
1. Introduction

1.1. A. Basic biology of membranes and membrane fusion. Biological membranes consist of lipids
and proteins, with the lipids self-organized into sheets and the proteins embedded into or bound to
the sheets. The lipid sheets are arranged as a “bilayer,” two lipid monolayers with lipid acyl chains
(i.e., hydrophobic tails) directly abutted against each other and sequestered from the aqueous so-
lutions bathing the two sides of the membrane by the polar headgroups of the lipid molecules. The
lipid bilayer membrane appeared early in evolution (1), and provides the barrier between interiors
and exteriors of all eukaryotic (nucleus-containing) cells and their organelles. The architectural
organization of the lipid bilayer is critical to life, and the functioning of proteins embedded in mem-
branes is intrinsically connected to the bilayer structure in which they reside. The lipid bilayer also
functions as an insulator for all activity within the body: the generation and propagation of action
potentials in neurons and heart cells (2), and the voltage across mitochondrial membranes (which
function as cellular “batteries”) that drives the production of ATP, the currency of cellular energy
(3). Bilayer lipids provide extracellular (4) and intracellular molecules (5) that integrate the func-
tioning of cells within body tissues. These and a host of other cellular functions rely on the integrity
of the lipid bilayer structure (6). The bilayer membrane is a complex, dynamic structure. Its lipids
are asymmetric in all directions, are in rapid motion, rotating, for example, 107 times/sec (7), and
both the mass and electron density profiles of each lipid are heterogeneous along its length (1.5 –
2 nm) (8).

Membrane fusion is the central process of many vital cellular functions, such as neurotrans-
mitter release in the brain, insulin release from the pancreas, and trafficking of materials between
organelles. Fusion is also the means by which many viruses (e.g., HIV, hepatitis, flu, Ebola) in-
fect cells. On the molecular level, fusion results in the joining of two aqueous compartments and
the continuity of two formerly separate membranes. Fusion of membranes is not a spontaneous
process—it does not occur through thermal fluctuations: membranes are stable, and when two
lipid bilayers with biological compositions are experimentally forced against each other, they do not
fuse (9). Proteins provide the specificity of fusion: the ability of one membrane to selectively fuse
to another. But it is the lipids that confer the fluidity necessary for membranes to deform into con-
figurations that lead to fusion. During fusion, lipids must temporarily leave the bilayer arrangement
for a non-bilayer configuration. Fusion proteins embedded in the membranes supply the energies
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required for these lipid rearrangements.
Most experimental efforts directed toward
fusion have focused on proteins, their
associations with each other, their con-
formational changes, and ways they are
regulated. Relatively little is understood
about the natural behavior of membrane
lipids: which motions easily occur and
which require the interjection of protein
action. To obtain a physically deep under-
standing of membrane fusion, the move-
ments and reorientations of the lipids
must be known.
B. Steps of fusion: hemifusion, pore formation, pore expansion. Electron microscopy shows that
membranes approach each other locally by protruding into “nipples” (10, 11). There is extremely
strong experimental evidence that the two initially separate membranes merge to create a con-
figuration known as “hemifusion” (12–17). At hemifusion, contacting proximal lipid monolayers of
each bilayer have merged, but the distal monolayers remain distinct (Fig. 1). An hour-glass-shaped
“stalk” is the initial hemifusion connection. Stalk geometry has been experimentally deduced by
X-ray crystallography (18, 19). In the stalk structure, the distal monolayers have just begun to

1



contact each other. When the stalk expands laterally, the more extensive contact of distal mono-
layers creates a “hemifusion diaphragm.” A hemifusion diaphragm is a pure lipid bilayer devoid
of proteins (17). At its circumference, the diaphragm connects to the two original membranes,
creating a ‘Y’ configuration. Formation of an initial pore in the hemifusion diaphragm establishes
aqueous continuity, and the transfer of aqueous contents now occurs (Fig. 1). It has been exper-
imentally shown, for several cellular systems, that some states of hemifusion can lead to fusion
pore formation whereas other states of hemifusion cannot (12, 13), but the reasons for this are
unknown; it remains a fundamental question in the field of membrane fusion. Forces that could
cause lipids to rearrange into a fusion pore, such as membrane tension, are known (20), but the
lipid rearrangements and the consequences of water movement that must accompany pore for-
mation are unknown. The initial fusion pore must expand to permit the transfer of large molecules,
such as proteins (e.g., insulin), from intracellular vesicles to the extracellular space; for virus, pore
expansion permits its genetic material to pass into cytosol, initiating infection. The physics of
this expansion has been theoretically modeled, but pore geometry was fixed (as a toroid) and
consequences of a non-zero aqueous viscosity were ignored (21, 22).
C. Past theoretical investigations. Mathematical modeling of membrane fusion has included micro-
scopic all-atom simulations of molecular dynamics (9, 23–25), mesoscopic calculations (26–29),
and macroscopic approaches of continuum membrane mechanics (30–34). Each has its range
of applicability. All-atom simulations could, in principle, eventually (subject to the accuracy of the
force fields and difficulties of multi-scale analysis (35)) explicitly yield the motion of every atom
during steps of fusion. But the time scales of these simulations are presently much too short to
compare to experimental results (36–38). Mesoscopic calculations can cover a wide time range,
but the coarse grain description of lipids and surrounding water may not capture essential proper-
ties of the system (39). Continuum models have the merit that they cover all relevant time ranges
and lead to predictions that can be experimentally tested. Continuum theories cannot reveal phe-
nomena caused by molecular interactions that are atypical of the average continuous material, but
such lipid interactions are unlikely to drive fusion: lipid interactions are dominated by volume exclu-
sion, van der Waals dispersion forces, and hydrogen bonds, and these interactions are roughly the
same for all lipid species. Overlap between the model approaches can be quite fruitful, especially
when predictions are experimentally testable and can be compared. Generally, there is overlap
between coarse grain and continuum models both spatially and temporally (40).

The continuum mechanical description of membranes predicted that the ability of two mem-
branes to hemifuse should depend on the spontaneous curvature of the contacting leaflets (41,
42): hindered by positive spontaneous curvature and promoted by negative curvature. This was
confirmed experimentally (43), and showed that the predictions of continuum mechanics could be
successfully “translated” into experimentally controlled variables. Biologists could therefore use
theory to investigate phenomena without the need for them to entirely comprehend the complexity
of the mathematical equations involved.

