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Abstract

.

We examine the assumptions and conclusion of (generalized) transition state the-

ory (GTST) by considering the activation process in the diffusion (Langevin) limit.

We find the asymptotic structure of the leading eigenfunctions and eigenvalues of

the Fokker-Planck operator with a bistable potential, and hence the long time quasi

equilibrium behavior of the phase space probability density function (pdf). Defining

reactant and product as small neighborhoods ΩA and ΩB of the stable states A and B ,

respectively, we examine all possible recrossings of the transition state region (TSR)

and find their contribution to the mean first passage time (MFPT) ¿A B from ΩA to

ΩB . We show that the mean number of recrossings of the TSR is 1, hence ¿AB = 2¿AS,

where ¿A S is the MFPT from ΩA to the stochastic separatrix S, which we use as a

generalized transition state (GTS). The activation rate, that is, the rate at which
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trajectories arrive to ΩB from ΩA , is then shown to be given by · = 1=2¿A S, and in

the limit of small noise is independent of the choice of ΩA and ΩB . We conclude that

to obtain the correct rate in (G)TST (i) the quasi equilibrium density (qepdf) rather

than the equilibrium density (epdf) has to be used, (ii) the qepdf contains a boundary

layer near the stochastic separatrix, but otherwise the reactant qepdf≈epdf, and (iii)

all recrossings of the (G)TS are accounted for if (G)TS=S, but not otherwise. We

also consider the case of a single metastable state.



1. Introduction.

Transition state theory (TST) of activation and its generalizations (GTST) (see

e.g., [1]) are based on the following assumptions (1) an equilibrium probability dis-

tribution of phase space trajectories, (2) that a certain configuration space surface,

called the (generalized) transition state (G)TS, has the property that trajectories

that cross the (G)TS from reactant to product never recross it. Because of (1) half

the trajectories on the (G)TS cross in the product direction, and because of (2) they

end up as product. It follows therefore that (3) the reaction rate · is the outgoing

half of the equilibrium phase space probability flux on the (G)TS, normalized by

the reactant population. The underlying postulate which justifies the equilibrium

assumption is that after a sufficiently long time the quasi equilibrium density of the

reactant is sufficiently similar to the equilibrium density so that the outgoing half of

the quasi equilibrium flux on the (G)TS, normalized by the quasi equilibrium reactant

population, is well approximated by that of the equilibrium flux, normalized by the

equilibrium reactant population.

Both theoretical [2] and experimental results [3] show that · depends on the dissi-

pation, contrary to the TST prediction. The failure of TST to show this dependence

brought (1) and (2) into question. It has been widely recognized that both (1) and

(2) are unrealistic, because activation is a non equilibrium process and because re-
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crossings do occur. It is believed therefore that due to (2), (G)TST overestimates the

rate [4]. There have been different attempts to modify the equilibrium density on the

(G)TS to account for the non equilibrium nature of activation [5]-[7]. Another method

for circumventing the equilibrium assumption is Kramers’ method of stationary flux,

in which a source is placed at the bottom of the reactant well and an absorbing bar-

rier is imposed sufficiently far outside it. Then the steady state normalized outgoing

flux on the (G)TS is related to the rate. Attempts to account for recrossings of the

(G)TS introduced a transmission factor k [8], and assumed a relation between k and

the (mean) number of crossings 〈n〉 [3],[9],[10]. Also the choice of the (G)TS in (2)

has been the subject of study and different authors proposed different surfaces, e.g., a

surface through the saddle point which is perpendicular to the equipotential surfaces

[4], the configuration of least probability [11], and a surface of minimal flux [12]-[14].

It seems that no satisfactory theoretical explanation of the failure of the equi-

librium assumption has been offered, other than the incorrect predictions it implies.

The methods used to modify the epdf in order to obtain the qepdf are mostly based

on ad hoc assumptions about the behavior of the trajectories or of the pdf on the

chosen (G)TS [5]-[7]. Also the choice of the (G)TS and the treatment of recrossings

have not been adequately discussed in the literature.

In order to clarify some of these problems we consider them in the diffusion

(Langevin, or Fokker-Planck) limit [2], [15]. The underlying assumption in this study
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is that the behavior of the phase space trajectories of the diffusion process approx-

imates well that of the trajectories of a particle coupled to a bath of oscillators

[16]-[18]. Such a limit corresponds to the Fokker-Planck approximation of the Liou-

ville evolution equation for the probability density function (pdf) of the phase space

trajectories [19]. The Fokker-Planck equation describes the evolution of the the pdf

p(q;p; t) of the phase space trajectories of the particle, whereas the Liouville equa-

tion describes that of the joint pdf p(q;p;x;y; t) of the particle and the oscillators in

multidimensional phase space. Thus,

p(q;p; t) = lim
N→∞

∫ ∫
p(q;p;x;y; t)dxdy; (1.1)

where x = (x1; : : : ; xN ) and y = (y1; : : : ; yN ) are the phase space coordinates of

the bath oscillators. In this approximation the behavior of the random trajectories

governed by a (generalized) Langevin equation (GLE) [13], [20] approximates that of

the ensemble of trajectories of he particle, if the initial states of the bath oscillators

are chosen at random [17]. Therefore the study of the above mentioned problems in

the diffusion limit may provide some insight into (G)TST and its variants.

We take advantage of the eigenfunction expansion of the nonequilibrium pdf

p(q;p; t|q0;p0)

p(q;p; t|q0;p0) =
∞∑

n=0

Án(q;p)Ãn(q0;p0)e−¸ n t ; (1.2)

where Án and Ãn are the eigenfunctions of the Fokker-Planck operator (FPO) L and
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its adjoint L∗, respectively, corresponding to the eigenvalue ¸ n , and (q0;p0) is a

point in the reactant part of phase space. We denote by DA and @DA the domain of

attraction of the equilibrium state at the bottom of the reactant well and its boundary,

respectively.

First we examine the equilibrium assumption (1) and its consequences. Since

¸ 0 = 0 it follows from (1.2) that for times

1

¸ 2
� t �

1

¸ 1
(1.3)

the rate of change of the reactant population is ¸ 1, whereas for times

t �
1

¸ 1
(1.4)

it vanishes. It is shown in Section 4 that

Á1(q;p)Ã1(q0;p0)� Á0(q;p)Ã0(q0;p0) for (q;p) ∈ DA ; (1.5)

and Ã1(q0;p0); Ã1(q0;p0) are independent of (q0;p0 in DA . Thus for times (1.3)

exp{−¸ 1t} = O(1) so that the reactant pdf p(q;p; t|q0;p0) is given by

p(q;p; t|q0;p0) ∼ e−¸ 1t Á1(q;p)Ã1(q0;p0): (1.6)

It follows that the qepdf (1.6) of the reactant is represented by Á1 and not by the

equilibrium density Á0. We conclude that the root cause of error in TST is the

equilibrium assumption (1). There is however a certain degree of similarity between
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the equilibrium and the quasi equilibrium reactant densities. We show in Section 5

that

Á1(q;p) ∼ Á0(q;p)Ã1(q;p); (1.7)

in DA , where Ã1 is a boundary layer function which connects smoothly to a large

constant CA in the interior of DA and to 1

2
CA on @DA . This similarity explains the

need for introducing corrections to the equilibrium density [5]-[7]. From the boundary

layer structure (1.7) of Á1 we conclude that in order to obtain the qepdf (1.6) from

the epdf a modification has to be introduced on @DA and it must have the boundary

layer form Ã1.

Next we examine the problem of recrossings of the (G)TS. We show in Section 4

that in the limit of high barrier the stochastic separatrix S, the locus of points from

which trajectories are equally likely to become reactant and product, is asymptotically

@DA . From the definition of S we find that average number of times 〈n〉, that a

trajectory crosses a neighborhood of S before becoming a product is 2, so that k = 1.

