
4.9 The stochastic separatrix and its application in chemical
reaction rate theory

4.9.1 The problem with transition state theory

The early theory of chemical reaction rates was based on equilibrium assumptions, despite
the fact that a system undergoing a chemical reaction is not in equilibrium, because there is
a (quasi) steady flux from the reactant to the product states. The theory, called transition
state theory (TST) (see, e.g., [294], [99]) preceded the diffusion theory of Kramers [168],
and led to considerable theoretical confusion [88]. We examine here the assumptions and
conclusion of TST and its generalizations (GTST) by considering the activation process in
the diffusion (Langevin) limit.

The mathematical expression of this assumption is the formulation of the chemical
reaction rate theory in terms of initial boundary value problems for the FPE. We find the
asymptotic structure of the leading eigenfunctions and eigenvalues of the Fokker-Planck
operator with a bistable potential, and hence the long time quasi equilibrium behavior
of the phase space pdf. Defining reactant and product as small neighborhoods ΩA and
ΩB of the metastable states of the Langevin equation, A and B, we examine all possible
recrossings of the transition state region (TSR) and find their contribution to the MFPT
τAB from ΩA to DB. We show that the mean number of recrossings of the TSR is 1, hence
τAB = 2τAS , where τAS is the MFPT from DA to the stochastic separatrix S, which we
use as a generalized transition state (GTS). The activation rate, that is, the rate at which
trajectories arrive to ΩB from ΩA, is then shown to be given by κ = 1/2τAS , and in the limit
of small noise is independent of the choice of ΩA and ΩB. We conclude that to obtain the
correct rate in (G)TST (i) the quasi equilibrium density (qepdf) rather than the equilibrium
density (epdf) has to be used, (ii) the qepdf contains a boundary layer near the stochastic
separatrix, but otherwise the reactant qepdf≈epdf, and (iii) all recrossings of the (G)TS
are accounted for if (G)TS=S, but not otherwise. We also consider the case of a single
meta-stable state.

4.9.2 Transition state theory and its generalizations

Transition state theory (TST) of activation and its generalizations (GTST) are based on the
following assumptions (1) an equilibrium probability distribution of phase space trajecto-
ries, (2) that a certain configuration space surface, called the (generalized) transition state
(G)TS, has the property that trajectories that cross the (G)TS from reactant to product
never recross it. Because of (1) half the trajectories on the (G)TS cross in the product
direction, and because of (2) they end up as product. It follows therefore that (3) the
reaction rate κ is the outgoing half of the equilibrium phase space probability flux on the
(G)TS, normalized by the reactant population. The underlying postulate which justifies the
equilibrium assumption is that after a sufficiently long time the quasi equilibrium density
of the reactant is sufficiently similar to the equilibrium density so that the outgoing half of
the quasi equilibrium flux on the (G)TS, normalized by the quasi equilibrium reactant pop-
ulation, is well approximated by that of the equilibrium flux, normalized by the equilibrium
reactant population.

Both Kramers’ theory and experimental results [88] show that κ depends on the dissipa-
tion, contrary to the TST prediction. The failure of TST to show this dependence brought
(1) and (2) into question. It has been widely recognized that both (1) and (2) are unrealistic,
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because activation is a non equilibrium process and because re-crossings do occur. Another
method for circumventing the equilibrium assumption is Kramers’ method of stationary
flux, in which a source is placed at the bottom of the reactant well and an absorbing barrier
is imposed sufficiently far outside it. Then the steady state normalized outgoing flux on
the (G)TS is related to the rate. Also the choice of the (G)TS in (2) has been the sub-
ject of study and different authors proposed different surfaces, e.g., a surface through the
saddle point which is perpendicular to the equipotential surfaces, the configuration of least
probability, and a surface of minimal flux.

Some of the problems TST and GTST raise are studied here in the diffusion (Langevin,
or Fokker-Planck) limit. The underlying assumption is that the behavior of the phase
space trajectories of the diffusion process approximates well that of the trajectories of a
particle coupled to a bath of oscillators. Such a limit corresponds to the Fokker-Planck
approximation of the Liouville evolution equation for the pdf of the phase space trajectories.
The Fokker-Planck equation describes the evolution of the pdf p(q, p, t) of the phase space
trajectories of the particle, whereas the Liouville equation describes that of the joint pdf
p(q, p,x, y, t) of the particle and the oscillators in multidimensional phase space. Thus,

p(q, p, t) = lim
N→∞

∫ ∫
p(q,p,x, y, t) dx dy, (4.64)

where x = (x1, . . . , xN ) and y = (y1, . . . , yN ) are the phase space coordinates of the bath
oscillators. In this approximation the behavior of the random trajectories, governed by a
(generalized) Langevin equation (GLE) [230], [233], approximates that of the ensemble of
trajectories of the particle, if the initial states of the bath oscillators are chosen at random
[89]. Therefore the study of the above mentioned problems in the diffusion limit may provide
some insight into (G)TST and its variants [232].

We take advantage of the eigenfunction expansion of the non-equilibrium pdf p(q, p, t|q0, p0)

p(q,p, , t|q0,p0) =
∞∑

n=0

φn(q, p)ψn(q0, p0)e
−λnt, (4.65)

where φn and ψn are the eigenfunctions of the Fokker-Planck operator (FPO) L

Lp = − p

m

∂p

∂q
+

∂

∂p

{
γp + m∇qV (q) + γmkT

∂

∂p

}
p

and its adjoint L∗,

L∗p =
p

m

∂p

∂q
− [

γp + m∇qV (q)
] ∂p

∂p
+ γmkT

∂2p

∂p2
,

corresponding to the eigenvalue λn (see [251]). The initial point (q0, p0) is in the reactant
part of phase space. We denote by ΩA and ∂ΩA the domain of attraction of the equilibrium
state at the bottom of the reactant well and its boundary, respectively.

First we examine the equilibrium assumption (1) and its consequences. Since λ0 = 0 it
follows from (4.65) that for times

1
λ2

¿ t ¿ 1
λ1

(4.66)

the rate of change of the reactant population is λ1, whereas for times

t À 1
λ1

(4.67)
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it vanishes. It is shown in Section 4.9.5 that

φ1(q,p)ψ1(q0, p0) À φ0(q,p)ψ0(q0, p0) for (q, p) ∈ ΩA, (4.68)

and φ1(q0, p0), ψ1(q0, p0) are independent of (q0, p0) in ΩA. Thus for times (4.66) exp{−λ1t} =
O(1) so that the reactant pdf p(q, p, t | q0, p0) is given by

p(q,p, t | q0, p0) ∼ e−λ1tφ1(q, p)ψ1(q0,p0). (4.69)

It follows that the qepdf (4.69) of the reactant is represented by φ1 and not by the equi-
librium density φ0. We conclude that the root cause of error in TST is the equilibrium
assumption (1). There is however a certain degree of similarity between the equilibrium
and the quasi equilibrium reactant densities. We show in Section 5 that

φ1(q,p) ∼ φ0(q,p)ψ1(q, p), (4.70)

in ΩA, where ψ1 is a boundary layer function which connects smoothly to a large constant CA

in the interior of ΩA and to 1
2CA on ∂ΩA. This similarity explains the need for introducing

corrections to the equilibrium density [234], [208], [42]. From the boundary layer structure
(4.70) of φ1 we conclude that in order to obtain the qepdf (4.69) from the epdf a modification
has to be introduced on ∂ΩA and it must have the boundary layer form ψ1.