But classical continuum formalisms used to date have limitations. They assume that mem-
branes are at equilibrium, and thus time courses of changes during fusion are not calculated.
They also assume that elastic energies are conserved. Movements of membrane and aqueous
solutions, however, must cause energy dissipation and this can, in fact, be large in membrane pro-
cesses. For example, we have shown that in osmotic swelling and lytic bursting of vesicles (e.g.,
as occurs in hemolysis), more than 70% of the elastic energy stored in the vesicle membrane
at the time of pore formation converts to heat after the Laplace pressure within the vesicle has
collapsed (44). Because cellular environments are viscous, energy is dissipated during virtually
every biological process.

Fortunately, several continuum approaches have been developed over the last twenty years
or so—phase field (45, 46), level set (47–49) boundary integral (50, 51), immersed boundary
(52–55), and direct monolithic (56–58)—that do not assume equilibrium and that account for en-
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ergy dissipations. These methods have been successful in describing many and complex phe-
nomena of condensed physical matter, but they have not been applied to biological processes.
Field theories—systems of differential equations derived from a characterization of an energetic
structure— are potentially a powerful way to self-consistently describe steps in membrane fusion.

D. The phase field approach. The forces within condensed matter are consequences of their
material properties and are described by Navier-Stokes equations, a form of Newton’s second law
of motion. These forces cause the shape of a diffuse interface (in our case, the membrane) to
change, which in turn generates a reactive force that tends to restore the prior shape. In terms of
energy (rather than forces), this is the principle of virtual work which is central to the phase field
method.

In classical continuum mechanics, the shape of a structure, such as a fusion pore, is assumed
to be constant as the system evolves, even though this must run counter to physical reality. In
contrast, phase field theory iteratively adjusts geometry over the entire time course, so that the
shape of the structure adjusts, yielding energy minima at every time. In practice, this can be quite
important: we have found that the energy of the commonly assumed geometry of a fusion pore (a
toroid) is much larger than the energy of the minimal surface (see Aim 4).

The phase field method describes energy dissipation through the principle of “maximum dis-
sipation.” In essence the principle states that the sum of kinetic and elastic energies is converted
to heat as fast as possible, maintaining constant temperature. For incompressible media (such
as water and membranes), the phase field method allows the system to evolve so that elastic
(and kinetic) energy decreases through the pathway of steepest descent that is consistent with
the geometry at each moment.

Also, in the phase field method, an interface is not assumed to be a mathematical surface
of zero thickness, but a bulk hydrodynamic material of small thickness, as is the actual case for
biological and model bilayer membranes. The changes in energy of a diffuse interface as its shape
and topology vary are accounted for by both the Helfrich elastic energy and a continuously varying
phase field parameter, �(x , t), as given by the Ginzburg-Landau form of energy (59–61). The
principle of virtual work gives rise to a set of partial differential equations (PDEs) whose solutions
directly yield the forces and velocities of matter at each point in space over time.
E. Similarities between bilayers, liquid crystals, and interfaces; the use of phase field. The
Ginzburg-Landau formalism has had considerable success improving prior theories for liquid crys-
tals and phase field methods have made it possible to model complicated interfaces between
immiscible liquids. These methods can be applied to problems in membrane biology. Lipids within
bilayers display positional and directional orders that resemble those of liquid crystals. The clas-
sical continuum theories for liquid crystals (62) have been generalized (63, 64) by phase field and
other modern energy minimization methods, and this has led to reliable predictions of liquid crystal
dynamics (65, 66). By adapting the phase field approach to bilayer membranes, the positional and
directional orders of lipids can be calculated as a function of time, yielding the lipid motions that
lead to the steps between intermediate states of fusion.

Biological membranes differ from liquid crystals, however, in that membranes are fluid and
create an interface with water. The phase field method has been successfully used to calculate
the dynamics of shape changes of interfaces, in response to applied forces, between immiscible
fluids (67, 68). The phase field method does not pre-assign fixed geometries to interfaces, but
rather employs time-dependent PDEs that account for physical properties of the fluids, such as
their viscosities (46), to describe the fluids and the interfaces between them. This yields, as a
function of time, the geometry of interfaces as an output of the calculations, strategies that can be
applied to many biological processes in addition to membrane fusion.
F. String method. Phase field finds the minimum energy once a system is within a basin; a different
method is needed to calculate the pathway to move from one basin to a higher basin. Biological
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systems can move energetically uphill since there are many ways to supply energy. For example,
prior calculations have shown that, in general, the energy of a stalk is larger than the energy of
separate membranes (33, 69, 70). The “string method” (71–73) finds the path that requires the
least energy for a system under an external force (e.g., as supplied by fusion proteins) to go from
the minimum of one basin to a higher minimum of another basin—the “mountain pass problem.”
The path of least energy is, by definition, the one whose tangents are everywhere parallel to the
gradients of the energy functional. Past efforts by biophysicists have assumed that barriers are
surmounted through a favorable confluence of thermal fluctuations, but in almost all biological
situations this is not the case, and proteins supply the necessary energy. The string method treats
the pathway as a greased string that adjusts until the least energy is found for steady state flow.
At steady state, the external force that must be applied to surmount the barrier in a given time is
exactly the force that is needed to constrain the system to the given path. Regardless of whether
every step of fusion uses the path of least energy, determining this path will yield the features that
are energetically optimal and will make explicit predictions as to possible molecular functions of
fusion proteins in inducing reconfigurations of lipids.
1.2 Intellectual Merit