The calculation of the rate from the normalized flux on the (G)TS is based on the

identity

¸ 1 =

∫
@D J(Á1) · º ds
∫

D Á1 dqdp
; (1.8)

where J(Á1) is the flux density corresponding to the quasi equilibrium density Á1,

D is the reactant region in phase space, and º is the unit outer normal to @D . If
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@D = S is chosen, then it follows from (1.8) and (1.7) that the outgoing half of the

quasi equilibrium flux on S, normalized by the reactant population, is the rate. We

conclude that if the (G)TS is chosen to be the stochastic separatrix, then the relation

(3) between the rate and the quasi equilibrium flux holds, but not otherwise.

Our conclusions about (G)TST can be summarized as follows. To obtain the

correct rate in (G)TST (i) the qepdf the reactant is obtained from the epdf by a

modification of the epdf, (ii) the modification has to have the form of a boundary

layer at the stochastic separatrix S, and (iii) all recrossings are accounted for if

(G)TS=S, but not otherwise. The structure of S in multidimensional phase space

is needed only near the saddle point. In the high barrier limit it can be determined

from the memory function in the GLE [21]. The determination of S in other cases

has been discussed in [22], [23].

We find the quasi stationary behavior of the solution of the Fokker-Planck equation

(FPE) by finding the asymptotic structure of the leading eigenvalues and eigenfunc-

tions in the limit of high barrier. We consider both bistable and metastable dynamics,

and discuss Kramers’ method of stationary flux. We find the average number of times

a trajectory crosses a neighborhood of an equiprobable surface Sp before becoming a

product (S1=2 ≡ S). Hence we find the relation between the flux on S and the rate.

In Section 2 we formulate the problem and discuss the concept of escape. In Section

3 we discuss the relation between the MFPT, the absorption rate, the escape rate,
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and the eigenvalues of the FPO in bounded and unbounded domains. In Section 4

we find S and the asymptotic structure of the leading eigenfunctions. In Section 5

we consider the problem of recrossings and of their contribution to the escape rate.

Finally, in section 6 we summarize the results and the conclusions of this paper.

2. Formulation.

We consider the system of n Itô stochastic differential equations

ẋ = b(x) +
√
2² ¾(x) ẇ; (2.1)

where b(x) = (b1(x); : : : ; bn(x)) is a smooth vector field in Rn , ẇ is a vector of k

independent standard Gaussian white noises (k ≤ n), and ¾(x) is an n × k noise

matrix. The parameter ² is a measure of the noise intensity and is assumed to be

small relative to other parameters of the problem such as the size of b(x) and ¾(x),

the sizes of the domains in which (2.1) is considered, and so on. The diffusion matrix

a(y) ≡ {ai j (y)} is given in terms of the noise matrix {¾i j (y)} as

a(y) = ¾(y)¾T(y): (2.2)

The noiseless dynamics

ẋ = b(x) (2.3)

is assumed to have a finite attractor A with domain of attraction DA whose boundary
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@DA is a repeller (see fig.1). We assume that all domains mentioned below have

boundaries with a piecewise continuous normal. When (2.1) is used to model an

activated process by the Langevin dynamics of a particle in a potential well, activation

occurs when a trajectory leaves a neighborhood ΩA of A and does not return for a

long period of time. Thus the activation rate · is the escape rate from ΩA . To be

meaningful such a definition should be independent of the choice of ΩA , of the location

of @D , and of the noise strength ², provided ² is small.

As noted in the Introduction, several definitions have been given for the GTS.

Calculations of · from the rate at which trajectories arrive at boundaries of various

domains, have been used. One such calculation of · is based on the rate at which

trajectories are absorbed in the boundary @ΩA , or equivalently, · = 1=〈¿(ΩA )〉, where

〈¿(ΩA )〉 is the mean first passage time (MFPT) to @ΩA [24], [25]. If ΩA is replaced by

the domain of attraction DA of A, then for small ², as noted in [26]-[28] trajectories

arriving at @DA are equally likely to return to ΩA prior to absorption in the boundary

@D of a larger domain D containing DA , as they are to be absorbed before they

return to ΩA . Therefore the calculation of · was modified in [22], [26], [29], to

· = 1=2〈¿(DA )〉. Another calculation identifies · as the principal eigenvalue ¸ 1

of the Fokker-Planck equation in the whole space [30] or in a specified domain D

[31]. Not all such calculations are consistent with one another or with physically

measured quantities. Thus for example, the normalized outgoing flux at the top of a
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potential barrier may not represent the rate, since trajectories arriving at the top of a

potential barrier with outward pointing velocity may have a non-negligible probability

of returning to the well.

The definition of an escape rate · from ΩA as the absorption rate · abs(D ) in @D

requires the calculation of the MFPT 〈¿(D )〉 from ΩA to @D , or equivalently, of the

principal eigenvalue ¸ 1(D ) of the Fokker-Planck operator with absorbing boundary

conditions on @D . The calculation of 〈¿(D )〉 and of ¸ 1(D ) for multidimensional

systems in domains D containing an attractor has a long history. Several types of

domains have been considered, which we now classify. A domain D is classified as

type I if D ⊂ DA and the drift enters D . In this case @D is a noncharacteristic

boundary. If D = DA , we classify it as type II. Here the system does not drift into

DA , @D is a characteristic boundary, and is an invariant manifold for the drift. If

D ⊃ DA and the drift in D − D̄A is attracted by @D , we classify D as type III (see

the exact definition below).

The MFPT for domains of type I was calculated in [24], [25], [32] with increas-

ingly more accurate results. Escape rates from domains of type II with drift derivable

from a potential were calculated in [33]-[35] by a generalization of Kramers’ theory

to higher dimensions. For general systems, not derivable from a potential, 〈¿(D )〉

was calculated in [36]-[39]. For domains of type III neither 〈¿(D )〉 nor ¸ 1(D ) seem to

have been calculated, other than for the one dimensional Kramers problem [2].
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Definition. A domain D is of type III relative to (2.3) if

(i) D ⊃ D̄A ,

(ii)

±1 < dist(x; @D ) < ±2 for all x ∈ @DA ; (2.4)

and ±1; ±2 are positive constants, independent of ², and

(iii) trajectories of (2.3) which start in D − D̄A reach @D in finite time.

An often encountered example of a domain of type III is the following. Let (2.3)

be a bistable system with a finite attractor A and a second, more stable attractor B

(possibly at infinity). If ΩB is a neighborhood of B , inside the domain of attraction

of B , then D ≡ Rn − Ω̄B is a domain of type III relative to (2.3). This example corre-

sponds, e.g., to a model of a chemical reaction. The noisy dynamics (2.1) models the

motion of an atom bound by a stable chemical bond, corresponding to the attractor

A. When the bond is broken due to the noise (e.g., to molecular collisions), a new

more stable bond B is formed [2]. Another example of a domain of type III relative

to (2.3) corresponds to the dynamics (2.1) with a single metastable state. In this case

D contains DA and trajectories which start in D − D̄A are assumed to exit D in finite

time and never return. This corresponds, e.g., to dissociation, where the metastable

state A models the undissociated state of a molecule [40].
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Because of the weak fluctuations, the trajectories of the system tend to stay in a

small neighborhood ΩA of A, with rare escapes to ΩB or to an absorbing boundary @D ,

from which they do not return. In the case of bistability ΩB usually corresponds to a

more stable state of the system, so that the time spent in ΩB is usually much longer

than in ΩA . Thus we may assume that trajectories arriving in ΩB are absorbed there

and never return to A. Therefore the bistable case can also be treated as metastable

with absorption in @D .

