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ABSTRACT

Kramers� treatment of activated rate processes is based on the Langevin equation of
motion for the escaping particle� The stochastic dynamics may be cast equivalently as
the dynamics of a particle interacting bilinearly with a bath of harmonic oscillators� This
paper explores the connection between the solutions of Kramers� problem �and its gener�
alization to include memory friction
 obtained in the framework of these two approaches�
We demonstrate their equivalence for the speci�c case of a parabolic barrier potential�
The Hamiltonian representation is used to construct �a
 a nontrivial eigenfunction of the
Fokker�Planck equation which is generalized to include time dependent friction� �b
 the
�Kramers� stationary �ux distribution function� �c
 the stochastic separatrix�
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�� Introduction

The classical representation of activated rate processes as described by Kramers ��� is
in terms of a Fokker�Planck equation for the probability density function �pdf
 W �p� q� t

of the particle position �q
 and momentum �p
�

�W �p� q� t


�t
� LW �p� q� t
� ����


The Fokker�Planck operator �L
 has the form

L�� �

�q
p �

�

�p

�
�p�

dV �q


dq

�
�

�

�

��

�p�
� ����


where V �q
 is the potential acting on the particle� � is the damping coe�cient� and
� � ��kBT � where T is the temperature of the bath with which the particle interacts�
The Fokker�Planck equation describes the time �t
 evolution of the pdf W �p� q� t
 of the
particle� Much e�ort has been expended in �nding solutions of the partial di�erential
equation ����
� as described in standard textbooks ��������

It is also well understood that the Fokker�Planck equation may be derived from the
stochastic Langevin equation of motion for the particle�

�q �
dV �q


dq
� � �q � ��t
� ����


where the dot denotes di�erentiation with respect to time and ��t
 is a 	�correlated Gaus�
sian random force with zero mean� related to the damping by

h��t
��
 
i � ��

�
	�t� 
 
� ����


For simplicity� we have assumed unit mass for the particle� or equivalently� the coordinate
q and momentum p � �q are mass weighted�

In an activated rate process� the potential V is assumed to have a well at some location

q � q� and a barrier at a point q � qz that separates the well from a di�erent well or a
continuum� The theory of activated rate processes describes the e�ect of damping and
temperature on the rate of escape of the particle� If V �q
�� su�ciently fast as jqj � ��
the Fokker�Planck operator has well de�ned eigenfunctions� Wn� and eigenvalues� ��n�
The time dependence is then exponential� with modes Wn�p� q� t
 � e��ntWn�p� q
� The
eigenfunction W�� associated with the zero eigenvalue �� � �� is the thermal equilibrium
density W� � exp ����p��� � V �q
�� The standard methodology ��� �� �� for obtaining the
rate is based on various approximations for nontrivial density functions� use of variational
principles such as generalized Ritz principles for the Fokker�Planck operator ��� ��� and
more recently� estimates of the mean �rst passage time to the stochastic separatrix �����	��
All these approaches were based on studying the properties of the Fokker�Planck equation
or the Langevin equation�
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An alternate representation of the stochastic di�erential equation is obtained by de�
scribing the particle dynamics in terms of a Hamiltonian in which the particle is bilinearly
coupled to a harmonic bath ����� The equivalent Hamiltonian has the form

H �
p�

�
� V �q
 �

X
j

�
p�xj
�

�
�

�
��jxj � cj

�j
q
�
�
� ����


where the bath �mass weighted
 modes have coordinates xj� momenta pj � and frequencies
�j � Each bath oscillator is bilinearly coupled to the system through the coupling coe�cient
cj� This Hamiltonian is related to the stochastic Langevin equation by noting that the
equation of motion of each bath oscillator is just that of a forced oscillator in which the
forcing function is dependent only on the system coordinate q� This allows for an explicit
equation of motion for the system coordinate which has the same form as the �generalized

Langevin equation�

�q �
dV �q


dq
�
Z t

d
��t� 
 
 �q�
 
 � ��t
� ����


in which the time dependent friction is

��t
 �
X
j

c�j
��
j

cos��jt
� ����


The random force� ��t
� depends on the initial positions and momenta of all the bath
variables� If this initial distribution is chosen from the canonical ensemble� exp���H
�
then the random force is Gaussian and its autocorrelation function is related to the time
dependent friction by the �uctuation�dissipation theorem� For the Langevin equation� the
time dependent friction is Ohmic� ��t
 � ��	�t
� Obtaining the Langevin dynamics from
the Hamiltonian implies a representation of the friction function as a periodic function�
whose cosine Fourier series is well de�ned� for example �� �t
 � ��

