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Abstract

�

We examine the assumptions and conclusion of �generalized� transition state the�

ory �GTST� by considering the activation process in the di�usion �Langevin� limit�

We �nd the asymptotic structure of the leading eigenfunctions and eigenvalues of

the Fokker�Planck operator with a bistable potential� and hence the long time quasi

equilibrium behavior of the phase space probability density function �pdf�� De�ning

reactant and product as small neighborhoods 	A and 	B of the stable states A and B�

respectively� we examine all possible recrossings of the transition state region �TSR�

and �nd their contribution to the mean �rst passage time �MFPT� �AB from 	A to

	B� We show that the mean number of recrossings of the TSR is 
� hence �AB � ��AS �

where �AS is the MFPT from 	A to the stochastic separatrix S� which we use as a

generalized transition state �GTS�� The activation rate� that is� the rate at which
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trajectories arrive to 	B from 	A� is then shown to be given by � � 
���AS � and in

the limit of small noise is independent of the choice of 	A and 	B� We conclude that

to obtain the correct rate in �G�TST �i� the quasi equilibrium density �qepdf� rather

than the equilibrium density �epdf� has to be used� �ii� the qepdf contains a boundary

layer near the stochastic separatrix� but otherwise the reactant qepdf�epdf� and �iii�

all recrossings of the �G�TS are accounted for if �G�TS�S� but not otherwise� We

also consider the case of a single metastable state�



�� Introduction�

Transition state theory �TST� of activation and its generalizations �GTST� �see

e�g�� 
�� are based on the following assumptions �
� an equilibrium probability dis�

tribution of phase space trajectories� ��� that a certain con�guration space surface�

called the �generalized� transition state �G�TS� has the property that trajectories

that cross the �G�TS from reactant to product never recross it� Because of �
� half

the trajectories on the �G�TS cross in the product direction� and because of ��� they

end up as product� It follows therefore that ��� the reaction rate � is the outgoing

half of the equilibrium phase space probability �ux on the �G�TS� normalized by

the reactant population� The underlying postulate which justi�es the equilibrium

assumption is that after a su�ciently long time the quasi equilibrium density of the

reactant is su�ciently similar to the equilibrium density so that the outgoing half of

the quasi equilibrium �ux on the �G�TS� normalized by the quasi equilibrium reactant

population� is well approximated by that of the equilibrium �ux� normalized by the

equilibrium reactant population�

Both theoretical �� and experimental results �� show that � depends on the dissi�

pation� contrary to the TST prediction� The failure of TST to show this dependence

brought �
� and ��� into question� It has been widely recognized that both �
� and

��� are unrealistic� because activation is a non equilibrium process and because re�






crossings do occur� It is believed therefore that due to ���� �G�TST overestimates the

rate ��� There have been di�erent attempts to modify the equilibrium density on the

�G�TS to account for the non equilibriumnature of activation ������ Another method

for circumventing the equilibrium assumption is Kramers� method of stationary �ux�

in which a source is placed at the bottom of the reactant well and an absorbing bar�

rier is imposed su�ciently far outside it� Then the steady state normalized outgoing

�ux on the �G�TS is related to the rate� Attempts to account for recrossings of the

�G�TS introduced a transmission factor k ��� and assumed a relation between k and

the �mean� number of crossings hni ������
��� Also the choice of the �G�TS in ���

has been the subject of study and di�erent authors proposed di�erent surfaces� e�g�� a

surface through the saddle point which is perpendicular to the equipotential surfaces

��� the con�guration of least probability 

�� and a surface of minimal �ux 
���
���

It seems that no satisfactory theoretical explanation of the failure of the equi�

librium assumption has been o�ered� other than the incorrect predictions it implies�

The methods used to modify the epdf in order to obtain the qepdf are mostly based

on ad hoc assumptions about the behavior of the trajectories or of the pdf on the

chosen �G�TS ������ Also the choice of the �G�TS and the treatment of recrossings

have not been adequately discussed in the literature�

In order to clarify some of these problems we consider them in the di�usion

�Langevin� or Fokker�Planck� limit ��� 
��� The underlying assumption in this study

�



is that the behavior of the phase space trajectories of the di�usion process approx�

imates well that of the trajectories of a particle coupled to a bath of oscillators


���
��� Such a limit corresponds to the Fokker�Planck approximation of the Liou�

ville evolution equation for the probability density function �pdf� of the phase space

trajectories 
��� The Fokker�Planck equation describes the evolution of the the pdf

p�q�p� t� of the phase space trajectories of the particle� whereas the Liouville equa�

tion describes that of the joint pdf p�q�p�x�y� t� of the particle and the oscillators in

multidimensional phase space� Thus�

p�q�p� t� � lim
N��

Z Z
p�q�p�x�y� t� dx dy� �
�
�

where x � �x�� � � � � xN� and y � �y�� � � � � yN � are the phase space coordinates of

the bath oscillators� In this approximation the behavior of the random trajectories

governed by a �generalized� Langevin equation �GLE� 
��� ��� approximates that of

the ensemble of trajectories of he particle� if the initial states of the bath oscillators

are chosen at random 
��� Therefore the study of the above mentioned problems in

the di�usion limit may provide some insight into �G�TST and its variants�

We take advantage of the eigenfunction expansion of the nonequilibrium pdf

p�q�p� tjq��p��

p�q�p� tjq��p�� �
�X
n��

�n�q�p��n�q��p��e
��nt� �
���

where �n and �n are the eigenfunctions of the Fokker�Planck operator �FPO� L and

�



its adjoint L�� respectively� corresponding to the eigenvalue �n� and �q��p�� is a

point in the reactant part of phase space� We denote by DA and 	DA the domain of

attraction of the equilibrium state at the bottom of the reactant well and its boundary�

respectively�

First we examine the equilibrium assumption �
� and its consequences� Since

�� � � it follows from �
��� that for times




��
� t� 


��
�
���

the rate of change of the reactant population is ��� whereas for times

t� 


��
�
���

it vanishes� It is shown in Section � that

���q�p����q��p��� ���q�p����q��p�� for �q�p� � DA� �
���

and ���q��p��� ���q��p�� are independent of �q��p� in DA� Thus for times �
���

expf���tg � O�
� so that the reactant pdf p�q�p� tjq��p�� is given by

p�q�p� tjq��p�� � e���t���q�p����q��p��
 �
���

It follows that the qepdf �
��� of the reactant is represented by �� and not by the

equilibrium density ��� We conclude that the root cause of error in TST is the

equilibrium assumption �
�� There is however a certain degree of similarity between

�



the equilibrium and the quasi equilibrium reactant densities� We show in Section �

that

���q�p� � ���q�p����q�p�� �
���

in DA� where �� is a boundary layer function which connects smoothly to a large

constant CA in the interior of DA and to �
�
CA on 	DA� This similarity explains the

need for introducing corrections to the equilibrium density ������ From the boundary

layer structure �
��� of �� we conclude that in order to obtain the qepdf �
��� from

the epdf a modi�cation has to be introduced on 	DA and it must have the boundary

layer form ���

Next we examine the problem of recrossings of the �G�TS� We show in Section �

that in the limit of high barrier the stochastic separatrix S� the locus of points from

which trajectories are equally likely to become reactant and product� is asymptotically