The transition probability density function (tpdf) of trajectories of (2.1), p(y; t|x) ≡

Pr{x(t) = y|x(0) = x}, satisfies the forward Kolmogorov (Fokker-Planck) equation

[41]

@p
@t

= L²p≡ −∇·J; (2.5)

where the probability current density J(x;y; t) is defined as

J i (x;y; t) ≡ −²
n∑

j =1

@
@yj

[
ai j (y)p(y; t|x)

]
+ bi (y)p(y; t|x): (2.6)

The initial condition for (2.5) is given by

p(y; 0|x) = ±(x− y): (2.7)

If trajectories of (2.1) are absorbed on the boundary @D of a given domain D , the

tpdf satisfies the boundary condition

p(y; t|x) = 0 for x ∈ D; y ∈ @D: (2.8)
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It also satisfies the backward Kolmogorov equation

@p
@t

= L∗

² p≡ ²
n∑

i ;j =1

ai j (x)
@2p

@xi @xj
+

n∑

i=1

bi (x)
@p
@xi

for x ∈ D; (2.9)

and

p = 0 for x ∈ @D; y ∈ D: (2.10)

We assume that the tpdf p(y; t|x) can be represented by the eigenfunction expansion

p(y; t|x) =
∞∑

n=1

Ãn(x)Án(y)e−¸ n (D )t ; (2.11)

where

L²Án(y) = −¸ n(D )Án(y) for y ∈ D; (2.12)

Án(y) = 0 for y ∈ @D; (2.13)

and

L∗² Ãn(x) = −¸ n(D )Ãn(x) for x ∈ D; (2.14)

Ãn(x) = 0 for x ∈ @D: (2.15)

This is the case for example, if D is a bounded domain, however we do not restrict our

considerations to this case. The eigenvalues are ordered as 0 < ¸ 1(D ) ≤ �e ¸ 2(D ) ≤

�e ¸ 3(D ) ≤ : : :, with ¸ 1(D ) real [42]. We assume that the eigenfunctions are normal-

ized so that
∫

D
Á1(y) dy = 1; (2.16)
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and are biorthogonal
∫

D
Ám(x)Ãn(x)dx = ±mn : (2.17)

In Section 4 we calculate the probability P(x) of return from a point x to ΩA , and

in Section 6 we identify it asymptotically as the principal eigenfunction Ã1(x). In

Section 5 we calculate the principal eigenvalue ¸ 1(D ) = · = 1=〈¿(D )〉 for domains of

type III, and prove

lim
²→0

¸ 1(D )

¸ 1(DA )
=

1

2
: (2.18)

3. The MFPT, the absorption rate, and the principal eigenvalue

Let D be a bounded domain which contains A. Then, under some mild positivity

assumptions about a(x), the trajectories of the noisy system (2.1) which start in D ,

cross @D in finite (random) time ¿ with probability 1. Moreover, the MFPT

〈¿(x)〉 ≡ E(¿|x(0) = x) (3.1)

from a point x in D to @D is finite and is independent of the behavior of the process

at the boundary. These results may hold as well even if D is unbounded. Thus we

may assume that @D is an absorbing boundary, so that any trajectory of (2.1) that
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reaches @D is instantaneously terminated. The MFPT is given by [32]

〈¿(x)〉 =
∫
∞

0

∫
D

p(y; t|x)dy dt; (3.2)

or by

〈¿(x)〉 =
∫

D
p(x;y) dy; (3.3)

where p(x;y) is defined by

p(x;y) ≡
∫
∞

0

p(y; t|x) dt: (3.4)

¿From the Fokker-Planck equation (2.5) and the initial condition (2.7) we find that

L² p(x;y) = −±(x− y): (3.5)

If ±(x− y) is replaced by f (y) in the initial condition (2.7), the pdf p(x;y) is inde-

pendent of x, that is, p(x;y) = p(y), and satisfies the equation

L² p(y) = −f (y): (3.6)

In particular, if we choose f (y) = Á1(y), then p(y) = Á1(y)=̧ 1(D) and (3.3) implies

that

〈¿(D )〉 ≡
∫

D
Á1(x)〈¿(x)〉 dx =

1

¸ 1(D )
: (3.7)

The structure of the functions p(x;y) and p(y) has been discussed in [29]. Equation

(3.5) with absorbing boundary conditions on @D represents Kramers’ method of sta-

tionary flux, in which a source is placed inside D and an absorbing barrier is imposed
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outside DA . Equation (3.7) relates the solution of (3.5) with the escape rate. The

relation of the out going flux on the (G)TS, as obtained from (3.5), and the rate is

discussed in Sections 4 and 6.

Next we discuss the relationships between the absorption rate · abs(D ) in @D , the

MFPT 〈¿(D )〉, and the principal eigenvalue ¸ 1(D ). The absorption rate constant

· abs(D ) represents the stationary relative rate of change of the population N (x; t) in

D , given the initial condition (2.7), where

N (x; t) ≡
∫

D
p(y; t|x)dy: (3.8)

The Fokker-Planck equation (2.5) implies that

@N (x; t)
@t

=
∫

D

@p(y; t|x)
@t

dy = −
∫

D
∇y · J(x;y; t)dy

= −

∫
@D

J(x;y; t) · º (y) dSy ≡ −F (x; t): (3.9)

Recalling that J is the probability current density, we see that the rate of change of

the population in D is the negative of the total probability flux on @D . It follows

that the relative rate of change is given by

· abs(x; t) ≡ −

@N (x; t)=@t
N (x; t)

=
F (x; t)
N (x; t)

: (3.10)

Using the eigenfunction expansion (2.11) we obtain

· abs(x; t) =
∑

n ¸ n(D )psin(x)
∫

Án(y)dye−¸ n (D )t

∑
n Ãn(x)

∫
Án(y)dye−¸ n (D )t : (3.11)
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Obviously the relative rate of change (3.11) depends on both x and t, however its limit

as t → ∞ is constant. Thus the concept of a rate constant for (2.1) is meaningful

only in the limit t → ∞, since the relative rate of change becomes constant only

after a sufficiently long time. Therefore the natural definition of the absorption rate

constant · abs(D ) is given as

· abs(D ) ≡ lim
t→∞

· abs(x; t); (3.12)

which, in view of (3.11) is

· abs(D ) = ¸ 1(D ): (3.13)

The corresponding notion of the MFPT must be defined in a manner consistent

with the definition (3.13) of rate as a long time limit. After a long time t0 has elapsed,

a large proportion of the trajectories have already been absorbed. Thus we have to

consider only those trajectories that survived (were not absorbed) in @D at time t0.

The probability density of finding a trajectory at a particular point y, among the

surviving trajectories in D at time t0, is the conditional density

pC (y; t0|x) ≡
p(y; t0|x)

∫
D p(y; t0|x)dy

: (3.14)

Using the eigenfunction expansion (2.11) and the normalization (2.16), we obtain

pC (y; t0|x) =
∑

n Ãn(x)Án(y)e−¸ n (D )t0

∑
n Ãn(x)

∫
D Án(y) dye−¸ n (D )t0

→ Á1(y) as t0 →∞: (3.15)

Thus the conditional density pC(y; t) of trajectories at time t+t0, which were observed

at time t0 � 1 in D , is the solution of the Fokker-Planck equation (2.5) with the
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absorbing boundary condition (2.8), and the initial condition

pC (y; 0) = Á1(y): (3.16)

Thus, for times 1=¸ 2 � t � 1=̧ 1 the qepdf is given by

pC(y; t) = Á1(y)e−¸ 1(D )t : (3.17)

Therefore the MFPT for a trajectory, observed at a point y at a sufficiently large

time t0, must be calculated by (3.2), with the conditional density pC(y; t) of surviving

trajectories replacing the tpdf p(y; t|x). Now the concept of first passage time, which

is consistent with the definition (3.12) of · abs(D ), is the first passage time for the

process (2.1) which starts with the initial density (3.16). The long time MFPT is

therefore given by

〈¿(D )〉 =
∫
∞

0

∫
D

pC (y; t) dy dt =
1

¸ 1(D )
: (3.18)

We see that, according to this definition, both 〈¿(D )〉 and · abs(D) are independent

of initial conditions. Although pC(y; 0) is not a density of the process x(t), defined

by (2.1), it represents the shape of the long time tpdf with the decay e−· abs(D )t .

