spread is more controlled, and the
coincidental resemblance is lost. Of course, the apparent
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FIGURE 8 Currents flowing in a simulated voltage clamp with reduced sodium conductance and reduced equilibrium potential, as might
occur in a sodium concentration 20% of normal. The concentration of sodium is assumed to be constant, independent of time and location of
this simulation. The symbols are defined in the text and caption to Fig. 6. Note that the observable total currents (Ro or R,,) are apparently
more distorted than in Fig. 6, computed with normal sodium conductance; see text for a resolution of this anomaly.
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currents recorded in both situations were quite unsatisfac-
tory approximations to the characteristics of a perfectly
clamped membrane.

Fig. 9 simulates the secondary inward, predominantly
calcium current, using essentially the formulation of
McAllister et al. (1975) with the activation kinetics (i.e.,
ad, ad) sped up by a factor of 3 to make the currents more
nearly resemble the records of Colatsky and Tsien (1979)
and Ebihara and Johnson (1980) and Ebihara et al.
(1980). Other formulations are possible (e.g., Drouhard
and Roberge, 1982), but not worth pursuing for our
purposes:

IM = (95iIfd + jsi2d')(U - Esj) (26)
where g = 0.1 mS/cm2, gsi2 = 0.01 mS/cm2, and E,, = 70
mV. The values of the parameters in the formulation of
McAllister et al. are (when referred to 1 cm2 of unfolded
membrane)

d' = 1/{1 + exp [-0.15(U + 40)]1;
ad = 0.006(U + 40)/{1 - exp [-(U + 40)/10] (27)

1d = 0.6exp [-0.l(U + 40)]; af = 10-3exp [-(U + 60)];
af = 0.02/1l + exp [- 0.l (U + 26)]1. (28)

These calculations imply that the radial decrement in
potential within the clefts does not seriously distort the
secondary inward current of sheep Purkinje strands,
although careful examination of the simulations (at a
higher sweep speed than illustrated) shows that the peak
current was delayed by -5 ms. The sizes of the secondary
inward currents shown in Fig. 9 are similar to the reduced
sodium currents previously computed (Fig. 8), yet the
spatial control is much worse in the latter case. This result

EDK.

suggests that the rate of change of the current is an
important factor in determining the spatial uniformity of
potential across the cleft membrane and thus the quality of
the voltage clamp data.

Simulations of Variation
of Chemical Potential

Approximations (see Eq. 16) and analysis of lumped
models of the clefts of Purkinje strands (e.g., Attwell et al.,
1979) suggest that the concentration of potassium should
vary when physiological currents flow through the cleft
membrane, just as the concentration of potassium varies in
the tubules of skeletal muscle (Adrian and Freygang,
1962a). Furthermore, experimental work (e.g., Baum-
garten et al., 1977, and Kline and Kupersmith, 1982; see
the review of Cohen and Kline, 1982) indicates the signifi-
cance of such effects. For that reason, we have performed
simulations using a distributed model of the clefts and
measured values of the linear electrical properties of the
preparation. Our simulations allowed a radial variation in
cleft concentration, potential, current flow, and membrane
flux, but did not include the effects of active transport
systems, exchange mechanisms, or specific binding within
the sarcoplasm. Such effects are undoubtedly of consider-
able significance and must be included, once sufficient
experimental data are available, if one seeks a quantitative
analysis of the variation of chemical potential. Our goal,
however, is more limited: we seek to show that the variation
of chemical potential in the clefts is significant in sheep
Purkinje strands under a variety of conditions.
As expected from our simulations of purely electrical

phenomena, the radial decrement in electrical potential
was found to be small during the flow of potassium and
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FIGURE 9 Currents flowing at long times in a simulated voltage clamp of the secondary inward current, using the McAllister et al. (1975)
representation of the current. Calcium concentrations are assumed constant, independent of time and location. The symbols are defined in the
text and caption to Fig. 6. Note the close resemblance of the experimentally observable currents (marked with an Rod or R.p) and the ideal
currents (marked with affRr - 0).
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calcium currents, because of the small magnitude and slow
time course of these currents. The radial decrement of
concentration was found to be small as well, except in the
outermost region of the clefts near the surface of the strand
(see Figs. 10-12). This result suggests that a lumped model
of a "restricted extracellular space" (Adrian and Frey-
grang, 1962a; Attwell et al., 1979) might be adequate for
the sheep strand if the parameters of the lumped model are
chosen by an explicit limiting process applied to the
distributed model of electrodiffusion, analogous to the
limiting process defined in Eqs. 19-22. The adequacy of
such a lumped model needs to be investigated separately
for each ionic current in each preparation.

