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Abstract  

 

Kirchhoff’s current law for circuits is about the flux 𝐉 of charge, usually electrons, 

and is derived for systems without significant time dependence of total charge. Yet 

Kirchhoff’s current law is used to design circuits on nanosecond time scales where time 

dependence is important. Maxwell’s equations are general and deal with time 

dependence. They imply conservation of the source term for the magnetic field. 

𝐉𝒕𝒐𝒕𝒂𝒍 = 𝐉 + 𝜀0 𝜕𝐄 𝜕𝑡⁄  is conserved. It does not accumulate. 𝐉 accumulates. 

𝐉 accumulates as charge 𝜌 as the electric field changes.  𝐉 is not conserved. It is necessary 

to add a term 𝜀0 𝜕𝐄 𝜕𝑡⁄  to reconcile Kirchhoff’s law with the Maxwell Ampere equation. 

But this term is not sufficient to allow a derivation of Kirchhoff’s law for general 

circuits. Additional constraints are needed that depend on details of the real circuit not 

usually included in simplified circuit diagrams, like the skin effect of current flow in 

wires and the locations and amount of stray capacitance. Kirchhoff’s current law can 

made general for the simplified circuits used by circuit designers, if the displacement 

term  𝜀0𝜕𝐄 𝜕𝑡 ⁄ is included in a revised definition of current  𝐉𝒕𝒐𝒕𝒂𝒍 in Kirchhoff’s current 

law  𝐉𝒕𝒐𝒕𝒂𝒍 = 𝐉 + 𝜀0 𝜕𝐄 𝜕𝑡⁄ . Including stray capacitance everywhere automatically adds 

the needed term 𝜀0 𝜕𝐄 𝜕𝑡⁄ . Perhaps that is why the need for the added terms has not 

been widely recognized.  
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Introduction 

Kirchhoff’s current law is used widely to help design the circuits of our technology 

that respond in nanoseconds [1-5]. Kirchhoff’s law has been used to design much slower 

circuits for nearly a century [6-9]. 

Kirchhoff’s current law is about the flux 𝐉 of charges in circuits, often the flux of 

electrons, and does not deal with the rate of change of the total charge in the circuit. 

The rate of change does not appear in a term in the usual formulation of Kirchhoff’s 

current law. But the rates of change of charge and electric field are not small in circuits 

that respond in nanoseconds. The mechanisms and properties of current flow vary 

significantly between nanoseconds and seconds in wires [4, 5, 10] and other 

components of circuits as well [11-18]. If Kirchhoff’s current law is derived without 

time dependence, circuit designers are likely to have concerns about using it to construct 

modern circuits where potentials change volts in nanoseconds. Their concern is likely 

to increase when they realize that Kirchhoff’s current law (for flux of charge) is 

incompatible with the conservation law implied by the Maxwell equations, as we shall 

derive in eq. (2).  

 

Methods 

Electrical phenomenon—slow (sec) and fast (nsec), even optical (fsec)—are 

described by the Maxwell equations [19-23] that do depend on the rate of change of the 

electric field. Our approach starts with them. Our method is to try to derive Kirchhoff’s 

current law for circuits from the Maxwell equations, specifically from the Maxwell 

Ampere law.  

We show how adding a term 𝜀0 𝜕𝐄 𝜕𝑡⁄  to the usual Kirchhoff’s law—symbols 

defined after eq. (1)—helps deal with rapidly changing currents, but not enough to allow 

a derivation of Kirchhoff’s current valid for any circuits. Adding the term 𝜀0 𝜕𝐄 𝜕𝑡⁄  is 

necessary but other conditions are often needed that depend on the physical properties 

and layout of the circuit. 
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Theory  

The Maxwell Ampere law is the start of our derivation.  

𝐜𝐮𝐫𝐥 𝐁 = 𝜇0 (𝐉 + 𝜀0

𝜕𝐄

𝜕𝑡
)  

(1) 

Here, 𝜇0 is the magnetic constant; 𝜀0 is the electric constant; 𝐄 is the electric field, and 

𝐉 is the flux of all charge with mass, however brief or transient, including the 

polarization charge of dielectrics.  