Next we examine the problem of re-crossings of the (G)TS. We show in Section 4.9.5
that in the limit of high barrier the stochastic separatrix S, the locus of points from which
trajectories are equally likely to become reactant and product, is asymptotically ∂ΩA. From
the definition of S we find that average number of times 〈n〉, that a trajectory crosses a
neighborhood of S before becoming a product is 2, so that k = 1. The calculation of the
rate from the normalized flux on the (G)TS is based on the identity

λ1 =

∫

∂Ω

J(φ1) · n dS

∫

Ω

φ1 dq dp

, (4.71)

where J(φ1) is the flux density corresponding to the quasi equilibrium density φ1, Ω is the
reactant region in phase space, and ν is the unit outer normal to ∂Ω. If ∂Ω = S is chosen,
then it follows from (4.71) and (4.70) that the outgoing half of the quasi equilibrium flux
on S, normalized by the reactant population, is the rate. We conclude that if the (G)TS is
chosen to be the stochastic separatrix, then the relation (3) between the rate and the quasi
equilibrium flux holds, but not otherwise.

Our conclusions about (G)TST can be summarized as follows. To obtain the correct
rate in (G)TST (i) the qepdf the reactant is obtained from the epdf by a modification of
the epdf, (ii) the modification has to have the form of a boundary layer at the stochastic
separatrix S, and (iii) all re-crossings are accounted for if (G)TS=S, but not otherwise.
The structure of S in multidimensional phase space is needed only near the saddle point.
In the high barrier limit it can be determined from the memory function in the GLE [70].
The determination of S in other cases has been discussed in [157].

We find the quasi stationary behavior of the solution of the Fokker-Planck equation
(FPE) by finding the asymptotic structure of the leading eigenvalues and eigenfunctions in
the limit of high barrier. We consider both bistable and meta-stable dynamics, and discuss
Kramers’ method of stationary flux. We find the average number of times a trajectory
crosses a neighborhood of an equiprobable surface Sp before becoming a product (S1/2 ≡ S).
Hence we find the relation between the flux on S and the rate.
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4.9.3 Diffusion model of TST

We consider the system of n Itô stochastic differential equations

dx = a(x) dt +
√

ε B(x) dw, (4.72)

where a(x) = (a1(x), . . . , an(x)) is a smooth vector field in Rd, w is a vector of k inde-
pendent standard Brownian motions (k ≤ n), and B(x) is an n × k noise matrix. The
parameter ε is a measure of the noise intensity and is assumed to be small relative to other
parameters of the problem such as the size of a(x) and B(x), the sizes of the domains in
which (4.72) is considered, and so on. The diffusion matrix σ(y) ≡ {

σij(y)
}

is given in
terms of the noise matrix B(y) =

{
bij(y)

}
as

σ(y) =
1
2
B(y)BT (y). (4.73)

The noiseless dynamics
ẋ = a(x) (4.74)

is assumed to have a finite attractor A with domain of attraction ΩA whose boundary ∂ΩA

is a repeller (see fig.1). We assume that all domains mentioned below have boundaries with
a piecewise continuous normal. When (4.72) is used to model an activated process by the
Langevin dynamics of a particle in a potential well, activation occurs when a trajectory
leaves a neighborhood ΩA of A and does not return for a long period of time. Thus the
activation rate κ is the escape rate from ΩA. To be meaningful such a definition should be
independent of the choice of ΩA, of the location of ∂Ω, and of the noise strength ε, provided
ε is small. As noted in the Introduction, several definitions have been given for the GTS.
Calculations of κ from the rate at which trajectories arrive at boundaries of various domains,
have been used. One such calculation of κ is based on the rate at which trajectories are
absorbed in the boundary ∂ΩA, or equivalently, κ = 1/〈τ(DA)〉, where 〈τ(ΩA)〉 is the mean
first passage time (MFPT) to ∂ΩA. If ΩA is replaced by the domain of attraction ΩA of
A, then for small ε, trajectories arriving at ∂ΩA are equally likely to return to ΩA prior
to absorption in the boundary ∂Ω of a larger domain Ω containing ΩA, as they are to be
absorbed before they return to DA. Therefore κ = 1/2〈τ(ΩA)〉. Not all definitions of κ are
consistent with one another or with physically measured quantities. Thus for example, the
normalized outgoing flux at the top of a potential barrier may not represent the rate, since
trajectories arriving at the top of a potential barrier with outward pointing velocity may
have a non-negligible probability of returning to the well.

The definition of an escape rate κ from ΩA as the absorption rate κabs(Ω) in ∂Ω requires
the calculation of the MFPT 〈τ(Ω)〉 from ΩA to ∂Ω, or equivalently, of the principal eigen-
value λ1(Ω) of the Fokker-Planck operator with absorbing boundary conditions on ∂Ω. The
calculation of 〈τ(Ω)〉 and of λ1(Ω) for multidimensional systems in domains Ω containing
an attractor has a long history. Several types of domains have been considered, which we
now classify. A domain Ω is classified as type I if Ω ⊂ ΩA and the drift enters Ω. In this
case ∂Ω is a non-characteristic boundary. If D = ΩA, we classify it as type II. Here the
system does not drift into ΩA, ∂Ω is a characteristic boundary, and is an invariant manifold
for the drift. If D ⊃ ΩA and the drift in D − Ω̄A is attracted by ∂Ω, we classify Ω as type
III (see the exact definition below).

Definition 4.9.1. (Type III) A domain Ω is of type III relative to (4.74) if
(i) D ⊃ Ω̄A,
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(ii)

δ1 < dist(x, ∂Ω) < δ2 for all x ∈ ∂ΩA, (4.75)

and δ1, δ2 are positive constants, independent of ε, and
(iii) trajectories of (4.74) which start in D − Ω̄A reach ∂Ω in finite time.

An often encountered example of a domain of type III is the following. Let (4.74) be a
bistable system with a finite attractor A and a second, more stable attractor B (possibly
at infinity). If ΩB is a neighborhood of B, inside the domain of attraction of B, then
D ≡ Rd − Ω̄B is a domain of type III relative to (4.74). This example corresponds, e.g.,
to a model of a chemical reaction. The noisy dynamics (4.72) models the motion of an
atom bound by a stable chemical bond, corresponding to the attractor A. When the bond
is broken due to the noise (e.g., to molecular collisions), a new more stable bond B is
formed [168]. Another example of a domain of type III relative to (4.74) corresponds
to the dynamics (4.72) with a single metastable state. In this case Ω contains ΩA and
trajectories which start in D−Ω̄A are assumed to exit Ω in finite time and never return. This
corresponds, e.g., to dissociation, where the metastable state A models the undissociated
state of a molecule [225].

Because of the weak fluctuations, the trajectories of the system tend to stay in a small
neighborhood ΩA of A, with rare escapes to ΩB or to an absorbing boundary ∂Ω, from
which they do not return. In the case of bistability ΩB usually corresponds to a more stable
state of the system, so that the time spent in ΩB is usually much longer than in ΩA. Thus
we may assume that trajectories arriving in DB are absorbed there and never return to A.
Therefore the bistable case can also be treated as metastable with absorption in ∂Ω.