Now we consider the FPE (2.5) in Rn . We assume that (2.3) is a bistable system

with attractors A and B , whose domains of attraction, DA and DB , are separated by

@DA . We denote by Ái ; Ãi , and ¸ i the corresponding eigenfunctions and eigenvalues.

We have ¸ 0 = 0 and Á0 is the equilibrium pdf. We write (2.12) as

−∇ · J(Án) = −¸ nÁn ; (3.19)
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where J(Án) is defined in (2.6) with p replaced by Án(y). Then for any domain

Ω ⊂ Rn

¸ n =
Fn

Nn
; (3.20)

where

Fn ≡

∫
@Ω
J(Án) · º ds (3.21)

and

Nn ≡
∫
Ω

Án dy: (3.22)

In particular we choose Ω = DA .

Next we describe the structure of the MFPT and its dependence on D . For

domains of type I it was shown and II [25], [32], [43] that

〈¿(D)〉 = O(²1=2eΨ̂(D )=²); (3.23)

where Ψ̂(D ) is a positive constant which depends on D and on the coefficients ai j (x)

and bi (x) in D . Explicit expressions for Ψ̂(D ) were given in [24], [25], [32] for various

domains in terms of an eikonal function Ψ(x), which is a solution of the Hamilton-

Jacobi type equation

n∑
i ;j =1

ai j (x)
@Ψ(x)

@xi

@Ψ(x)
@xj

+
n∑

i=1

bi (x)
@Ψ(x)

@xi
= 0: (3.24)
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The constant Ψ̂(D ) is given by

Ψ̂(D ) = min
x∈@D

Ψ(x): (3.25)

The function Ψ(x) is defined by the assumption that the principal eigenfunction

Á0 has the WKB structure in D

Á0(y) = K (y; ²)e−Ψ(y)=² ; (3.26)

where K (y; ²) is a regular function of ². The structure of Ψ(x) for bistable systems

(2.3) is more complicated. If we assume that (2.3) has attractors A and B , with

domains of attraction DA and DB , respectively, then a global smooth solution to

(3.24) in Rn may not exist [44]. However locally, in DA and DB , (3.26) holds. In

the case of detailed balance [41] (3.26) holds in Rn with K (y; ²) = 1 and Ψ(y) is the

energy, so that Á0(y) is the Boltzmann equilibrium density.

The function Ψ(x) decreases on the trajectories of (2.3) in DA , so that Ψ̂(D1) ≥

Ψ̂(D2) if D1 and D2 are of type I and D1 ⊃ D2, hence by (3.23)

〈¿(D1)〉

〈¿(D2)〉
= O(e[Ψ̂(D 1)−Ψ̂(D 2)]=² ): (3.27)

If in addition ±1 ≤ dist(x; @D2) ≤ ±2 for all x ∈ @D1, where ±1 and ±2 are positive

numbers independent of ², then Ψ̂(D1) > Ψ̂(D2), so that

lim
²→0

〈¿(D2)〉

〈¿(D1)〉
= 0: (3.28)
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This however, is not the case for domains of type III, since for such domains the limit

(2.18) implies that 〈¿(D )〉 is to leading order independent of D .

We now discuss the relation between absorption and escape. We distinguish be-

tween two types of escape. Let ΩA be a neighborhood of A in DA . One type of escape

is the event of reaching @ΩA for the first time, regardless of the subsequent behavior

of the trajectory. This type of escape describes several physical systems in which

trajectories are terminated at @ΩA [25], [45]. The rate of this type of escape is simply

the absorption rate in @ΩA . It involves neither multistability nor separation of time

scales. A second type of escape involves multistability and separation of time scales.

According to (3.23) trajectories spend time O(exp(Ψ̂(ΩA )=²) in ΩA before reaching

@ΩA (necessarily crossing it several times in rapid succession). If a trajectory reaches

a distance O(1) beyond @ΩA in Rn − Ω̄A , it either returns to ΩA or is absorbed in @D

without returning to ΩA . In the first instance, if the time of return is short relative to

〈¿(ΩA )〉, the trajectory is not considered to have escaped, whereas in the latter it is.

This distinction means that relatively short departures do not represent transitions

to a new physical state, e.g., going from reactant to product in a chemical reaction,

whereas long departures do represent such transitions. The rate at which long depar-

tures occur can be defined in terms of an absorption rate in @D , where D is a domain

of type III.
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4. The probability of returns, Ã1, Á1, and ¸ 1

In this section we consider the probability P(x) of return from a point x to ΩA ,

prior to absorption in @D , where D is a domain of type III, and its relation to

the eigenfunctions Ã1 and Á1 in Rn and in domains of type II and type III. First

we summarize the results of [27] for drifts which are continuous across @DA (e.g.,

for smooth potential barriers), and then show that similar results hold for drifts

whose normal component suffers a discontinuity across @DA (e.g., for sharp potential

barriers).

We denote by ¿(@ΩA ) (¿(@D )) the first passage time to @ΩA (@D ). The function

P(x) ≡ Pr{¿(@ΩA ) < ¿(@D )|x²(0) = x} (4.1)

is the probability that a trajectory starting at x will reach @ΩA before @D . The

stochastic separatrix S [22], [26]-[28], [46], [47] is defined as the locus of points x such

that

P(x) = 1=2: (4.2)

The probability P(x) is the solution of

L∗

² P(x) = 0 in D − Ω̄A (4.3)

with the boundary conditions

P(x) = 1 for x ∈ @ΩA (4.4)
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and

P(x) = 0 for x ∈ @D: (4.5)

(see e.g. [32]). In Section 6 we show that asymptotically (4.3)-(4.5) also define the

principal eigenfunction Ã1(x) of L ∗

² .

The outer expansion of P(x) in D is found by assuming the regular expansion

P(x) = P0(x) + o(1) as ² → 0: (4.6)

In view of (3.23) the leading term P 0(x) must satisfy the reduced equation

n∑

i=1

bi (x)
@P0(x)

@xi
= 0; (4.7)

or equivalently,

dP 0(x(t))
dt

= 0; (4.8)

where x(t) is any trajectory of (2.3). It follows that P0(x) = const: on every trajec-

tory. By assumption, all trajectories outside DA reach @D in finite time, so that the

boundary condition (4.5) implies that

P0(x) = 0 for x ∈ D − D̄A : (4.9)

Similarly, all trajectories in DA reach @ΩA in finite time, hence by (4.4)

P0(x) = 1 for x ∈ DA : (4.10)
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For continuous drifts the discontinuity in the outer solution is bridged by the

uniform expansion [27], [28], given by

P(x) =

√
1

2¼

∫ Â(x)=
√

²

−∞
e−z2=2 dz: (4.11)

The function Â(x) satisfies (see (4.3))

n∑

i=1

bi (x)
@Â(x)

@xi
=

n∑

i ;j =1

ai j (x)

(
Â(x)

@Â(x)
@xi

@Â(x)
@xj

− ²
@2Â(x)
@xi @xj

)
: (4.12)

The boundary conditions (4.4) and (4.5) imply that

Â(x) > 0 for x ∈ DA − Ω̄A , outside a boundary layer (4.13)

and

Â(x) < 0 for x ∈ D − D̄A , outside a boundary layer: (4.14)