1.A major challenge in the large field of mathematical biology has been to generate paradigms
in cellular biology that can be experimentally tested. Classical continuum mechanics has been
stalled in advancing biological understandings. Our approach calculates geometries, does not
assume equilibrium, and accounts for energy dissipation, overcoming the present bottleneck in
the accurate depiction of changes in membrane shape and topology during fusion. Computational
results, including characteristics of states of hemifusion that can proceed to pore formation and
time courses of pore enlargement, can be compared to experimental results.
2. Solutions of PDEs that determine forces and velocities everywhere will require development of
novel numerical schemes that can be applied to a large class of minimization problems.
3. The geometries of the stalk and fusion pore that yield minimum energies will be outputs, rather
than inputs, of the model, permitting even investigators who continue to use traditional continuum
approaches to benefit, as they can start with physically realistic configurations.
4. Topological changes are defining features of the process of membrane fusion. Traditional
theoretical approaches cannot describe these changes. Combining the Helfrich Hamiltonian, as
generalized by phase field (for the energetic profiles of membranes), and the string method, devel-
oped in the last few years, will yield pathways for surmounting energy barriers between topological
states. These calculations are a means, not previously available, to obtain descriptions of ma-
jor aspects of biological membrane fusion. Once other investigators derive the energetic profiles
generated by proteins, our adaptation of the string method can be applied to a large class of cell
biological processes.
5. The experimental techniques that can monitor lipid orientation–such as nuclear magnetic and
electron spin resonance–cannot isolate the small fraction of membrane area that participates in
fusion from the bulk of the membranes. The same limitation applies to calorimetric techniques
that yield energy changes. The application of phase field theory to yield the dynamics of lipid
reorientations in space and time and associated energy changes would reveal the events at the
localized site of fusion. This would be a major contribution to the fusion field.
6. Biology poses problems that will require the development of new areas of mathematics. The
geometric ‘Y’ at the boundary of a hemifusion diaphragm is not a true mathematical surface, but
rather is a “singular set,” so traditional methods applied to interfaces are not directly applicable.
The finite element tools we develop (see Aim 3) can lead to new mathematical avenues for singular
sets. Also, in using new representations of bilayer structures, we foresee new areas in the calculus
of variations, including exploring the existence and regularity of a surface, and determining the
director field that minimizes the sum of splay and tilt energies. The study of these nonlinear
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and domain-dependent problems will require the development of new mathematical tools that go
beyond theories of liquid crystals and harmonic maps (74), and combine them with theories of
bending and Willmore energy minimizers (61, 75, 76).
7. Local and non-local interactions together determine the energy of a lipid bilayer. By combining
phase field and liquid crystal theory we will be able to account for both types of interactions,
and thus the lipid reorienations that lead to changes in membrane topology can be calculated
(see Procedures, Aim 2). This new formalism will also benefit other mathematicians interested in
describing biological materials which are thin elastic phases.
8. Phase field methods can provide a mathematical description of the heterogeneity of the lipid
bilayer portion of a membrane across its thickness. Once we accomplish this for the lipids of the
membrane, the method can be extended to account for the proteins embedded in the bilayer by
introducing additional phase parameters. This would considerably increase computational com-
plexity, but would provide an initial way to include membrane proteins and biological actions in new
physical models.
2. Specific Aims

1. The string and phase field methods will be combined to calculate the energetically most favored
pathway toward membrane hemifusion.
2. The phase field method and liquid crystal theory will be used to create a new membrane model
that will determine lipid rearrangements during the formation of a pore in a single lipid bilayer.
3. Finite element methods will be used to determine the location where a fusion pore is most likely
to form within a hemifusion diaphragm.
4. Steepest descent and force balance equations will be used to calculate the rate of growth of a
fusion pore.
Aim 1. Achieving hemifusion. Rationale. Some pathways are energetically much more expensive
than others. We will determine lipid dynamics and energetics for the path of least energy between
independent and hemifused membranes. Traditionally, biophysicists have calculated which events
are likely to happen when only thermal fluctuations are present. The string method provides a
means to discover how external forces effect the transition to hemifusion. Combining the string
method, to move between energy basins, with a phase field approach, to reach energy minima
within a basin, the minimum energy needed to reach hemifusion will be obtained. These calcu-
lations will allow us to generate an animation of the lipid motions that give rise to the stalk and
hemifusion diaphragm structures in a way intelligible to non-mathematicians.
Procedures. There exist a few methods for calculating a path of least energy, and each has its
advantages. The string method (71) is one such method. It has been used primarily to analyze
problems in which a dynamical system jumps from one metastable state to another due to thermal
fluctuations (71). As an important consequence of the intrinsic definition of the string, the method
avoids the stiffness of differential equations that often arises in other methods (77). It also has
good convergence properties, and it can be performed by a splitting procedure. The string method
is well suited for calculating how a deterministic system is able to surmount an energy barrier even
though the agent driving the system over the energy barrier is unknown. We will calculate the
energy barrier separating independent parallel bilayers from the hemifused state.

A hypothetical transition path (although not a minimal one) will be defined by geometrically
evolving the initial parallel membranes to the ‘Y’-shape of the hemifusion diaphragm, yielding a
one-parameter family of membrane configurations. Since membrane configurations are identified
by field variables, the configurations may be linearly averaged to provide an initial path. To find the
least-energy path, the two step, improved string method (77) will be used. First, a single implicit
steepest descent step yields an intermediate set of images. In the second step, the intermediate
images are interpolated on the spatial grid points producing a continuous, piecewise cubic path of
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configurations connecting the end-states. The path is re-subdivided into equal energy weighted
arclength segments yielding the image points on the string in the next iteration. In this procedure,
the steady-state path is everywhere normal to the energy contours and hence it is a least-energy
path.

The phase space of the least energy path provides the set of membrane geometries. Using
a formalism borrowed from the phase field and liquid crystal tradition, we will identify membrane
geometries by two field variables: one phase field function identifies the location of the interface
and the second field, a director field, identifies the orientation and length of the lipid molecules.
The energy landscape as a function of membrane geometry is defined by a Ginzburg-Landau
functional, the potential energy, encoding energies associated with the lipid deformations and with
steric effects occuring inside the bilayer. Further details of the functionals and the field variables
are given in Aim 2.

By graphically plotting the field variables, we will be able to see how the initially parallel bilayer
interfaces deform and then apposing monolayers undergo the topological change of merging into
the stalk complex. Similarly, we will be able to see how the lipid directors reorient while minimizing
the deformation energy. The increase in energy is provided by the evolution of the membrane
configuration along the least energy path, allowing us to precisely calculate candidate energy
barriers and predict what forces might be involved in these deformations.