The transition probability density function (transition probability density function) of
trajectories of (4.72), p(y, t |x) ≡ Pr{x(t) = y |x(0) = x}, satisfies the Fokker-Planck
equation

∂p

∂t
= Lεp ≡ −∇ · J , (4.76)

where the probability current density J(x, y, t) is defined as

J i(x, y, t) ≡ −ε
n∑

j=1

∂

∂yj

[
aij(y)p(y, t |x)

]
+ bi(y)p(y, t |x). (4.77)

The initial condition for (4.76) is given by

p(y, 0 |x) = δ(x− y). (4.78)

If trajectories of (4.72) are absorbed on the boundary ∂Ω of a given domain Ω, the transition
probability density function satisfies the boundary condition

p(y, t |x) = 0 for x ∈ D, y ∈ ∂D. (4.79)

It also satisfies the backward Kolmogorov equation

∂p

∂t
= L∗εp ≡ ε

n∑

i,j=1

aij(x)
∂2p

∂xi∂xj
+

n∑

i=1

bi(x)
∂p

∂xi
for x ∈ Ω, (4.80)

and
p = 0 for x ∈ ∂Ω, y ∈ Ω. (4.81)
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We assume that the transition probability density function p(y, t |x) can be represented by
the eigenfunction expansion

p(y, t |x) =
∞∑

n=1

ψn(x)φn(y)e−λn(Ω)t, (4.82)

where

Lεφn(y) = −λn(Ω)φn(y) for y ∈ D, (4.83)

φn(y) = 0 for y ∈ ∂D, (4.84)

and

L∗εψn(x) = −λn(Ω)ψn(x) for x ∈ D, (4.85)

ψn(x) = 0 for x ∈ ∂D. (4.86)

This is the case for example, if Ω is a bounded domain, however we do not restrict our
considerations to this case. The eigenvalues are ordered as 0 < λ1(Ω) ≤ < e λ2(Ω) ≤
< e λ3(Ω) ≤ . . . , with λ1(Ω) real [237]. We assume that the eigenfunctions are normalized
so that ∫

Ω

φ1(y) dy = 1, (4.87)

and are bi-orthogonal ∫

Ω

φm(x)ψn(x) dx = δmn. (4.88)

4.9.4 The MFPT, the absorption rate, and the principal eigenvalue

Let Ω be a bounded domain which contains A. Then, under some mild positivity assump-
tions about a(x), the trajectories of the noisy system (4.72) which start in Ω, cross ∂Ω in
finite (random) time τ with probability 1. Moreover, the MFPT

〈τ(x)〉 ≡ E(τ |x(0) = x) (4.89)

from a point x in Ω to ∂Ω is finite and is independent of the behavior of the process at
the boundary. These results may hold as well even if Ω is unbounded. Thus we may
assume that ∂Ω is an absorbing boundary, so that any trajectory of (4.72) that reaches ∂Ω
is instantaneously terminated. The MFPT is given by [251]

〈τ(x)〉 =

∞∫

0

∫

D

p(y, t |x) dy dt, (4.90)

or by

〈τ(x)〉 =
∫

Ω

p(x, y) dy, (4.91)
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where p(x, y) is defined by

p(x,y) ≡
∞∫

0

p(y, t |x) dt. (4.92)

From the Fokker-Planck equation (4.76) and the initial condition (4.78) we find that

Lεp(x, y) = −δ(x− y). (4.93)

If δ(x−y) is replaced by f(y) in the initial condition (4.78), the pdf p(x, y) is independent
of x, that is, p(x, y) = p(y), and satisfies the equation

Lεp(y) = −f(y). (4.94)

In particular, if we choose f(y) = φ1(y), then p(y) = φ1(y)/λ1(Ω) and (4.91) implies that

〈τ(D)〉 ≡
∫

Ω

φ1(x)〈τ(x)〉 dx =
1

λ1(Ω)
. (4.95)

The structure of the functions p(x, y) and p(y) has been discussed in [251]. Equation (4.93)
with absorbing boundary conditions on ∂Ω represents Kramers’ method of stationary flux, in
which a source is placed inside Ω and an absorbing barrier is imposed outside ΩA. Equation
(4.95) relates the solution of (4.93) with the escape rate. The relation of the out going flux
on the (G)TS, as obtained from (4.93), and the rate is discussed in Sections 4.9.5 and 4.9.7.

Next we discuss the relationships between the absorption rate κabs(Ω) in ∂Ω, the MFPT
〈τ(Ω)〉, and the principal eigenvalue λ1(Ω). The absorption rate constant κabs(Ω) represents
the stationary relative rate of change of the population N(x, t) in D, given the initial
condition (4.78), where

N(x, t) ≡
∫

Ω

p(y, t |x) dy.

The Fokker-Planck equation (4.76) implies that

∂N(x, t)
∂t

=
∫

D

∂p(y, t |x)
∂t

dy = −
∫

Ω

∇y · J(x, y, t) dy

= −
∫

∂D

J(x, y, t) · ν(y) dSy ≡ −F (x, t). (4.96)

Recalling that J is the probability current density, we see that the rate of change of the
population in D is the negative of the total probability flux on ∂D. It follows that the
relative rate of change is given by

κabs(x, t) ≡ −∂N(x, t)/∂t

N(x, t)
=

F (x, t)
N(x, t)

. (4.97)

Using the eigenfunction expansion (4.82) we obtain

κabs(x, t) =

∑
n λn(Ω)ψn(x)

∫
φn(y) dy e−λn(Ω)t

∑
n ψn(x)

∫
φn(y) dy e−λn(Ω)t

. (4.98)
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Obviously the relative rate of change (4.98) depends on both x and t, however its limit as
t → ∞ is constant. Thus the concept of a rate constant for (4.72) is meaningful only in
the limit t →∞, since the relative rate of change becomes constant only after a sufficiently
long time. Therefore the natural definition of the absorption rate constant κabs(Ω) is given
as

κabs(Ω) ≡ lim
t→∞κabs(x, t), (4.99)

which, in view of (4.98) is
κabs(Ω) = λ1(Ω). (4.100)

The corresponding notion of the MFPT must be defined in a manner consistent with
the definition (5.47) of rate as a long time limit. After a long time t0 has elapsed, a large
proportion of the trajectories have already been absorbed. Thus we have to consider only
those trajectories that survived (were not absorbed) in ∂Ω at time t0. The probability
density of finding a trajectory at a particular point y, among the surviving trajectories in
D at time t0, is the conditional density

pC(y, t0 |x) ≡ p(y, t0 |x)∫

Ω

p(y, t0 |x) dy

. (4.101)

Using the eigenfunction expansion (4.82) and the normalization (4.87), we obtain

pC(y, t0 |x) =
∑

n ψn(x)φn(y)e−λn(Ω)t0

∑
n e−λn(Ω)t0ψn(x)

∫

Ω

φn(y) dy

→ φ1(y) as t0 →∞. (4.102)

Thus the conditional density pC(y, t) of trajectories at time t + t0, which were observed at
time t0 À 1 in D, is the solution of the Fokker-Planck equation (4.76) with the absorbing
boundary condition (4.79), and the initial condition

pC(y, 0) = φ1(y). (4.103)

Thus, for times 1/λ2 ¿ t ¿ 1/λ1 the qepdf is given by

pC(y, t) = φ1(y)e−λ1(Ω)t.

Therefore the MFPT for a trajectory, observed at a point y at a sufficiently large time t0,
must be calculated by (4.90), with the conditional density pC(y, t) of surviving trajectories
replacing the transition probability density function p(y, t |x). Now the concept of first
passage time, which is consistent with the definition (4.99) of κabs(Ω), is the first passage
time for the process (4.72) which starts with the initial density (4.103). The long time
MFPT is therefore given by

〈τ(Ω)〉 =

∞∫

0

∫

Ω

pC(y, t) dy dt =
1

λ1(Ω)
. (4.104)

We see that, according to this definition, both 〈τ(Ω)〉 and κabs(Ω) are independent of initial
conditions. Although pC(y, 0) is not a density of the process x(t), defined by (4.72), it
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represents the shape of the long time transition probability density function with the decay
e−κabs(Ω)t.