The Maxwell Ampere law includes time. The rate of change of the electric field 

𝜕𝐄 𝜕𝑡⁄  appears on the right-hand side of the law as part of the source for 𝐜𝐮𝐫𝐥 𝐁 in 

eq.  (1). Specifying 𝐜𝐮𝐫𝐥 𝐁 (and boundary conditions) is enough to specify 𝐁 according 

to the Helmholtz decomposition theorem because 𝐝𝐢𝐯 𝐁 =  0,  which is another 

Maxwell equation see [21, 24]. 

The flux 𝐉 of charges is a source of the magnetic field along with displacement 

current 𝜀0 𝜕𝐄 𝜕𝑡⁄  in eq. (1). The displacement term is needed to describe light 

propagating in a vacuum, as Maxwell himself discovered long ago [19-23]. In a 

vacuum, the displacement term is the only source of 𝐜𝐮𝐫𝐥 𝐁. The displacement term 

𝜀0 𝜕𝐄 𝜕𝑡⁄   was once thought to be a property of the aether [19, 25]. Many scientists have 

been puzzled by its existence in a vacuum devoid of matter [26], so I like to call 

𝜀0 𝜕𝐄 𝜕𝑡⁄  an ethereal current, in deference to its intangible nature as well as its history, 

with a smile on my face.  

 

Results 

Our main results concern the conservation of current. 

Conservation of Current. Conservation of current involves the displacement term 

𝜀0 𝜕𝐄 𝜕𝑡⁄  because conservation is described by the divergence operator div of vector 

calculus that can be applied to both sides of eq. (1).  

               div (𝐜𝐮𝐫𝐥 𝐁) = 0 = 𝐝𝐢𝐯 (𝐉 + 𝜀0
𝜕𝐄

𝜕𝑡
) (2) 

Then, 
𝐝𝐢𝐯 (𝐉 + 𝜀0

𝜕𝐄

𝜕𝑡
) = 0 

(3) 
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or  

𝐝𝐢𝐯 𝐉𝒕𝒐𝒕𝒂𝒍 = 𝟎 

𝐰𝐡𝐞𝐫𝐞   𝐉𝒕𝒐𝒕𝒂𝒍 = 𝐉 + 𝜀0 𝜕𝐄 𝜕𝑡⁄   
(4) 

Eq. (3) is a general conservation law true whenever the Maxwell equations are true. 

 𝐉𝒕𝒐𝒕𝒂𝒍 = 𝐉 + 𝜀0 𝜕𝐄 𝜕𝑡⁄  is conserved in general. 𝐉𝒕𝒐𝒕𝒂𝒍 never accumulates anywhere. 𝐉𝒕𝒐𝒕𝒂𝒍 

is incompressible to the accuracy of the Maxwell equations themselves, wherever they 

apply. It describes a perfectly incompressible flow. 

The conservation law eq, (3) also implies that the flux of charge 𝐉 is not conserved 

when the electric field varies in time.  

               𝐝𝐢𝐯 𝐉 ≠ 0,    when  𝜕𝐄 𝜕𝑡⁄ ≠   0  

   = −𝜀0 𝜕𝐄 𝜕𝑡⁄                                        
(5) 

This result comes as no surprise: the continuity equation—derived from eq.(1) and 

Gauss’ law—shows that charge 𝜌 is stored; 𝐉 is not conserved. 𝐝𝐢𝐯 𝐉 changes 𝜕𝜌 𝜕𝑡⁄   

and is stored as charge 𝜌. 

𝐝𝐢𝐯 𝐉 = − 𝜕𝜌 𝜕𝑡⁄       (6) 

𝜌 includes all charge with mass, including polarization charge on dielectrics. 

Kirchhoff’s current law for circuits implies that the flux 𝐉 of charge is conserved 

in circuits. Maxwell’s equations imply that the flux of  of charge is not conserved when 

electric fields or charges change with time. Conservation of total current 𝐉𝒕𝒐𝒕𝒂𝒍 is in 

conflict with Kirchhoff’s current law for the flux 𝐉 of charge (in circuits). Compare eq. 

(6) or (5) and (3) or (4). Kirchhoff’s law needs to be changed if it is to be used when 

charges and fields change with time, if it is to be compatible with the Maxwell 

equations.   