In practice, field variables are discretized by axisymmetric finite differences over a two dimen-
sional grid with hundreds of grid points in each coordinate direction. The transformation from sep-
arate to hemifused bilayers is resolvable by hundreds of image points along the string, providing
sufficient resolution to obtain the sought saddle-point energy landscape. To speed up computation
time, the two step splitting method will be performed in parallel by assigning a few of the image
points to each processor.
Aim 2. Lipid rearrangements during pore formation in bilayers. Rationale. Modeling the pathway
for pore formation in a continuous single bilayer involves handling multi-scale forces and changes
in topology. Both phenomena arise in many areas of membrane biophysics, but for a number
of reasons each is difficult to capture by a comprehensive mathematical theory. The phase field
method traditionally uses a label to identify bulk material regions, thereby avoiding the explicit
identification of regions with varying topology. However, this method applies only to membrane
surfaces that separate two (inside and outside) fluid compartments. When a pore is present in
a vesicle, there is one continuous aqueous compartment. In the hemifusion configuration, there
are three separated aqueous compartments (two intracellular and one extracellular solution for
hemifused cells). Also, the phase field model implicitly assumes that the lipids are parallel to the
surface normal and that opposing monolayers deform identically, but this does not apply for the
morphologies of a pore or hemifusion. A different approach is needed to accommodate the actual
situation. Our formulation combines the elements of liquid crystal and phase field theories in an
original way to describe a membrane as a thin, ordered material. In our preliminary work, we allow
the directional order of the lipids to change over a diffuse region, which we refer to as an “ordered
diffusive interface” (ODI). The ODI model is flexible, and should be able to describe virtually all
known membrane configurations. It couples field variables through the energy functional and has
precedents in prior membrane modeling studies of bending energy minimizing vesicles (60, 78),
vesicles in fluids (45, 79, 80), multicomponent membranes (53, 81), and calculating topological
indicators (e.g. Euler number) (82, 83). But ODI describes a much broader range of lipid defor-
mations, including those of stalk creation and pore nucleation in membranes. The idea behind the
ODI model is to define a mean field bilayer energy with local and nonlocal interactions.
Procedures. The primary local interactions, similar to those of liquid crystal theory, consist of lipid
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deformations at the lipid-water interface. To account for these interactions we define
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Here d = D/|D| is the lipid orientation for the lipid director D, and � is the phase field parameter
labeling the lipid phase as 1 and the water phase as �1. In prior theories, the bilayer has been
described as a level surface. In contrast, we label the lipid core of the bilayer and the lipid di-
rectors by bulk field variables. The first term is the splay energy density where kb is the bending
modulus and c0 the spontaneous curvature. The second term is the tilt energy with modulus kt .
Tilt measures the degree to which the lipids are aligned with the normal of the water-lipid inter-
face. Splay and tilt are multiplied by a surface energy density because lipid molecules impart a
directional order only at the surface of the water-lipid interface, close to the neutral surface. Unlike
liquid crystal molecules, lipid molecules can stretch and compress. This will be accounted for by
including a term kh(|d|2 � h2

0)2/2h0 in the energy, restricting the range of stretch/compression; a
surface tension constant � will account for the lipid-water interface surface energy. The above
energy functional is not an exhaustive description of a biological membrane. However, the present
functional easily incorporates additional effects such as twist, spatially varying spontaneous cur-
vature, volumetric and surface incompressibility, temperature, and electrostatic dependencies, by
modification of the integrands. We will numerically stabilize the energy functional to ensure its
coercivity and avoid non-physical singularities.

The nonlocal interactions are what really distinguish membrane bilayers from liquid crystals.
These interactions are steric effects stemming from the formation of voids (interstices) and inter-
digitation of lipid molecules. It is the combination of these two functional relationships which gives
the bilayer a thickness:
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The calculation of the void penalty is based on the formula for finding the minimum of a function:
min⌦ f = limq!1 q�1 log

R
⌦ e�qf dx where z(x , y ) = x � y � d(y ). The formula assigns an expo-

nential weight to a point in the bilayer core if it does not lie on a lipid molecule. Such a point
represents a void. The interdigitation term assigns a repulsive potential between the hydrophilic
head group of one lipid and the hydrophobic tail group of another. Our definition of the nonlocal
interaction yields a bilayer thickness by joining monolayers along their tail groups. Our approach
is, to our knowledge, a completely new strategy to model membranes. All the necessary physics
is contained in the functional relationship of the total energy—the sum of the local and nonlocal
energies—with the field variables, allowing us to determine how the lipids rearrange in pore forma-
tion, and to calculate the energies involved. The energy functional is encoded numerically using
finite differences; we take advantage of symmetry by assuming an axially symmetric configuration.

Experimentally, increasing surface tension of a membrane (e.g., by osmotic swelling of vesi-
cles) induces pore formation, relieving stresses on the membrane. By treating surface tension �
as an increasing parameter while simultaneously allowing the system to evolve along the path of
steepest descent with respect to the ODI energy, we can faithfully imitate, in-silico, the experimen-
tal procedure of creating pores. Increasing surface tension will produce one of two effects: either
the bilayer remains intact because the initial planar configuration lies in a shallow energy basin,
or the lipids spontaneously deviate from parallel order, most likely along the axis of symmetry,
leading to a small pore.

If, in experimental reality, a bilayer is locally stable, pore formation would occur as a conse-
quence of thermal fluctuations. That is, the small holes that form in the bilayer would be a result of
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thermally induced in-plane lipid motions. But thermal fluctuations are not incorporated in contin-
uum models. If the bilayer is locally stable in the simulation, we would employ the string method to
find the minimum energy path connecting the planar and punctured state, yielding pore formation
as a result of thermal fluctuations. We would also obtain the depth of the basin by a stability analy-
sis on the total energy’s second derivatives, and use it to ascertain what reasonable perturbations
to the lipid order and lipid-water interface are needed to push the bilayer out of the basin.
Aim 3. Location of pores in hemifusion diaphragms. Rationale. Identifying the reasons some
states of hemifusion lead to pore formation while others do not could have important conse-
quences in our understanding of the biological factors controlling fusion, and would shed light
on processes as diverse at neurotransmitter release and viral infection. One parameter that may
control the energy for pore formation is the angles of the ‘Y’. We will analyze how pores form in
hemifusion diaphragms, and determine the energy barrier against pore formation as a function of
the pore’s location, either within the interior or along the rim of the diaphragm. Because of their
‘Y’-shaped cross sections, hemifused membranes are not mathematical surfaces. Problems of
minimization of energy of shapes that are not surfaces are not commonly addressed by math-
ematicians, and they pose significant analytical challenges. We have developed a novel finite
element representation of a membrane. In essence, each monolayer of a bilayer will be repre-
sented by a piecewise linear map. The functional for the energy of the hemifusion diaphragm
will be calculated and the shape of least energy and lipid orientations for this shape will be read
from the minimizers.The next step is a means to define finite elements over a space with non-
trivial topology, which we refer to as a “topological finite element” (TFE) method (84). The TFE
method will allow us to determine the shapes of the boundary between the unfused portions of the
two membranes and their connections to the hemifusion diaphragm, the ‘Y,’ before and after pore
formation.
Procedures. Modeling pore formation in a hemifusion diaphragm cannot be reduced to two di-
mensions by assuming axial symmetry because the pore may not be situated in the center of
the diaphragm. But pore formation can be reduced to two dimensions by approximating the lipid
bilayer with finite element surfaces, avoiding the computational difficulties presented by a fully
three-dimensional calculation. There remains, however, the problem that a hemifused membrane
cannot be parameterized over a single planar domain. We will use two annular domains to repre-
sent the unfused portions of the effector and target membranes and a circular domain to represent
the diaphragm. To connect the domains, we will use a gluing procedure which not only reduces
the problem to two dimensions, but also yields the position of the membrane monolayers and the
orientation of the lipid molecules.