Now we consider the FPE (4.76) in Rd. We assume that (4.74) is a bistable system with
attractors A and B, whose domains of attraction, ΩA and ΩB, are separated by ∂ΩA. We
denote by φi, ψi, and λi the corresponding eigenfunctions and eigenvalues. We have λ0 = 0
and φ0 is the equilibrium pdf. We write (4.83) as

−∇ · J(φn) = −λnφn, (4.105)

where J(φn) is defined in (4.77) with p replaced by φn(y). Then for any domain D ⊂ Rd

λn =
Fn

Nn
, (4.106)

where

Fn ≡
∫

∂D

J(φn) · ν ds (4.107)

and

Nn ≡
∫

D

φn dy. (4.108)

In particular we choose D = ΩA.
Next we describe the structure of the MFPT and its dependence on Ω. For domains of

types I and II
〈τ(Ω)〉 = O(ε1/2eΨ̂(Ω)/ε), (4.109)

where Ψ̂(Ω) is a positive constant which depends on Ω and on the coefficients aij(x) and
bi(x) in Ω. Explicit expressions for Ψ̂(Ω) are determined for various domains by an eikonal
function Ψ(x), which is a solution of the Hamilton-Jacobi type equation

n∑

i,j=1

aij(x)
∂Ψ(x)

∂xi

∂Ψ(x)
∂xj

+
n∑

i=1

bi(x)
∂Ψ(x)
∂xi

= 0. (4.110)

The constant Ψ̂(Ω) is given by
Ψ̂(Ω) = min

x∈∂Ω
Ψ(x). (4.111)

The function Ψ(x) is defined by the assumption that the principal eigenfunction φ0 has
the WKB structure in Ω

φ0(y) = K(y, ε)e−Ψ(y)/ε, (4.112)

where K(y, ε) is a regular function of ε. The structure of Ψ(x) for bistable systems (4.74)
is more complicated. If we assume that (4.74) has attractors A and B, with domains of
attraction ΩA and ΩB, respectively, then a global smooth solution to (4.110) in Rd may not
exist [101]. However locally, in ΩA and ΩB, (4.112) holds. In the case of detailed balance
[98] (4.112) holds in Rd with K(y, ε) = 1 and Ψ(y) is the energy, so that φ0(y) is the
Boltzmann equilibrium density.
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The function Ψ(x) decreases on the trajectories of (4.74) in ΩA, so that Ψ̂(Ω1) ≥ Ψ̂(Ω2)
if Ω1 and Ω2 are of type I and Ω1 ⊃ Ω2, hence by (4.109)

〈τ(Ω1)〉
〈τ(Ω2)〉 = O

(
e[Ψ̂(Ω1)−Ψ̂(Ω2)]/ε

)
. (4.113)

If in addition δ1 ≤ dist(x, ∂Ω2) ≤ δ2 for all x ∈ ∂Ω1, where δ1 and δ2 are positive numbers
independent of ε, then Ψ̂(Ω1) > Ψ̂(Ω2), so that

lim
ε→0

〈τ(Ω2)〉
〈τ(Ω1)〉 = 0. (4.114)

This however, is not the case for domains of type III, since for such domains the limit
(4.114) implies that 〈τ(Ω)〉 is to leading order independent of Ω.

We now discuss the relation between absorption and escape. We distinguish between
two types of escape. Let ΩA be a neighborhood of A in ΩA. One type of escape is the event
of reaching ∂ΩA for the first time, regardless of the subsequent behavior of the trajectory.
This type of escape describes several physical systems in which trajectories are terminated
at ∂ΩA [183], [109]. The rate of this type of escape is simply the absorption rate in ∂ΩA.
It involves neither multistability nor separation of time scales. A second type of escape
involves multistability and separation of time scales. According to (4.109) trajectories
spend time O(exp(Ψ̂(ΩA)/ε) in ΩA before reaching ∂ΩA (necessarily crossing it several
times in rapid succession). If a trajectory reaches a distance O(1) beyond ∂ΩA in Rd− Ω̄A,
it either returns to ΩA or is absorbed in ∂Ω without returning to ΩA. In the first instance,
if the time of return is short relative to 〈τ(ΩA)〉, the trajectory is not considered to have
escaped, whereas in the latter it is. This distinction means that relatively short departures
do not represent transitions to a new physical state, e.g., going from reactant to product
in a chemical reaction, whereas long departures do represent such transitions. The rate at
which long departures occur can be defined in terms of an absorption rate in ∂Ω, where Ω
is a domain of type III.

4.9.5 The probability of returns, ψ1, φ1, and λ1

In this section we consider the probability P (x) of return from a point x to ΩA, prior to
absorption in ∂Ω, where Ω is a domain of type III, and its relation to the eigenfunctions
ψ1 and φ1 in Rd and in domains of type II and type III. First, we study drifts which are
continuous across ∂ΩA (e.g., for smooth potential barriers), and then show that similar
results hold for drifts whose normal component suffers a discontinuity across ∂ΩA (e.g., for
sharp potential barriers).

We denote by τ(∂ΩA) (τ(∂Ω)) the first passage time to ∂ΩA (∂Ω). The function

P (x) ≡ Pr{τ(∂ΩA) < τ(∂D) |xε(0) = x} (4.115)

is the probability that a trajectory starting at x will reach ∂ΩA before ∂Ω. The stochastic
separatrix S is defined as the locus of points x such that

P (x) =
1
2
. (4.116)

The probability P (x) is the solution of

L∗εP (x) = 0 in D − Ω̄A (4.117)
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with the boundary conditions

P (x) = 1 for x ∈ ∂ΩA (4.118)

and

P (x) = 0 for x ∈ ∂Ω. (4.119)

(see e.g. [251]). In Section 4.9.7 we show that asymptotically (4.117)-(4.119) also define the
principal eigenfunction ψ1(x) of L∗ε.

The outer expansion of P (x) in Ω is found by assuming the regular expansion

P (x) = P 0(x) + o(1) as ε → 0. (4.120)

In view of (4.109) the leading term P 0(x) must satisfy the reduced equation

n∑

i=1

bi(x)
∂P 0(x)

∂xi
= 0, (4.121)

or equivalently,
dP 0(x(t))

dt
= 0, (4.122)

where x(t) is any trajectory of (4.74). It follows that P 0(x) = const. on every trajectory.
By assumption, all trajectories outside ΩA reach ∂Ω in finite time, so that the boundary
condition (4.119) implies that

P 0(x) = 0 for x ∈ Ω− Ω̄A.

Similarly, all trajectories in ΩA reach ∂ΩA in finite time, hence by (4.118)

P 0(x) = 1 for x ∈ ΩA. (4.123)

For continuous drifts the discontinuity in the outer solution is bridged by the uniform
expansion, given by

P (x) =

√
1
2π

χ(x)/
√

ε∫

−∞
e−z2/2 dz. (4.124)

The function χ(x) satisfies (see (4.117))

n∑

i=1

bi(x)
∂χ(x)
∂xi

=
n∑

i,j=1

aij(x)
(

χ(x)
∂χ(x)
∂xi

∂χ(x)
∂xj

− ε
∂2χ(x)
∂xi∂xj

)
. (4.125)

The boundary conditions (4.118) and (4.119) imply that

χ(x) > 0 for x ∈ ΩA − Ω̄A, outside a boundary layer (4.126)

and

χ(x) < 0 for x ∈ Ω− Ω̄A, outside a boundary layer. (4.127)
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The boundary conditions (4.118) and (4.119) are satisfied by (4.124) asymptotically. In view
of (4.116) S is defined by χ(x) = 0. Now (4.126) and (4.127) imply that limε→0 S = ∂ΩA

(see the discussion of this argument in Section 4.9.7). Expanding χ(x) = χ0(x) + o(1) as
ε → 0 we obtain that on a trajectory x = x(t) of (4.74).

d

dt
χ0(x) =

n∑

i=1

bi(x)
∂χ0(x)

∂xi
=

n∑

i,j=1

aij(x)χ0(x)
∂χ0(x)

∂xi

∂χ0(x)
∂xj

. (4.128)

In view of (4.126), (4.127), and (4.128), χ0(x) increases on the trajectories of (4.74) outside
ΩA and decreases inside ΩA.