Fig. 10 shows the concentrations of potassium (left-hand
panel) and the currents (right-hand panel) expected during
a prolonged voltage clamp in which potassium ions can
accumulate (lower panels) or deplete (upper panels) in the
clefts between cells. The sodium pump, and other transport
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and binding mechanisms, have not been included in these
simulations, so the results are qualitative: they cannot be
taken as quantitative predictions of the actual concentra-
tions. The upper trace in each panel is the command
voltage, the potential across the surface membrane. The
depth at which each concentration is computed is shown
near the curves. The right-hand panels show the current
across the surface membrane (marked with an S), the total
current across all the cleft membranes (marked with a C),
and the total current (marked with a T), the sum of the
cleft and surface currents. The current that would occur if
the cleft concentration of potassium were uniform is
labeled ideal. The computations were performed for a
membrane permeable only to potassium, with a specific
conductance of 56 gS/cm2. The conductance was assumed
independent of time, transmembrane potential, and potas-
sium concentration, so our results would not depend on the
poorly understood properties of the potassium channels
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FIGURE 10 Cleft concentrations and currents of potassium with a membrane potassium conductance independent of time and potassium
concentration. The step of potential applied to the surface membrane is shown at the top of each panel. The potassium concentration in the
bath is 4 mM, the value used experimentally. The intracellular concentration is initially 140 mM; thus, the initial value ofEK is -90 mV. The
left panels show the potassium concentration in the bath, in the sarcoplasm, and in the clefts at the various depths indicated. The right panels
show the total potassium current across the surface membrane (S), the cleft membranes (C), and the total preparation (T). The curves
labeled ideal show the current that would flow in an ideal preparation in which the concentration of potassium was constant, independent of
time and location. The computation shown is for the disk model; we expect that computations for the pie model would give similar results.
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and transport systems of the Purkinje strand. Our simula-
tions thus give the time scale and magnitude expected for
the changes of concentrations in the natural situation;
quantitative analysis, however, requires more detailed
knowledge of channel properties. Nonetheless, it is com-
forting that our simulations are not incompatible with the
experimental results reported by, for example, Baum-
garten et al., 1977, and Kline and Kupersmith, 1982.
The changes of concentration can be intuitively under-

stood for both the hyperpolarizing and depolarizing steps
in potential. The potassium concentration in the clefts will
tend to equilibrate with the cleft membrane potential; that
is to say, the chemical potential (i.e., the the equilibrium
potential) for potassium will approach the cleft membrane
potential at any radial location. The time course of the
concentration changes reflects the amount of concentra-
tion change necessary to equilibrate the chemical potential
and the electrical potential. Thus, the response to the
hyperpolarizing step will be faster than the response to the
depolarizing step because the change in concentration
required is smaller. When the hyperpolarizing step is
applied, the chemical potential must eventually approach
- 120 mV, corresponding to a change in cleft concentra-
tion of 2.8 mM potassium. When the depolarizing step is
applied, extracellular potassium must eventually approach
12.9 mM, corresponding to a change of 8.9 mM.
Other simulations of potassium movements were per-