Developing mutliple ways to parameterize a bilayer has considerable merit, both biologically
and mathematically. Lipid monolayers are essentially incompressible in area and volume, and
thus have constitutive relations that are quite different from other fluid interfaces. For this Aim, we
will parameterize the mid-plane (the surface where the lipid tail groups meet) and neutral surfaces
by piecewise linear (PL) functions. (The neutral surface is the surface for which the deformations
of splay and tilt are independent of each other. Experimentally, it lies along the glycerol backbone
of lipids, just below head groups (85).) This parameterization implicitly eliminates the formation of
voids, which can arise in some monolayer representations, causing energetic quandaries (33, 69,
70).

The coupling between the neutral and mid-plane surface is provided by the incompressibility
condition: for a constant area per head group, the infinitesimal ratio of volume to area is equal to
the height h0 of a planar monolayer. A penalty method enforces this constraint. The functional

Ecomp = p
X

⌧

|h0 � h(⌧ )|2a(⌧ ).

provides a mean square measure of the monolayer compression. The neutral surface is composed
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of triangular elements ⌧ with area ⌧ and h(⌧ ) = v (⌧ )/a(⌧ ) where v (⌧ ) is the volume of the prism
spanned between the neutral and mid-plane surface. For large values of p the monolayer becomes
effectively incompressible.

The total energy Etotal of the membrane consists of the splay kb|div d�c0|2 and tilt kt |d/d·n�n|2
energy densities summed over the TFE surface. We do not expect the monolayers to undergo
sharp deformations in the shape calculations, and thus we anticipate that a uniform conforming
mesh will be sufficient to resolve minimizers. In fact, the minimal energy shapes observed in
our preliminary axially symmetric studies were quite smooth. But if sharp gradients do form and
require resolution, an equipartition of energy algorithm will be utilized whereby the mesh generator
will be passed through with a weight proportional to the energy density possessed by each triangle,
and this will be used to further subdivide the mesh. Convergence tests will be performed to ensure
that the shapes are stable with respect to the mesh parameter. Our version of bilayer minimization
involves first order, elliptic terms, and here finite element convergence theory is well established
(86).

The model is complete once boundary conditions are specified. The ‘Y’-shaped junction is
formed by requiring the values of the neutral and mid-plane surfaces to agree on the boundaries
of their respective domains. In a similar fashion, the pore is introduced by inserting a hole in the
originally circular diaphragm domain. In practice, the boundary condition is affected by identifying
nodes in the mesh adjacency matrix. Thus, we will be able to extend the planar PL functions to a
nonplanar domain. Using this model, we will encode arbitrary membrane shapes with and without
a pore, a major improvement over prior studies where the membrane shape was assumed (20).
Furthermore, necessary physicalities such as incompressibility are built into the model. Because
the hemifusion diaphragm is only a few nanometers in diameter, hydrodynamic forces are small
and should be less consequential than the thermal fluctuations that occur within the diaphragm.
If, however, we were to unexpectedly find otherwise, the TFE representation can be incorporated
into a fluid mechanical immersed boundary method.

Physical outcomes (e.g., What type of hemifusion diaphragm leads to pore formation?) are
highly sensitive to energy gradients. Thus, it is of the utmost importance to accurately calculate
energy dependencies as functions of several physical parameters. The TFE method will allow us to
determine these dependencies precisely, because it enables us to determine detailed information
about membrane shape: the angles of the ‘Y’-junction, the geometry of the unfused membrane,
the profile of the pores, the orientation of lipid molecules, and where energy is concentrated. The
change in energy �E = Etotal(after pore) � Etotal(prior to pore) will allow us to predict the most
likely site of pore formation and how the energies depend on factors such as angles of the ‘Y’,
spontaneous curvature, surface tension, and diaphragm diameter.

The one potential difficulty that could arise from a TFE analysis would occur if, mathematically,
there is no minimal or metastable pore position, or if the ’Y’ shape is not stable. Such a result could
reflect experimental reality, or could be a consequence of incorrect physical assumptions placed
in the model. If these instabilities arise, pore position would not be obtainable, but the solution of
the gradient flow equations would still yield the time courses for a pore to reach its minimal energy.

Aim 4. Pore growth. Rationale. The growth of fusion pores is an energetically uphill process.
Mathematically, fusion pores would shrink without an external force because the energy of an
hourglass-shaped membrane is asymptotically proportional to its radius. Extensive experimental
and theoretical investigations have not yet determined the nature of the external forces biology
provides for pore growth to occur. In addition, pore growth must be damped by hydrodynamic
forces: when fusion pores grow, the displacement of the viscous membranes and the surround-
ing aqueous medium water must produce dissipations which slow the growth of the fusion pore.
However, past theoretical treatments of pore growth have neglected consequences of aqueous
viscosity (21, 22). Preliminary to this Aim, we experimentally varied aqueous viscosity to test its
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relevance and found that increasing aqueous viscosity from the normal 1.1 cP (Fig. 2, thin curve,
mean, n = 20) to ~30 cP (thick curve, n = 20) significantly slows pore growth. This unambiguously
demonstrates that aqueous viscosity must be taken into account for a physically accurate model.

Fig 2

Procedures. In order to model the fusion pore, we will use an
axially symmetric version of the bilayer model from Aim 3 to de-
scribe the pore and its energy, again parameterizing by piecewise
linear functions. The splay and tilt energy density are integrated
over the surface (a curve for an axisymmetric surface) and the
penalty formulation is included in the total energy to enforce the
incompressibility condition. This method has the advantage that
we can numerically track an extensive portion of the membrane
using relatively few unknowns in the equations of motion.