Next we consider drifts a(x) whose normal component bn(x) suffers a discontinuity
across ∂ΩA. That is, we assume that ± limρ→0± bn(x) > 0. This is the case, e.g., if the
potential barrier is sharp (see fig.1). The solution of (4.117) is still given by (4.124), however
the local behavior of χ(x) near ∂ΩA is not as given in [195]. The boundary layer to bridge
the discontinuity of the outer solution across ∂ΩA can be found in this case by introducing
the local coordinates (ρ, s) near ∂ΩA, where ρ(x) ≡ dist(x, ∂ΩA) and s(x) = (s2, . . . , sn)
are local coordinates in ∂ΩA. Then we stretch ρ by setting

ζ ≡ ρ

ε
,

Q(ζ, s) ≡ P (x), and expanding

Q(ζ, s) ∼ Q0(ζ, s) + εQ1(ζ, s) + . . . . (4.129)

Now (4.117) is to leading order

a(s)
∂2Q0(ζ, s)

∂ζ2
+ b±n (s)

∂Q0(ζ, s)
∂ζ

= 0 for ±ζ > 0, (4.130)

where

a(s) ≡ lim
ρ→0

n∑

i,j=1

aij(x)
∂ρ(x)
∂xi

∂ρ(x)
∂xj

(4.131)

and

b±n (s) ≡ lim
ρ→0±

a(x) · ∇ρ(x). (4.132)

Since ∂ΩA is a repeller we have ±b±n (s) > 0. The matching conditions are

lim
ρ→∞Q0(ρ, s) = 1, lim

ρ→−∞Q0(ρ, s) = 0. (4.133)

The solution is given by

Q0(ζ, s) = 1 +
b−n (s)

b+
n (s)− b−n (s)

exp{−b+
n (s)
a(s)

ζ} if ζ > 0 (4.134)

and

Q0(ζ, s) =
b+
n (s)

b+
n (s)− b−n (s)

exp{−b−n (s)
a(s)

ζ} if ζ < 0. (4.135)
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The stochastic separatrix S, given to leading order by Q0(ζ, s) = 1/2, is found to be

ρ(s) =
εa(s)
b±n (s)

log
±2b±n (s)

b+
n (s)− b−n (s)

if
±2b±n (s)

b+
n (s)− b−n (s)

> 1. (4.136)

Thus lim
ε→0

S = {ρ(s) = 0} = ∂ΩA in this case as well. Therefore (4.124) still holds, but with

the local behavior (4.134) and (4.135) rather than that in the continuous case.
Next we consider the eigenvalue problems (4.83) and (4.85) in Rd and in domains of

type II and III. We we begin with a bistable system (4.74) in Rd, with attractors A and B.
The domains of attraction ΩA and ΩB are separated by ∂ΩA. We denote by ΨA(B)(y) the
solution of (4.110) in ΩA(B) and set ∆ΨA(B) ≡ min∂ΩA

ΨA(B)(y) − ΨA(B)(A(B)). In the
case of bistable Langevin dynamics ∆ΨA(B) is the barrier height of the A(B) well. If

∆ΨA < ∆ΨB, (4.137)

then

λ1 = O(e−∆ΨA/ε). (4.138)

It follows that (4.85) with n = 1 is asymptotically the same as (4.117).
To find the expansion of ψ1 in Rd we begin with the outer expansion

ψ1 ∼ ψ0
1 + εψ1

1 + . . . (4.139)

and find that

ψ0
1 ∼ CA(B) in ΩA(B), (4.140)

where CA and CB are constants [251]. The boundary layer connecting the constants across
∂ΩA is similar to P (x) in (4.124),

ψ1(y) ∼ CA − CB√
2π

χ(y)/
√

ε∫

0

e−s2/2 ds +
CA + CB

2
. (4.141)

The orthogonality condition (4.88) and the WKB assumption (4.112) give

0 =
∫

Rd

φ0(x)ψ1(x) dx =
∫

Rd

ψ1(x)K(x, ε)e−Ψ(x)/ε

(4.142)

∼ (2πε)n/2
∑

i=A,B

CiK(i, ε)H−1/2(Ψ(i))e−Ψ(i)/ε ≡ aCA + bCB,

where H(Ψ(i)) is the Hessian of Ψ at i [251]. Assuming without loss of generality that
min∂ΩA

ΨA(x) = min∂ΩA
ΨB(x) (this is the case, e.g., if detailed balance holds), (4.137)

implies that

a

b
= O(e−[Ψ(A)−Ψ(B)]/ε) ¿ 1. (4.143)

Hence CB ¿ CA so that

ψ1(x) ∼ CAP (x), (4.144)
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(see (4.124)). In particular we have ψ1 ∼ CA/2 on ∂ΩA. We normalize ψ1 below.
Next we determine φ1 in Rd. We consider two cases, K = 1 in (4.112) and K 6= 1. For

K 6= 1 the structure of the principal eigenfunction φ1(y) is a little more complicated than
that for K = 1. The substitution

φ1(y) = q(y)e−Ψ(y)/ε (4.145)

transforms (4.83) into

L̃εφ1(y) = O(ε), (4.146)

where L̃ε is an operator of the form (4.80) with a(x) replaced by

b̃i
ε(y) ≡ −


bi(y) +

n∑

j=1

2aij(y)
∂Ψ(y)
∂yj


 + O(ε). (4.147)

It is easy to see from (4.110) that in appropriate local variables near the critical points of
a(x), the dynamics (4.74) and

ẋ = ã(x) (4.148)

have the same equilibrium points with the same local stability properties. It follows that
A is an attractor for both (4.74) and (4.148), and similarly saddle points are preserved.
The domains of attraction ΩA and Ω̃A of (4.74) and (4.148), respectively, however may be
different. In the case ΩA = Ω̃A the structure of q(y) is the same as that of ψ1(y). This
happens, for example, if (4.74) has no equilibrium points on ∂ΩA (e.g., if ΩA is a limit
cycle in two-dimensions, see the analysis in [216, Section 4.2]), or if detailed balance holds.
If ΩA 6= Ω̃A, their intersection still contains a neighborhood ΩA of A. Thus the outer
expansion of q(y) is still CA in ΩA. From (4.145) it follows that φ1(y) is sharply peaked at
A, so that the averaging in (4.95) asymptotically gives

1
λ1(Ω)

= 〈τ(Ω)〉 ∼ 〈τ(A)〉. (4.149)

Since 〈τ(x)〉 is asymptotically independent of x in ΩA [251], the point A in (4.149) can be
replaced by any point x in ΩA outside a boundary layer near ∂ΩA.