Pn��
n��� 	�t � n
 
�

and then taking an ever increasing period 
 � For a given period� 
 � the Hamiltonian
representation of the dynamics is accurate for times t less than 
 �

Although this representation would seem at �rst glance to cause enormous di�culties�
it has been shown in recent work ���� ��� that direct analysis of the Hamiltonian dynamics
can lead to vast simpli�cations� Speci�cally� one can use classical variational transition
state theory to estimate the rate for �nite barrier heights���� ���� cusped potentials �����
space dependent friction problems ����� and anisotropic friction in the multidimensional
case ����� The Hamiltonian dynamics has been used to derive a Kramers turnover theory
for the rate ����� valid for all values of the damping constant �� It has also been used as a
starting point for a perturbation theory expansion to derive exact �nite barrier corrections
to the rate of reaction �����

What has not been done to date is to establish the relation between the detailed
dynamics of the Hamiltonian representation on the one hand and the dynamics as de�
termined from the Fokker�Planck equation or the stochastic di�erential equation on the
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other� While it has been shown that the rates� when known� are identical� it has not been
shown for example how one may derive the eigenfunctions of the Fokker�Planck opera�
tor directly from the Hamiltonian representation� Similarly� one would think that there
should be a way to relate the stochastic separatrix and the Hamiltonian dynamics�

In this paper we start exploring the connection between the two approaches� We
deal exclusively with the dynamics of a parabolic barrier potential� for which everything
is presumably known� The Fokker�Planck equation can be solved analytically ��� and
the Hamiltonian dynamics is separable ����� �From the point of view of each separate
approach� there is nothing new� however� the relationship between the two very di�erent
solutions is new and we believe interesting� For example� the Hamiltonian approach can
deal with memory friction as easily as with Ohmic friction� The Fokker�Planck equation
is well de�ned only for Ohmic friction� However� from the Hamiltonian approach we can
derive a distribution function in the q� p phase space which decays exponentially for any
time dependent friction� On a conceptual basis� the analysis presented in this paper also
indicates why the variational transition state theory for the rate is so much more powerful
and useful than other methods�

In Section �� we review brie�y the Hamiltonian dynamics for the parabolic barrier
potential� We then show in Section � how these dynamics may be exploited for a direct
construction of a nontrivial eigenfunction� In Section �� the �Kramers� stationary �ux
distribution function is derived� and in Section �� we construct the stochastic separatrix�
We end with a discussion� indicating how the present results may be used for further
development of the theory of activated rate processes�

�� Hamiltonian dynamics for a parabolic barrier

When the potential function is that of a parabolic barrier

V �q
 � ��

�
�z

�

q�� ����


where �z is the barrier frequency� the Hamiltonian ����
 is a quadratic form and thus may
be cast in terms of normal modes

H �
�

�
p�� �

�

�

z

�

�� �
X
j

�

�

h
p�yj � 
�jy

�
j

i
� ����


Here� � denotes the unstable normal mode� which is the analog of the system coordinate
q� and reduces to it in the zero damping limit� Similarly� yj denotes the j�th stable normal
mode� The normal modes are related to the original system and bath coordinates� q� x�
via an orthogonal transformation matrix U� such that

q � u����
X
j

uj�yj� p � u��p� �
X
j

uj�pyj � ����


The details of this transformation have been worked out in various places ���� �
� �	�� so
that here we summarize the main results which will be of interest in the next sections�
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Denoting the Laplace transform by a �hat�� one may easily see that the Laplace
transform of the time dependent friction� as represented in Eq�����
� is