A primary objective is to determine what experimental factors
promote pore growth. Changing the value of a parameter may
change the minimal energy shape of the membrane. If it does,
the minimal energy of the new shape is greater than the minimal
energy of the original shape. But there is no way to know, a priori, how a change in a parameter’s
value will affect the energy landscape. Explicit calculations are needed. Because fusion proteins
can alter local material properties of lipid mono- and bilayers, we will introduce a material label and
use the label to define a spatially varying spontaneous curvature or varying surface tension. (In
general, inhomogenities throughout the area of a biological membrane can be modeled by allowing
spatially varying parameters.) We will solve the equations of motion by setting the surface velocity
fields (for the mid-plane, distal, and proximal surfaces) proportional to the first variation of the
modified bilayer energy. Similarly, we will study the effect of applying inhomogeneous Dirichlet
and Robin conditions to the director and lipid surface, respectively. This will model changes in
contact angles caused by proteins inserting, either partially or fully, into the bilayer.

To study the effect of viscous dissipation on fusion pore dynamics, we will include the velocity
field of the external fluid. As is common for fluid-interface problems, the challenge is to couple
the flow field with the bilayer as defined on different spatial grids in a way that dissipates the total
energy of the system. We will use an idea similar in spirit to the immersed boundary method (54).
But rather than define a force on the velocity grid by convolution, as in the immersed boundary
method, we will define the force implicitly on a test vector field. Specifically, if ETotal is the total
energy of the membrane and v is a finite element velocity field, then we define the force f by the
equation

R
⌦ v · f dx = � d

d✏ETotal(M + ✏v)
��
✏=0 where M + ✏v means the following: shift each of the

vertex in the bilayer by the value of ✏v at the vertex; the derivative is calculated using numerical
differentiation.

Energy dissipation, at length scales comparable to the bilayer, is very sensitive to membrane
position and velocity because the membrane occupies a large fraction of the computational do-
main. We will account for spatially varying friction by defining a dissipation function in terms of the
strain tensor D[u] = 1

2(ru + ru

T ) (87), as

D =
Z

⌦

2X

i ,j=1

⌘ij (x)(R(x)D[u]R(x)T )2
ij dx .

where R(x) is the rotation matrix for the coordinate frame parallel to the neutral surface and ⌘ij (x)
is the component-dependent viscosity. In particular, the values ⌘ij (x) encode the the in-plane vis-
cosity, which is large compared to water, and intermembrane viscosity, which can be large or small
depending on the degree of interdigitation of the lipid tail groups within the bilayer. In the aqueous
region, the viscosity and rotation matrices are set to the viscosity of water and to the identity matrix
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respectively. A momentum balance equation, obtained from the maximum dissipation principle,

⇢(ut + u ·ru) + rp =
1
2
�D
�u

+ f

is coupled to the incompressibility condition r · u = 0 to yield the PDEs for the evolution of the
system. The dissipative stress calculated from the Euler-Lagrange derivative ( �D�u

) is symmetric.
As part of our mathematical description of pore expansion to determine how biology could

control fusion pore growth, we will obtain realistic energetic values of fusion pores. Lower energies
greatly enhance the likelihood that a pore will enlarge, and our preliminary calculations show that
energies of pore geometries that have been assumed (21) or calculated (22) in the past are tens
of kT higher than for the minimal energy pore shape. Thus, fusion proteins can exert much smaller
forces to promote pore expansion than has been realized. We will obtain characteristic asymptotic
bilayer shapes for fusion pores; biophysicists may then incorporate these shapes into their own
calculations of pore growth. This will be a significant advance over pore geometries assumed in
the past (21).

We have proposed three different models of lipid bilayers (ODI for Aims 1 and 2, TFE for Aim 3,
and a surface representation for Aim 4), choosing according to the problem posed. The question
naturally arises: Is our choice of mathematical representation purely one of convenience, in which
the outcomes of more complex calculations would still be the same? The TFE method will be
ported to study Aim 4 by replacing the topological configuration of the hemifused membranes by
a single, initially axially-symmetric, hour-glass-shaped membrane to confirm that all the represen-
tations lead to essentially the same predictions. We will also use the ODI representation, include
water and lipid motion through a labeling function to yield viscosity for two phases, and apply ap-
propriate kinematic transport conditions for the phase and director fields. If any differences arise,
we will determine why they occur.
3. Past Developments Leading to the Present Proposal. We describe some prior theoretical
studies of the PI using classical continuum mechanics to describe aspects of membrane fusion.

Fig 3

A pathway for stalk formation (33). To determine the energy bar-
rier that must be surmounted for hemifusion to occur, we postu-
lated a specific pathway and then calculated the consequences.
Hydrophobic surfaces attract at small distances with a characteris-
tic length of ~1 nm (88), and so we considered the appearance of
two hydrophobic patches—one within each of the apposing mono-
layers of two bilayers which we envisioned were biologically cre-
ated by fusion proteins—directly opposite each other as a function
of distance l between the tips of the nipples. The hydrophobic en-
ergy (dWf ) favorable for attraction is aided by the work performed
by the protein, �Fpdl , and opposed by the repulsive energy of hy-
dration (dWh). We calculated the energy barrier, �W , that must
be surmounted for the hydrophobic patches to merge into a stalk,
where W = Wh +Wf +Fpl . We obtained Wh from a standard equa-
tion (89) . We estimated the energy provided by a fusion protein
as Fp ⇠ (Wp � Wn)/Lp, where Lp is a length that characterizes protein movement during confor-
mational changes and Wp is the energy released by these conformational changes. The process
of membrane merger follows from the calculated energy surface which has a saddle-shaped topol-
ogy; the equipotentials (10 kT apart) of W (rf , l) are shown in Fig. 3 (circle denotes saddle point;
arrows point in direction of decreasing energy). When the membranes are separated by a large
distance, hydrophobic patches do not form and the membranes do not attract. If the nipples ap-
proach each other through a fluctuation, hydrophobic patches form, promoting greater approach
and in turn the radius of the hydrophobic patch (rf ) become larger. In this process of positive
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feedback, as l decreases further, patches become larger and at a critical l , the hydrophobic attrac-
tion dominates and the tips of the nipples merge. The height of the energy barrier separating the
membrane and the stalk for the most favored pathway of our model was between 35 and 40 kT.