We assume K = 1, then

φ1(x) = φ0(x)ψ1(x). (4.150)

Using the normalization condition (4.88)) with m = n = 1 we obtain from (4.142), (4.141),
and (4.150)

aC2
A + bC2

B = 1, (4.151)

and from (4.142) and (4.151)

CA =

√
b

a
, CB =

√
a

b
. (4.152)

From the structure of the eigenfunctions we can determine the quasi stationary density
in ΩA. For times such that

1
λ2

¿ t ¿ 1
λ1

(4.153)

115

Zeev Schuss  02/03/2010



the eigenfunction expansion (4.65) is given by

p(y, t |x) ∼ φ0(y)ψ0(x) + e−λ1tφ1(y)ψ1(x), (4.154)

where exp{−λ1t} = O(1). From (4.152) it follows that φ0(y) ¿ φ1(y), hence in ΩA

p(y, t |x) ∼ e−λ1tφ1(y)ψ1(x). (4.155)

However for times t À 1/λ1

p(y, t |x) ∼ φ0(y)ψ0(x). (4.156)

It follows that the rate of change of the population in ΩA satisfies

− Ṅ

N
∼ λ1 (4.157)

for times (4.153), however

− Ṅ

N
∼ 0 (4.158)

for times t À 1/λ1.
To calculate the flux F1 on ∂ΩA we note that the drift a(x) is tangent to ∂ΩA, so that

the contribution of the second term on the right hand side of (4.77) to F1 vanishes. It
follows that

∫

∂ΩA

J(φ1) · ν ds =
∫

∂ΩA

ψ1(x)J(φ0) · ν ds +
∫

∂ΩA

φ0(x)J(ψ1) · ν ds

=
CA

2

∫

∂ΩA

J(φ0) · ν ds + CA

∫

∂ΩA

φ0(x)ε
∑

i,j

aijψ1,j(x)νi ds

∼ CA

√
ε

2π

∫

∂ΩA

φ0

∑

i,j

aijχj(x)νi ds. (4.159)

Hence, by (4.106),

λ1 =
F1

N1
∼

√
ε

2π

∫

∂ΩA

φ0

∑

i,j

aijχjν
i ds

/ ∫

ΩA

φ0 dx ≡ F̃1

N0
. (4.160)

Thus λ1 is the total flux F̃1 on ∂ΩA, normalized by the equilibrium reactant population.
Equations (4.160) and (4.158) indicate that the (G)TST assumption that the equilibrium
flux is a good approximation to the quasi equilibrium flux is incorrect.

Next we consider the principal eigenvalue problem (4.83), (4.84) in domains of type II,
that is, we choose D = ΩA. If absorbing conditions are imposed on ∂ΩA, then λ0 = 0 is no
longer an eigenvalue, since no equilibrium density exists. The principal eigenfunction ψΩA

1 ,
which satisfies the boundary condition ψΩA

1 = 0 on ∂ΩA, is given by

ψΩA
1 = ψ1 − CA

2
, (4.161)
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because for x ∈ ∂ΩA (4.124) and (4.144) imply that ψ1 ∼ 1/2. Hence

φΩA
1 ∼ φ0

(
ψ1 − CA

2

)
, (4.162)

and consequently

λ1(ΩA) ∼ F1(ΩA)
N1(ΩA)

=
F̃1

1
2N0

= 2λ1. (4.163)

It follows that the absorption rate in ∂ΩA is twice the rate.
Finally, if Ω is a domain of type III, then asymptotically ψD

1 ∼ ψ1, and (4.163) holds
with λ1 replaced by λ1(Ω). The result (4.163) can be stated as

Theorem 4.9.1. If Ω is a domain of type III relative to (4.74), then

lim
ε→0

λ1(Ω)
λ1(ΩA)

=
1
2
. (4.164)

Thus to leading order in ε, λ1(Ω) is independent of Ω, as long as Ω is of type III. That
is, changes in the shape of Ω do not affect λ1(Ω) to leading order. In contrast, as Ω shrinks
to ΩA, λ1(Ω) abruptly doubles as Ω nears ΩA. As it shrinks yet further inside ΩA, the
quotient λ1(Ω)/λ1(ΩA) increases exponentially fast in 1/ε.

A generalization of Theorem 4.9.1 to the eigenvalue problem in Rd can be stated as

Theorem 4.9.2. If (4.74) is a bistable system and D = Rd, then (4.164) holds.

Theorems 4.9.1 and 4.9.2 show that in the limit of high barrier the definitions of rate
as an absorption rate of trajectories outside ΩA or as the rate of change of the reactant
population, or as twice the absorption rate on S, or as the stationary flux on an absorbing
boundary ∂Ω with a source in ΩA, all lead to the same result.

Example 4.1 (Kramers’ problem)

We illustrate the difference between our non equilibrium considerations and the equilib-
rium considerations of (G)TST with an example. In the one dimensional Kramers problem
[168] (4.72) is given in dimensionless phase space by

ẋ = y

ẏ = −γy − U ′(x) +
√

2γε ẇ, (4.165)

where U(x) is a bistable potential, γ is a dimensionless friction coefficient, and ε is dimen-
sionless temperature (normalized by the barrier height). We denote the minima of U(x) by
xA and xB, its local maximum by xC , and set ω2

A(B) ≡ U ′′(xA(B)), and ω2
C ≡ −U ′′(xC).

We assume U(xA) < U(xB) < U(xC). The domain of attraction ΩA of the attractor
A ≡ (xA, 0) in phase space is bounded by a separatrix ∂ΩA, which passes through the
saddle point C ≡ (xC , 0). The direction of ∂ΩA at C is that of the line y = −λ(x − xC),
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where λ = [γ +
√

γ2 + 4ω2
C ]/2. Obviously, φ0 = exp(−E/ε), where E = 1

2y2 + U(x). We
have locally near C

χ(x, y) =
ω2

Cx√
γ(λ− γ)

+

√
λ− γ

γ
y, (4.166)

hence, according to (4.106),

λ1 ∼ ωA

4πωC

(√
γ2 + 4ω2

C − γ

)
e−∆U/ε, (4.167)

where ∆U ≡ U(xC)− U(xA), which is Kramers’ result.
In contrast, according to (G)TST, the rate is the normalized flux on the line x = xC , y >

0,

κ =

∞∫

0

yφ0 dy

/ xC∫

−∞

∞∫

−∞
φ0 dx dy ∼ ωA

2π
e−∆U/ε, (4.168)

which is the TST result [99]. We note that if the outgoing flux on C is replaced by half
the flux, calculated on any curve emanating from C to ∞, the result (4.168) is unchanged.
Indeed, we have

J(φ0) = (yφ0,−γεφ0,y − [γy + U ′(x)]φ0) = (yφ0,−U ′(x)φ0), (4.169)

so that

F0 =

∞∫

C

J(φ0) · ν ds =

∞∫

C

φ0(y dy + U ′(x) ds) =

∞∫

EC

e−E/ε dE = ε e−∆U/ε, (4.170)

hence (4.168). We conclude that φ1 cannot be replaced by φ0 in the calculation of κ,
regardless of the choice of the (G)TS.

4.9.6 Accounting for re-crossings and the MFPT

A trajectory which starts in ΩA and having crossed ∂ΩA returns to ΩA prior to reaching
∂Ω is said to recross ∂ΩA. In the process of escaping from DA to ∂Ω a trajectory may
recross ∂ΩA a random number of times. In this section we describe the escape process,
calculate the mean number of times 〈n〉 that a trajectory crosses ∂ΩA before it reaches ∂Ω,
and show that for domains of type III the mean time 〈τ(Ω)〉 to reach ∂Ω (i.e., to escape) is
asymptotically twice the MFPT 〈τ(ΩA)〉. We begin with a

Lemma 4.9.1. Let Ω be a domain of type III relative to (4.74). Then the MFPT from
∂ΩA to ∂Ω, conditioned on reaching ∂Ω before ∂ΩA, and the MFPT from ∂ΩA to ∂ΩA,

conditioned on reaching ∂ΩA before ∂Ω, are at most O

(
1√
ε

)
as ε → 0.

