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Abstract and Summary 

 

The name PNP was introduced by Eisenberg and Chen because it has important 

physical meaning beyond being the first letters of Poisson-Nernst-Planck. PNP also 

means Positive-Negative-Positive, the signs of majority current carriers in different 

regions of a PNP bipolar transistor. PNP transistors are two diodes in series PN + NP 

that rectify by changing the shape of the electric field. Transistors can function as quite 

different types of nonlinear devices by changing the shape of the electric field. Those 

realities motivated Eisenberg and Chen to introduce the name PNP. 

The pun “PNP = Poisson-Nernst-Planck = Positive-Negative-Positive” has 

physical content. It suggests that Poisson-Nernst-Planck systems like open ionic 

channels should not be assumed to have constant electric fields. The electric field should 

be studied and computed because its change of shape is likely to be important in the 

function of biological systems, as it is in semiconductor systems. 
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PNP is a shortened name for “Positive-Negative-Positive” or “Poisson-Nernst-

Planck equation”. It was not meant to be just an abbreviation: names are important, 

beyond their logical meaning, as the world shows us everyday. The name PNP is no 

exception. The name was chosen to help understand the system it describes. 

PNP was a pun introduced at the 1993 Biophysical Society (USA) meeting [1] 

by Eisenberg and Chen [2, 3] to emphasize the analogy between open ion channels and 

semiconductor devices. The Poisson equation is a version of Maxwell’s first equation 

[4-7] that describes how charge creates electrical forces and thus electrical potential. 

The Nernst-Planck equation [8-27] describes how electrical charges migrate (in the 

gradient of electric fields) and diffuse (in the gradient of concentration fields).1 The 

combination PNP is often called the drift diffusion equation in the semiconductor 

literature [8, 11, 12, 14-17, 20] 

PNP meaning “Positive-Negative-Positive” describes the spatial distribution of 

mobile charge produced (mostly) by the spatial distribution of doping in a 

semiconductor device, a bipolar transistor. Doping is a name for the ionizable impurities 

(dopants) introduced into pure semiconductors to create the quasiparticles holes P and 

electrons N. When dopants ionize, they leave behind a permanent charge (negative or 

positive) in a fixed spatial distribution, much like the permanent charge of ionized weak 

acids and bases. The ionized acid and base side chains of proteins, like glutamates E or 

lysines K, are one kind of the permanent charge of proteins.  

Holes and electrons diffuse and migrate according to the PNP equations [8, 10, 

28]. Note that the ‘electrons’ [29] of semiconductors are not the electrons [30, 31] 

discovered by JJ Thomson or the electrons found in atoms [32]. The ‘electrons’ of 

semiconductors are quasiparticles defined by properties of the conduction bands of 

semiconductors [17, 28, 33].  

Eisenberg and Chen chose the name PNP to emphasize the analogy between 

doping of semiconductors and the permanent charge of channels, or ion exchange 

membranes [9, 20, 24, 25, 34-67].  

Eisenberg and Chen were thinking of semiconductor devices because transistors 

and PNP equations have a wide range of nonlinear behavior. For example, PNP 

equations can describe an amplifier, limiter, multiplier, exponentiator, or logarithmic 

                                              
1 Another paper is needed to describe the utility and evident limitations of PNP, as well as its antecedents and 

present uses. 
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converter depending on the range of voltages applied to the transistor through boundary 

conditions.  

Eisenberg and Chen wondered if nonlinear devices, well described by the PNP 

equations in semiconductors, might also exist in biological systems, particularly protein 

channels and transporters [68]. These ideas were spelled out in an Abstract [69] 

presented at the Society of General Physiology Meeting 1992: “Exchange Diffusion, 

Single Filing, and Gating in Macroscopic Channels of One Conformation”.  

Nonlinearities of proteins were particularly interesting because they were 

thought to be the ‘secret of life’ by many physicists coming to biology soon after World 

War 2 [70-74]—at the same time that Shockley invented the transistors [75, 76]. 

Transistors create the complex nonlinearities of semiconductor devices.  

We now know that the nonlinearities of biology exist on many scales [77]. Some 

of those nonlinearities arise on the cellular scale of neurons and dendrites [78, 79]. Some 

arise on the molecular scale of proteins. Some arise on the even smaller atomic scale of 

the open ionic channel [80, 81]. Eisenberg and Chen wondered which of the 

nonlinearities of channels and transporters might come from PNP equations like those 

describing semiconductor devices [69].  

Most biologists sought other explanations for the nonlinearities of life. I hasten 

to add that those biologists seem to be right. Eisenberg and Chen’s hope that nonlinear 

biological devices—e.g., channels or transporters—would emerge as analogs of 

transistor devices, described by PNP equations, has not been fulfilled, as far as I know, 

probably, I suspect, because the third terminal of transistors—so important to the history 

of technology and to human life as the source of amplification—has not yet been found 

(or recognized) in channels or transporters. Transistors connected as two terminal 

devices provide properties that have not been considered by biologists, as far as I know. 

Eisenberg and Chen knew of the bipolar transistor PNP (along with its fraternal 

twin NPN) because bipolar transistors were the dominant form of solid state device, 

analog or digital, for much of their lives. Engineers today live quite a different life. 