	DA� From the de�nition of S we �nd that average number of times hni� that a

trajectory crosses a neighborhood of S before becoming a product is �� so that k � 
�

The calculation of the rate from the normalized �ux on the �G�TS is based on the

identity

�� �

R
�D J���� � � dsR

D �� dq dp
� �
���

where J���� is the �ux density corresponding to the quasi equilibrium density ���

D is the reactant region in phase space� and � is the unit outer normal to 	D� If

�



	D � S is chosen� then it follows from �
��� and �
��� that the outgoing half of the

quasi equilibrium �ux on S� normalized by the reactant population� is the rate� We

conclude that if the �G�TS is chosen to be the stochastic separatrix� then the relation

��� between the rate and the quasi equilibrium �ux holds� but not otherwise�

Our conclusions about �G�TST can be summarized as follows� To obtain the

correct rate in �G�TST �i� the qepdf the reactant is obtained from the epdf by a

modi�cation of the epdf� �ii� the modi�cation has to have the form of a boundary

layer at the stochastic separatrix S� and �iii� all recrossings are accounted for if

�G�TS�S� but not otherwise� The structure of S in multidimensional phase space

is needed only near the saddle point� In the high barrier limit it can be determined

from the memory function in the GLE �
�� The determination of S in other cases

has been discussed in ���� ����

We �nd the quasi stationary behavior of the solution of the Fokker�Planck equation

�FPE� by �nding the asymptotic structure of the leading eigenvalues and eigenfunc�

tions in the limit of high barrier� We consider both bistable and metastable dynamics�

and discuss Kramers� method of stationary �ux� We �nd the average number of times

a trajectory crosses a neighborhood of an equiprobable surface Sp before becoming a

product �S��� � S�� Hence we �nd the relation between the �ux on S and the rate�

In Section � we formulate the problem and discuss the concept of escape� In Section

� we discuss the relation between the MFPT� the absorption rate� the escape rate�

�



and the eigenvalues of the FPO in bounded and unbounded domains� In Section �

we �nd S and the asymptotic structure of the leading eigenfunctions� In Section �

we consider the problem of recrossings and of their contribution to the escape rate�

Finally� in section � we summarize the results and the conclusions of this paper�

�� Formulation�

We consider the system of n It�o stochastic di�erential equations

�x � b�x� �
p
�� �x� �w� ��

�

where b�x� � �b��x�� � � � � bn�x�� is a smooth vector �eld in Rn� �w is a vector of k

independent standard Gaussian white noises �k 	 n�� and �x� is an n 
 k noise

matrix� The parameter � is a measure of the noise intensity and is assumed to be

small relative to other parameters of the problem such as the size of b�x� and �x��

the sizes of the domains in which ���
� is considered� and so on� The di�usion matrix

a�y� � faij�y�g is given in terms of the noise matrix fij�y�g as

a�y� � �y�T�y�
 ��
��

The noiseless dynamics

�x � b�x� ��
��

is assumed to have a �nite attractor A with domain of attraction DA whose boundary

�



	DA is a repeller �see �g�
�� We assume that all domains mentioned below have

boundaries with a piecewise continuous normal� When ���
� is used to model an

activated process by the Langevin dynamics of a particle in a potential well� activation

occurs when a trajectory leaves a neighborhood 	A of A and does not return for a

long period of time� Thus the activation rate � is the escape rate from 	A� To be

meaningful such a de�nition should be independent of the choice of 	A� of the location

of 	D� and of the noise strength �� provided � is small�

As noted in the Introduction� several de�nitions have been given for the GTS�

Calculations of � from the rate at which trajectories arrive at boundaries of various

domains� have been used� One such calculation of � is based on the rate at which

trajectories are absorbed in the boundary 		A� or equivalently� � � 
�h� �	A�i� where

h� �	A�i is the mean �rst passage time �MFPT� to 		A ���� ���� If 	A is replaced by

the domain of attraction DA of A� then for small �� as noted in ������� trajectories

arriving at 	DA are equally likely to return to 	A prior to absorption in the boundary

	D of a larger domain D containing DA� as they are to be absorbed before they

return to 	A� Therefore the calculation of � was modi�ed in ���� ���� ���� to

� � 
��h� �DA�i� Another calculation identi�es � as the principal eigenvalue ��

of the Fokker�Planck equation in the whole space ��� or in a speci�ed domain D

�
�� Not all such calculations are consistent with one another or with physically

measured quantities� Thus for example� the normalized outgoing �ux at the top of a

�



potential barrier may not represent the rate� since trajectories arriving at the top of a

potential barrier with outward pointing velocity may have a non�negligible probability

of returning to the well�

The de�nition of an escape rate � from 	A as the absorption rate �abs�D� in 	D

requires the calculation of the MFPT h� �D�i from 	A to 	D� or equivalently� of the

principal eigenvalue ���D� of the Fokker�Planck operator with absorbing boundary

conditions on 	D� The calculation of h� �D�i and of ���D� for multidimensional

systems in domains D containing an attractor has a long history� Several types of

domains have been considered� which we now classify� A domain D is classi�ed as

type I if D � DA and the drift enters D� In this case 	D is a noncharacteristic

boundary� If D � DA� we classify it as type II� Here the system does not drift into

DA� 	D is a characteristic boundary� and is an invariant manifold for the drift� If

D � DA and the drift in D � �DA is attracted by 	D� we classify D as type III �see

the exact de�nition below��

The MFPT for domains of type I was calculated in ���� ���� ��� with increas�

ingly more accurate results� Escape rates from domains of type II with drift derivable

from a potential were calculated in ������� by a generalization of Kramers� theory

to higher dimensions� For general systems� not derivable from a potential� h� �D�i

was calculated in �������� For domains of type III neither h� �D�i nor ���D� seem to

have been calculated� other than for the one dimensional Kramers problem ���

�



De�nition� A domain D is of type III relative to ����� if

�i� D � �DA�

�ii�

�� � dist�x� 	D� � �� for all x � 	DA� �����

and ��� �� are positive constants� independent of �� and

�iii� trajectories of ����� which start in D � �DA reach 	D in �nite time�

An often encountered example of a domain of type III is the following� Let �����

be a bistable system with a �nite attractor A and a second� more stable attractor B

�possibly at in�nity�� If 	B is a neighborhood of B� inside the domain of attraction

of B� then D � Rn� �	B is a domain of type III relative to ������ This example corre�

sponds� e�g�� to a model of a chemical reaction� The noisy dynamics ���
� models the

motion of an atom bound by a stable chemical bond� corresponding to the attractor