 ��s
 � s
X
j

c�j
��
j

�

��
j � s�

� ����


One �nds that the unstable mode parabolic barrier frequency� 
z� is just the usual
Kramers�Grote�Hynes frequency ��� ���


z
�z

�

�
�� �  ��
z



z

�
�
�

�
�

� ����


The transformation matrix element that gives the projection of the system coordinate on
the unstable mode may also be expressed in terms of the Laplace transform of the time
dependent friction as ����

u��� �

�
�� � �

�
�
 ��
z


z

�
� ��s


�s
j
s��z


�
�
��

� ����


One may de�ne an e�ective bath frequency� !� as ����

!�� �X
j

u�j�

�j

�
u���


z�
� �

�z�
� ����


where the last equality on the right hand side of the equation may be proved from prop�

erties of the normal mode transformation ��	�� Since the three quantities� 
z� u��� and !�
are all expressed in terms of Laplace transforms of the time dependent friction� they are
well de�ned in the continuum limit� We also note that� as shown in ����� the product over
all normal mode frequencies is identical to the product over all original frequencies�


zY
j


j � �zY
j

�j� ���



For the speci�c case of Ohmic friction�

��t
 � ��	�t
� ���	


which is the main case of interest in this paper� the explicit solution for all the three

quantities 
z� u��� and !� is simple� speci�cally�

u���� � � �
�

�
z
�����


and

u��!
� � �z

�

� �����


�



where we have used the notation

u����� u���� �����


Since the Hamiltonian in the normal mode form is separable� the solution for the
time dependence of each of the modes in terms of the initial conditions �denote by a �
subscript
 is simple� For the unstable mode one has

��t
 � �� cosh�

zt
 � p��


z
sinh�
zt
 �����


and for the j�th stable mode

yj�t
 � yj� cos�
jt
 �
pyj�

j

sin�
jt
 �����


In the normal mode form� the question of crossing the barrier becomes trivial� If
the energy in the unstable mode is greater than zero and the momentum is positive� the
trajectory proceeds from reactants �negative �
 to products �positive �
� However� the
system is observed in the physical phase space q� p and thus the question remains of how
does the motion of the normal modes re�ect in the physical space� This is dealt with in
detail in the next section�

�� An Eigenfunction

As noted in the Introduction� the time dependence of the eigenfunctions of the Fokker�
Planck operator is that of a single exponent� For the parabolic barrier� the lowest nonzero

eigenvalue is just the normal mode barrier frequency 
z� It is shown below that this is
not a mere coincidence� In fact� when considering the normal mode representation� one
understands that if the initial conditions of the unstable mode are chosen such that


z�� � p�� � � ����


then for any time t�

��t
 � ��e
��zt� p��t
 � p��e

��zt� ����


The time dependence of the physical coordinate and momentum is on the average the
same exponential time dependence as implied by eqs� ����
� Thus one should expect the
eigenfunction to be represented by the projection onto the physical phase space of all
points which obey the fundamental relation as in Eq�����
� In this section� we quantify
these ideas and show that they are correct�

A function P �q� p� t
 is de�ned as

P �"q� "p� t
 � Tr

��
		�q�t
� "q
	�p�t
� "p
	�
z�� � p��
e

��H

Tr f	�q � "q
	�p� "p
e��Hg


�
� � ����


�



The time dependence of q�t
� p�t
 is known exactly for the Hamiltonian dynamics in terms
of the initial conditions and is given by a combination of eqs�����
� �����
� and �����
�
The trace implies an integration over all initial coordinates and momenta and may be
performed either in the q� x representation� using the form of the Hamiltonian given in
Eq�����
 or in the �� y representation using the normal mode Hamiltonian ����
�

Instead of performing the trace operation over the initial conditions� one may use
the invariance of the volume element in phase space to perform the integration over the
volume element at time t� One must then express the initial conditions for the unstable
mode ��� p�� in terms of the unstable coordinate and momentum at time t� By virtue of
eqs�����
 and ����
 and properties of the 	 function� one �nds that

	�
z�� � p��
 � e��
zt	




z��t
� p��t


�
� ����


It immediately follows that the time dependence of the distribution is as designed�

P �q� p� t
 � e��
ztP �q� p� �
� ����


It is thus reasonable to expect that P �q� p� �
 is related to the eigenfunction associated

with the eigenvalue �
z of the Fokker�Planck equation in the case of Ohmic friction� It
is just a matter of some algebra to demonstrate the explicit relation�

The denominator in Eq�����
 is easily evaluated in the q� x representation� since the
integration over all the bath modes is just a simple Gaussian integration� One �nds that

Tr
n
	�q � "q
	�p� "p
e��H

o
�
Y
j

�
��

��j

�
e��

�
�
��p���z� �q��� ����


For the numerator� it is convenient to use the normal mode representation� this implies
expressing the system coordinate q and momentum p in terms of the normal modes� as
given in eqs�����
� The integrals may be reduced to simple Gaussian integration by using
the Fourier expansion of the 	 function� For example�

	�q � "q
 �
�

��

Z
�

��

d�e
i��u����

P
j
uj�yj��q�� ����


Integration over all bath coordinates and momenta leaves one with the interim result
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 �
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Y
j

�
�j

j

�
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The remaining two integrations are now straightforward� Using the identities ����� ����
�
���

� �����
������
� and rearranging� one �nds
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The eigenfunction of the Fokker�Planck operator is the product of P with the equilib�
rium distribution �see ����


W �q� p
 � P �q� p� �
e�
�
� �p

�
��z�q�� �����


It is a matter of algebra to show that this function is indeed the eigenfunction of a Fokker�
Planck like operator�

L � � �

�q
p�

�

�p

�
 ��
z
p � dV �q


dq

�
�

 ��
z

�

��

�p�
�����


For Ohmic friction  ��
z
 � � and so Eq������
 is just the standard Fokker�Planck
operator� However� by utilizing the microscopic dynamics which is valid also for memory
friction� we �nd that we may de�ne a new operator� whose eigenfunction is W �q� p
 with

eigenvalue �
z which in turn obeys the Kramers�Grote�Hynes equation ����
�

��Kramers� stationary 	ux distribution function

In his original paper� Kramers determined the escape rate of the activated particle in
the spatial di�usion limit by �nding a distribution function F �q� p
 which has the property
that the �ux associated with it is stationary and that it obeys the boundary condition
which is that deep in the reactants region it is just the equilibrium distribution function�
For the Fokker�Planck operator� Eq�����
� the current operator has components

Jq � p� Jp � ���p �
dV �q


dq

� �

�

�

�p
����


The stationarity condition takes the form

�F

�t
� � � �r � JF� ����


As shown by Kramers ���� for the parabolic barrier

F �q� p
 � e�
�

� �p
�
��z�q�� �p

�

Z ���
z

�� �
�
� �p��

z�
�
z q�

��

e�y
�

dy� ����


When considering the Hamiltonian dynamics� the �ux operator in the full phase space�
in the normal mode representation� has the components

J� � ��� Jp� � �p�� ����


and similarly for each of the stable modes�

Jyj � �yj� Jpyj � �pyj � ����







Here the dot denotes time di�erentiation� the time dependence is determined from Hamil�
ton�s equations of motion� The stationarity condition takes the form

r � JF � �� ����


where F is a distribution function and the gradient operator is in the full phase space�
Of course� all this is just notation for the fact that any function in phase space which is

constant along a classical trajectory will be stationary� Thus for example the Hamiltonian
itself is stationary� However� Kramers was interested not only in a stationary �ux� but he
imposed the boundary condition which is that the �ux is associated with particles which
were initiated in the in�nite past in the reactant region� Following Pechukas ����� we
de�ne the characteristic function of points in phase space �r which is unity on all phase
space points of a trajectory which was initiated in the in�nite past at reactants and is
zero otherwise� By de�nition� �r is stationary� The distribution function associated with
the characteristic function �r� projected onto the physical phase space is then

Fr�"q� "p
 � NTr
h
	�q � "q
	�p� "p
e��H�r

i
� ����


where N is a normalization constant and the Tr operation is over the whole phase space�
For the purely parabolic barrier the dynamics is trivial and so we know the explicit

form of the characteristic function

�r � ��p� � 
z�
� ���



where ��x
 is the unit step function� It is now a matter of repeating the same algebra as
in the previous section to �nd that the desired function is simply

Fr�"q� "p
 � e�
�
�
��p���z� �q�� �p

�

Z
�
�
�

�
z

����
z
�

� �
�

��p��
z�
�
z �q�

��

e�y
�

dy� ���	


It is easy to see that for Ohmic friction this result reduces to Kramers function� Moreover�
using the same generalization of the Fokker�Planck operator to include memory friction
as in the previous section one �nds that

LF �q� p
 � �� �����


where the operator L is de�ned in Eq������
� It is the same Fokker�Planck operator as in
Eq�����
� but generalized to include the memory friction case�

For the purely parabolic barrier� the eigenvalue � � � is degenerate� as both the equi�
librium and the stationary �ux distributions are eigenfunctions� Of course the equilibrium
distribution is a nonnormalizable function� In addition� the equilibrium net �ux through
any surface vanishes while the net �ux associated with the Kramers distribution is con�
stant but not zero� As is well known� in the presence of nonlinearities� the degeneracy is