:101 i 0 00

formed using a more complex description of the potassium
channel (Eqs. 1 and 2 of Noble, 1965) allowing the
potassium conductance to vary with voltage and concentra-
tion. These simulations showed changes in concentration
on a similar time scale but a maximum in the plot of cleft
current vs. time appeared in the response to a depolarizing
step of potential. Such a biphasic current might tradition-
ally be interpreted as two components reflecting flux
through two different channels. If the clefts of cardiac
muscle contained potassium channels with the complex
properties of the inward rectifier of skeletal muscle or
starfish oocytes (steep negative slope conductance and
dependence on extracellular potassium [Spalding et al.,
1981], independence of intracellular potasssium but
dependence on intracellular sodium [Hagiwara and
Yoshii, 1979], apparent time dependence [Leech and
Stanfield, 1981]; see general analysis of Hille and
Schwartz, 1978), the potassium current might well have
multiple maxima and thus seem to have multiple compo-
nents, even if just one channel were involved.
The next set of simulations shows the concentration

changes and calcium currents, described by the secondary
inward conductance, expected in response to a prolonged
depolarizing step in potential for two cases. In these
simulations the calcium conductance is described by Eqs.
26-29 with g il = 0 and gSi2 = 0.1 mS/cm2. The effects of
calcium pumps, exchange mechanisms, and specific bind-
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FIGURE 11 Cleft concentrations and currents of calcium with a membrane calcium conductance independent of time and calcium
concentration. A step of potential of -10 mV from a resting potential of -90 mV is applied to the surface membrane. The calcium
concentration in the bath is 2.7 mM, the larger value used experimentally. The intracellular concentration is initially 0.26 MM; thus, the initial
value of E,, is about +1 15 mV. The left panel shows the calcium concentration in the bath, in the sarcoplasm, and in the clefts at the various
depths indicated. Note the hundredfold changes in concentration during the depolarizing step. The right panel shows the calcium current
across the surface membrane (S), the cleft membranes (C), and the total preparation (T) are also shown. Note that the current turns off even
though the calcium conductance used in the simulation did not include an inactivation process. The curve labeled ideal is the total current in an
ideal preparation, in which the electrochemical potential across all the membranes was controlled at a constant value. The initial peak of the
total current (T) does not coincide with the ideal line because of the large initial voltage nonuniformity in the clefts. The computation shown is
for the disc model; we expect that computations for the pie model would give similar results.
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ing are not included in this simulation, because of lack of
data. Thus, the results are essentially qualitative and
cannot quantitatively predict the concentration changes in
the clefts.

In Fig. 11 the calcium conductance, defined in Eqs. 26
and 27, depends on voltage but is strictly independent of
time and calcium concentration. In Fig. 12, however, the
calcium conductance depends on calcium concentration in
a passive (diffusionlike) manner, varying nearly linearly
with extracellular Cae when Cae>> Cai (see Eq. 29). In this
case, the conductance varies with time, but only because
calcium concentration varies:

In (Cae/Caj) (29)

where Psj is a constant permeability factor chosen to
produce the initial values of -si2 = 0.1 mS/cm2 already
mentioned. This equation was derived from Sten-Knudsen
(1978, Eq. 124 and the unnumbered equation on p. 85).
We assume that the secondary inward current is entirely
carried by calcium ions and in this simulation we assume
the concentrations of potassium and sodium to be constant,
independent of time and location. Current carried by other
ions through this channel (e.g., sodium, Reuter, 1979)
would quantitatively modify our results but not change our
conclusions.
The left-hand panel of Fig. 11 shows the concentration

of calcium in the clefts at the various depths indicated and
the concentration in the bath and sarcoplasm. Note the
very large changes in calcium concentration in both the
cleft and sarcoplasm. The initial rate of calcium depletion
is very close to the rate of 33 mM/s computed using the
approximation equation (Eq. 16). The sarcoplasmic cal-
cium rises from 0.26 to 10 ,M in <50 ms; thereafter, it
gradually increases to -20 ,iM at the end of the simulation.
Further computations (not illustrated here) show that

0 '
O

0oL

qualitatively similar changes occur in the cleft if the
sarcoplasmic concentration is held constant.
The right-hand panel of Fig. 11 shows calcium currents

across the surface membrane (marked with an S), across
the cleft membrane (marked with a C), and across both
membranes (marked with a T), under these conditions.
The current labeled ideal is that which would flow if the
calcium concentration in the clefts and sarcoplasm did not
vary. The initial rapid falling phase of the calcium current
is primarily caused by the intracellular accumulation of
calcium, as can be seen by comparing the time course of
current and the time course of intracellular calcium con-
centration. The final rapid falling phase of calcium current
is due to the progressive depletion of extracellular calcium.
The rate of change of extracellular calcium concentration
with time does not vary much during most of the simula-
tion; rather the change becomes progressively more impor-
tant as the calcium concentration becomes less. During this
time period the gradient of electrochemical potential for
calcium approaches zero as the extracellular and intracel-
lular concentrations equilibrate with the membrane poten-
tial.