Proof. We prove only the second part of the lemma, since the first part follows from similar
arguments. We denote by x∗(t) the process x(t) in D − Ω̄A, conditioned on the event
{τ(∂ΩA) < τ(Ω)}, that is, the trajectories of x∗(t) consist of those trajectories of (4.72)
which start in D − Ω̄A and reach ∂ΩA before ∂ΩA.
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The process x∗(t) is a diffusion process with noise matrix σ(x) and drift

b∗i(x) ≡ bi(x) + 2ε
n∑

j=1

aij(x)
∂ log P (x)

∂xj
, (i = 1, . . . , n) (4.171)

(see [141]), where P (x) is defined in (4.115) and is given by (4.124). We will show that the
drift b∗(x) is attracted to ΩA everywhere in D − Ω̄A and will estimate its component in
the direction ”toward” ΩA. To this end we change variables in the operator L∗ε in (4.80).
We introduce the stretched variable

ξ ≡ χ(x)√
ε

(4.172)

to measure distance from ∂ΩA. We assume that there exists a global set of variables
s ≡ (s2, . . . , sn) on the hypersurfaces ξ = const. In the variables (ξ, s) the operator L∗ε
takes the form

L∗εp = A(x)
∂2p

∂ξ2
+ B(x)

∂p

∂ξ
+

n∑

k=2

Ck(x)
∂p

∂sk
+ O(

√
ε), (4.173)

where

A(x) ≡
n∑

i,j=1

aij(x)
∂χ(x)
∂xi

∂χ(x)
∂xj

≥ 0,

√
ε B(x) ≡ ε

n∑

i,j=1

aij(x)
∂2χ(x)
∂xi∂xj

+
n∑

i=1

bi(x)
∂χ(x)
∂xi

,

and

Ck(x) ≡
n∑

i=1

bi(x)
∂sk

∂xi
. (4.174)

The O(
√

ε) term in (4.173) contains mixed derivatives with respect to ζ and sk and deriva-
tives with respect to sk. In view of (4.125) and (4.172),

B(x) = A(x)ξ. (4.175)

The function P (x) in (4.171), given by (4.124), can be written in terms of the variables
(ξ, s) as

P (ξ, s) =

√
1
2π

ξ∫

−∞
e−z2/2 dz. (4.176)

The components of a(x) in the ξ and sk directions are denoted by (bξ, bs2 , . . . , bsn), with

bξ(ξ, s) = A(x)ξ. (4.177)
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We define the domains Ωξ ≡ {ξ(x) > ξ} and note that if ξ1 < ξ2, then Ωξ1 ⊃ Ωξ2 . In
particular Ω0 = ΩA. In view of (4.177), the drift a(x) points into Ωξ for ξ > 0, outside Ωξ

for ξ < 0, and is tangent to ∂Ω0. Equation (4.171) gives the ξ component of b∗(x) as

b∗ξ = bξ + 2A(x)
∂P (ξ, s)

∂ξ
+ 2

n∑

k=2

Aξ,k(x)
∂P (ξ, s)

∂sk
, (4.178)

where Aξ,k(x) is the coefficient of ∂2P (ξ, s)/∂ξ∂sk in (4.173). In view of (4.176) we have
∂P (ξ, s)/∂sk = 0, so that

b∗ξ(ξ, s) = A(x)
(

ξ + 2
∂ log P (ξ, s)

∂ξ

)
= A(x)




ξ +
2e−ξ2/2

ξ∫

−∞
e−z2/2 dz




. (4.179)

We denote by n(x) the inner unit normal to the surface ξ = const. Next we show that the
drift b∗(x) in D − Ω̄A is attracted to ∂ΩA. On ∂ΩA we have ξ(x) = 0 and P (0, s) = 1/2.
It follows from (4.179) that b∗ξ(0, s) = 2

√
2/π A(x), or in the original variables

b∗(x) · n(x) = 2

√
2ε

π
A(x) > 0. (4.180)

We note that (4.180) holds in a boundary layer near ∂ΩA. Thus the drift b∗(x) on ∂ΩA

points into ΩA. As ξ →∞, that is, for x outside a small neighborhood of ∂ΩA in ΩA, the
numerator in (4.179) decays exponentially, whereas the denominator converges to

√
2π. It

follows that the second term in (4.171) decays exponentially so that the directions of b∗(x)
and a(x) coincide. Thus, by assumption, the drift b∗(x) is attracted by ∂ΩA in ΩA − Ω̄A.
Next we consider b∗(x) in D− Ω̄A, outside a boundary layer, that is, we consider ξ → −∞.
First we note that in this limit

P (ξ, s) ∼ −
√

1
2π

e−ξ2/2

ξ
. (4.181)

From (4.179) and (4.181) we obtain

b∗ξ(ξ, s) ∼ −A(x)ξ = −bξ(ξ, s), (4.182)

where the equality is a restatement of (4.172). It follows that b∗(x) points into Ωξ for all
ξ < 0 and is therefore attracted to ∂ΩA in D−Ω̄A. Thus b∗(x) is attracted to ΩA everywhere
in D−Ω̄A. We see from (4.180) and (4.182) that the component b∗ξ is asymptotically identical
to the component bξ inside ΩA and to −bξ outside ΩA, except for a boundary layer, where
it is positive and O(

√
ε). That is, the conditional process x∗(t) drifts toward ΩA across the

surfaces ∂Ωξ with normal speed which is either O(1) or O(
√

ε). Therefore the MFPT from
any point in D − Ω̄A to ∂ΩA, conditioned on {τ(∂ΩA) < τ(Ω)}, is at most O(1/

√
ε).

Theorem 4.9.3. If Ω is a domain of type III relative to (4.74), then

lim
ε→0

〈τ(Ω)〉
〈τ(ΩA)〉 = 2. (4.183)
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Proof. We partition the trajectories of (4.72), all of which eventually reach ∂ΩA, into two
sets,

S1,1 ≡ {trajectories which having reached ∂ΩA for the first time,

reach ∂ΩA before ∂Ω} (4.184)

and

S1,2 ≡ {trajectories which having reached ∂ΩA for the first time,

reach ∂Ω before ∂ΩA}. (4.185)

We denote by τ1 the first passage time to ∂ΩA, that is 〈τ1〉 = 〈τ(ΩA)〉. It follows from
Lemma 4.9.1 that

E[τ(Ω) |S1,2] = 〈τ(ΩA)〉+ O(1/
√

ε) as ε → 0. (4.186)

Also, as shown in Section 4.9.5,

P (S1,1) ∼ P (S1,2) ∼ 1
2
. (4.187)

Next we partition S1,1 into two sets,

S2,1 ≡ {trajectories in S1,1 which having reached ∂ΩA after the time τ1, reach

∂ΩA for the first time after τ1, and then reach ∂ΩA before ∂Ω} (4.188)

and

S2,2 ≡ {trajectories in S1,1 which having reached ∂ΩA after the time τ1, reach

∂ΩA for the first time after τ1, and then reach ∂Ω before ∂ΩA}. (4.189)

Then, as above,

P (S2,1) ∼ P (S2,2) ∼ 1
2
P (S1,1) ∼ 1

4
. (4.190)

We denote by τ2 the first time after τ1, that a trajectory in S1,1 returns to ∂ΩA after
reaching ∂ΩA. By Lemma 4.9.1, the MFPT from ∂ΩA to ∂ΩA for trajectories in S2,1, is
at most O(1/

√
ε). The MFPT from ∂ΩA to ∂ΩA is 〈τ(ΩA)〉, since it is independent of the

initial point of the trajectories in ΩA, outside an ε-neighborhood of ∂ΩA [250]. Thus by
Lemma 4.9.1,

E[τ2 − τ1 |S2,1] = 〈τ(ΩA)〉+ O(1/
√

ε). (4.191)

Again, from Lemma 4.9.1

E[τ(Ω) |S2,2] = 2[〈τ(ΩA)〉+ O(1/
√

ε)] as ε → 0. (4.192)

We proceed in a similar manner and obtain sets Sn,1, Sn,2, and times τn, such that

Sn,1 ≡ {trajectories in Sn−1,1 which having reached ∂ΩA after the time τn−1, reach

∂ΩA for the first time after τn−1, and then reach ∂ΩA before ∂Ω} (4.193)
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and

Sn,2 ≡ {trajectories in Sn−1,1 which having reached ∂ΩA after the time τn−1, reach

∂ΩA for the first time after τn−1, and then reach ∂Ω before ∂ΩA}. (4.194)