We used traditional methods in that study, which necessitated the imposition of a physical as-
sumption on the system—apposed hydrophobic patches to drive hemifusion. That study provides
preliminary data for Aim 1. Using the string method, a priori assumptions will no longer be needed
and the lipid reorientations, including possibly the creation of hydrophobic patches, will be output
consequences of the calculations.
Growth of fusion pores (21). We have explored how the physics of membrane bending controls
the growth of a fusion pore, including some consequences of energy dissipation caused by lipid
movements. We assumed that a pore has a toroidal shape and that the distance between the two
original flat membranes outside of the torus, 2H, remained fixed. In order for the pore to expand,
a net influx of lipid from the planar membranes into the wall of the pore must occur because the
surface area of the toroid increases. This requires a redistribution of lipid between the planar and
toroidal portions of the membranes. Because we assumed a specific geometry, we were able to
calculate steady state lipid velocities and thereby obtain the associated dissipated energy, using
experimental values of membrane viscosity. We used Lagrange’s equations with dissipation (90) to
describe motion in the system. We separated dissipation into two terms, one due to shear of lipid
movement within a monolayer (i.e., intramonolayer friction) and the other due to intermonolayer
friction.

We showed that trans-pore flux and pore growth are independent of each other. This concep-
tually useful result occurs mathematically because terms associated with pore expansion and lipid
flow appear additively in expressions for the energy and the dissipation function, without cross-
multiplication terms. Physically it occurs because the trans-pore flux of lipid between the two
membranes does not lead to an increase in the surface area of the pore. We also showed that the
pore velocity, dr

dt is given by

4⇡(4⌘̃)
dr
dt

= 2⇡�r � 2⇡�(r )

where �(r ) is the effective line tension of the fusion pore given by the energy Wb required to bend
the appropriate portions of the two planar membranes into a curved pore, and � is the sum of
tensions applied to each of the membranes. For bending energy alone (i.e., � = 0), the pore will
close. The effective line tension is given by

�(r ) =
⇡

2
H� +

1
2⇡

dWb
dr

The equation for fusion pore growth is formally the same as the expression for velocity of a pore
within a single bilayer membrane with effective two-dimensional viscosity of 4⌘̃ (91). Whereas line
tension of a pore within a single bilayer is usually assumed to be independent of pore radius, our
explicit calculations showed that the line tension, �, of a fusion pore is dependent on pore radius,
r . The explicit equations we derived for movement in radius space have the form of standard
Langevin equations, showing that the growth of a toroidal pore can be thought of as a quasiparticle
that both diffuses and migrates in radius space in response to applied forces.

This preliminary study is our conceptual foundation for Aim 4. But we can now calculate pore
growth without assuming or fixing pore geometry, and calculate the consequences of aqueous
viscosity. We will allow fusion proteins to alter spontaneous membrane curvature at the site of the
pore, and by deriving the corresponding Langevin equations determine whether pores can grow
without having to impose external forces such as tension.
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4. Broader Impacts.

Promotion of learning. Our collaborations have engaged undergraduates from Fordham Univer-
sity. So far, seven students have been mentored and trained–during the course of two summers–
through participation in our research program. When students enter the program, they think they
do not have the background to contribute to solving the problems we propose. We discovered that
they have compartmentalized their classroom experiences and think of the knowledge they have
learned only in terms of the courses they learned it in. The biological problems these mathemat-
ics students are presented within our program are certainly beyond the textbook exercises they
have expertly learned to solve. After we have interactively and iteratively “translated” the biology
into physical language and mathematical equations, they begin to realize that they have already
learned, through their various course work, many of the tools they now need to think “outside of
the box.”

During the course of the program, the students learn that they do not have to completely master
a subject before they can apply it. We found that their first inclination is to systematically go through
an entire book chapter by chapter, as in course work, because they think this is necessary to
correctly apply a mathematical technique to their research problem. We teach them a new way to
learn: to pull out the understanding they already have in a range of areas, identify what additional
information they need and gather it, and integrate all this knowledge into a construct that is their
own. By the end of the research collaboration, these students have started thinking independently;
they have acquired an understanding of what professional scientists and mathematicians actually
do; and they have made a transition from passive participants in their own education to becoming
contributing investigators in current, ongoing real-world research questions. Students have been
pleased, even amazed, that they have learned and accomplished so much in so little time. The
boundaries between courses have been broken, and connections have been made that previously
they did not imagine. Our students have told us of the tremendous satisfaction they’ve derived from
this experience, and some have said that it has been the best summer of their lives. Since our
approaches have been highly successful, we propose to continue this type of mentoring program
as part of the present application.
Training. Our students will be directly involved in answering the scientific questions of the present
proposal. As have students in the past, they will learn enough classical differential geometry, differ-
ential equations, biology, and physics to make meaningful contributions to our reaseach program.
They will become familiar with aspects of the cell biology of membrane fusion, thermodynamics,
how to calculate an Euler-Lagrange derivative, and develop an enhanced appreciation of the utility
of the physical principle of energy minimization. As direct contributions to the goals of the present
proposal, they will write original mathematical software to solve differential equations and process
data. Using Octave and Matlab they will solve systems of ODEs and they will program in C to
solve larger scale systems of linear and nonlinear finite equations coming from the discretization
of PDE. By obtaining and compiling software, the will learn to work in a UNIX-Terminal type en-
vironment. They will document their findings in LaTeX, will prepare presentations and posters by
using the Beamer class, and use GNUPLot to graphically portray data.

Over the course of the subsequent academic year, they will present their work in undergraduate
research symposia. Projects that yield publishable results will be followed by an abstract to the
annual Biophysical Society Meeting. The students will be encouraged to be the presenters and
will be co-authors of professional journal articles.
Teaching. The physics and biological proficiency at Rush provide the mathematics students with
an everyday intellectual richness that they do not experience during their academic year. The
summer students meet with the Investigators for in-depth discussion on a daily basis. They make
a biweekly presentation of the work in progress and receive feedback from the senior personnel.
They attend Journal Clubs and Seminars that are ongoing in the Dept. of Molecular Biophysics and
Physiology at Rush, gaining awareness of research areas in biology. So that students enhance
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their understanding of the scientific area in which they are engaged, they spend time viewing labo-
ratory experiments and process the derived experimental data. We instituted this laboratory aspect
this past summer, and it greatly aided the students’ ability to understand biophysical/biological re-
search papers and to associate mathematical outputs with experimental results. The graduate
students and post-doctoral fellows of Rush (who do the experiments) become more aware of the
mathematical possibilities in modeling biological systems.
Opportunities. This past year, 5 students applied for the program. We required each applicatant to
review some pertinent biophysical and mathematical material beforehand. Based on the effort they
put into understanding the material and on their successes in Mathematics courses at Fordham,
three of the students were chosen by Dr. Ryham.