The boundary conditions (4.4) and (4.5) are satisfied by (4.11) asymptotically. In view

of (4.2) S is defined by Â(x) = 0. Now (4.13) and (4.14) imply that lim²→0 S = @DA

(see the discussion of this argument in Section 6). Expanding Â(x) = Â0(x)+ o(1) as

² → 0 we obtain that on a trajectory x = x(t) of (2.3).

d
dt

Â0(x) =
n∑

i=1

bi (x)
@Â0(x)

@xi
=

n∑

i ;j =1

ai j (x)Â0(x)
@Â0(x)

@xi

@Â0(x)

@xj
: (4.15)

In view of (4.13), (4.14), and (4.15), Â0(x) increases on the trajectories of (2.3) out-

side DA and decreases inside DA .
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Next we consider drifts b(x) whose normal component bn(x) suffers a discontinuity

across @DA . That is, we assume that ± lim½→0± bn(x) > 0. This is the case, e.g., if

the potential barrier is sharp (see fig.1). The solution of (4.3) is still given by (4.11),

however the local behavior of Â(x) near @DA is not as given in [27]. The boundary

layer to bridge the discontinuity of the outer solution across @DA can be found in this

case by introducing the local coordinates (½; s) near @DA , where ½(x) ≡ dist(x; @DA )

and s(x) = (s2; : : : ; sn) are local coordinates in @DA . Then we stretch ½by setting

³ ≡
½
²
; (4.16)

Q(³ ; s) ≡ P(x), and expanding

Q(³ ; s) ∼ Q0(³ ; s) + ²Q1(³ ; s) + : : : : (4.17)

Now (4.3) is to leading order

a(s)
@2Q0(³ ; s)

@³ 2
+ b±n (s)

@Q0(³ ; s)
@³

= 0 for ±³ > 0; (4.18)

where

a(s) ≡ lim
½→0

n∑

i ;j =1

ai j (x)
@½(x)
@xi

@½(x)
@xj

(4.19)

and

b±n (s) ≡ lim
½→0±

b(x) · ∇½(x): (4.20)
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Since @DA is a repeller we have ±b±n (s) > 0. The matching conditions are

lim
½→∞

Q0(½; s) = 1; lim
½→−∞

Q0(½; s) = 0: (4.21)

The solution is given by

Q0(³ ; s) = 1 +
b−n (s)

b+n (s)− b−n (s)
exp{−b+n (s)

a(s)
³ } if ³ > 0 (4.22)

and

Q0(³ ; s) =
b+n (s)

b+n (s)− b−n (s)
exp{−b−n (s)

a(s)
³ } if ³ < 0: (4.23)

The stochastic separatrix S, given to leading order by Q0(³ ; s) = 1=2, is found to be

½(s) =
²a(s)
b±n (s)

log
±2b±n (s)

b+n (s)− b−n (s)
if

±2b±n (s)
b+n (s)− b−n (s)

> 1: (4.24)

Thus lim²→0 S = {½(s) = 0} = @DA in this case as well. Therefore (4.11) still holds,

but with the local behavior (4.22) and (4.23) rather than that in the continuous case

(see [27]).

Next we consider the eigenvalue problems (2.12) and (2.14) in Rn and in domains

of type II and III. We we begin with a bistable system (2.3) in Rn , with attractors

A and B . The domains of attraction DA and DB are separated by @DA . We denote

by ΨA(B )(y) the solution of (3.24) in DA(B ) and set ∆ΨA(B ) ≡ min@D A ΨA(B )(y) −

ΨA(B )(A(B)). In the case of bistable Langevin dynamics ∆ΨA(B ) is the barrier height

of the A(B ) well. If

∆ΨA < ∆ΨB ; (4.25)
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then

¸ 1 = O(e−∆ΨA =²): (4.26)

It follows that (2.14) with n = 1 is asymptotically the same as (4.3).

To find the expansion of Ã1 in Rn we begin with the outer expansion

Ã1 ∼ Ã0
1 + ²Ã1

1 + : : : (4.27)

and find that

Ã0
1 ∼ CA(B ) in DA(B ); (4.28)

where CA and CB are constants [32]. The boundary layer connecting the constants

across @DA is similar to P(x) in (4.11),

Ã1(y) ∼ CA − CB√
2¼

∫ Â(y)=
√

²

0
e−s2=2 ds+

CA + CB

2
: (4.29)

The orthogonality condition (2.17) and the WKB assumption (3.26) give

0 =
∫
Rn

Á0(x)Ã1(x)dx =
∫
Rn

Ã1(x)K (x; ²)e−Ψ(x)=²

∼ (2¼²)n=2
∑

i=A;B

Ci K (i ; ²)H−1=2(Ψ(i))e−Ψ(i )=²
≡ aCA + bCB ; (4.30)

where H(Ψ(i)) is the Hessian of Ψ at i [32]. Assuming without loss of generality

that min@D A ΨA (x) = min@D A ΨB (x) (this is the case, e.g., if detailed balance holds),

(4.25) implies that

a
b
= O(e−[Ψ(A)−Ψ(B )]=²)� 1: (4.31)
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Hence CB � CA so that

Ã1(x) ∼ CA P(x); (4.32)

(see (4.11)). In particular we have Ã1 ∼ CA =2 on @DA . We normalize Ã1 below.

Next we determine Á1 in Rn . We consider two cases, K = 1 in (3.26) and K �=

1. For K �= 1 the structure of the principal eigenfunction Á1(y) is a little more

complicated than that for K = 1. The substitution

Á1(y) = q(y)e−Ψ(y)=² (4.33)

transforms (2.12) into

L̃ ²Á1(y) = O(²); (4.34)

where L̃ ² is an operator of the form (2.9) with b(x) replaced by

b̃i
²(y) ≡ −


bi (y) +

n∑
j =1

2ai j (y)
@Ψ(y)

@yj


+ O(²): (4.35)

It is easy to see from (3.24) that in appropriate local variables near the critical points

of b(x), the dynamics (2.3) and

ẋ = b̃(x) (4.36)

have the same equilibrium points with the same local stability properties. It follows

that A is an attractor for both (2.3) and (4.36), and similarly saddle points are

preserved. The domains of attraction DA and D̃A of (2.3) and (4.36), respectively,
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however may be different. In the case DA = D̃A the structure of q(y) is the same as

that of Ã1(y). This happens, for example, if (2.3) has no equilibrium points on @DA

(e.g., if DA is a limit cycle in two-dimensions, see the analysis in [29, Section 4.2]), or

if detailed balance holds. If DA �= D̃A , their intersection still contains a neighborhood

ΩA of A. Thus the outer expansion of q(y) is still CA in ΩA . From (4.33) it follows

that Á1(y) is sharply peaked at A, so that the averaging in (3.7) asymptotically gives

1

¸ 1(D )
= 〈¿(D )〉 ∼ 〈¿(A)〉: (4.37)

Since 〈¿(x)〉 is asymptotically independent of x in DA [32], the point A in (4.37) can

be replaced by any point x in DA outside a boundary layer near @DA .

We assume K = 1, then [29]

Á1(x) = Á0(x)Ã1(x): (4.38)

Using the normalization condition (2.17)) with m = n = 1 we obtain from (4.30),

(4.29), and (4.38)

aC2

A + bC2

B = 1; (4.39)

and from (4.30) and (4.39)

CA =

√
b
a

; CB =

√
a
b

: (4.40)

¿From the structure of the eigenfunctions we can determine the quasi stationary
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density in DA . For times such that

1

¸ 2
� t �

1

¸ 1
(4.41)

the eigenfunction expansion (1.2) is given by

p(y; t|x) ∼ Á0(y)Ã0(x) + e−¸ 1t Á1(y)Ã1(x); (4.42)

where exp{−¸ 1t} = O(1). ¿From (4.40) it follows that Á0(y)� Á1(y), hence in DA

p(y; t|x) ∼ e−¸ 1t Á1(y)Ã1(x): (4.43)

However for times t � 1=̧ 1

p(y; t|x) ∼ Á0(y)Ã0(x): (4.44)

It follows that the rate of change of the population in DA satisfies

−
Ṅ
N
∼ ¸ 1 (4.45)

for times (4.41), however

−
Ṅ
N
∼ 0 (4.46)

for times t � 1=¸ 1.