Fig. 12 includes the dependence of calcium conductance
on concentration as just described. The concentration
changes more gradually with time than Fig. 11. The initial
rapid decline in current is again produced by the rapid
intracellular accumulation of calcium. The overall time
course is influenced by accumulation, depletion, and the
decline in calcium conductance as the concentration of
extracellular calcium declines. Most of the sustained cur-
rent is across the surface membrane; in the middle of the
strand the conductance is initially nearly 0.1 mS/cm2 but
declines to some 5-6 jiS/cm2 by the end of the simulation.
The most striking result of these simulations is the

resemblance of the calcium current in the right-hand panel
of Fig. 12, computed without an inactivating calcium
conductance, to the secondary inward current shown in
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FIGURE 12 Cleft concentrations and currents of calcium with a membrane calcium conductance which depends on the concentration but not
time. See caption of Fig. 11.
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Fig. 9, which resembles experimental records. Further
simulations were performed to check this result: inclusion
of an inactivating calcium conductance in the membrane
(Reuter et al., 1982) or a constant calcium concentration in
the sarcoplasm did not qualitatively alter the large changes
in calcium concentration and the resulting changes in
calcium current.
Our simulations do not include some potentially impor-

tant properties of the calcium channel; for example, the
time course and amplitude of the secondary inward con-
ductance gj is probably inadequately described by either of
our formulations. Furthermore, when intracellular calcium
concentration varies substantially, there may be direct
effects on its own conductance, including a concentration-
dependent inactivation of the conductance (Eckert et al.,
1981; Marban and Tsien, 1981), more extensive than the
concentration dependence described by Eq. 29. Intracellu-
lar calcium must also be expected to have specific effects
on the conductances for other ions as well because the
conformation of such channels is dependent on a divalent
binding site (Gilly and Armstrong, 1982a, b). Finally, our
simulations ignore the significant amounts of sodium ions
(and perhaps other ions as well) likely to flow through the
calcium channel (Reuter, 1979). If sodium ions were only
1% as permeable as calcium, they would carry some
one-third of the current, quantitatively modifying our
results.

Despite these simplifications in our description of the
calcium channel, one conclusion seems inescapable. Varia-
tions in the gradient of calcium concentration will have
large effects on the turn off of calcium current in both the
voltage clamp and the cardiac action potential.

DISCUSSION

Comparison of Models
Uncertainties in our results arise primarily from limita-
tions in the bandwidth of our electrical measurements and
inadequacies in the available morphological information.
If the morphology of an average Purkinje strand were
known in sufficient detail, the choice of circuit model for
the ensemble could be made by studying the radial distri-
bution of clefts. If the topology and morphometric parame-
ters of cleft and outer membrane were known for each
Purkinje strand, the circuit model appropriate for that
strand could be synthesized numerically, using the meth-
ods of Mathias (1975) or perhaps analytically using the
methods of Mathias et al. (1977) and Levin and Fozzard
(1981).

In any case, electrical measurements made in the cyto-
plasm of the myocytes are unlikely to distinguish between
models. Simulations suggest, however, that measurements
of the distribution of potential in the cleft could distinguish
between models. In skeletal muscle fibers, the spatial
distribution of tubular potential has been estimated by
Nakajima and Gilai (1980a, b) and Heiny and Vergara

(1982) using optical signals measured in fibers stained
with voltage-sensitive dyes. Morad and colleagues (Morad
and Salama, 1979; Morad and Weiss, 1981) have mea-
sured optical signals from cardiac preparations that might
be expected to depend on the spatial distribution of poten-
tial in the clefts.