A� When the bond is broken due to the noise �e�g�� to molecular collisions�� a new

more stable bond B is formed ��� Another example of a domain of type III relative

to ����� corresponds to the dynamics ���
� with a single metastable state� In this case

D contains DA and trajectories which start in D� �DA are assumed to exit D in �nite

time and never return� This corresponds� e�g�� to dissociation� where the metastable

state A models the undissociated state of a molecule ����


�



Because of the weak �uctuations� the trajectories of the system tend to stay in a

small neighborhood 	A ofA� with rare escapes to 	B or to an absorbing boundary 	D�

from which they do not return� In the case of bistability 	B usually corresponds to a

more stable state of the system� so that the time spent in 	B is usually much longer

than in 	A� Thus we may assume that trajectories arriving in 	B are absorbed there

and never return to A� Therefore the bistable case can also be treated as metastable

with absorption in 	D�

The transition probability density function �tpdf� of trajectories of ���
�� p�y� tjx� �

Prfx�t� � yjx��� � xg� satis�es the forward Kolmogorov �Fokker�Planck� equation

�
�

	p

	t
� L�p � �r�J� ��
��

where the probability current density J�x�y� t� is de�ned as

J i�x�y� t� � ��
nX

j��

	

	yj

h
aij�y�p�y� tjx�

i
� bi�y�p�y� tjx�
 ��
��

The initial condition for ����� is given by

p�y� �jx� � ��x� y�
 �����

If trajectories of ���
� are absorbed on the boundary 	D of a given domain D� the

tpdf satis�es the boundary condition

p�y� tjx� � � for x � D� y � 	D
 ��
��







It also satis�es the backward Kolmogorov equation

	p

	t
� L��p � �

nX
i�j��

aij�x�
	�p

	xi	xj
�

nX
i��

bi�x�
	p

	xi
for x � D� ��
��

and

p � � for x � 	D� y � D
 ��

��

We assume that the tpdf p�y� tjx� can be represented by the eigenfunction expansion

p�y� tjx� �
�X
n��

�n�x��n�y�e
��n�D�t� ��


�

where

L��n�y� � ��n�D��n�y� for y � D� ���
��

�n�y� � � for y � 	D� ���
��

and

L���n�x� � ��n�D��n�x� for x � D� ���
��

�n�x� � � for x � 	D
 ���
��

This is the case for example� if D is a bounded domain� however we do not restrict our

considerations to this case� The eigenvalues are ordered as � � ���D� 	 e���D� 	

e���D� 	 � � �� with ���D� real ���� We assume that the eigenfunctions are normal�

ized so that Z
D
���y� dy � 
� ��

��


�



and are biorthogonal Z
D
�m�x��n�x� dx � �mn
 ��

��

In Section � we calculate the probability P �x� of return from a point x to 	A� and

in Section � we identify it asymptotically as the principal eigenfunction ���x�� In

Section � we calculate the principal eigenvalue ���D� � � � 
�h� �D�i for domains of

type III� and prove

lim
���

���D�

���DA�
�




�

 ���
��

	� The MFPT
 the absorption rate
 and the principal eigenvalue

Let D be a bounded domain which contains A� Then� under some mild positivity

assumptions about a�x�� the trajectories of the noisy system ���
� which start in D�

cross 	D in �nite �random� time � with probability 
� Moreover� the MFPT

h� �x�i � E�� jx��� � x� ��

�

from a point x in D to 	D is �nite and is independent of the behavior of the process

at the boundary� These results may hold as well even if D is unbounded� Thus we

may assume that 	D is an absorbing boundary� so that any trajectory of ���
� that


�



reaches 	D is instantaneously terminated� The MFPT is given by ���

h� �x�i �
Z �
�

Z
D
p�y� tjx� dy dt� ��
��

or by

h� �x�i �
Z
D
p�x�y� dy� ��
��

where p�x�y� is de�ned by

p�x�y� �
Z �

�
p�y� tjx� dt
 ��
��

�From the Fokker�Planck equation ����� and the initial condition ����� we �nd that

L�p�x�y� � ���x� y�
 ��
��

If ��x� y� is replaced by f�y� in the initial condition ������ the pdf p�x�y� is inde�

pendent of x� that is� p�x�y� � p�y�� and satis�es the equation

L�p�y� � �f�y�
 ��
��

In particular� if we choose f�y� � ���y�� then p�y� � ���y�����D� and ����� implies

that

h� �D�i �
Z
D
���x�h� �x�i dx �




���D�

 �����

The structure of the functions p�x�y� and p�y� has been discussed in ���� Equation

����� with absorbing boundary conditions on 	D represents Kramers� method of sta�

tionary �ux� in which a source is placed inside D and an absorbing barrier is imposed


�



outside DA� Equation ����� relates the solution of ����� with the escape rate� The

relation of the out going �ux on the �G�TS� as obtained from ������ and the rate is

discussed in Sections � and ��

Next we discuss the relationships between the absorption rate �abs�D� in 	D� the

MFPT h� �D�i� and the principal eigenvalue ���D�� The absorption rate constant

�abs�D� represents the stationary relative rate of change of the population N�x� t� in

D� given the initial condition ������ where

N�x� t� �
Z
D
p�y� tjx� dy
 ��
��

The Fokker�Planck equation ����� implies that

	N�x� t�

	t
�

Z
D

	p�y� tjx�
	t

dy � �
Z
D
ry � J�x�y� t� dy

� �
Z
�D
J�x�y� t� � ��y� dSy � �F �x� t�
 �����

Recalling that J is the probability current density� we see that the rate of change of

the population in D is the negative of the total probability �ux on 	D� It follows

that the relative rate of change is given by

�abs�x� t� � �	N�x� t��	t

N�x� t�
�

F �x� t�

N�x� t�

 ��

��

Using the eigenfunction expansion ���

� we obtain

�abs�x� t� �

P
n �n�D�psin�x�

R
�n�y� dy e��n�D�tP

n �n�x�
R
�n�y� dy e��n�D�t


 ��


�


�



Obviously the relative rate of change ���

� depends on both x and t� however its limit

as t � � is constant� Thus the concept of a rate constant for ���
� is meaningful

only in the limit t � �� since the relative rate of change becomes constant only

after a su�ciently long time� Therefore the natural de�nition of the absorption rate

constant �abs�D� is given as

�abs�D� � lim
t���abs�x� t�� ��

��

which� in view of ���

� is

�abs�D� � ���D�
 ��

��

The corresponding notion of the MFPT must be de�ned in a manner consistent

with the de�nition ���
�� of rate as a long time limit� After a long time t� has elapsed�

a large proportion of the trajectories have already been absorbed� Thus we have to

consider only those trajectories that survived �were not absorbed� in 	D at time t��

The probability density of �nding a trajectory at a particular point y� among the

surviving trajectories in D at time t�� is the conditional density

pC�y� t�jx� � p�y� t�jx�R
D p�y� t�jx� dy 
 ��

��

Using the eigenfunction expansion ���

� and the normalization ���
��� we obtain

pC�y� t�jx� �
P

n �n�x��n�y�e��n�D�t�P
n �n�x�

R
D �n�y� dye��n�D�t�

� ���y� as t� ��
 ��

��

Thus the conditional density pC�y� t� of trajectories at time t�t�� which were observed

at time t� � 
 in D� is the solution of the Fokker�Planck equation ����� with the


�



absorbing boundary condition ������ and the initial condition

pC�y� �� � ���y�
 ��

��

Thus� for times 
��� � t� 
��� the qepdf is given by

pC�y� t� � ���y�e
����D�t
 ��

��

Therefore the MFPT for a trajectory� observed at a point y at a su�ciently large

time t�� must be calculated by ������ with the conditional density pC�y� t� of surviving

trajectories replacing the tpdf p�y� tjx�� Now the concept of �rst passage time� which

is consistent with the de�nition ���
�� of �abs�D�� is the �rst passage time for the

process ���
� which starts with the initial density ���
��� The long time MFPT is

therefore given by

h� �D�i �
Z �

�

Z
D
pC �y� t� dy dt �




���D�

 ��

��

We see that� according to this de�nition� both h� �D�i and �abs�D� are independent

of initial conditions� Although pC�y� �� is not a density of the process x�t�� de�ned

by ���
�� it represents the shape of the long time tpdf with the decay e��abs�D�t�

Now we consider the FPE ����� in Rn� We assume that ����� is a bistable system

with attractors A and B� whose domains of attraction� DA and DB� are separated by

	DA� We denote by �i� �i� and �i the corresponding eigenfunctions and eigenvalues�

We have �� � � and �� is the equilibrium pdf� We write ���
�� as

�r � J��n� � ��n�n� ���
��


�



where J��n� is de�ned in ����� with p replaced by �n�y�� Then for any domain

	 � Rn

�n �
Fn

Nn
� ������

where

Fn �
Z
��
J��n� � � ds ����
�

and

Nn �
Z
�
�n dy
 ������

In particular we choose 	 � DA�

Next we describe the structure of the MFPT and its dependence on D� For

domains of type I it was shown and II ���� ���� ��� that

h� �D�i � O�����e
	
�D����� ��
���

where ���D� is a positive constant which depends on D and on the coe�cients aij�x�

and bi�x� in D� Explicit expressions for ���D� were given in ���� ���� ��� for various

domains in terms of an eikonal function ��x�� which is a solution of the Hamilton�

Jacobi type equation

nX
i�j��

aij�x�
	��x�

	xi
	��x�

	xj
�

nX
i��

bi�x�
	��x�

	xi
� �
 ��
���


�



The constant ���D� is given by

���D� � min
x��D

��x�
 ��
���

The function ��x� is de�ned by the assumption that the principal eigenfunction

�� has the WKB structure in D

���y� � K�y� ��e�
�y���� ������

where K�y� �� is a regular function of �� The structure of ��x� for bistable systems

����� is more complicated� If we assume that ����� has attractors A and B� with

domains of attraction DA and DB� respectively� then a global smooth solution to

������ in Rn may not exist ���� However locally� in DA and DB� ������ holds� In

the case of detailed balance �
� ������ holds in Rn with K�y� �� � 
 and ��y� is the

energy� so that ���y� is the Boltzmann equilibrium density�

The function ��x� decreases on the trajectories of ����� in DA� so that ���D�� �

���D�� if D� and D� are of type I and D� � D�� hence by ������

h� �D��i
h� �D��i � O�e�

	
�D���	
�D������
 ������

If in addition �� 	 dist�x� 	D�� 	 �� for all x � 	D�� where �� and �� are positive

numbers independent of �� then ���D�� � ���D��� so that

lim
���

h� �D��i
h� �D��i � �
 ������


�



This however� is not the case for domains of type III� since for such domains the limit

���
�� implies that h� �D�i is to leading order independent of D�

We now discuss the relation between absorption and escape� We distinguish be�

tween two types of escape� Let 	A be a neighborhood of A in DA� One type of escape

is the event of reaching 		A for the �rst time� regardless of the subsequent behavior

of the trajectory� This type of escape describes several physical systems in which

trajectories are terminated at 		A ���� ���� The rate of this type of escape is simply

the absorption rate in 		A� It involves neither multistability nor separation of time

scales� A second type of escape involves multistability and separation of time scales�

According to ������ trajectories spend time O�exp� ���	A���� in 	A before reaching

		A �necessarily crossing it several times in rapid succession�� If a trajectory reaches

a distance O�
� beyond 		A in Rn� �	A� it either returns to 	A or is absorbed in 	D

without returning to 	A� In the �rst instance� if the time of return is short relative to

h� �	A�i� the trajectory is not considered to have escaped� whereas in the latter it is�

This distinction means that relatively short departures do not represent transitions

to a new physical state� e�g�� going from reactant to product in a chemical reaction�

whereas long departures do represent such transitions� The rate at which long depar�

tures occur can be de�ned in terms of an absorption rate in 	D� where D is a domain

of type III�

��



�� The probability of returns
 ��
 ��
 and ��

In this section we consider the probability P �x� of return from a point x to 	A�

prior to absorption in 	D� where D is a domain of type III� and its relation to

the eigenfunctions �� and �� in Rn and in domains of type II and type III� First

we summarize the results of ��� for drifts which are continuous across 	DA �e�g��

for smooth potential barriers�� and then show that similar results hold for drifts

whose normal component su�ers a discontinuity across 	DA �e�g�� for sharp potential

barriers��

We denote by � �		A� �� �	D�� the �rst passage time to 		A �	D�� The function

P �x� � Prf� �		A� � � �	D�jx���� � xg ���
�

is the probability that a trajectory starting at x will reach 		A before 	D� The

stochastic separatrix S ���� �������� ���� ��� is de�ned as the locus of points x such

that

P �x� � 
��
 �����

The probability P �x� is the solution of

L��P �x� � � in D � �	A �����

with the boundary conditions

P �x� � 
 for x � 		A �����

�




and

P �x� � � for x � 	D
 �����

�see e�g� ����� In Section � we show that asymptotically ����������� also de�ne the

principal eigenfunction ���x� of L�� �

The outer expansion of P �x� in D is found by assuming the regular expansion

P �x� � P ��x� � o�
� as �� �
 ��
��

In view of ������ the leading term P ��x� must satisfy the reduced equation

nX
i��

bi�x�
	P ��x�

	xi
� �� ��
��

or equivalently�

dP ��x�t��

dt
� �� ��
��

where x�t� is any trajectory of ������ It follows that P ��x� � const
 on every trajec�

tory� By assumption� all trajectories outside DA reach 	D in �nite time� so that the

boundary condition ����� implies that

P ��x� � � for x � D � �DA
 ��
��

Similarly� all trajectories in DA reach 		A in �nite time� hence by �����

P ��x� � 
 for x � DA
 ��

��

��



For continuous drifts the discontinuity in the outer solution is bridged by the

uniform expansion ���� ���� given by

P �x� �

s



��

Z ��x��
p
�

��
e�z

��� dz
 ���

�

The function ��x� satis�es �see ������

nX
i��

bi�x�
	��x�

	xi
�

nX
i�j��

aij�x�

�
��x�

	��x�

	xi
	��x�

	xj
� �

	���x�

	xi	xj

�

 ���
��

The boundary conditions ����� and ����� imply that

��x� � � for x � DA � �	A� outside a boundary layer ���
��

and

��x� � � for x � D � �DA� outside a boundary layer
 ���
��

The boundary conditions ����� and ����� are satis�ed by ���

� asymptotically� In view

of ����� S is de�ned by ��x� � �� Now ���
�� and ���
�� imply that lim��� S � 	DA