Engineers today focus on digital technologies (usually CMOS and its cousins) and so 

knowledge of bipolar transistors is not widespread.2 

The bipolar transistor [82] is made of two semiconductor diode rectifiers [83] 

PN and NP in series. Crystal rectifiers much like these were used in the early history of 

                                              
2 It seemed wise to write this paper before the knowledge of bipolar PNP transistors and analog circuity 

disappears altogether. 
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radio broadcasting (around 1920) and remained of great interest to hobbyists for many 

years, including the young Eisenberg and his father. Crystal radios seem to “run on 

nothing”, using only the energy gathered by the antenna system (paraphrase of [84]). 

They demonstrate in a most practical way that the electric field of radio waves exists 

and has enough energy to power a (tiny) loudspeaker. Anyone who builds a crystal radio 

is likely to be entranced forever by the electric field and its propagation of power 

through empty space [85, 86]. Eisenberg was no exception. 

PNP transistors and PN diodes are rectifiers that detect asymmetrical signals in 

radio waves. They ‘make current flow the right way’—that is, they make current flow 

in one direction as Edison thought it should in the war between Edison’s DC and Tesla’s 

AC systems of electrical power [87]. The resistance of rectifiers depends on the 

direction of current flow because the shape of the electric fields at the PN or NP 

junctions depends on the direction of current flow.  

Rectifiers exist in biological membranes and so it was natural to analyze them 

the way crystal rectifiers were analyzed. One of the early papers on the crystal rectifier 

[88] served as the template for the constant field GHK theory of Goldman [89] and 

Hodgkin and Katz [90] of rectification in membranes.  

The GHK theory has been used extensively in electrophysiology to describe the 

electric field in the proteins that make ionic channels [91-93], not just the electric field 

in membranes, although the theory contains no description of the structure or charge of 

the channel protein that determine most channel properties. It is unfortunate that such a 

widely used theory assumes a constant shape of the electric field independent of the 

structure, charge, concentration, or membrane potential associated with the channel 

protein. It is even more unfortunate that it computes a current or reversal potential 

independent of the structure or charge of the channel protein. 

A central aspect of PNP physics is rectification. Rectification depends on the 

shape of the electric field. Rectifiers function by changing the shape of the field and so 

the shape of the field needs to be computed [94-98], not assumed. In fact, assuming the 

shape of the field will prevent understanding of how the device works.  

This point was emphasized by Eisenberg in a series of reviews [80, 94, 99-103] 

because he felt the role of the electric field in biological systems (and chemical 

reactions) could not be understood if the field was assumed constant. Properties of 

biological systems or chemical reactions that arise from changes in the shape of the field 

cannot be robustly described in theories that assume a constant field. Constant field 

theories would not be transferable. Theories would have to change parameters as they 

tried to mimic the consequences of a changing field. 
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Transferrable theories (that use the same set of parameters in different 

conditions) are needed to create stable understanding or robust devices, in my view. 

It should clearly be understood that the shape of an electric field varies as 

experimental conditions are changed (as they are changed in almost all experiments). 

Voltage clamp apparatus maintains voltages only at one specific location. To maintain 

the shape of an electric field, voltage clamp must be applied at many locations (within 

an ionic channel or membrane) because the only way to maintain a potential, as 

conditions are changed, is to supply charge from an external device like a voltage 

clamp amplifier. That charge must come through ‘wires’ from an external source, 

because ion channels—like most proteins—are in themselves isolated devices, unable 

to create charge. These issues are discussed at embarrassing length in the reviews [80, 

94, 99-103]. 

Isolated proteins need to be described as spatial distributions of permanent charge 

(to a first approximation) just as PNP transistors are described as distributions of doping 

(to a first approximation) and for the same reason. Their materials provide a permanent 

charge (as a first approximation) that arises from their chemical nature [104]. The 

second approximation is provided by the field dependent induced polarization charge 

of the dielectric. Further approximations require a fuller description of polarization [4, 

86, 105]. 

The boundary condition describing the potential in isolated proteins like channels 

is an inhomogeneous Neumann condition defining the (normal) spatial derivative of the 

potential, that is to say, defining the permanent charge, not the potential itself, to a first 

approximation (Appendix eq. A25 of [104]). The chemical nature and structure of the 

amino acids and proteins determine the permanent charge and thus the inhomogeneous 

Neumann condition on the potential. 

Proteins are almost always isolated from the outside world except at boundaries 

like baths connected to the outside world by the apparatus of electrochemical cells, i.e., 

3M KCl bridges, AgAgCl electrodes, and amplifiers [22, 106]. Proteins have one 

unchanging spatial distribution of charge as conditions change (neglecting the second 

order effect of dielectric properties). Proteins cannot be described by a single field of 

potential as conditions change because the electric field changes. It is the permanent 

charge of the protein that does not change as conditions change. 

Experiments maintaining a constant field in vacuum (i.e., one spatial distribution 

of potential) have been done. They are difficult to perform even in a SQUID 

(superconducting quantum interference device) [107]. 
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