Voltage Clamp, Series Resistance, and
Structural Analysis

The voltage clamp has been widely used to measure
physiological current flow since its invention by K. S. Cole
(see historical reviews by Hodgkin, 1976, and Cole, 1982).
Most physiological conductances depend fundamentally on
the voltage and concentrations of permeant ions on each
side of the membrane, and thus a controlled study of
physiological currents requires control of the membrane
potential and concentration of permeant ions. Seeking to
exploit the success of the voltage clamp of simple axonal
preparations, physiologists have applied the method to
preparations of considerably greater complexity (e.g., car-
diac muscle [Deck and Trautwein, 1964; Hecht et al.,
1964; Noble and Tsien, 1969], skeletal muscle [Adrian et
al., 1970]). The voltage clamp has been less successful in
these more complex preparations, particularly cardiac
preparations: no one knows if the disconcerting number of
reported currents reflects a variety of different channels or
is an artifact of the complex structure of cardiac tissues (or
both).

Even in the squid axon, structural complexity can
produce significant problems. Potassium ions accumulate
in the periaxonal space between axon membrane and
Schwann cell, as first reported by Frankenhaeuser and
Hodgkin (1956) and most recently analyzed by Taylor et
al. (1980). The resistance in series with the membrane,
arising in part in the periaxonal space, limits the speed and
reliability of the clamp because current flow through this
resistance ensures that the voltage across the membrane is
no longer a faithful replica of the potential commanded by
the voltage clamp circuit. Preparations with complex struc-
ture must be expected to have much larger series resistance
than squid axon; impedance measurements of frog skeletal
muscle (originally by Falk and Fatt, 1964; later by many
workers reviewed in Eisenberg, 1983) suggest that most of
its membrane is in series with a resistance of some 200
f-cm2, which is 50-100 times larger than for a squid axon.
A reasonable conclusion from the impedance measure-
ments, voltage clamp measurements (Adrian et al., 1970),
and simulations (Adrian and Peachey, 1973) of frog
skeletal muscle and cardiac muscle (Schoenberg and Foz-
zard, 1979; Haas and Brommundt, 1980) is that interpre-
tation of voltage clamp measurements in the presence of
this much series resistance requires detailed independent
experimental evidence describing the equivalent circuit of
the preparation.
As expected, our experiments showed that almost all the

resistance in series with the membranes of Purkinje strands
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was distributed; the amount of lumped resistance in series
with the surface membrane was negligibly small compared
with the amount of distributed resistance in series with the
cleft membranes. This finding has important consequences
for voltage clamp experiments. It implies, for example, that
compensation of series resistance must be undertaken with
great caution. The feedback method (Hodgkin et al., 1952)
or the chopped clamp method (Brennecke and Lindemann,
1974a, b; Wilson and Goldner, 1975; Goldman and
Morad, 1977; Merickel, 1980) can successfully compen-
sate for lumped series resistance. But that resistance is
trivial in sheep Purkinje strands compared with the distrib-
uted series resistance of the cleft. Compensation for the
distributed series resistance of the cleft is impossible
because the different pieces of cleft membrane are at
different potentials as long as concentration gradients or
current flow exists in the clefts.
The measurements and simulations presented here con-

firm the conclusions of earlier simulations (Schoenberg
and Fozzard, 1979; Haas and Brommundt, 1980) that
measurements of sodium currents from sheep Purkinje
strand are likely to be incorrect, even if they appear as
expected. Other preparations with similar structural com-
plexities and similar linear properties (e.g., ventricular or
atrial myocaridum, skeletal muscle) must be expected to
have similar distortions in their current records.
Our measurements and simulations also suggest that

radial control of electrical potential is unlikely to be an
overwhelming problem in the measurement of the the
slower currents important during the plateau of the action
potential. The control of the chemical potential (i.e., the
concentration gradient) across the membranes is quite a
different matter.