To calculate the flux F1 on @DA we note that the drift b(x) is tangent to @DA ,

so that the contribution of the second term on the right hand side of (2.6) to F1
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vanishes. It follows that

∫
@D A

J(Á1) · º ds =
∫

@D A

Ã1(x)J(Á0) · º ds+
∫

@D A

Á0(x)J(Ã1) · º ds

=
CA

2

∫
@D A

J(Á0) · º ds+ CA

∫
@D A

Á0(x)²
∑
i ;j

ai j Ã1;j (x)º i ds

∼ CA

√
²
2¼

∫
@D A

Á0

∑
i ;j

ai j Âj (x)º i ds: (4.47)

Hence, by (3.20),

¸ 1 =
F1

N1

∼

√
²
2¼

∫
@D A

Á0

∑
i ;j

ai j Âj º i ds
/∫

D A

Á0 dx ≡
F̃1

N0

: (4.48)

Thus ¸ 1 is the total flux F̃1 on @DA , normalized by the equilibrium reactant popu-

lation. Equations (4.48) and (4.46) indicate that the (G)TST assumption that the

equilibrium flux is a good approximation to the quasi equilibrium flux is incorrect.

Next we consider the principal eigenvalue problem (2.12), (2.13) in domains of type

II, that is, we choose D = DA . If absorbing conditions are imposed on @DA , then

¸ 0 = 0 is no longer an eigenvalue, since no equilibrium density exists. The principal

eigenfunction ÃD A
1 , which satisfies the boundary condition ÃD A

1 = 0 on @DA , is given

by

ÃD A
1 = Ã1 −

CA

2
; (4.49)

because for x ∈ @DA (4.11) and (4.32) imply that Ã1 ∼ 1=2. Hence

ÁD A
1 ∼ Á0(Ã1 −

CA

2
); (4.50)
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and consequently

¸ 1(DA ) ∼
F1(DA )

N1(DA )
=

F̃1

1

2
N0

= 2¸ 1: (4.51)

It follows that the absorption rate in @DA is twice the rate, that is, (2.18).

Finally, if D is a domain of type III, then asymptotically ÃD
1
∼ Ã1, and (4.51)

holds with ¸ 1 replaced by ¸ 1(D ). The result (4.51) can be stated as

Theorem 1. If D is a domain of type III relative to (2.3), then

lim
²→0

¸ 1(D )

¸ 1(DA )
=

1

2
: (4.52)

Thus to leading order in ², ¸ 1(D ) is independent of D , as long as D is of type III.

That is, changes in the shape of D do not affect ¸ 1(D ) to leading order. In contrast,

as D shrinks to DA , ¸ 1(D ) abruptly doubles as D nears DA . As it shrinks yet further

inside DA , the quotient ¸ 1(D )=̧ 1(DA ) increases exponentially fast in 1=².

A generalization of Theorem 1 to the eigenvalue problem in Rn can be stated as

Theorem 2. If (2.3) is a bistable system and D = Rn , then (4.52) holds.

Theorems 1 and 2 show that in the limit of high barrier the definitions of rate as

an absorption rate of trajectories outside DA or as the rate of change of the reactant

population, or as twice the absorption rate on S, or as the stationary flux on an
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absorbing boundary @D with a source in DA , all lead the same result.

We illustrate the difference between our non equilibrium considerations and the

equilibrium considerations of (G)TST with an example. In the one dimensional

Kramers problem [2] (2.1) is given in dimensionless phase space by

ẋ = y

ẏ = −° y − V ′(x) +
√
2° ² ẇ; (4.53)

where V (x) is a bistable potential, ° is a dimensionless friction coefficient, and ² is

dimensionless temperature (normalized by the barrier height). We denote the minima

of V(x) by xA and xB , its local maximum by xC , and set ! 2
A (B ) ≡ V ′′(xA(B )), and

! 2
C ≡ −V ′′(xC ). We assume V(xA ) < V(xB ) < V(xC ). The domain of attraction DA

of the attractor A ≡ (xA ; 0) in phase space is bounded by a separatrix @DA , which

passes through the saddle point C ≡ (xC ; 0). The direction of @DA at C is that of

the line y = −¸ (x− xC ), where ¸ = [° +
√

° 2 + 4! 2
C ]=2. Obviously, Á0 = exp(−E=²),

where E = 1
2
y2 + V(x). We have locally near C

Â(x; y) =
! 2

C√
° (¸ − ° )

x +

√
¸ − °

°
y; (4.54)

hence, according to (3.20),

¸ 1 ∼
! A

4¼! C
(
√

° 2 + 4! 2
C − ° )e−∆V=² ; (4.55)
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where ∆V ≡ V(xC) − V(xA ), which is Kramers’ result (see detailed calculations in

[29], [38], and [48]).

In contrast, according to (G)TST, the rate is the normalized flux on the line

x = xC ; y > 0,

· =
∫
∞

0
yÁ0 dy

/∫ xC

−∞

∫
∞

−∞

Á0 dx dy ∼
! A

2¼
e−∆V=² ; (4.56)

which is the TST result [49]. We note that if the outgoing flux on C is replaced by

half the flux, calculated on any curve emanating from C to ∞, the result (4.56) is

unchanged. Indeed, we have

J(Á0) = (yÁ0;−° ²Á0;y − [° y + V ′(x)]Á0) = (yÁ0;−V ′(x)Á0); (4.57)

so that

F0 =
∫
∞

C
J(Á0) · º ds =

∫
∞

C
Á0(y dy + V ′(x)ds) =

∫
∞

EC

e−E =² dE = ² e−∆V=² ; (4.58)

hence (4.56). We conclude that Á1 cannot be replaced by Á0 in the calculation of · ,

regardless of the choice of the (G)TS.

5. Accounting for recrossings and the MFPT

A trajectory which starts in ΩA and having crossed @DA returns to ΩA prior to

reaching @D is said to recross @DA . In the process of escaping from ΩA to @D a tra-

jectory may recross @DA a random number of times. In this section we describe the
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escape process, calculate the mean number of times 〈n〉 that a trajectory crosses @DA

before it reaches @D , and show that for domains of type III the mean time 〈¿(D )〉 to

reach @D (i.e., to escape) is asymptotically twice the MFPT 〈¿(DA )〉. We begin with a

Lemma. Let D be a domain of type III relative to (2.3). Then the MFPT from @DA

to @D , conditioned on reaching @D before @ΩA , and the MFPT from @DA to @ΩA ,

conditioned on reaching @ΩA before @D , are at most O(1=
√

²) as ² → 0.

Proof. We prove only the second part of the lemma, since the first part follows from

similar arguments. We denote by x∗(t) the process x(t) in D−Ω̄A , conditioned on the

event {¿(@ΩA ) < ¿(D )}, that is, the trajectories of x∗(t) consist of those trajectories

of (2.1) which start in D − Ω̄A and reach @ΩA before @DA .