�see the discussion of this argument in Section ��� Expanding ��x� � ���x�� o�
� as

�� � we obtain that on a trajectory x � x�t� of ������

d

dt
���x� �

nX
i��

bi�x�
	���x�

	xi
�

nX
i�j��

aij�x����x�
	���x�

	xi
	���x�

	xj

 ���
��

In view of ���
��� ���
��� and ���
��� ���x� increases on the trajectories of ����� out�

side DA and decreases inside DA�

��



Next we consider drifts b�x� whose normal component bn�x� su�ers a discontinuity

across 	DA� That is� we assume that � lim	��� bn�x� � �� This is the case� e�g�� if

the potential barrier is sharp �see �g�
�� The solution of ����� is still given by ���

��

however the local behavior of ��x� near 	DA is not as given in ���� The boundary

layer to bridge the discontinuity of the outer solution across 	DA can be found in this

case by introducing the local coordinates ��� s� near 	DA� where ��x� � dist�x� 	DA�

and s�x� � �s�� � � � � sn� are local coordinates in 	DA� Then we stretch � by setting

� � �

�
� ���
��

Q��� s� � P �x�� and expanding

Q��� s� � Q���� s� � �Q���� s� � � � � 
 ���
��

Now ����� is to leading order

a�s�
	�Q���� s�

	��
� b�n �s�

	Q���� s�

	�
� � for �� � �� ���
��

where

a�s� � lim
	��

nX
i�j��

aij�x�
	��x�

	xi
	��x�

	xj
���
��

and

b�n �s� � lim
	���

b�x� � r��x�
 ������

��



Since 	DA is a repeller we have �b�n �s� � �� The matching conditions are

lim
	��Q���� s� � 
� lim

	���Q���� s� � �
 ����
�

The solution is given by

Q���� s� � 
 �
b�n �s�

bn �s�� b�n �s�
expf�bn �s�

a�s�
�g if � � � ������

and

Q���� s� �
bn �s�

bn �s�� b�n �s�
expf�b�n �s�

a�s�
�g if � � �
 ������

The stochastic separatrix S� given to leading order by Q���� s� � 
��� is found to be

��s� �
�a�s�

b�n �s�
log

��b�n �s�
bn �s�� b�n �s�

if
��b�n �s�

bn �s�� b�n �s�
� 

 ������

Thus lim��� S � f��s� � �g � 	DA in this case as well� Therefore ���

� still holds�

but with the local behavior ������ and ������ rather than that in the continuous case

�see �����

Next we consider the eigenvalue problems ���
�� and ���
�� in Rn and in domains

of type II and III� We we begin with a bistable system ����� in Rn� with attractors

A and B� The domains of attraction DA and DB are separated by 	DA� We denote

by �A�B��y� the solution of ������ in DA�B� and set ��A�B� � min�DA
�A�B��y� �

�A�B��A�B��� In the case of bistable Langevin dynamics ��A�B� is the barrier height

of the A�B� well� If

��A � ��B� ������

��



then

�� � O�e��
A���
 ������

It follows that ���
�� with n � 
 is asymptotically the same as ������

To �nd the expansion of �� in Rn we begin with the outer expansion

�� � ��
� � ���

� � � � � ������

and �nd that

��
� � CA�B� in DA�B�� ������

where CA and CB are constants ���� The boundary layer connecting the constants

across 	DA is similar to P �x� in ���

��

���y� � CA � CBp
��

Z ��y��
p
�

�
e�s

��� ds�
CA � CB

�

 ������

The orthogonality condition ���
�� and the WKB assumption ������ give

� �
Z
Rn

���x����x� dx �
Z
Rn

���x�K�x� ��e�
�x���

� �����n��
X

i�A�B

CiK�i� ��H�������i��e�
�i��� � aCA � bCB� ������

where H���i�� is the Hessian of � at i ���� Assuming without loss of generality

that min�DA
�A�x� � min�DA

�B�x� �this is the case� e�g�� if detailed balance holds��

������ implies that

a

b
� O�e��
�A��
�B������ 

 ����
�

��



Hence CB � CA so that

���x� � CAP �x�� ������

�see ���

��� In particular we have �� � CA�� on 	DA� We normalize �� below�

Next we determine �� in Rn� We consider two cases� K � 
 in ������ and K ��


� For K �� 
 the structure of the principal eigenfunction ���y� is a little more

complicated than that for K � 
� The substitution

���y� � q�y�e�
�y��� ������

transforms ���
�� into

 L����y� � O���� ������

where  L� is an operator of the form ����� with b�x� replaced by

 bi��y� � �
�
�bi�y� � nX

j��

�aij�y�
	��y�

	yj

�
A�O���
 ������

It is easy to see from ������ that in appropriate local variables near the critical points

of b�x�� the dynamics ����� and

�x � �b�x� ��
���

have the same equilibrium points with the same local stability properties� It follows

that A is an attractor for both ����� and ������� and similarly saddle points are

preserved� The domains of attraction DA and  DA of ����� and ������� respectively�

��



however may be di�erent� In the case DA �  DA the structure of q�y� is the same as

that of ���y�� This happens� for example� if ����� has no equilibrium points on 	DA

�e�g�� if DA is a limit cycle in two�dimensions� see the analysis in ��� Section ������ or

if detailed balance holds� If DA ��  DA� their intersection still contains a neighborhood

	A of A� Thus the outer expansion of q�y� is still CA in 	A� From ������ it follows

that ���y� is sharply peaked at A� so that the averaging in ����� asymptotically gives