Then, as above,

P (Sn,1) ∼ P (Sn,2) ∼ 1
2
P (Sn−1,1) ∼ 1

2n
. (4.195)

We denote by τn the first time after τn−1 that a trajectory in Sn−1,1 returns to ∂ΩA after
reaching ∂ΩA. Again, by Lemma 4.9.1,

E[τn − τn−1 |Sn,1] = 〈τ(ΩA)〉+ O(1/
√

ε), (4.196)

and

E[τ(Ω) |Sn,2] = n[〈τ(ΩA)〉+ O(1/
√

ε)], as ε → 0. (4.197)

Since every trajectory reaches ∂Ω in finite time, having gone from ∂ΩA to ∂ΩA and back a
finite number of times, the union of the sets Sn,2, (n = 1, 2, . . . ) contains all trajectories.
In addition, the sets Sn,2 are mutually disjoint. It follows that

〈τ(Ω)〉 =
∞∑

n=1

E[τn+1 − τn |Sn,1]P (Sn,1) =
∞∑

n=1

n

2n
[〈τ(ΩA)〉+ O(1/

√
ε)]

= 2[〈τ(ΩA)〉+ O(1/
√

ε)]. (4.198)

Since [250]

〈τ(ΩA)〉 = O(eΨ̂(ΩA)/ε), (4.199)

the O(1/
√

ε) term in (4.198) is negligible relative to 〈τ(ΩA)〉, so that

〈τ(Ω)〉 ∼ 2〈τ(ΩA)〉, (4.200)

hence (4.164).

Next we discuss the notion of re-crossings and of the transmission coefficient k. If the
transition state region (TSR) is chosen as a neighborhood of S, whose width is independent
of ε, then, as is evident from the proof of Theorem 4.9.1, the probability that a trajectory
leaves the TSR in the direction of A or B is independent of the choice of the TSR. We
therefore choose the TSR to be the domain D − ΩA.

Definition 4.9.2. (Crossings) A trajectory x(t) of (4.72), which starts in ΩA is said to
cross the TSR n times, if x(t) ∈ Sn,2. If a trajectory crosses the TSR n times, it is said to
recross it n− 1 times.

Thus the number n of crossings of the TSR is a random variable. This definition is
asymptotically independent of ΩA and Ω (or ΩB).

Corollary 4.9.1. If Ω is a domain of type III relative to (4.74), then the mean number of
times a trajectory recrosses the TSR is 1.
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Proof. From the definition and from the proof of Theorem 4.9.1 it is obvious that

〈n〉 =
∞∑

n=1

n

2n
= 2, (4.201)

so that the mean number of re-crossings is 1.

If the definition of the stochastic separatrix is modified to replace the probability 1/2
in (4.116) with a probability p, independent of ε, then according to (4.124), the resulting
surface Sp will be in an ε-neighborhood of S. Then (4.164) is replaced by

τAB =
1
p
τASp . (4.202)

It can be easily shown that τASp/p is asymptotically independent of p. Thus the convenient
choice S = S1/2 does not limit the generality of the definition. As in the proof of Corollary
1, it can be shown that the mean number of crossings is 1/p.

Next, we comment on the definition of the transmission coefficient k and its use. As
mentioned in the Introduction, k was introduced to account for the recrossing trajectories
which are neglected in (G)TST. If in the bottleneck case the (G)TS6= S, but passes through
the saddle point, the probability of a return from the (G)TS strongly depends on the point
where a trajectory hits the (G)TS. This is the source of the difficulty in calculating 〈n〉
in (G)TST, and of the overestimates of κ in the (G)TST results [88], [90]. If however the
(G)TS is chosen as S, this difficulty is averted, as shown above.

4.9.7 Annotations

Noise induced escapes from an attractor of a dynamical system account for a variety of
physical phenomena, such as chemical reactions [168], [99], [27], nucleation [178], [111] the
behavior of Josephson junction devices [23], [24], loss of lock in code tracking loops [35],
[285], to name but a few.

The probability of return to the stochastic separatrix was studied in [195]. One calcu-
lation of the escape rate κ is based on the rate at which trajectories are absorbed in the
boundary ∂ΩA, or equivalently, κ = 1/〈τ(DA)〉, where 〈τ(ΩA)〉 is the mean first passage
time (MFPT) to ∂ΩA [93], [183]. If ΩA is replaced by the domain of attraction ΩA of A,
then for small ε, as noted in [183], [194], [253], trajectories arriving at ∂ΩA are equally likely
to return to ΩA prior to absorption in the boundary ∂Ω of a larger domain Ω containing
ΩA, as they are to be absorbed before they return to DA. Therefore the calculation of κ

was modified in [157], [216], [253], to κ = 1/2〈τ(ΩA)〉. Another calculation identifies κ as
the principal eigenvalue λ1 of the Fokker-Planck equation in the whole space [240] or in a
specified domain Ω [46]. Not all such calculations are consistent with one another or with
physically measured quantities. Thus for example, the normalized outgoing flux at the top
of a potential barrier may not represent the rate, since trajectories arriving at the top of
a potential barrier with outward pointing velocity may have a non-negligible probability of
returning to the well.

Transition state theory and its generalizations is presented in [227]). It is believed
therefore that due to (2), (G)TST overestimates the rate [294]. There have been different
attempts to modify the equilibrium density on the (G)TS to account for the non equilibrium
nature of activation [234], [208], [42]. Attempts to account for re-crossings of the (G)TS
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introduced a transmission factor k [80], and assumed a relation between k and the (mean)
number of crossings 〈n〉 [88], [209], [90]. Also the choice of the (G)TS in (2) has been the
subject of study and different authors proposed different surfaces, e.g., a surface through
the saddle point which is perpendicular to the equipotential surfaces [294], the configuration
of least probability [79], and a surface of minimal flux [146], [230], [231]. The discussion
in Section 4.9.2 clarifies some of the problems TST and GTST raise [42], [208], [234], by
studying them in the diffusion (Langevin, or Fokker-Planck) limit [168], [49]. The (G)TS
has chosen as a surface through the saddle point which is perpendicular to the equipotential
surfaces [294], the configuration of least probability [79], and a surface of minimal flux [146],
[230], [231]. A particle coupled to a bath of oscillators was studied in [170], [89], [302]. The
diffusion approximation to the Liouville equation is discussed in [47].

The modified (G)TST employed in [234] can be correct only if the chosen (G)TS is S,
and if the modification of the epdf defined by the integral equation of [234, (3.10] has the
appropriate boundary layer structure.

The MFPT for domains of type I was calculated in [93], [183], [250] with increasingly
more accurate results. Escape rates from domains of type II with drift derivable from a
potential were calculated in [37], [177], [178] by a generalization of Kramers’ theory to higher
dimensions. For general systems, not derivable from a potential, 〈τ(Ω)〉 was calculated in
[66], [64], [201], [202], [35]. For domains of type III neither 〈τ(Ω)〉 nor λ1(Ω) seem to have
been calculated, other than for the one dimensional Kramers problem [168].

Many interesting phenomena appear in multi-barrier problems, such as the appearance
of long non exponential transients, decay rates not determined by the height of the potential
barrier, etc., [34], [156], [158], [28]. Also in the limit of small damping S 6= ∂ΩA [157]. In
such cases the factor 1/2 in the relation between the normalized flux on the GTS and κ

should be used only if GTS=S.
Definitions of the stochastic separatrix were given in [183], [194], [253], [244], [245], [157].
The change of variables (4.172) was studied in detail in [66], [64], [65], [63]. The result

(4.181) is due to Feller [84]. The bottleneck case was discussed in [169]. The difficulty in
calculating 〈n〉 in (G)TST were discussed in [88], [90].
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