We especially welcome participation by underrepresented minorities. Through active recruiting
we have maintained and will continue to maintain equal participation by women: of the seven
students in the past two years, three have been women and one of them (an immigrant from
Belarus) has begun a Ph.D. program in mathematics. One of the students this past summer,
a Mexican-American, now plans to apply for a Ph.D. in mathematics. Our students have also
included a Korean and an Albanian immigrant. All three students of this past summer, entering
their senior year at Fordham, now plan to apply to programs for advanced degrees.

We will facilitate other biophysicists’ theoretical calculations by making our software open ac-
cess, easily obtainable, and convenient to use. We will do this by writing user interfaces and
tutorials that describe our numerical schemes, and create a devoted website that will make our
software and tutorials continually available.
Outcomes. We summarize published work directly relevant to the Aims of this proposal that has
resulted from the collaboration of the senior investigators with summer students in this section to
conform to the 12 page limitation that Program Solicitation NSF 12-561 places on Sections 1, 2,
and 3. As stated in Information for this Solicitation, past results may be placed in Broader Impacts.
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Aqueous viscosity is the primary source of friction in lipidic
pore dynamics (44). Membrane viscosity is at least 100 times
greater than water viscosity. It has consequently been as-
sumed that membrane viscosity generally dominates dissi-
pative processes and aqueous viscosity is unimportant. For
example, past investigators describing the growth of a pore
within a liposome have always made this assumption (92–
95). We have shown that this assumption is not valid, and, in
fact, causes essential physics to be missed.

Experimentally, the dynamics of pores within a giant lipo-
some (>20 µm in diameter) under pressure follows a three-
phase pattern (Fig. 4, crosses). In the first observed phase after a pore forms, pressure within
the liposome induces rapid pore enlargement. The pressure also causes an outflow of the internal
aqueous solution. As the force of the ever decreasing pressure becomes balanced by pore edge
energy, the pore radius reaches its maximum value. In the second phase, the pore slowly shrinks
as the pressure promoting pore enlargement becomes less than the edge energy which promotes
contracture. When the pressure has effectively collapsed, the third phase, rapid pore closure, is
observed. The long-standing theory in the field (referred to as BGS, based on original authors’
initials) accounted for experimental data through fitting parameters, but ignored what turns out to
be a dominant limiter of pore expansion—aqueous viscosity.

Irina Berezovik, a summer student, and the PI’s formulated a new theory that quantitatively
matches data and does so by using experimentally measured aqueous and membrane viscosities,
without any free parameters. We accounted for energy dissipation in the aqueous and membrane
solutions through the equation C⌘srr 0 + 2h0⌘l r 0 = �r � � where r is pore radius, h0 is monolayer
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thickness, �(r , R) is membrane surface tension, � is line tension, ⌘s is the viscosity of the aqueous
solution, and ⌘l is lipid membrane viscosity. The first term C⌘srr 0 is critical: it accounts for the
lateral stresses generated on the bilayer as water movement shears along the dilating or shrinking
pore. C is a coefficient independently obtained by directly calculating the friction for a changing
radius of a circular hole in a two-dimensional sheet surrounded by water. We invoked conservation
of mass–the rate of volume of the internal solution leaving a liposome of radius, R, � d

dt
�4

3⇡R3� , is
equal to the flux through the pore–and conservation of lipid before and after pore formation. This
led to the equations necessary to determine the two unknowns, r and R.

BGS ignores aqueous viscosity, so it must use artificially large values of to account for experi-
mental time courses. Our theory, which we named DAV to emphasize the dominance of aqueous
viscosity, yields realistic values of ⌘l . Fig. 4 shows the experimental record of pore dynamics for a
liposome 20 µm in radius surrounded by an aqueous solution with viscosity, ⌘s = 32 cP, along with
the BGS and DAV fits to the experimental data. BGS (Fig. 4, dotted line) has to use ⌘l = 1,000
Poise to obtain sufficiently slow kinetics in stages I (fast enlargement) and III (rapid closure). This
value of ⌘l is about three orders of magnitude greater than experimental values. An inordinately
large membrane friction is necessary because BGS ignores the shearing of water that occurs as
the membrane slides against the aqueous solution during changes in pore radius. DAV theory
(solid line) accounts for the time course of pore radius using ⌘l = 1 P, a realistic value for lipid
bilayer membranes (96). Although both DAV theory and BGS account for the experimental data
quite well, they utilize very different values for the physical parameter.
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The importance of accounting for aqueous friction be-
comes strikingly apparent when it is varied, as we show in
Fig. 5 for ⌘s= 1.13 cP. The curves for both DAV and BGS use
their respective values of ⌘l of Fig. 4. Clearly, DAV (solid
line) accurately describes the experimental pore dynamics
(crosses), whereas BGS (dotted line) predicts a significantly
slower change in pore radius in both the opening and rapid
closure stages. For DAV theory, both ⌘s and ⌘l are true phys-
ical parameters, set by their experimental values, and are in-
dependent of each other; DAV theory can be directly com-
pared to experimental data.
A dynamic model of open vesicles in fluids (97). We solved the same problem as above, but did
so through a phase field treatment in order to benchmark the phase field approach for problems in
membrane biophysics. At its physical essence, we defined a Hamiltonian as the sum of Helfrich,
phase field, and lipid alignment terms, given as by E = kbB + �L + ks
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approximate the membrane area, bending energy, and pore circumference respectively and where
↵(p) = 1

2(tanh(⇠p)+1), ↵̄(p) = sech2(⇠p), ⇠ > 0 are cut-off functions labeling the position of the pore.
We coupled discrete force equations with the Navier-Stokes equations of fluid motion by first ex-
pressing kinematic relationships for the field variables in both the aqueous and membrane media.
We then calculated forces from variational derivatives. This phase field approach quantitatively
yielded the same relationships of pore radius as a function of time as did DAV theory. This sup-
ports phase field theory as a reliable formalism to describe phenomena in membrane processes.
Because the forces and velocities are obtained over the entire space by field theory, a complete
physical description of a phenomenon is acquired.

15