���D�
� h� �D�i � h� �A�i
 ������

Since h� �x�i is asymptotically independent of x in DA ���� the point A in ������ can

be replaced by any point x in DA outside a boundary layer near 	DA�

We assume K � 
� then ���

���x� � ���x����x�
 ������

Using the normalization condition ���
��� with m � n � 
 we obtain from �������

������� and ������

aC�
A � bC�

B � 
� ������

and from ������ and ������

CA �

s
b

a
� CB �

r
a

b

 ������

�From the structure of the eigenfunctions we can determine the quasi stationary

��



density in DA� For times such that




��
� t� 


��
����
�

the eigenfunction expansion �
��� is given by

p�y� tjx� � ���y����x� � e���t���y����x�� ������

where expf���tg � O�
�� �From ������ it follows that ���y�� ���y�� hence in DA

p�y� tjx� � e���t���y����x�
 ������

However for times t� 
���

p�y� tjx� � ���y����x�
 ������

It follows that the rate of change of the population in DA satis�es

�
!N

N
� �� ������

for times ����
�� however

�
!N

N
� � ������

for times t� 
����

To calculate the �ux F� on 	DA we note that the drift b�x� is tangent to 	DA�

so that the contribution of the second term on the right hand side of ����� to F�

��



vanishes� It follows that

Z
�DA

J���� � � ds �
Z
�DA

���x�J���� � � ds�
Z
�DA

���x�J���� � � ds

�
CA

�

Z
�DA

J���� � � ds � CA

Z
�DA

���x��
X
i�j

aij���j�x��
i ds

� CA

r
�

��

Z
�DA

��
X
i�j

aij�j�x��
i ds
 ������

Hence� by �������

�� �
F�

N�
�
r

�

��

Z
�DA

��
X
i�j

aij�j�
i ds

�Z
DA

�� dx �
 F�

N�

 ������

Thus �� is the total �ux  F� on 	DA� normalized by the equilibrium reactant popu�

lation� Equations ������ and ������ indicate that the �G�TST assumption that the

equilibrium �ux is a good approximation to the quasi equilibrium �ux is incorrect�

Next we consider the principal eigenvalue problem ���
��� ���
�� in domains of type

II� that is� we choose D � DA� If absorbing conditions are imposed on 	DA� then

�� � � is no longer an eigenvalue� since no equilibrium density exists� The principal

eigenfunction �DA

� � which satis�es the boundary condition �DA

� � � on 	DA� is given

by

�DA

� � �� � CA

�
� ������

because for x � 	DA ���

� and ������ imply that �� � 
��� Hence

�DA

� � ����� � CA

�
�� ������

��



and consequently

���DA� � F��DA�

N��DA�
�

 F�
�
�
N�

� ���
 ����
�

It follows that the absorption rate in 	DA is twice the rate� that is� ���
���

Finally� if D is a domain of type III� then asymptotically �D
� � ��� and ����
�

holds with �� replaced by ���D�� The result ����
� can be stated as

Theorem �� If D is a domain of type III relative to ������ then

lim
���

���D�

���DA�
�




�

 ��
���

Thus to leading order in �� ���D� is independent of D� as long as D is of type III�

That is� changes in the shape of D do not a�ect ���D� to leading order� In contrast�

as D shrinks to DA� ���D� abruptly doubles as D nears DA� As it shrinks yet further

inside DA� the quotient ���D�����DA� increases exponentially fast in 
���

A generalization of Theorem 
 to the eigenvalue problem in Rn can be stated as

Theorem �� If ����� is a bistable system and D � Rn� then ������ holds�

Theorems 
 and � show that in the limit of high barrier the de�nitions of rate as

an absorption rate of trajectories outside DA or as the rate of change of the reactant

population� or as twice the absorption rate on S� or as the stationary �ux on an

�




absorbing boundary 	D with a source in DA� all lead the same result�

We illustrate the di�erence between our non equilibrium considerations and the

equilibrium considerations of �G�TST with an example� In the one dimensional

Kramers problem �� ���
� is given in dimensionless phase space by

!x � y

!y � ��y � V ��x� �
q
��� !w� ������

where V �x� is a bistable potential� � is a dimensionless friction coe�cient� and � is

dimensionless temperature �normalized by the barrier height�� We denote the minima

of V �x� by xA and xB� its local maximum by xC � and set ��
A�B� � V ���xA�B��� and

��
C � �V ���xC�� We assume V �xA� � V �xB� � V �xC�� The domain of attraction DA

of the attractor A � �xA� �� in phase space is bounded by a separatrix 	DA� which

passes through the saddle point C � �xC� ��� The direction of 	DA at C is that of

the line y � ���x�xC�� where � � ��
q
�� � ���

C ���� Obviously� �� � exp��E����

where E � �
�y

� � V �x�� We have locally near C

��x� y� �
��
Cq

��� � ��
x�

s
�� �

�
y� ������

hence� according to �������

�� � �A
���C

�
q
�� � ���

C � �� e��V��� ������

��



where �V � V �xC� � V �xA�� which is Kramers� result �see detailed calculations in

���� ���� and �����

In contrast� according to �G�TST� the rate is the normalized �ux on the line

x � xC � y � ��

� �
Z �

�
y�� dy

�Z xC

��

Z �
��

�� dx dy � �A
��

e��V��� ������

which is the TST result ���� We note that if the outgoing �ux on C is replaced by

half the �ux� calculated on any curve emanating from C to �� the result ������ is

unchanged� Indeed� we have

J���� � �y���������y � �y � V ��x����� � �y����V ��x����� ������

so that

F� �
Z �
C

J���� � � ds �
Z �
C

���y dy � V ��x� ds� �
Z �

EC
e�E�� dE � � e��V��� ������

hence ������� We conclude that �� cannot be replaced by �� in the calculation of ��

regardless of the choice of the �G�TS�

� Accounting for recrossings and the MFPT

A trajectory which starts in 	A and having crossed 	DA returns to 	A prior to

reaching 	D is said to recross 	DA� In the process of escaping from 	A to 	D a tra�

jectory may recross 	DA a random number of times� In this section we describe the

��



escape process� calculate the mean number of times hni that a trajectory crosses 	DA

before it reaches 	D� and show that for domains of type III the mean time h� �D�i to

reach 	D �i�e�� to escape� is asymptotically twice the MFPT h� �DA�i� We begin with a

Lemma� Let D be a domain of type III relative to ������ Then the MFPT from 	DA

to 	D� conditioned on reaching 	D before 		A� and the MFPT from 	DA to 		A�

conditioned on reaching 		A before 	D� are at most O�
�
p
�� as �� ��

Proof� We prove only the second part of the lemma� since the �rst part follows from

similar arguments� We denote by x��t� the process x�t� in D� �	A� conditioned on the

event f� �		A� � � �D�g� that is� the trajectories of x��t� consist of those trajectories

of ���
� which start in D � �	A and reach 		A before 	DA�

The process x��t� is a di�usion process with noise matrix �x� and drift

b�i�x� � bi�x� � ��
nX

j��

aij�x�
	 logP �x�

	xj
� �i � 
� � � � � n� ���
�

�see ����� where P �x� is de�ned in ���
� and is given by ���

�� We will show that the

drift b��x� is attracted to 	A everywhere in D� �	A and will estimate its component

in the direction "toward" 	A� To this end we change variables in the operator L�� in