Electrodiffusion in Cardiac Preparations
Our simulations showed a substantial variation of the
chemical potential of calcium and potassium, arising from
the flux of the ions across the cleft membrane and the
radial electrodiffusion of the ions in the clefts. A simplified
version of Eq. 16 is useful in evaluating the size of these
effects, particularly in different preparations:

initial - [x] 0.01 (U - E.). (30)
dt zw

Here the rate of change of [x] is in mM/s; w is the width of
the cleft, in centimeters (see Eq. 18); gx is the conductance
(S/cm2) of unfolded membrane; U is the electrical poten-
tial across the cleft membrane, in millivolts; E, is the
equilibrium potential for ion x (of charge z); the factor
0.01 reconciles chemical and electrical units and has
dimensions (mol/liter)/ [C/(cm3-s)].
The intracellular accumulation and extracellular deple-

tion of calcium predicted by the simplified equation is close
to that shown in the full scale simulation (see Figs. 10 and
11) and is large enough to shut off calcium current (as

seems to be the case in skeletal muscle [Almers et al.,
1981]), even if the conductance for calcium did not
inactivate. The current would decline even if the conduc-
tance were maintained because the depletion of calcium in
the clefts and the accumulation of calcium in the sarco-
plasm removes the gradient of chemical potential that
drives the calcium movement.
The implications of such large effects are substantial,

and so one should consider its generality. Eqs. 16 and 30
provide simple approximate estimates of the initial rate of
change of concentration, and the results shown in Fig. 11
show that the approximation is quite accurate. Obviously,
the larger the cleft width, the smaller the effect; but our
approximate expressions show that even in clefts of sub-
stantial width, such as those of dog Purkinje strands (see
Tables 3 and 4 of Eisenberg and Cohen, 1983) significant
changes in concentration would occur in the hundreds of
milliseconds of the cardiac action potential.
When considering other preparations, with more non-

uniformity of cleft structure than sheep Purkinje strands,
one must remember that the smallest clefts dominate the
electrochemical properties, whereas the largest clefts dom-
inate estimates of morphometric parameters. Mathias et
al. (1981a, c), show that substitution of average morpho-
metric parameters into equations like the disk model
underestimates the contribution of clefts to the electrical
properties of the tissue. Thus, the electrochemical effects of
the narrowest clefts are likely to be substantial, even in
preparations like dog Purkinje strand, which have less of
these narrow clefts than sheep Purkinje strands.
We must also consider the details of our analysis to be

sure the assumptions made do not invalidate its significant
conclusions. The equations we use to describe flow in the
clefts are in themselves somewhat simplified, since they
ignore coupling between flows of ions, on the one hand, and
convection due to osmotic effects, on the other. Only the
largest concentration changes for potassium are likely to be
influenced significantly by such effects.
More serious is our simplification of the properties of

cardiac membranes. We have ignored the contributions of
active transport systems because of lack of knowledge, not
because we doubt their role. We have also used descrip-
tions of the channel conductance that do not vary realisti-
cally with the electrical or chemical potential. More
complete descriptions of cardiac calcium and potassium
channels are not available, in part because most measure-
ments have been contaminated by radial variation in the
electrochemical potential within the clefts.
Our assumptions concerning the sarcoplasm of cardiac

cells are also important. Cardiac sarcoplasm includes
many systems that modify the concentration of calcium
ions: several calcium-binding proteins are present in sub-
stantial concentration, most notably troponin and perhaps
parvalbumin (in some preparations); the sarcoplasmic
reticulum has elaborate mechanisms for the release and
uptake of calcium, as does the surface and presumably
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cleft membrane as well (Fabiato and Fabiato, 1979).
These systems will certainly modify the intracellular con-
centration of calcium.
The simplifications just described do not affect the main

point of our analysis of ionic concentrations in the clefts.
The flux of calcium and potassium across the cleft mem-
brane is sufficiently large that realistic analysis of the
cardiac action potential must include electrodiffusion of
calcium and potassium in the clefts. This conclusion of our
theoretical simulations is supported by recent experimental
work on calcium fluxes in skeletal muscle (Almers et al.,
1981) and measurements of resting calcium concentration
in cardiac muscle (Marban et al., 1980), the lumped
calculations of Attwell et al. (1979), and the measure-
ments of potassium accumulation from number of studies,
e.g., Baumgarten et al. (1977), Kline and Kupersmith
(1982), and Cohen and Kline (1982).