It is necessary then to add a term  𝜀0 𝜕𝐄 𝜕𝑡⁄  to Kirchhoff’s current law (for circuits) 

if it is to be consistent with the Maxwell Ampere law for time varying electric fields. If 

Kirchhoff’s law is applied to the ‘total current’ 𝐉𝒕𝒐𝒕𝒂𝒍 defined by eq. (4), it becomes 

consistent with the Maxwell equations under all conditions (even when fields and 

charges change with time). Total current 𝐉𝒕𝒐𝒕𝒂𝒍 is then conserved in circuits just as it is 

conserved wherever the Maxwell equations apply. 
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I hasten to say that this definition of total current eq. (4) is not sufficient to ensure 

that the revised Kirchhoff’s law (for total current in circuits) is consistent with the 

Maxwell Ampere law. The addition of the term 𝜀0 𝜕𝐄 𝜕𝑡⁄  is necessary as in eq. (4), but 

it is not sufficient, a point I have not always understood, e.g., [27, 28].  

Circuits must satisfy other conditions besides conservation of total current eq. (4) to 

be consistent with the Maxwell equation (1). In that sense, Kirchhoff’s law cannot be 

made exact in a general way or for every real circuit. Kirchhoff’s current law can made 

general for the simplified circuits used by circuit designers, displayed in their textbooks 

[1-3] if the displacement term  𝜀0𝜕𝐄 𝜕𝑡 ⁄ is included in the definition of current as in [27, 

28]. 

The other conditions needed to make Kirchhoff’s current law ‘exact’, are difficult 

to define broadly in mathematical form, because the sufficient conditions are as diverse 

as systems and circuits. Kirchhoff’s law requires that the total current (and power [29, 

30]) remain in the circuit itself. It requires that total current be reasonably well behaved 

in components and wires of the circuit (e.g., not dominated by the skin effect [4, 10]). 

The sufficient requirements and conditions are not apparent in the diagrams of circuits 

that are analyzed with Kirchhoff’s laws, yet the additional requirements may be 

important. The sufficient conditions depend on the properties of components and the 

location of the stray capacitances that link everything, including structures outside the 

circuit itself [5].  

 

Discussion 

Stray Capacitance. Real circuits always include stray capacitances 𝐶𝑖 [1, 2]. These are 

typically of the order of 10-12 to 10-10 farads and are important on time scales something 

like 𝑅𝑖𝐶𝑖 where 𝑅𝑖  is an effective resistance. Without stray capacitance, the idealized 

circuits of textbooks [1] are accurate when 𝑡 ≫ Ri𝐶𝑖 . Stray capacitances can be 

important in modern day circuits even when 𝑅𝑖 =  100 ohms. Stray capacitances are 

needed when real circuits are designed p. 579–587 of [1]. 

The stray capacitances of engineering practice describe the displacement current 

𝜀𝑟 𝜀0𝜕𝐄 𝜕𝑡⁄ , where 𝜀𝑟 is the dielectric constant 𝜀𝑟 ≥ 1. Stray capacitance arising from 
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𝜀𝑟 𝜀0𝜕𝐄 𝜕𝑡 ⁄ includes the displacement current 𝜀0𝜕𝐄 𝜕𝑡⁄  of eq. (1) – (4) as a component, 

because the dielectric term 𝜀𝑟 𝜀0𝜕𝐄 𝜕𝑡⁄  includes 𝜀0 for all values of 𝜀𝑟, see p. 9-10 of [2] 

Stray capacitances add the displacement current 𝜀0𝜕𝐄 𝜕𝑡⁄  to the classical 𝐉 of 

Kirchhoff’s law as is required by eq. (2).  

Historical Remark. Changing Kirchhoff’s law of current is not needed if stray 

capacitances have already been included and analyzed throughout a circuit. Stray 

capacitances are almost never included in circuit diagrams but are included in special 

cases as necessary, p. 579–587 of [1].  

Kirchhoff’s current law can made general for the simplified circuits used by circuit 

designers, displayed in their textbooks [1-3], if the displacement term  𝜀0𝜕𝐄 𝜕𝑡 ⁄ is 

included in the definition of current, as in [27, 28].The need to always add displacement 

terms to Kirchhoff’s law (according to eq. (1)-(4)) has not received much attention, 

probably because the terms are already included if stray capacitances are included 

everywhere in a circuit. 
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