������ We introduce the stretched variable

� � ��x�p
�

�����

��



to measure distance from 	DA� We assume that there exists a global set of variables

s � �s�� � � � � sn� on the hypersurfaces � � const
 �see ��� for a more detailed discussion

of this change of variables�� In the variables ��� s� the operator L�� takes the form

L��p � A�x�
	�p

	��
�B�x�

	p

	�
�

nX
k��

Ck�x�
	p

	sk
�O�

p
��� �����

where

A�x� �
nX

i�j��

aij�x�
	��x�

	xi
	��x�

	xj
� �� �����

p
�B�x� � �

nX
i�j��

aij�x�
	���x�

	xi	xj
�

nX
i��

bi�x�
	��x�

	xi
� �����

and

Ck�x� �
nX
i��

bi�x�
	sk

	xi

 �����

The O�
p
�� term in ����� contains mixed derivatives with respect to � and sk and

derivatives with respect to sk� In view of ���
�� and ������

B�x� � A�x��
 �����

The function P �x� in ���
�� given by ���

�� can be written in terms of the variables

��� s� as

P ��� s� �

s



��

Z 


��
e�z

��� dz
 �����

��



The components of b�x� in the � and sk directions are denoted by �b
� bs�� � � � � bsn��

with

b
��� s� � A�x��
 �����

We de�ne the domains D
 � f��x� � �g and note that if �� � ��� then D
� � D
�� In

particular D� � DA� In view of ������ the drift b�x� points into D
 for � � �� outside

D
 for � � �� and is tangent to 	D�� Equation ���
� gives the � component of b��x�

as

b�
 � b
 � �A�x�
	P ��� s�

	�
� �

nX
k��

A
�k�x�
	P ��� s�

	sk
� ���
��

where A
�k�x� is the coe�cient of 	�P ��� s��	�	sk in ������ In view of ����� we have

	P ��� s��	sk � �� so that

b�
��� s� � A�x�

�
� � �

	 logP ��� s�

	�

�
� A�x�

�
� �

�e�

���R 


�� e�z��� dz

�

 ���

�

We denote by n�x� the inner unit normal to the surface � � const
 Next we show

that the drift b��x� in D � �	A is attracted to 		A� On 	DA we have ��x� � � and

P ��� s� � 
��� It follows from ���

� that b�
��� s� � �
q
��� A�x�� or in the original

variables

b��x� � n�x� � �

s
��

�
A�x� � �
 ���
��

We note that ���
�� holds in a boundary layer near 	DA� Thus the drift b��x� on

	DA points into DA� As � � �� that is� for x outside a small neighborhood of

��



	DA in DA� the numerator in ���

� decays exponentially� whereas the denominator

converges to
p
��� It follows that the second term in ���
� decays exponentially so

that the directions of b��x� and b�x� coincide� Thus� by assumption� the drift b��x�

is attracted by 		A in DA � �	A� Next we consider b��x� in D � �DA� outside a

boundary layer� that is� we consider � � ��� First we note that in this limit �
�

P ��� s� � �
s




��

e�

���

�

 ���
��

�From ���

� and ���
�� we obtain

b�
��� s� � �A�x�� � �b
��� s�� ���
��

where the equality is a restatement of ������ It follows that b��x� points into D
 for

all � � � and is therefore attracted to 	DA in D � �DA� Thus b��x� is attracted to

	A everywhere in D � �	A� We see from ���
�� and ���
�� that the component b�
 is

asymptotically identical to the component b
 insideDA and to �b
 outsideDA� except

for a boundary layer� where it is positive and O�
p
��� That is� the conditional process

x��t� drifts toward 	A across the surfaces 	D
 with normal speed which is either O�
�

or O�
p
��� Therefore the MFPT from any point in D � �	A to 		A� conditioned on

f� �		A� � � �D�g� is at most O�
�
p
��� This proves the lemma�

Theorem 	� If D is a domain of type III relative to ������ then

lim
���

h� �D�i
h� �DA�i � �
 ���
��

��



Proof� We partition the trajectories of ���
�� all of which eventually reach 	DA� into

two sets�

S��� � ftrajectories which having reached 	DA for the �rst time�

reach 		A before 	Dg ���
��

and

S��� � ftrajectories which having reached 	DA for the �rst time�

reach 	D before 		Ag
 ���
��

We denote by �� the �rst passage time to 	DA� that is h��i � h� �DA�i� It follows

from the lemma that

E� �D�jS���� � h� �DA�i�O�
�
p
�� as �� �
 ���
��

Also� as shown in Section ��

P �S���� � P �S���� � 


�

 ���
��

Next we partition S��� into two sets�

S��� � ftrajectories in S��� which having reached 		A after the time ��� reach

	DA for the �rst time after ��� and then reach 		A before 	Dg ������

and

S��� � ftrajectories in S��� which having reached 		A after the time ��� reach

	DA for the �rst time after ��� and then reach 	D before 		Ag
 ����
�

��



Then� as above�

P �S���� � P �S���� � 


�
P �S���� � 


�

 ������

We denote by �� the �rst time after ��� that a trajectory in S��� returns to 	DA after

reaching 		A� By the lemma� the MFPT from 	DA to 		A for trajectories in S���� is

at most O�
�
p
��� The MFPT from 		A to 	DA is h� �DA�i� since it is independent

of the initial point of the trajectories in DA� outside an ��neighborhood of 	DA ����

Thus by the lemma�

E�� � ��jS���� � h� �DA�i�O�
�
p
��
 ������

Again� from the lemma

E� �D�jS���� � �h� �DA�i �O�
�
p
��� as �� �
 ������

We proceed in a similar manner and obtain sets Sn��� Sn��� and times �n� such that

Sn�� � ftrajectories in Sn���� which having reached 		A after the time �n��� reach

	DA for the �rst time after �n��� and then reach 		A before 	Dg ������

and

Sn�� � ftrajectories in Sn���� which having reached 		A after the time �n��� reach

	DA for the �rst time after �n��� and then reach 	D before 		Ag
 ������

��



Then� as above�

P �Sn��� � P �Sn��� � 


�
P �Sn����� � 


�n

 ������

We denote by �n the �rst time after �n�� that a trajectory in Sn���� returns to 	DA

after reaching 		A� Again� by the lemma�

E�n � �n��jSn��� � h� �DA�i �O�
�
p
��� ������

and

E� �D�jSn��� � nh� �DA�i �O�
�
p
���� as �� �
 ������

Since every trajectory reaches 	D in �nite time� having gone from 	DA to 		A and

back a �nite number of times� the union of the sets Sn��� �n � 
� �� � � �� contains all

trajectories� In addition� the sets Sn�� are mutually disjoint� It follows that

h� �D�i �
�X
n��

E�n� � �njSn���P �Sn��� �
�X
n��

n

�n
h� �DA�i�O�
�

p
���

� �h� �DA�i�O�
�
p
���
 ������

Since ���

h� �DA�i � O�e
	
�DA����� ����
�

the O�
�
p
�� term in ������ is negligible relative to h� �DA�i� so that

h� �D�i � �h� �DA�i� ������

��



hence ���
���

Next we discuss the notion of recrossings and of the transmission coe�cient k� If