The process x∗(t) is a diffusion process with noise matrix ¾(x) and drift

b∗i (x) ≡ bi (x) + 2²
n∑

j =1

ai j (x)
@logP(x)

@xj
; (i = 1; : : : ; n) (5.1)

(see [50]), where P(x) is defined in (4.1) and is given by (4.11). We will show that the

drift b∗(x) is attracted to ΩA everywhere in D − Ω̄A and will estimate its component

in the direction ”toward” ΩA . To this end we change variables in the operator L∗

² in

(2.9). We introduce the stretched variable

»≡ Â(x)√
²

(5.2)
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to measure distance from @DA . We assume that there exists a global set of variables

s ≡ (s2; : : : ; sn) on the hypersurfaces » = const: (see [39] for a more detailed discussion

of this change of variables). In the variables (»; s) the operator L∗

² takes the form

L∗

² p = A(x)
@2p
@»2

+ B (x)
@p
@»

+
n∑

k=2

Ck(x)
@p
@sk

+ O(
√

²); (5.3)

where

A(x) ≡
n∑

i ;j =1

ai j (x)
@Â(x)

@xi

@Â(x)
@xj

≥ 0; (5.4)

√
² B(x) ≡ ²

n∑

i ;j =1

ai j (x)
@2Â(x)
@xi @xj

+
n∑

i=1

bi (x)
@Â(x)

@xi
; (5.5)

and

Ck(x) ≡
n∑

i=1

bi (x)
@sk

@xi
: (5.6)

The O(
√

²) term in (5.3) contains mixed derivatives with respect to ³ and sk and

derivatives with respect to sk . In view of (4.12) and (5.2),

B (x) = A(x)»: (5.7)

The function P(x) in (5.1), given by (4.11), can be written in terms of the variables

(»; s) as

P(»; s) =

√
1

2¼

∫ »

−∞

e−z2=2 dz: (5.8)
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The components of b(x) in the » and sk directions are denoted by (b»; bs2 ; : : : ; bsn ),

with

b»(»; s) = A(x)»: (5.9)

We define the domains D» ≡ {»(x) > »} and note that if »1 < »2, then D»1 ⊃ D»2. In

particular D0 = DA . In view of (5.9), the drift b(x) points into D» for » > 0, outside

D» for » < 0, and is tangent to @D0. Equation (5.1) gives the » component of b∗(x)

as

b∗» = b» + 2A(x)
@P(»; s)

@»
+ 2

n∑

k=2

A»;k(x)
@P(»; s)

@sk
; (5.10)

where A»;k(x) is the coefficient of @2P(»; s)=@»@sk in (5.3). In view of (5.8) we have

@P(»; s)=@sk = 0, so that

b∗»(»; s) = A(x)

(
»+ 2

@logP(»; s)
@»

)
= A(x)

(
»+

2e−»2=2∫ »
−∞

e−z2=2 dz

)
: (5.11)

We denote by n(x) the inner unit normal to the surface » = const: Next we show

that the drift b∗(x) in D − Ω̄A is attracted to @ΩA . On @DA we have »(x) = 0 and

P(0; s) = 1=2. It follows from (5.11) that b∗»(0; s) = 2
√
2=¼A(x), or in the original

variables

b
∗(x) · n(x) = 2

√
2²
¼

A(x) > 0: (5.12)

We note that (5.12) holds in a boundary layer near @DA . Thus the drift b∗(x) on

@DA points into DA . As » → ∞, that is, for x outside a small neighborhood of

36



@DA in DA , the numerator in (5.11) decays exponentially, whereas the denominator

converges to
√
2¼. It follows that the second term in (5.1) decays exponentially so

that the directions of b∗(x) and b(x) coincide. Thus, by assumption, the drift b∗(x)

is attracted by @ΩA in DA − Ω̄A . Next we consider b
∗(x) in D − D̄A , outside a

boundary layer, that is, we consider »→ −∞. First we note that in this limit [51]

P(»; s) ∼ −
√

1

2¼
e−»2=2

»
: (5.13)

¿From (5.11) and (5.13) we obtain

b∗»(»; s) ∼ −A(x)»= −b»(»; s); (5.14)

where the equality is a restatement of (5.2). It follows that b∗(x) points into D» for

all » < 0 and is therefore attracted to @DA in D − D̄A . Thus b∗(x) is attracted to

ΩA everywhere in D − Ω̄A . We see from (5.12) and (5.14) that the component b∗» is

asymptotically identical to the component b» inside DA and to −b» outside DA , except

for a boundary layer, where it is positive and O(
√

²). That is, the conditional process

x
∗(t) drifts toward ΩA across the surfaces @D» with normal speed which is either O(1)

or O(
√

²). Therefore the MFPT from any point in D − Ω̄A to @ΩA , conditioned on

{¿(@ΩA ) < ¿(D )}, is at most O(1=
√

²). This proves the lemma.

Theorem 3. If D is a domain of type III relative to (2.3), then

lim
²→0

〈¿(D )〉

〈¿(DA )〉
= 2: (5.15)
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Proof. We partition the trajectories of (2.1), all of which eventually reach @DA , into

two sets,

S1;1 ≡ {trajectories which having reached @DA for the first time,

reach @ΩA before @D} (5.16)

and

S1;2 ≡ {trajectories which having reached @DA for the first time,

reach @D before @ΩA}: (5.17)

We denote by ¿1 the first passage time to @DA , that is 〈¿1〉 = 〈¿(DA )〉. It follows

from the lemma that

E [¿(D )|S1;2] = 〈¿(DA )〉+ O(1=
√

²) as ² → 0: (5.18)

Also, as shown in Section 4,

P(S1;1) ∼ P(S1;2) ∼ 1

2
: (5.19)

Next we partition S1;1 into two sets,

S2;1 ≡ {trajectories in S1;1 which having reached @ΩA after the time ¿1, reach

@DA for the first time after ¿1, and then reach @ΩA before @D} (5.20)

and

S2;2 ≡ {trajectories in S1;1 which having reached @ΩA after the time ¿1, reach

@DA for the first time after ¿1, and then reach @D before @ΩA}: (5.21)
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Then, as above,

P(S2;1) ∼ P(S2;2) ∼ 1

2
P(S1;1) ∼ 1

4
: (5.22)

We denote by ¿2 the first time after ¿1, that a trajectory in S1;1 returns to @DA after

reaching @ΩA . By the lemma, the MFPT from @DA to @ΩA for trajectories in S2;1, is

at most O(1=
√

²). The MFPT from @ΩA to @DA is 〈¿(DA )〉, since it is independent

of the initial point of the trajectories in DA , outside an ²-neighborhood of @DA [32].

Thus by the lemma,

E [¿2 − ¿1|S2;1] = 〈¿(DA )〉+ O(1=
√

²): (5.23)

Again, from the lemma

E [¿(D )|S2;2] = 2[〈¿(DA )〉 + O(1=
√

²)] as ² → 0: (5.24)

We proceed in a similar manner and obtain sets Sn;1; Sn;2, and times ¿n , such that

Sn;1 ≡ {trajectories in Sn−1;1 which having reached @ΩA after the time ¿n−1, reach

@DA for the first time after ¿n−1, and then reach @ΩA before @D} (5.25)

and

Sn;2 ≡ {trajectories in Sn−1;1 which having reached @ΩA after the time ¿n−1, reach

@DA for the first time after ¿n−1, and then reach @D before @ΩA}: (5.26)
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Then, as above,

P(Sn;1) ∼ P(Sn;2) ∼ 1

2
P(Sn−1;1) ∼ 1

2n
: (5.27)

We denote by ¿n the first time after ¿n−1 that a trajectory in Sn−1;1 returns to @DA

after reaching @ΩA . Again, by the lemma,

E [¿n − ¿n−1|Sn;1] = 〈¿(DA )〉 + O(1=
√

²); (5.28)

and

E [¿(D )|Sn;2] = n[〈¿(DA )〉 + O(1=
√

²)]; as ² → 0: (5.29)

Since every trajectory reaches @D in finite time, having gone from @DA to @ΩA and

back a finite number of times, the union of the sets Sn;2; (n = 1; 2; : : :) contains all

trajectories. In addition, the sets Sn;2 are mutually disjoint. It follows that

〈¿(D )〉 =
∞∑

n=1

E [¿n+1 − ¿n |Sn;1]P(Sn;1) =
∞∑

n=1

n
2n

[〈¿(DA )〉+ O(1=
√

²)]

= 2[〈¿(DA )〉+ O(1=
√

²)]: (5.30)

Since [32]

〈¿(DA )〉 = O(eΨ̂(D A )=² ); (5.31)

the O(1=
√

²) term in (5.30) is negligible relative to 〈¿(DA )〉, so that

〈¿(D)〉 ∼ 2〈¿(DA )〉; (5.32)
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hence (2.18).