Interpretation of Total Ionic Current
Our simulations of voltage clamp illustrate the importance
of controlling the electrochemical potential, both the elec-
trical potential and the concentration gradient. When
sodium currents flowed, the current recorded in the voltage
clamp bore little resemblance to the current through the
sodium channel. When secondary inward, predominantly
calcium currents flowed, the current recorded in the
voltage clamp was a reasonable representation of the total
ionic current through the corresponding channels, but the
gradient of electrochemical potential across each channel
varied with time and with the radial location of the
channel. Thus, analysis of the properties of an ensemble of
ionic channels must not assume a constant gradient of
electrochemical potential.

Even if the electrochemical potential is perfectly con-
trolled across cleft and surface membrane, the recorded
current must be parsed into the currents through individual
channels before molecular mechanisms can be reasonably
studied. If the currents through different channels have
similar time and voltage dependence or drug sensitivity,
they probably can only be uniquely separated by physically
isolating the channels, whether by patch clamp or purifica-
tion and reconstitution (Coronado and Latorre, 1982).

Conclusions
The major conclusions of this paper are (a) that the linear
electrical properties of sheep Purkinje strands must be
described by a distributed model, in which the inner
membranes and the resistance of the cleft play a major
role. (b) The pie and disk models of the strands cannot be
distinguished by measurements of potential in the cyto-
plasm; they can probably be distinguished by measure-
ments of the distribution of potential across the cleft
membranes or by direct morphological measurement of the
radial distribution of cleft membrane. (c) The resistance in
series with the membranes of Purkinje strands is almost all

distributed; the lumped component is small. (d) Reliable
estimates of sodium current cannot be made from this
preparation, even if the current is substantially reduced by
experimental manipulation. (e) The electrical potential
across the cleft membranes can be controlled during slower
currents, such as the secondary inward, predominantly
calcium current, but (f ) the chemical potential of calcium
and potassium ions cannot be controlled during the slower
currents: the concentration of these ions changes substan-
tially under physiological conditions, whether natural or
voltage clamped, and the changes in concentration must
significantly effect potassium and calcium currents. Thus,
(g) either the electrical or chemical component of electro-
chemical potential must be expected to vary significantly
in the clefts as each ionic current crosses the cleft mem-
brane in an action potential or voltage clamp step. For
sodium, the electrical potential varies; for potassium and
calcium, the chemical potential varies.

APPENDIX

Description of Branched and
Unbranched Clefts in Tissues and Cells
of Different Geometry

Although the differential equations describing the spread of potential in
clefts have often been described in the biological literature (Jack et al.,
1975; Haas and Brommundt, 1980; and Levin and Fozzard, 1981), it
seems worthwhile to present a unified treatment of branched and
unbranched clefts in tissues and cells of different geometry, written in
terms of stereological estimates of morphometric parameters and the
general tortuosity factor defined by Mathias, 1983. Current flow in
tissues of complex geometry has been extensively analyzed (e.g., Eisen-
berg and Johnson, 1970; Eisenberg et al., 1979; Peskoff, 1979). The last
two of these papers mathematically establish the relationship between
longitudinal and radial current flow in tissues containing clefts and
tubules and show that our Eqs. 1 and 2, introduced originally by Falk and
Fatt (1964), are quite accurate.
The field equations describing the spread of potential within single cells

or syncytial tissues can often be simplified into transmission line equations
(Eisenberg and Johnson, 1970; Eisenberg et al., 1979; Peskoff, 1979), the
first a statement of conversation of current, the second a statement of
Ohm's law derived from Eqs. 2 and 4 of Mathias, 1983:

4 =i(r,x) ICWU + C OLI I'J" (Al)
Or = Sr(r)(Sl/VF) [GU + w + Ijo.U)(Al

AU i(r, x) Re
dr S,(r) r( VC/ VF) (A2)

In these equations the morphometric parameters are local variables that
can change with position. U(r, x; t) is the potential across the cleft
membrane; Ue(r, x; t) is the potential in the cleft; and V(x; t) is the
potential in the sarcoplasm:

U(r, x; t) a V(x; t) -ULJ(r, x; t). (A3)