the transition state region �TSR� is chosen as a neighborhood of S� whose width is

independent of �� then� as is evident from the proof of Theorem 
� the probability

that a trajectory leaves the TSR in the direction of A or B is independent of the

choice of the TSR� We therefore choose the TSR to be the domain D �	A�

De�nition� A trajectory x�t� of ���
� which starts in 	A is said to cross the TSR n

times� if x�t� � Sn��� If a trajectory crosses the TSR n times� it is said to recross it

n� 
 times�

Thus the number n of crossings of the TSR is a random variable� This de�nition

is asymptotically independent of 	A and D �or 	B��

Corollary �� If D is a domain of type III relative to ������ then the mean number of

times a trajectory recrosses the TSR is 
�

Proof� From the de�nition and from the proof of Theorem 
 it is obvious that

hni �
�X
n��

n

�n
� �� ������

so that the mean number of recrossings is 
�

�




If the de�nition of the stochastic separatrix is modi�ed to replace the probability


#� in ����� with a probability p� independent of �� then according to ���

�� the

resulting surface Sp will be in an ��neighborhood of S� Then ���
�� is replaced by

�AB �



p
�ASp 
 ������

It can be easily shown that �ASp�p is asymptotically independent of p� Thus the

convenient choice S � S��� does not limit the generality of the de�nition� As in the

proof of Corollary 
� it can be shown that the mean number of crossings is 
�p�

Next we comment on the de�nition of the transmission coe�cient k and its use�

As mentioned in the Introduction� k was introduced to account for the recrossing tra�

jectories which are neglected in �G�TST� If in the bottleneck case ��� the �G�TS�� S�

but passes through the saddle point� the probability of a return from the �G�TS

strongly depends on the point where a trajectory hits the �G�TS� This is the source

of the di�culty in calculating hni in �G�TST� and of the overestimates of � in the

�G�TST results ��� 
��� If however the �G�TS is chosen as S� this di�culty is averted�

as shown above�

�� Conclusions and discussion

Noise induced escapes from an attractor of a dynamical system account for a

��



variety of physical phenomena� such as chemical reactions ��� ���� ���� nucleation

���� ��� the behavior of Josephson junction devices ���� ���� loss of lock in code

tracking loops ���� ���� to name but a few� The noise in such systems describes

internal or external �uctuations� brought about� e�g�� by thermal vibrations� molecular

collisions� noisy resistors� and so on� In many cases the strength of the �uctuations

relative to the non �uctuating forces in such systems is small so that an escape is a

rare event on the time scale of the dynamics� The escape rate determines physically

measurable quantities� such as rates of molecular dissociation� isomerization� chemical

reactions� the resistance of Josephson junction devices� the reliability of logic elements�

the performance of tracking circuits� the stability of elastic structures� and so on�

In this paper we consider activation as a non equilibrium process� We de�ne

reactant and product as neighborhoods 	A and 	B of the stable states of the noiseless

dynamics and show that in the limit of small noise this de�nition is independent of

the choice of these neighborhoods� We show that the rate at which trajectories arrive

from 	A to 	B for the �rst time is half the rate at which trajectories arrive from

	A to the stochastic separatrix S� and that this rate is also independent of these

neighborhoods� We conclude that in order to obtain the correct rate in �G�TST �i�

the qepdf has to be used rather than the epdf� �ii� the qepdf di�ers from the epdf in a

boundary layer near S by a boundary layer factor� and �iii� all recrossings of the TSR

are accounted for if �G�TS�S� but not otherwise� Thus no transmission coe�cient is

��



needed if �G�TS�S�

The need for �i���iii� in �G�TST is based on the assumption that the qepdf in mul�

tidimensional phase space is well approximated by the qepdf of the di�usion process

in the sense of �
�
�� We conclude that the modi�ed �G�TST employed in �� can

be correct only if the chosen �G�TS is shown to be S� and if the modi�cation of the

epdf de�ned by the integral equation �� ���
�� has the appropriate boundary layer

structure�

The identi�cation of S � 	DA was based on the premise that � was the only small

parameter in the problem� This assumption is satis�ed for example in Kramers� model

when the dissipation coe�cient is not too small� In this case the above results and

���� ��� con�rm Kramers� result to be exact� not merely an upper bound� However

in problems which involve more than one small parameter� then S �� 	DA in general�

Indeed� S may di�er considerably from 	DA� This is the case� e�g�� in the extremely

anisotropic overdamped motion of a two dimensional Brownian particle in a double

well potential V �x� y�� Here x and y are the coordinates along which the motion is fast

and slow� respectively� If 	�V�	x� � � at the saddle point� then S may be completely

unrelated to 	DA� This leads to many interesting phenomena such as the appearance

of long non exponential transients� decay rates not determined by the height of the

potential barrier� etc� ���� �������� Also in the limit of small damping S �� 	DA

���� In such cases the the factor 
#� in the relation between the normalized �ux on

��



the GTS and � should be used only if GTS�S�

In ��� an attempt was made to prove that lim��� S � 	DA� for continuous drifts

b�x�� by employing the following argument� Using ���

�����
��� in the limit � � ��

���x� satis�es

nX
i��

bi�x�
	���x�

	xi
� � on S �on ���x� � ��
 ���
�

Hence lim��� S is a characteristic surface� tangent to the vector �eld b�x�� Since 	DA

is a characteristic surface� it is concluded in ��� that lim��� S � 	DA� However 	DA

is not necessarily the only closed characteristic surface in D� even if there is only one

attractor in D� and the above argument fails to choose S among the various closed

characteristic surfaces� Therefore this argument is not complete� For example� the

two�dimensional dynamics �in polar coordinates�

!r � �r�
 � r���� � r�

!� � f�r� ��� �����

where f�r� �� is a positive function� has a single attractor in the disk r � �� centered

at r � �� and an unstable limit cycle at r � 
 �attracting from the outside and

repelling from the inside�� The second attractor is at in�nity� Both circles r � 


and r � � are closed characteristic surfaces� and the argument ���
� does not identify

which circle is S in the limit � � �� In fact� our approach shows that in the limit

� � �� S is the circle r � �� as follows from the argument of Section �� Indeed�

��



the outer solution to ����� is constant inside the disk r � 
� It is also constant in

the annulus 
 � r � �� since all trajectories in the annulus come arbitrarily close

together near the attractor r � 
� It is easy to see that the solution of the boundary

layer equation near r � 
 cannot match to two di�erent constants on the two sides

of r � 
� It follows that the outer solution is a single constant throughout the disk

r � �� so that lim��� S � fr � �g�
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FIGURE CAPTION

Figure �� The dynamics ����� is attracted to A and to 	D and is repelled from 	DA�

The domains 	A� DA� and D are of types I� II� and III� respectively�
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