Next we discuss the notion of recrossings and of the transmission coefficient k. If

the transition state region (TSR) is chosen as a neighborhood of S, whose width is

independent of ², then, as is evident from the proof of Theorem 1, the probability

that a trajectory leaves the TSR in the direction of A or B is independent of the

choice of the TSR. We therefore choose the TSR to be the domain D −ΩA .

Definition. A trajectory x(t) of (2.1) which starts in ΩA is said to cross the TSR n

times, if x(t) ∈ Sn;2. If a trajectory crosses the TSR n times, it is said to recross it

n − 1 times.

Thus the number n of crossings of the TSR is a random variable. This definition

is asymptotically independent of ΩA and D (or ΩB ).

Corollary 1. If D is a domain of type III relative to (2.3), then the mean number of

times a trajectory recrosses the TSR is 1.

Proof. From the definition and from the proof of Theorem 1 it is obvious that

〈n〉 =
∞∑

n=1

n
2n

= 2; (5.33)

so that the mean number of recrossings is 1.
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If the definition of the stochastic separatrix is modified to replace the probability

1/2 in (4.2) with a probability p, independent of ², then according to (4.11), the

resulting surface Sp will be in an ²-neighborhood of S. Then (2.18) is replaced by

¿A B =
1

p
¿A Sp : (5.34)

It can be easily shown that ¿A Sp =p is asymptotically independent of p. Thus the

convenient choice S = S1=2 does not limit the generality of the definition. As in the

proof of Corollary 1, it can be shown that the mean number of crossings is 1=p.

Next we comment on the definition of the transmission coefficient k and its use.

As mentioned in the Introduction, k was introduced to account for the recrossing tra-

jectories which are neglected in (G)TST. If in the bottleneck case [52] the (G)TS�= S,

but passes through the saddle point, the probability of a return from the (G)TS

strongly depends on the point where a trajectory hits the (G)TS. This is the source

of the difficulty in calculating 〈n〉 in (G)TST, and of the overestimates of · in the

(G)TST results [3], [10]. If however the (G)TS is chosen as S, this difficulty is averted,

as shown above.

6. Conclusions and discussion

Noise induced escapes from an attractor of a dynamical system account for a
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variety of physical phenomena, such as chemical reactions [2], [49], [53], nucleation

[35], [54] the behavior of Josephson junction devices [55], [56], loss of lock in code

tracking loops [36], [57], to name but a few. The noise in such systems describes

internal or external fluctuations, brought about, e.g., by thermal vibrations, molecular

collisions, noisy resistors, and so on. In many cases the strength of the fluctuations

relative to the non fluctuating forces in such systems is small so that an escape is a

rare event on the time scale of the dynamics. The escape rate determines physically

measurable quantities, such as rates of molecular dissociation, isomerization, chemical

reactions, the resistance of Josephson junction devices, the reliability of logic elements,

the performance of tracking circuits, the stability of elastic structures, and so on.

In this paper we consider activation as a non equilibrium process. We define

reactant and product as neighborhoods ΩA and ΩB of the stable states of the noiseless

dynamics and show that in the limit of small noise this definition is independent of

the choice of these neighborhoods. We show that the rate at which trajectories arrive

from ΩA to ΩB for the first time is half the rate at which trajectories arrive from

ΩA to the stochastic separatrix S, and that this rate is also independent of these

neighborhoods. We conclude that in order to obtain the correct rate in (G)TST (i)

the qepdf has to be used rather than the epdf, (ii) the qepdf differs from the epdf in a

boundary layer near S by a boundary layer factor, and (iii) all recrossings of the TSR

are accounted for if (G)TS=S, but not otherwise. Thus no transmission coefficient is
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needed if (G)TS=S.

The need for (i)-(iii) in (G)TST is based on the assumption that the qepdf in mul-

tidimensional phase space is well approximated by the qepdf of the diffusion process

in the sense of (1.1). We conclude that the modified (G)TST employed in [7] can

be correct only if the chosen (G)TS is shown to be S, and if the modification of the

epdf defined by the integral equation [7, (3.10] has the appropriate boundary layer

structure.

The identification of S ∼@DA was based on the premise that ² was the only small

parameter in the problem. This assumption is satisfied for example in Kramers’ model

when the dissipation coefficient is not too small. In this case the above results and

[38], [48] confirm Kramers’ result to be exact, not merely an upper bound. However

in problems which involve more than one small parameter, then S �= @DA in general.

Indeed, S may differ considerably from @DA . This is the case, e.g., in the extremely

anisotropic overdamped motion of a two dimensional Brownian particle in a double

well potential V(x; y). Here x and y are the coordinates along which the motion is fast

and slow, respectively. If @2V=@x2 < 0 at the saddle point, then S may be completely

unrelated to @DA . This leads to many interesting phenomena such as the appearance

of long non exponential transients, decay rates not determined by the height of the

potential barrier, etc. [23], [58]-[60]. Also in the limit of small damping S �= @DA

[22]. In such cases the the factor 1/2 in the relation between the normalized flux on
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the GTS and · should be used only if GTS=S.

In [47] an attempt was made to prove that lim²→0 S = @DA , for continuous drifts

b(x), by employing the following argument. Using (4.11)-(4.15), in the limit ² → 0,

Â0(x) satisfies

n∑

i=1

bi (x)
@Â0(x)

@xi = 0 on S (on Â0(x) = 0): (6.1)

Hence lim²→0 S is a characteristic surface, tangent to the vector field b(x). Since @DA

is a characteristic surface, it is concluded in [47] that lim²→0 S = @DA . However @DA

is not necessarily the only closed characteristic surface in D , even if there is only one

attractor in D , and the above argument fails to choose S among the various closed

characteristic surfaces. Therefore this argument is not complete. For example, the

two-dimensional dynamics (in polar coordinates)

ṙ = −r (1 − r )2(2 − r )

µ̇ = f (r; µ); (6.2)

where f (r; µ) is a positive function, has a single attractor in the disk r < 2, centered

at r = 0, and an unstable limit cycle at r = 1 (attracting from the outside and

repelling from the inside). The second attractor is at infinity. Both circles r = 1

and r = 2 are closed characteristic surfaces, and the argument (6.1) does not identify

which circle is S in the limit ² → 0. In fact, our approach shows that in the limit

² → 0, S is the circle r = 2, as follows from the argument of Section 4. Indeed,
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the outer solution to (4.3) is constant inside the disk r < 1. It is also constant in

the annulus 1 < r < 2, since all trajectories in the annulus come arbitrarily close

together near the attractor r = 1. It is easy to see that the solution of the boundary

layer equation near r = 1 cannot match to two different constants on the two sides

of r = 1. It follows that the outer solution is a single constant throughout the disk

r < 2, so that lim²→0 S = {r = 2}.

Acknowledgment. The authors thank E. Pollak for useful discussions of TST.
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FIGURE CAPTION

Figure 1. The dynamics (2.3) is attracted to A and to @D and is repelled from @DA .

The domains ΩA ; DA ; and D are of types I, II, and III, respectively.
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