	



removed�


� The stochastic separatrix

The stochastic separatrix is de�ned as a curve in the particle phase space �q� p
 from
which the particle reaches products with a probability of �

�
�����	�� To construct the

stochastic separatrix we� construct a function T �"q� "p
 which is de�ned as the probability
that a particle initiated at phase space point "q� "p reaches products in the limit that the
time goes to �� The stochastic separatrix is a curve in phase space de�ned by the
condition

T �"q� "p
 �
�

�
� ����


To obtain the �transmission probability function� T � one only needs to consider the
dynamics of the unstable mode� Positive values of � are de�ned as the products region�
negative values are de�ned as reactants� Denote the energy in the unstable mode as E��

�E� � p�� � 
z
�

��� ����


Any trajectory initiated with E� � �� p� � � necessarily makes it to products as time
tends to �� Similarly� any trajectory initiated with E� � �� � � �� makes it to products
at large times� Barring the set of measure zero� E� � �� no other initial condition will
lead to products as the time goes to �� Therefore the transmission probability function
is the projection of these two conditions onto the physical phase space� Explicitly�

T �"q� "p
 � Tr

�
	�q�t
� "q
	�p�t
� "p
 ���E�
��p�
 � ���E�
���
� e��H

Tr	�q � "q
	�p� "p
e��H

�
� ����


As in the previous section� it is convenient to carry out the integrations in the normal
mode space� The integration over all the bath variables is identical to that in the previous
section so that one can immediately write down the interim result as in Eq����

� except
that the 	 function is replaced by the sum of the products of step functions appearing in
Eq�����
� The result is

T �"q� "p
 � �
�

��


�
� �


z
 ��
z




�
�

Z
�

���p��
z�
�
z �q�

dve
�
�
�

�
z

����z�v
�

� ����


�From the de�nition of the stochastic separatrix we �nd that T � �
� on the line

"pss �
�z�


z
"qss � �� ����


This result is correct for arbitrary memory friction� since the normal mode barrier fre�

quency �
z
 is a solution of the Kramers�Grote�Hynes equation ����
� In the Ohmic limit�

��



this is identical to the results derived in �	�� Note again the ease with which we have
derived the stochastic separatrix for arbitrary memory friction�

�� Discussion

The Hamiltonian representation of the dynamics of a particle moving on a parabolic
barrier in the presence of time dependent friction and an external Gaussian random force
has been used to derive stationary distribution functions and separatrices in the physical
�q� p
 phase space� In the limit of Ohmic friction� these become the known separatrices
and eigenfunctions of the Fokker�Planck operator� We have seen that knowledge of the
deterministic separatrix of the unstable normal mode ��
 is really all that counts� The
rest is just projection of the normal mode dynamics onto the physical phase space� taking
into account the correct thermal averaging over initial conditions�

Interestingly� the Hamiltonian approach for the parabolic barrier is more e�cient than
the direct approach based on the Fokker�Planck operator since it allows immediate exten�
sion of all results to include memory friction� This is not a mere artifact of the parabolic
barrier case� An important aspect of the parabolic barrier is that it provides a useful point
of departure for a perturbation theory which takes into account the nonparabolic part of
the potential� For example� one may use the perturbation theory presented in ���� together
with the approach presented here� to obtain perturbation expansions of Kramers� func�
tion and the stochastic separatrix even in the presence of memory and space dependent
friction�

The Hamiltonian approach for the parabolic barrier� seems to suggest a useful gener�
alization of the Fokker�Planck operator to the memory friction case �cf Eq� ����
� This
operator does not in general describe the full dynamics for the memory friction case�
However� it does suggest that one can usefully de�ne Fokker�Planck like operators which
provide a good representation for speci�c properties�

Perhaps the most interesting result of the present paper is the insight it gives into
the dynamics underlying the stationary distribution functions� We have seen that it is
necessary to understand the dynamics in all of phase space� in order to construct the
eigenfunctions� Equivalently� the stochastic separatrix may be found only if one knows
the fate of each trajectory� This is a much more severe restriction than the one used in
bounding the rate with the use of variational transition state theory �VTST
� In VTST�
all that is needed is the instantaneous velocity of each trajectory as it crosses a dividing
surface� This is a much weaker demand leading to a substantially more powerful theory
of reaction rates� Of course� the weaker demand has its price� the VTST approach only
gives an upper bound to the rate� However� experience has shown that often this upper
bound is very good�
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