The differential Eqs. Al and A2 are completed by the boundary
conditions that the current i in the middle of the preparation is finite (and
thus in fact zero in a symmetrical preparation) and that the potential
within the cleft U1 is zero at the perimeter of the fiber; thus, U(a, x; t) =
V(x; t).
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TABLE III
S,(r) IN SEVERAL GEOMETRIES

Geometry Sr(r)

Cylinder (disk) 2irrLx
(Cylinder (pie))* 2T(a/2)Lx - (Sr(r))
Slab LYLX
Sphere 47rr2

*The value of Sr(r) given for the pie model is a constant, because it is a
spatial average, as indicated by the brackets ( ), to be used with the
morphometric parameters of the whole strand, as described in the
Appendix.

The tortuosity factor r is defined in Mathias, 1983. Ii. is the nonlinear
ionic current (in amperes per square centimeter) flowing outward through
the cleft membrane, including fast sodium currents, slow inward currents,
and so on. i is the current (in amperes) flowing radially outward in the
clefts i = J,(r) S,(r), where J, is the flux density used in more general
treatments (Mathias, 1983). In a preparation like a strand that extends
longitudinally, i is the current flowing radially in the clefts contained in a
length L. (in centimeters) of strand. S,(r) is the cross-sectional area of
tissue available for radial current flow (Table III). (Note that Sr(r) is the
area of a cylindrical surface; it is neither the cross-sectional area of the
strand nor the cross-sectional area of the clefts.) The generic coordinate r
represents the direction of predominant current flow in the clefts.6

Eqs. Al and A2 cannot be used until the morphometric parameters and
S,(r) are explicitly described as a function of radial location. In tissues
with radially uniform structure, the morphometric parameters Sl/ VF and
VC/ VF are constant and the resulting differential equation has the
symmetry of the tissue. The solution to the differential equation is often
easy to evaluate using the values of S,(r) given in Table III and using
standard stereological estimates of morphometric parameters (Mobley
and Page, 1972; Eisenberg and Cohen, 1983).

In tissues with nonuniform structure, more information is needed
before the differential equations can be solved and the solutions evalu-
ated. For example, in strands with the structure of the pie model the
morphological parameters must be written explicitly as a function of
radial location and the average morphological parameters available from
stereological measurements. In the pie model, the local values of SC/ VF
and Vl/ VF vary as '12Arr, but Sr(r) varies as 27rr. Only the products of the
local morphometric parameters and S,(r) appear in Eqs. Al and A2.
Thus, in the pie model the r dependence cancels and the products are
independent of radial location. The product can then be written in terms
of the average morphometric parameters available from stereological
measurements and the average value of the area, namely (S,(r)), as given
for the pie model in Table III.
The differential equation for the pie model resulting from this proce-

dure is of Cartesian form, with constant coefficients, despite the fact that
the independent spatial variable is the radial coordinate r of a cylindrical
coordinate system. The most natural representation of the solution of the
cable equation for the pie model is thus written in exponentials, unlike the
solution of most differential equations describing structures with cylindri-
cal symmetry, which involve Bessel functions.
The solution to the differential Eqs. Al and A2 determine the

admittance y, of the clefts:

_i(a, x) =i(a, x) (A4)
YC-U(a, x) V(x)

where the spatial argument a is used generically to indicate the location of
the perimeter of the preparation.

61n a cylinder or sphere, r is the radial coordinate; in a thin slab, it is the
coordinate ranging from one side to the other of the slab.

Peskoff (1979) has shown that the most significant link between the
(radial) flow of current in the clefts and the (longitudinal) flow of current
in the cytoplasm of a strand is through the admittance y,. Eq. A4 defines
that admittance in terms of the solution of the cable equation describing
the radial spread of potential in the clefts; Eqs. I and 2 of the text
introduce the cleft admittance into the cable equation describing the
longitudinal spread of potential in the cytoplasm. The current through the
clefts simply adds another shunt pathway, in parallel with the surface
membrane, by which current can flow from cytoplasm to the outside
bathing solution just as Falk and Fatt (1964) originally assumed for
skeletal muscle.
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